

1 **Range shifts in a foundation sedge potentially induce large Arctic**
2 **ecosystem carbon losses and gains**

3

4 **Keywords:** Arctic, tundra, carbon cycle, climate change, *Eriophorum vaginatum*, carbon stocks

5

6 **Abstract:**

7 Foundation species have disproportionately large impacts on ecosystem structure and function.
8 As a result, future changes to their distribution may be important determinants of ecosystem
9 carbon (C) cycling in a warmer world. We assessed the role of a foundation tussock sedge
10 (*Eriophorum vaginatum*) as a climatically vulnerable C stock using field data, a machine
11 learning ecological niche model, and an ensemble of terrestrial biosphere models (TBMs). Field
12 data indicated that tussock density has decreased by ~0.97 tussocks per m² over the past ~38
13 years on Alaska's North Slope from ~1981 to 2019. This declining trend is concerning because
14 tussocks are a large Arctic C stock, which enhances soil organic layer C stocks by 6.9% on
15 average and represents 745 Tg C across our study area. By 2100, we project that shifts in tussock
16 density may decrease the tussock C stock by 41% in regions where tussocks are currently
17 abundant (e.g. -0.8 tussocks per m² and -85 Tg C on the North Slope) and may increase the
18 tussock C stock by 46% in regions where tussocks are currently scarce (e.g. +0.9 tussocks per m²
19 and +81 Tg C on Victoria Island). These climate-induced changes to the tussock C stock were
20 comparable to, but sometimes opposite in sign, to vegetation C stock changes predicted by an
21 ensemble of TBMs. Our results illustrate the important role of tussocks as a foundation species in
22 determining future Arctic C stocks and highlights the need for better representation of this
23 species in TBMs.

24

25 **1. Introduction**

26
27 The impact of climate change on ecosystem carbon (C) stocks will depend on the response of
28 individual species and their relative roles in ecosystem function [1]. In this context, foundation
29 species and their responses to climate change play an important role due to their
30 disproportionately large impacts on ecosystem structure and function [2]. Yet, foundation
31 species' impact on future C stocks remains uncertain due to their coarse representation in
32 terrestrial biosphere models (TBMs) [3-5]. This is especially true in rapidly changing Arctic
33 ecosystems, which have important feedbacks to global C cycling and climate, yet are often
34 represented as a single or limited number of plant functional types in TBMs [4-6]. Here we
35 investigated the influence of an important foundation species (*Eriophorum vaginatum* L.,
36 Cyperaceae; tussock cottongrass) on Arctic C stocks in the past, present, and future.

37
38 Tussock cottongrass is an important foundation species with a unique growth form and a pan-
39 Arctic distribution that spans the tundra biome in North America, Asia, and Europe [7]. Tussock
40 cottongrass accounts for up to one-third of primary productivity in moist acidic tundra (~7% of
41 the arctic tundra biome) and is often present at lower density throughout the biome [8]. Tussock
42 cottongrass also allocates a large proportion of its biomass belowground with belowground to
43 aboveground biomass ratios that are 3 to 7 times higher than other tundra species [9] (Fig S1).

44 Due to Because of its large allocation to belowground biomass coupled with limited
45 decomposition in the cold environment, tussock cottongrass forms root necromass mounds that
46 allow it to escape the saturated and often anaerobic soils of tundra ecosystems (Fig. 1a) [9-11].
47 Increased arctic temperatures will enhance the decomposition of tussock necromass and lead to
48 soil drying that may jeopardize the persistence and size of tussock C stocks. However, our ability

Range shifts in a foundation sedge

49 to assess this claim is limited by a poor understanding of the sensitivity of tussocks to climate
50 change as well as a poor representation of this species and its unique C storage characteristics in
51 Terrestrial Biosphere Models (TBMs).

52

53 Tussock cottongrass's large belowground contribution to ecosystem C stocks is not explicitly
54 represented in current TBMs. TBMs currently characterize tundra vegetation as a single or a
55 limited number of plant functional types (≤ 2 PFTs, Table S8) [4, 5, 12, 13]. These PFTs utilize
56 average traits that are likely not representative of *E. vaginatum*'s unique growth form and highly
57 productive root system [4, 9, 11]. *Eriophorum vaginatum* tussocks and other foundation species
58 impact several complex, non-linear ecosystem processes (i.e. soil organic C dynamics, temporal
59 vegetation dynamics, and plant mortality), that are known to be large sources of uncertainty in
60 current TBMs [14-16]. TBMs risk non-linear predictive biases by parameterizing PFTs using
61 average traits when species significantly differ from this average [5, 12, 13, 17]. As a result,
62 tussock cottongrass and other foundation species have the potential to be important for future C
63 cycling projections if tussocks are vulnerable to rapid climate change.

64

65 Numerous lines of evidence suggest that the tussock C stock may be vulnerable to future climate
66 change. In addition to the environmental changes that disadvantage tussock formation in a
67 warmer climate, climate change also has shifted optimal environmental conditions for tussock
68 cottongrass populations northward [18]. Field experiments also indicate that both fertilization
69 and warming result in declines of tussock density deelines through increased competition with
70 taller statured shrubs [11, 18-20]. We build upon these lines of evidence and hypothesize that
71 recent climate change has altered tussock density and that climate-induced shifts in tussock

Range shifts in a foundation sedge

72 density have the potential to significantly impact regional changes in ecosystem C stocks over
73 the next century. Addressing these hypotheses will provide impetus to further understand
74 foundation species and represent them in TBMs to improve future C cycle projections.

75

76 2 Methods

77 2.1 Historical data and resurveys

78 We resurveyed ~38-year-old historical plots in 2018/2019 to determine whether tussock density
79 has responded to recent climate change. Historical tussock density surveys at 20 sites on the
80 North Slope of Alaska were collected between 1977 and 1982 (Fig. 1b) by [Fetcher and Shaver](#)
81 [1982](#) [\[?\]](#) and [Shaver et al., 1986](#) [\[40\]](#) (Table S1). The sites were resurveyed in 2018/2019 with the
82 aid of one of the original authors (Ned Fetcher). [Fetcher and Shaver 1982's sites were](#)
83 [permanently staked allowing for easy relocation. Shaver et al., 1986's sites were relocated by](#)
84 [digitizing historic maps](#) [\[21\]](#). We calculated the change (Δ) in tussock density by subtracting our
85 modern (i.e. 2018-2019) and historical (i.e. 1977-1982) plot level surveys (Δ =Modern-
86 Historical). Hence, a negative Δ indicated a decrease in tussock density and a positive Δ
87 indicated an increase in tussock density since the 1980s. We tested for changes in tussock density
88 between the historical and modern surveys using a paired Wilcoxon signed-rank test because the
89 data violated the normality assumptions for a parametric test.

90

91 2.2 Contemporaneous surveys of tussock density and soil organic C stocks

92 We quantified the contribution of tussocks to ecosystem C stocks with field surveys distributed
93 across the Arctic. Tussock density was measured in 25-50 2 x 2 m quadrats placed at

Commented [NF1]: Citation is not consistent with style guidelines.

Commented [NF2]: Citation is not consistent with style guidelines.

Range shifts in a foundation sedge

94 independent randomly selected distances along 100-200 m transects at 98 sites in the Alaskan,
95 Canadian, and Russian Arctic (2015–2019, Fig. 1c, Table S2). We randomly measured tussock
96 diameters with tree calipers at 78% of the sites. We used diameter and tussock density
97 measurements to calculate the tussock C stock with allometric equations. The tussock C stock
98 was considered to include both above and belowground biomass and necromass in tussocks. The
99 tussock allometric equation predicted the tussock C stock as a function of tussock diameter and
100 was developed by harvesting and dissecting 57 tussocks in Russia and Alaska. The harvested
101 tussock material was oven-dried at 60 °C for 48 hours, weighed, and the dry weight C quantified
102 using a conversion factor of 0.5 gC g⁻¹. Tussock allometries from Russia and Alaska were
103 statistically indistinguishable ($F = 1.3$; $P = 0.28$) and had high predictive power ($R^2 = 0.86$,
104 Fig. S2, Table S3).

105

106 The inter-tussock soil organic layer C stock was quantified at 47 sites to determine the relative
107 contribution of tussock C to the total soil organic layer C stock. At each site, the inter-tussock
108 soil organic layer C stock (g m⁻²) was quantified by measuring the thickness of each soil organic
109 layer (m), each soil organic layer's bulk density (g m⁻³), and each soil organic layer's C content
110 (gC g⁻¹). The soil organic layer was divided into as many as two layers by color and texture:
111 Oi/Oe or fibrous organic horizon, and Oa/A or organic horizon. At each site inter-tussock soil
112 organic layer thickness was measured with a ruler in at least five pits. Soil organic layer bulk
113 density was measured using five soil cores that encompassed all soil organic layers. Core
114 dimensions (m) were measured using calipers. Samples were oven-dried at 60 °C for 48 hours
115 with rocks and large roots (>2 mm) removed manually. The bulk density of each layer was
116 determined based upon the core volume (cm⁻³) and dry weight (g). The C content (gC g dry soil⁻¹

Range shifts in a foundation sedge

117 ¹⁾ of a subset of the soil samples was determined using elemental analysis or loss on ignition and
118 used to calculate bulk C density (gC cm^{-3} ; Fig. S3-4; Table S4) [22]. We also quantified tussock
119 bulk density (g m^{-3}) and C content (gC g^{-1}) with 58 circular cores sampled through the center of
120 tussocks on the North Slope of Alaska. We removed other species' roots from the tussock root
121 necromass cores based on color and morphology. Significant differences between the observed
122 bulk C density (gC m^{-3}) of tussock root necromass and the two types of inter-tussock soil
123 horizons for the samples pooled across all sites were determined using t-tests.

124

125 We assessed whether tussocks enhance the soil organic layer C stock by comparing calculations
126 of each site's soil total organic layer C stock using two different methods. The first method
127 accounted for the tussock C stock whereas the second assumed that no tussocks were present. In
128 the first method, we calculated each site's inter-tussock soil organic layer C stock (gC m^{-2}) based
129 upon our field surveys. We excluded the belowground volume occupied by tussocks ($\text{m}^3 \text{ m}^{-2}$) by
130 assuming that tussocks are cylinders, with diameters equal to each site's average tussock
131 diameter, that extend through the entire depth of the organic layer [10]. We then summed the
132 inter-tussock soil organic layer C stock and the tussock C stock to get the total soil organic layer
133 C stock. In the second method, we excluded the tussock C stock and instead assumed the
134 belowground volume occupied by tussocks was replaced with inter-tussock soil. The
135 enhancement of the soil organic layer C stock by tussocks is the difference between the first
136 calculation which includes tussocks and the second calculation which excludes tussocks and fills
137 their belowground volume with soil.

138

139 2.3 *Tussock and shrub C stock comparisons*

140 We compared tussock and shrub C stocks across our sites to determine the importance of the
141 tussock C stock relative to the shrub C stock. We did this because climate warming is anticipated
142 to increase shrub abundance and biomass (i.e. “shrubification”). [5, 23, 24]. We quantified
143 aboveground shrub C stocks at a subset of our sites that spanned our latitudinal gradient (34
144 sites, Table S2). At each site, we measured the basal diameters of all *Betula nana* and *Salix* spp.
145 shrubs within twenty 0.25 m² plots, and calculated the shrub C stock using region and species-
146 specific allometric equations and published above- to below-ground ratios [25]. The allometric
147 equations quantified total shrub biomass from the measurements of basal diameter and had high
148 predictive power (R^2 between 0.99–0.6, Fig. S5, Table S5). Shrub biomass uncertainty including
149 uncertainty in the belowground/aboveground biomass ratios was quantified using Monte Carlo
150 methods. For each site, we calculated the “tussock to shrub index” which indicates the number of
151 tussocks per m² that hold the same amount of C as shrubs per m² ($gC_{\text{shrubs}} \text{ m}^{-2} / gC_{\text{tussocks}} \text{ m}^{-2}$
152 tussock⁻¹). Hence, a value less than one indicates that on average a single tussock per m² holds
153 more C than the shrubs in that same area.

154

155 2.4 *Geospatial and remotely sensed datasets*

156 We obtained twenty-six high-resolution gridded climate and edaphic data sets to determine the
157 climatic and edaphic controls on tussock density biogeography [26-29]. Our study area
158 encompassed all Arctic regions in North America and Eastern Eurasia as indicated by the CAVM
159 bioclimatic zones [8]. Decadal and quinquennial means were used to minimize the impact of
160 inter-annual weather variation and focus on climatic controls. The gridded data sets included

Range shifts in a foundation sedge

161 decadal means of 19 bioclimatic variables over the periods 1967-1977 and 2005-2015, edaphic
162 properties (i.e. soil pH, bulk density, soil texture [percentage sand, silt, and clay], and slope), and
163 the quinquennial mean of the MODIS summer warmth index (SWI, the sum of monthly mean
164 land surface temperatures greater than 0°C, averaged from 2014–2019) [30, 31]. Climate and
165 edaphic data sets were bilinearly interpolated to a 250 m common grid using ArcGIS Pro (see
166 Fig. S6 workflow diagram). Spatial autocorrelation from downscaling likely did not impact our
167 results because the coarsest product's resolution (~5km) was finer than the average nearest
168 neighbor distance between our surveys (~20km).

169

170 Future climate projections were obtained from one model within CMIP5 (i.e. NCAR CCSM4.0).
171 This particular model performs well in replicating historical climate patterns in the study area
172 and was used in McGuire et al., 2018's model inter-comparison (see section 2.7). The projected
173 monthly absolute changes in temperature and relative changes in precipitation between the
174 baseline (2005–2015) and target years (2090–2100), in each scenario, were downscaled and
175 applied to our climate data [32]. SWI was not available from CMIP5 and was stepped forward in
176 time using a random forest that predicts SWI as a function of the 19 bioclimatic variables. This
177 random forest was trained using 70000 randomly selected pixels within the study area and
178 validated using 30000 independent pixels ($R^2 = 0.97$, See Fig. S6–7).

179

180 *2.5 Tussock density and tussock C stock models*

181 A machine learning ecological niche model was fit to the modern tussock survey, climate, and
182 edaphic datasets to evaluate abiotic controls on tussock density and the tussock C stock.

Range shifts in a foundation sedge

183 Ecological niche models are statistical models which are widely used to understand the complex
184 relationships between species distribution and environmental factors [3, 33, 34]. Our machine
185 learning ecological niche model used bias-corrected extraTrees regression to model tussock
186 density as a function of the decadal means of the 19 bioclimatic variables and edaphic properties
187 described in the previous section [35, 36]. We chose to retain all of the covariates following the
188 recommendation of Pearson et al., 2013 given that variable selection using permutation
189 importance or VSUF decreased model performance. Permutation importance (i.e. the increase in
190 mean squared error [MSE] when permutating a predictor or groups of predictors) and partial
191 dependence analyses on the tussock density model were used to explore the relationship between
192 tussock density and each explanatory variable [37, 38]. Predicted tussock density was converted
193 to the tussock C stock using another bias-corrected extraTrees regression with MODIS SWI as
194 an additional driver and observed tussock C stocks as the dependent variable (see Fig. S8
195 workflow diagram).

196

197 The ecological niche model was validated against independent data. First, 30% of the survey data
198 was withheld from the parameterization to assess performance. Second, we made predictions
199 using mean gridded bioclimatic variables characterizing the decade before the earliest historical
200 tussock density survey (i.e. 1967-1977) with static edaphic properties to test the model against
201 observed historical tussock density (i.e. the surveys collected in 1977 and 1982). Historical
202 tussock density was bias-corrected using a common approach wherein the difference between
203 predicted historical tussock density and predicted present-day tussock density was added to
204 current day observed tussock density (i.e. the resurveys collected in 2018/2019) [39]. The spatial
205 extent of the historical surveys and re-surveys was approximately an order of magnitude lower

Range shifts in a foundation sedge

206 than the transect surveys used to parameterize our model (i.e. 24 m² per site for Shaver, [Fetzer](#)
207 [et al.](#) [40] versus 200 m² per site in our surveys). This difference in spatial extent resulted in bias
208 (see Fig. S9) comparison between co-located historical and modern surveys). That is our 200m
209 surveys characterized a greater portion of the site and generally [observed obtained](#) lower tussock
210 density. As further validation, we directly compared raw predicted and observed changes in
211 historical tussock density using a paired Wilcoxon signed-rank test.

212

213 2.6 Tussock density and tussock C stock projection

214 To quantify the importance of tussocks at the regional scale, we used the ecological niche model
215 to predict modern and future tussock density and tussock C stocks. We divided the study area
216 into regions based upon established political/ecological boundaries: the Republic of Sakha [SH],
217 the Chukotka Autonomous Okrug [CH], the Yukon–Kuskokwim Delta [YK], the Seward
218 Peninsula [SP], the North Slope [NS], northern Canada [NC], and Victoria Island [VI]. The
219 ecological niche model was projected for the modern era, and into the future under RCP 4.5 and
220 8.5 for two time periods 2050 and 2100 using the climate drivers described above. Future
221 ecological niche model runs were driven by climate with static edaphic conditions given the lack
222 of datasets that project edaphic conditions. Our results are likely not sensitive to this assumption
223 since edaphic properties are unlikely to change within the next century [3, 34]. Our estimates and
224 projections were further validated using back-of-the-envelope calculations. These calculations
225 used predicted tussock density changes and average present-day tussock mass to ensure the
226 estimates of our tussock C stock model fell within an expected range.

227

228 2.7 *Comparison with TBMs*

229 We contextualized our projections of future tussock C stocks by comparing them to projections
230 made by an ensemble of TBMs. Gridded estimates of the total vegetation C pools to 2100 were
231 obtained from five TBMs under the RCP 8.5 scenario from McGuire et al., 2018. The model
232 inter-comparison of McGuire et al., 2018 utilized the same scenario as our projections (RCP 8.5/
233 NCAR CCSM4.0). The predicted changes in vegetation C stocks between 2015 and 2100
234 averaged for the five models were calculated for each region from the gridded model outputs and
235 compared to projected change in the tussock C stock derived from our ecological niche model.

236

237 2.8 *Assessing Ecological Niche Model uncertainties*

238 Given that our modeling analysis synthesizes many streams of data to make inferences at large
239 spatial scales, we used Monte Carlo simulations to assess and propagate uncertainty in our
240 ecological niche model [41-43]. The underlying survey data was resampled with replacement
241 and tussock mass estimation, model fitting, and projection were permuted ($n = 500$). The
242 resulting ensemble of outputs were used to calculate standard errors for our projections. The
243 Monte Carlo simulations propagate uncertainty through our workflow including uncertainty in
244 the surveys, upscaling of the surveys, and the two machine learning models (see Fig. S8
245 workflow diagram). This analysis allows us to assess the precision and reliability of our model
246 projections across space and time [43]. This uncertainty quantification also facilitates
247 comparisons between our model results, other data products, and future work. It allows for any
248 comparisons of our results to future work to determine if the accuracy and precision of
249 predictions are increasing over time as new processes are considered.

Commented [NF3]: Citation is not consistent with style guidelines.

250

251 **3 Results**252 *3.1 Historical tussock surveys*

253 We found a statistically significant decline of 0.97 ± 0.31 tussocks m^{-2} over the past ~ 38 years
 254 across the historical sites on the North Slope of Alaska ($P < 0.01$) (Fig. 2a). Changes in tussock
 255 density across the region ranged from -4.2 to $+1.4$ tussocks m^{-2} . Tussock density significantly
 256 declined at 80% of the sites, whereas 20% exhibited slight largely non statistically significant
 257 increases, of which one half were not statistically significant (Fig. 2b). Decreases in tussock
 258 density coincided with a period of significant environmental change in Northern Alaska
 259 accompanied by increases in air temperature and precipitation in the Arctic region ($+0.6$ $^{\circ}\text{C}$ and
 260 $+1.5\text{--}2\%$ precipitation per decade) [44].

261

262 *3.2 Tussocks contribution to near-surface C stocks*

263 The presence of tussocks enhanced the soil organic layer C stocks by 0 to 30% (mean = $6.9 \pm$
 264 1.3%, Fig. 3a). The harvested tussocks were largely composed of root necromass (70% on
 265 average) and dead tiller necromass (20% on average) which locally extended the O soil horizon.
 266 The enhancement by tussocks was dependent upon tussock density, which explained 61% of the
 267 variation in the percent enhancement of the soil organic layer C stock by tussocks. Based upon
 268 this linear relationship, each additional tussock per m^2 enhanced the soil organic layer C stock by
 269 $3.9 \pm 0.5\%$ (Fig. 3a). Tussocks enhanced soil organic carbon stocks by elevating the surface and
 270 packing almost twice as much carbon in a given volume than as in the surrounding organic layer.
 271 For example, tussocks elevated the surface up to ~ 10 cm, while their bulk C density was

Commented [NF4]: It looks like there are four increases. Of these, two probably have 95% confidence intervals that include 0.

Commented [NF5]: Results are in past tense.

Range shifts in a foundation sedge

272 significantly greater than that of the upper Oi/Oe fibrous organic horizon which tussocks usually
273 occupy at depth ($21.2 \pm 2.7 \text{ kg C m}^{-3}$, $P < 0.01$).

Commented [NF6]: This is unclear. I can't figure out what you mean or I would have tried to fix it..

274

275 We assessed the potential for increased shrub growth to offset tussock loss by comparing the C
276 stock of individual tussocks to shrubs in our surveys (Fig. 3b). Based on these surveys the
277 “tussock to shrub index” was 0.8 on average and ranged from 0.5 to 1.25 after considering
278 uncertainty in the belowground/aboveground biomass ratio (Fig. 3b). Therefore, at our sites, a
279 change in tussock density between 0.5 and 1.25 tussocks per m^2 would equal the quantity of C
280 currently held in *Betula nana* and *Salix* spp. shrubs per m^2 .

281

282 3.3 Tussock biogeography

283 Predictions from the ecological niche model demonstrated high predictive power across space
284 and time. The ecological niche model had a root mean squared error of 0.67 ($R^2 = 0.74$) against
285 independent measurements of modern tussock density and exhibited no latitudinal bias ($P \leq$
286 0.46, Fig 4a, S10b, Table S6). The model had a root mean squared error of 1.95 ($R^2 = 0.36$)
287 against historical tussock density (Fig. 4b, $n = 20$) and yielded an average change in tussock
288 density that was statistically indistinguishable from in situ measurements (Modeled: $-0.07 \pm$

289 0.21, Historical: -0.97 ± 0.31 ; $P \leq 0.07$, RMSE = 1.95, $n = 20$).

Commented [NF7]: What about Reviewer 1 comment?
 $P < 0.07$ is very close to significant. I think you need to say more here.

290

291 The biogeography of tussock density was influenced by both climatic and edaphic factors. Mean
292 temperature of the wettest quarter, pH, bulk density, annual mean temperature, and precipitation

Range shifts in a foundation sedge

293 of the wettest month were the five most important predictors of tussock density in the model
294 (Fig. 4c). The grouped importance for bioclimatic variables (+96% MSE) was greater than for
295 edaphic properties (+80% MSE). Temperature-related bioclimatic variables (+92% MSE) were
296 slightly more important than precipitation-related ones (+87% MSE). The relationship between
297 tussock density and mean temperature of the wettest quarter in the partial dependence analysis
298 was non-monotonic with peaks around 2 and 10 °C (Fig. S11). Tussock density decreased with
299 increasing soil pH, bulk density, and precipitation of the wettest month (Fig. S11). Tussock
300 density increased up until an annual mean temperature of around -10 °C and then declined.

301

302 Extrapolating the ecological niche model to our region of interest, we found that the North Slope
303 had the highest tussock density. This high tussock density resulted from favorable climatic and
304 edaphic conditions in this region (2.3 ± 0.04 tussocks per m^2 , Fig. 5a, Table 1). Edaphic and
305 climate conditions on parts of the North Slope and Chukotka Autonomous Okrug represented an
306 optimum in the biogeography of tussocks with acidic soils and a climate that was not too warm
307 or cold to support high tussock densities. Low temperatures and less favorable edaphic
308 conditions limited tussock density in Northern regions such as Banks/Victoria Island where
309 tussock density was 65% lower than the North Slope and the Republic of Sakha where tussock
310 density was 55% lower than on the North Slope. Edaphic conditions and warm temperatures
311 limited tussock density in the Southern Regions such as the Yukon–Kuskokwim Delta where
312 tussock density was 70% lower than the North Slope and the Seward Peninsula where tussock
313 density was 57% lower than the North Slope.

314

315 *3.4 Tussock shifts under future climate change*

316 The ecological niche model projected substantial regional shifts in tussock density for all future
317 climate scenarios (Table 1). Changes in tussock density for the climate scenarios indicate that
318 even moderate climate change will impact the biogeography of tussock density (Table 1). We
319 focused on the most extreme scenario (2100 under RCP 8.5) to simplify reporting of results and
320 because it is a common climate scenario for future Arctic C cycling. In 2100 under RCP 8.5,
321 optimal climate conditions for high tussock density shifted northward with the greatest potential
322 losses occurring on the North Slope (-0.8 ± 0.05 tussocks per m^2), Northern Canada (-0.2 ± 0.04
323 tussocks per m^2) and the Chukotka Autonomous Okrug (-0.5 ± 0.05 tussocks per m^2 ; Fig. 5b,c;
324 Table 1). The model predicted gains in tussock density in northern areas where tussock density is
325 currently low including Victoria Island ($+0.9 \pm 0.05$ tussocks per m^2), and the Republic of Sakha
326 ($+0.7 \pm 0.04$ tussocks per m^2 ; Fig. 5b,c; Table 1).

327

328 Regional shifts in tussock density translated into potentially large changes in the tussock C stock
329 in 2100 under the RCP 8.5 climate scenario (Table 2). The ecological niche model explained
330 52% of the variation in the tussock C stock when tested against independent data and the model
331 residuals were independent of latitude (Fig S10a,c, Table S6). Assuming that tussock C
332 decomposes completely the model predicts tussock C losses of 85 ± 10 Tg C on the North Slope,
333 66 ± 13 Tg C in the Chukotka Autonomous Okrug, and 20 ± 5 Tg C in northern Canada. In the
334 remaining four regions where tussock density is projected to increase by 2100, the model
335 predicts tussock C stock increases of 2 ± 1 Tg C on the Seward Peninsula, 33 ± 10 Tg C in the
336 Sakha Republic, 20 ± 3 Tg C in the Yukon–Kuskokwim Delta and 81 ± 7 Tg C on Victoria
337 Island.

338

339 *3.5 Comparison with TBMs*

340 We contextualized the tussock C stock model projections with comparisons to vegetation C
341 stocks projected by an ensemble of models for the RCP 8.5 scenario in 2100. The magnitude of
342 the changes in the tussock C stock was comparable to changes in vegetation C stocks (Table 2,
343 Fig 6). The changes in vegetation C stocks were positive and ranged from 17 to 148 Tg C.
344 Changes in the tussock C stock were both positive and negative and ranged from -85 to 81 Tg C.
345 The changes in the tussock C stock were beyond the uncertainty bounds of the changes in
346 vegetation C stocks in every region except the Sakha Republic. Tussock C stock gains were
347 larger than vegetation C gains on Victoria Island. On the other hand, losses of tussock C were of
348 a different sign than increases of vegetation C in the Chukotka Autonomous Okrug, the North
349 Slope, and northern Canada. The opposing signs of the changes in tussock and vegetation C
350 stocks suggest that shifts in tussock density may offset expected vegetation C gains in some
351 arctic regions.

352 **4 Discussion**

353 Here we demonstrate that tussock cottongrass is an important and climatically vulnerable
354 foundation species in arctic tundra. Compared to other arctic species, such as shrubs, tussocks
355 stored an unusually large amount of C and enhanced soil C storage by elevating the surface and
356 increasing bulk density (Figs. 1, S1, 3). Repeated historic measurements demonstrated that
357 tussock density has significantly declined in Northern Alaska over the past 38 years. Ecological
358 niche modeling demonstrated that the biogeography of tussock density appears to be at a tipping
359 point with moderate climate change inducing significant changes in tussock density in the past

Range shifts in a foundation sedge

360 and into the future (Fig. 2, Table 2). Historical declines in tussock density coincided with an 0.6
361 $^{\circ}\text{C decade}^{-1}$ air temperature increase across the Arctic region. with a Another $0.9 ^{\circ}\text{C decade}^{-1}$ air
362 temperature increase is anticipated by 2100 under RCP 8.5 [44, 45]. Recently, much attention
363 has been paid to the shrubification of the arctic and its C cycling implications [citation needed].
364 Here we provided the first evidence of climate-induced shifts in another important arctic species
365 that will have significant impacts on the future arctic C cycle.

366

367 The high climate sensitivity of tussock cotton grass demonstrated here aligns well with
368 observations of increasingly poor performance in this species under fertilization and warming
369 experiments [18-20]. Moreover, past work using machine learning approaches also have
370 predicted a decline in tussock-dominated communities over the next 100 years [3]. The
371 ecological niche model had high predictive power for the modern biogeography of tussock
372 density and provided a statistically indistinguishable historical average change in tussock density
373 compared to observations (Figure 4b, Modeled: -0.07 ± 0.21 , Historical: -0.97 ± 0.31 ; $P = < 0.07$,
374 $\text{RMSE} = 1.95, n = 20$). This provided confidence in the model's ability to determine the
375 environmental controls on tussock density across the region. The ecological niche model
376 demonstrated complex and non-linear relationships between temperature and tussock density
377 with narrow optimal temperature ranges that resulted in high climate sensitivities. These non-
378 linear temperature responses align with recent work demonstrating northward shifts in the
379 climate optimum for tussock cottongrass [18, 46]. Consequently, temperature can impact tussock
380 density directly by altering the fitness of tussock cottongrass and indirectly through temperature-
381 related changes to the soil thermal environment, thaw depth, and soil moisture [10, 11, 47].
382 Indirect impacts appear as important as the direct impacts, given that surface subsidence was

Commented [NF8]: I don't think $P < 0.07$ is statistically indistinguishable. It means you have a 1/14 chance of being wrong if you say they are different. Those are pretty good odds.

Commented [NF9]: You already gave this in results.

Range shifts in a foundation sedge

383 observed at the historical sites with the largest decreases in tussock density. The importance of
384 these indirect effects in regulating tussock density may explain the decreased performance of the
385 ecological niche model in the historical reconstruction. These indirect effects were not explicitly
386 represented in the model, and therefore, the model predicted a more conservative historical
387 tussock density change (Model: -0.07, Observed: 0.97). Although the model underpredicted the
388 observed change in tussock density across the North Slope, the estimate was statistically
389 indistinguishable from the observations providing confidence in our ability to scale the model
390 across time. Regardless, further work that incorporates direct and indirect temperature impacts is
391 needed to constrain future tussock density changes and their impact on C stocks.

392

393 We demonstrated that shifts in tussock density are important for future C cycle assessments. We
394 acknowledge the potential uncertainties in extrapolating the ecological niche model across space
395 and time, but point to several independent lines of evidence indicating our conclusions are
396 robust. First, our projected declines in tussock density on the North Slope align with observed
397 decreases in tussock cottongrass performance in a warmer climate [18-20]. Second, tussock
398 density changes will undoubtedly impact regional C stocks, because tussocks enhance soil
399 organic C stocks and store more C than other arctic species. For example, if we scale tussock
400 density changes observed over the past ~38 years to the North Slope (assuming average present-
401 day observed mass) the loss of tussock C would represent 22-30% of the simulated annual net C
402 sink of the tundra biome or 67% of the C held aboveground in North Slope shrubs [41, 48]. The
403 comparison between the C stock projections of the ecological niche and the TBMs in 2100 under
404 RCP 8.5 also provides context and highlights how tussocks may offset or enhance C stock
405 changes in a future warmer world (Figure 6). There are remaining uncertainties, such as the

Commented [NF10]: Good.

Commented [NF11]: See comment above

Range shifts in a foundation sedge

406 liability of tussock C which may turn over at decadal to centennial timescales (see
407 supplementary methods S1, Fig. S12),~~to fully constrain our estimates~~. Further work to represent
408 this species in TBMs will be needed to constrain and quantify these uncertainties.

409

410 Explicitly representing tussocks in TBMs will be challenging, but as highlighted by this work,
411 necessary to understand future C stocks. We argue that tussock's disproportionate impact on
412 ecosystem C stocks and high climate sensitivity warrant the development of a "tussock" PFT in
413 TBMs. This PFT must represent tussock density shifts associated with recruitment in novel and
414 climatically favorable northern environments and as well as competition with taller statured
415 shrubs in southern regions. Field observations of tussock cottongrass indicate poor recruitment
416 into new environments and poor performance in shade [3, 23, 49, 50]. Since our ecological niche
417 model does not explicitly represent these processes, it likely underestimates tussock C losses in
418 the south and overestimates tussock C gains in the north [3]. The liability of tussock C and
419 tussocks' impact on the soil micro-environment are also important to represent in TBMs.

420 Tussocks create warmer and deeper soils with higher nutrient turnover, which could impact
421 tussock decomposition [10, 51]. Microbial, biophysical, and biochemical changes resulting from
422 shifts in tundra species composition could also impact tussock decomposition [52, 53]. Our work
423 is an important first step and the impetus to understand tussocks as climatically vulnerable
424 foundation species that will disproportionately impact future ecosystem C stocks.

425

426 **5 Conclusion**

Range shifts in a foundation sedge

427 We demonstrate that tussock cottongrass is an important and climatically vulnerable foundation
428 species with the potential to influence changes in arctic C stocks. Future work to explicitly
429 represent tussocks in TBM's will require representing processes that are sources of uncertainty in
430 our approach. This includes developing mechanistic models of tussock necromass development
431 and maintenance, representing other species that compete with tussocks (i.e. shrubs), and
432 constraining tussocks' impacts on the soil micro-environment. We encourage further
433 investigation of the role of both losses and gains of foundation species in determining future
434 ecosystem function.

435

436 **Data Availability Statement:**

437 The data that support the findings of this study are available upon [reasonable](#) request from the
438 authors.

439

440 **References:**

- 441 1. Pappas, C., S. Fatichi, and P. Burlando, *Modeling terrestrial carbon and water dynamics across*
442 *climatic gradients: does plant trait diversity matter?* *New Phytologist*, 2016. **209**(1): p. 137-151.
- 443 2. Ellison, A.M., et al., *Loss of foundation species: consequences for the structure and dynamics of*
444 *forested ecosystems.* *Frontiers in Ecology and the Environment*, 2005. **3**(9): p. 479-486.
- 445 3. Pearson, R.G., et al., *Shifts in Arctic vegetation and associated feedbacks under climate change.*
446 *Nature Climate Change*, 2013. **3**(7): p. 673.
- 447 4. Wullschleger, S.D., et al., *Plant functional types in Earth system models: past experiences and*
448 *future directions for application of dynamic vegetation models in high-latitude ecosystems.* *Ann*
449 *Bot*, 2014. **114**(1): p. 1-16.
- 450 5. Mekonnen, Z.A., et al., *Arctic tundra shrubification: a review of mechanisms and impacts on*
451 *ecosystem carbon balance.* *Environmental Research Letters*, 2021. **16**(5): p. 053001.
- 452 6. McGuire, A.D., et al., *Dependence of the evolution of carbon dynamics in the northern*
453 *permafrost region on the trajectory of climate change.* *Proc Natl Acad Sci U S A*, 2018. **115**(15):
454 p. 3882-3887.
- 455 7. Wein, R.W., *Eriophorum vaginatum L.* *Journal of Ecology*, 1973. **61**(2): p. 601-615.

456 8. Walker, D.A., et al., *The circumpolar Arctic vegetation map*. Journal of Vegetation Science, 2005.
 457 16(3): p. 267-282.

458 9. Iversen, C.M., et al., *The unseen iceberg: plant roots in arctic tundra*. New Phytol, 2015. **205**(1):
 459 p. 34-58.

460 10. Chapin, F.S., K. Van Cleve, and M.C. Chapin, *Soil temperature and nutrient cycling in the tussock*
 461 *growth form of Eriophorum vaginatum*. The Journal of Ecology, 1979: p. 169-189.

462 11. Sullivan, P.F., et al., *Climate and species affect fine root production with long-term fertilization in*
 463 *acidic tussock tundra near Toolik Lake, Alaska*. Oecologia, 2007. **153**(3): p. 643-52.

464 12. Dorrepaal, E., *Are plant growth-form-based classifications useful in predicting northern*
 465 *ecosystem carbon cycling feedbacks to climate change?* Journal of Ecology, 2007. **95**(6): p. 1167-
 466 1180.

467 13. Epstein, H.E., et al., *Analyzing the functional type concept in arctic plants using a dynamic*
 468 *vegetation model*. Oikos, 2001. **95**(2): p. 239-252.

469 14. Huntzinger, D.H., et al., *Evaluation of simulated soil carbon dynamics in Arctic-Boreal*
 470 *ecosystems*. Environmental Research Letters, 2020.

471 15. Fisher, R.A., et al., *Vegetation demographics in Earth System Models: A review of progress and*
 472 *priorities*. Global change biology, 2018. **24**(1): p. 35-54.

473 16. Fisher, J.B., et al., *Missing pieces to modeling the Arctic-Boreal puzzle*. Environmental Research
 474 Letters, 2018. **13**(2).

475 17. Saccone, P., K. Hoikka, and R. Virtanen, *What if plant functional types conceal species-specific*
 476 *responses to environment? Study on arctic shrub communities*. Ecology, 2017. **98**(6): p. 1600-
 477 1612.

478 18. McGraw, J.B., et al., *Northward displacement of optimal climate conditions for ecotypes of*
 479 *Eriophorum vaginatum L. across a latitudinal gradient in Alaska*. Glob Chang Biol, 2015. **21**(10):
 480 p. 3827-35.

481 19. Mack, M.C., et al., *Ecosystem carbon storage in arctic tundra reduced by long-term nutrient*
 482 *fertilization*. Nature, 2004. **431**(7007): p. 440-3.

483 20. Chapin, F.S., et al., *Responses of arctic tundra to experimental and observed changes in climate*.
 484 Ecology, 1995. **76**(3): p. 694-711.

485 21. Wilimovsky, N.J. and J.N. Wolfe, *Environment of Cape Thompson Region, Alaska*. 1966, USAEC
 486 Division of Technical Information Extension, Oak Ridge, TN.

487 22. Alexander, H.D., et al., *Carbon Accumulation Patterns During Post-Fire Succession in Cajander*
 488 *Larch (Larix cajanderi) Forests of Siberia*. Ecosystems, 2012. **15**(7): p. 1065-1082.

489 23. Myers-Smith, I.H., et al., *Shrub expansion in tundra ecosystems: dynamics, impacts and research*
 490 *priorities*. Environmental Research Letters, 2011. **6**(4).

491 24. Parker, T.C., et al., *Shrub expansion in the Arctic may induce large-scale carbon losses due to*
 492 *changes in plant-soil interactions*. Plant and Soil, 2021: p. 1-9.

493 25. Iversen, C.M., et al., *A global Fine-Root Ecology Database to address below-ground challenges in*
 494 *plant ecology*. New Phytologist, 2017. **215**(1): p. 15-26.

495 26. Morin, P., et al. *ArcticDEM; a publically available, high resolution elevation model of the Arctic*.
 496 in *EGU General Assembly Conference Abstracts*. 2016.

497 27. ISRIC, *SoilGrids: an automated system for global soil mapping*. 2013.

498 28. Abatzoglou, J.T., et al., *TerraClimate, a high-resolution global dataset of monthly climate and*
 499 *climatic water balance from 1958–2015*. Scientific data, 2018. **5**: p. 170191.

500 29. Wan, Z., *MODIS land surface temperature products users' guide*. Institute for Computational
 501 Earth System Science, University of California, Santa Barbara, CA, 2006.

502 30. Raynolds, M.K., et al., *Relationship between satellite-derived land surface temperatures, arctic*
 503 *vegetation types, and NDVI*. Remote Sensing of Environment, 2008. **112**(4): p. 1884-1894.

504 31. Hijmans, R.J., et al., *Package 'dismo'*. Circles, 2017. **9**(1): p. 1-68.

505 32. Hijmans, R.J., et al., *Very high resolution interpolated climate surfaces for global land areas*.
International Journal of Climatology: A Journal of the Royal Meteorological Society, 2005.
25(15): p. 1965-1978.

506 33. Evans, J.S., et al., *Modeling species distribution and change using random forest*, in *Predictive
species and habitat modeling in landscape ecology*. 2011, Springer. p. 139-159.

507 34. Stanton, J.C., et al., *Combining static and dynamic variables in species distribution models under
climate change*. Methods in Ecology and Evolution, 2012. **3**(2): p. 349-357.

508 35. Song, J., *Bias corrections for Random Forest in regression using residual rotation*. Journal of the
Korean Statistical Society, 2015. **44**(2): p. 321-326.

509 36. Wright, M.N. and A. Ziegler, *ranger: A fast implementation of random forests for high
dimensional data in C++ and R*. arXiv preprint arXiv:1508.04409, 2015.

510 37. Jones, Z.M., *mmpf: Monte-Carlo Methods for Prediction Functions*. The R Journal, 2018. **10**(1): p.
56-60.

511 38. Greenwell, B.M., *pdp: an R Package for constructing partial dependence plots*. The R Journal,
2017. **9**(1): p. 421-436.

512 39. Bierkens, M., P. Finke, and P. De Willigen, *Upscaling and downscaling methods for
environmental research*. 2000: Kluwer Academic.

513 40. Shaver, G.R., N. Fetcher, and F.S. Chapin, *Growth and flowering in Eriophorum vaginatum:
annual and latitudinal variation*. Ecology, 1986. **67**(6): p. 1524-1535.

514 41. Berner, L.T., et al., *Tundra plant above-ground biomass and shrub dominance mapped across the
North Slope of Alaska*. Environmental Research Letters, 2018. **13**(3).

515 42. Fahey, T.J. and A.K. Knapp, *Principles and standards for measuring primary production*. 2007:
Oxford University Press.

516 43. Dietze, M.C., D.S. Lebauer, and R. Kooper, *On improving the communication between models
and data*. Plant, Cell & Environment, 2013. **36**(9): p. 1575-1585.

517 44. Box, J.E., et al., *Key indicators of Arctic climate change: 1971–2017*. Environmental Research
Letters, 2019. **14**(4).

518 45. Stocker, T.F., et al., *Climate change 2013: the physical science basis. Intergovernmental panel on
climate change, working group I contribution to the IPCC fifth assessment report (AR5)*. New
York, 2013.

519 46. Chandler, J.L., et al., *Tiller population dynamics of reciprocally transplanted Eriophorum
vaginatum L. ecotypes in a changing climate*. Population Ecology, 2014. **57**(1): p. 117-126.

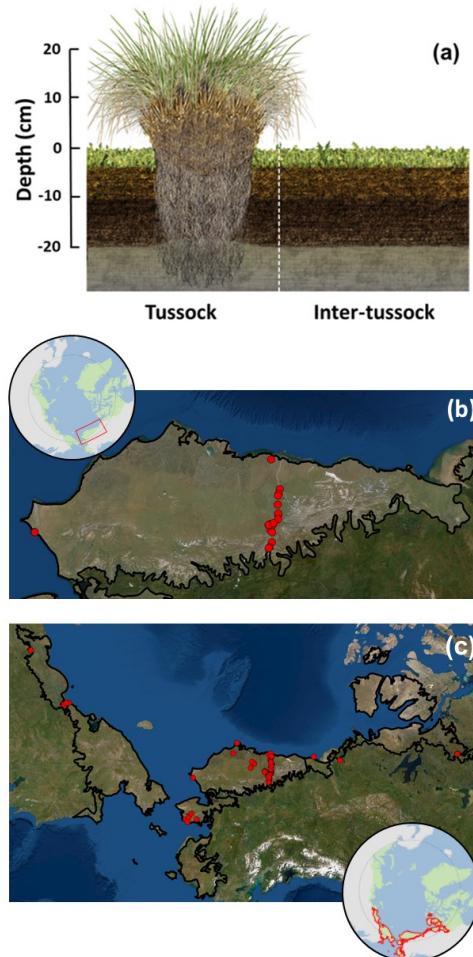
520 47. Price, L.W., *Vegetation, microtopography, and depth of active layer on different exposures in
subarctic alpine tundra*. Ecology, 1971. **52**(4): p. 638-647.

521 48. McGuire, A.D., et al., *Sensitivity of the carbon cycle in the Arctic to climate change*. Ecological
Monographs, 2009. **79**(4): p. 523-555.

522 49. Shaver, G.R., et al., *Species composition interacts with fertilizer to control long-term change in
tundra productivity*. Ecology, 2001. **82**(11): p. 3163-3181.

523 50. McGraw, J. and G. Shaver, *Seedling density and seedling survival in Alaskan cotton grass tussock
tundra*. Ecography, 1982. **5**(2): p. 212-217.

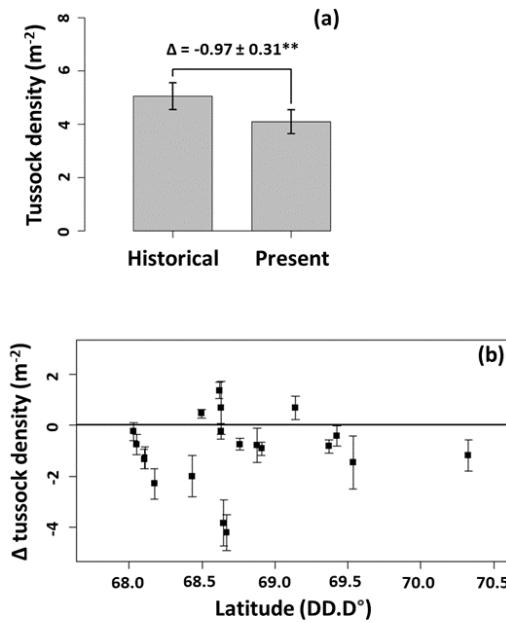
524 51. Gebauer, R.L., J.D. Tenhunen, and J.F. Reynolds, *Soil aeration in relation to soil physical
properties, nitrogen availability, and root characteristics within an arctic watershed*. Plant and
Soil, 1996. **178**(1): p. 37-48.


525 52. Parker, T.C., et al., *Exploring drivers of litter decomposition in a greening Arctic: results from a
transplant experiment across a treeline*. Ecology, 2018. **99**(10): p. 2284-2294.

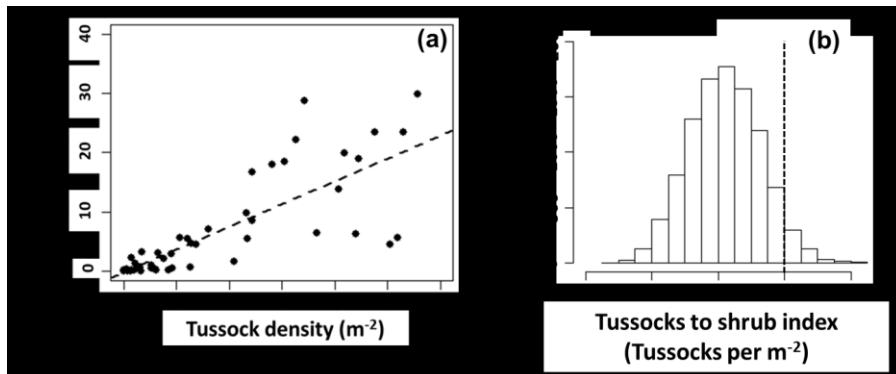
526 53. DeMarco, J., M.C. Mack, and M.S. Bret-Harte, *Effects of arctic shrub expansion on biophysical vs.
biogeochemical drivers of litter decomposition*. Ecology, 2014. **95**(7): p. 1861-1875.

Range shifts in a foundation sedge

552

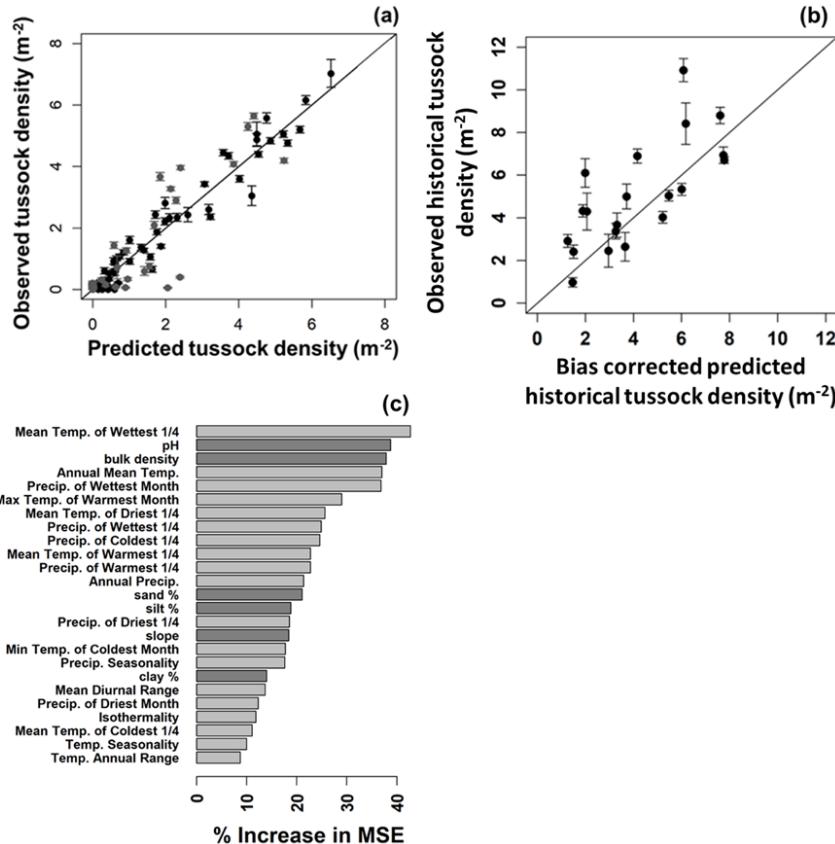

553 **Figures**

554


555 **Figure 1: a)** An illustration of a cross-section of *Eriophorum vaginatum*'s tussock growth form
556 as compared to the surrounding inter-tussock soil profile. **b)** Historic survey locations within our
557 study area from [Fetcher and Shaver 1982](#), and [Shaver et al., 1986](#). **c)** Modern (2015 - 2019)
558 survey locations and the study area.

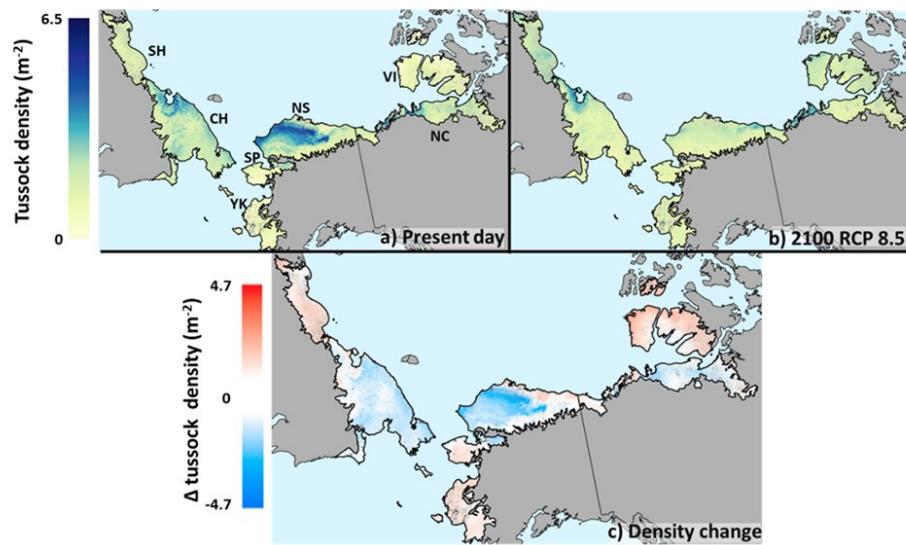
Commented [NF12]: Citation format doesn't match guidelines.

559

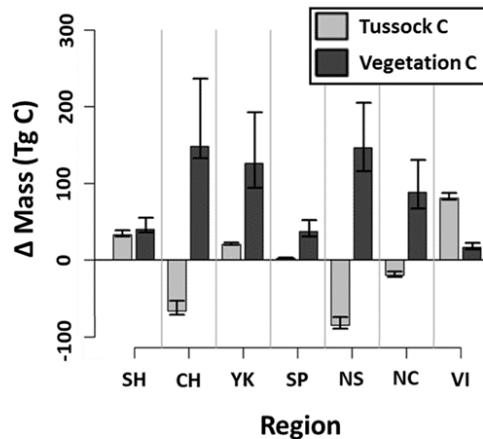

560 **Figure 2:** a) Average tussock density at 20 sites on the North Slope of the Brooks Range in
 561 Alaska between the recent past (the late 1970s/early 1980s) and the present (2018/2019) with
 562 standard errors. Text denotes average change with standard error and the result of a paired
 563 Wilcoxon signed-rank test. Significance codes: ***, 0.001; **, 0.01; *, 0.05. b) Change in
 564 tussock density at these same 20 sites averaged by site with standard errors and plotted by
 565 latitude.

566

567 **Figure 3: a)** The relationship between the percent enhancement of the soil organic layer carbon
 568 (C) stock by tussocks (i.e. the percent increase in C in total soil organic layer C stock due to the
 569 presence of tussocks) and tussock density. The dashed line represents a linear regression ($n = 47$,
 570 $R^2 = 0.61$, $P < 0.001$, $y = 3.9 \pm 0.46 x - 0.2 \pm 1.2$). **b)** Histogram of the “tussock to shrub index”
 571 (i.e. the average number of tussocks per m^2 required to offset shrub C per m^2) considering
 572 uncertainty in the belowground/aboveground biomass ratio of shrubs. A value above one
 573 indicates that on average a single tussock per m^2 holds less C than the *Betula nana* and *Salix* spp.
 574 shrubs in that same area, whereas a value below one indicates that a single tussock per m^2 holds
 575 more C than *Betula nana* and *Salix* spp. shrubs in that same area.


Range shifts in a foundation sedge

576


577 **Figure 4:** Predicted versus observed plots for a) present-day tussock density, and b) historic
 578 tussock density. c) Permutation importance plot (i.e. the increase in mean squared error [MSE]
 579 when a predictor is randomly shuffled) for the machine learning tussock density model. Grey
 580 bars denote bioclimatic variables, while dark grey bars denote edaphic variables.

Range shifts in a foundation sedge

581

582 **Figure 5:** Maps of projected tussock density in a portion of the North American and Siberian
583 Arctic under **a)** present-day climate conditions and **b)** climate conditions in 2100 under the RCP
584 8.5 scenario. **c)** Projected changes in tussock density between the present day and in 2100 under
585 the RCP 8.5 scenario. Region labels: Republic of Sakha [SH], Chukotka Autonomous Okrug
586 [CH], Yukon–Kuskokwim Delta [YK], Seward Peninsula [SP], North Slope [NS], northern
587 Canada [NC], Victoria Island [VI].

588

589 **Figure 6:** Bar plots of projected change in the tussock carbon (C) stock from 2015 to 2100 under
 590 RCP 8.5 by region and projected change in the vegetation C stocks from 2015 to 2100 by region
 591 from the five terrestrial biosphere model of McGuire et al. 2018 under the RCP 8.5 scenario in
 592 2100. Region labels: Republic of Sakha [SH], Chukotka Autonomous Okrug [CH], Yukon–
 593 Kuskokwim Delta [YK], Seward Peninsula [SP], North Slope [NS], northern Canada [NC],
 594 Victoria Island [VI].

595

596

597

598

599

600

601 **Tables**602 **Table 1:** Summary statistics for tussock density by region for all modeled periods and scenarios.

603 Region labels: Republic of Sakha [SH], Chukotka Autonomous Okrug [CH], Yukon–

604 Kuskokwim Delta [YK], Seward Peninsula [SP], North Slope [NS], northern Canada [NC],

605 Victoria Island [VI].

Region	Area (km ²)	Tussock density (m ⁻²)					
		RCP 4.5		RCP 8.5		2050	2100
		Present	2050	2050	2100		
CH	393158	2.0	1.4	1.2	1.4	1.5	
NC	201501	1.7	1.4	1.6	1.7	1.5	
NS	293592	2.3	2.1	2.1	1.8	1.5	
SH	132438	1.3	1.7	2.1	1.6	2.0	
SP	77587	1.0	0.8	1.0	0.9	1.1	
VI	212029	0.8	1.0	1.2	1.6	1.7	
YK	124340	0.7	0.9	1.1	1.1	1.3	
All	1434646	1.6	1.4	1.5	1.5	1.5	

606 **Table 2:** Summary statistics by region for the projections from the tussock model and changes in
607 vegetation C stocks from the five terrestrial biosphere model of McGuire et al. 2018 under the
608 RCP 8.5 scenario in 2100. Region labels: Republic of Sakha [SH], Chukotka Autonomous Okrug
609 [CH], Yukon–Kuskokwim Delta [YK], Seward Peninsula [SP], North Slope [NS], northern
610 Canada [NC], Victoria Island [VI].

Region	Tussock density (m ⁻²)			Tussock C stock (Tg C)			Vegetation C stock change (Tg C)
	Current	2100	Change	Current	2100	Change	
	Mean ± SE	Mean ± SE	Mean ± SE	Total ± SE	Total ± SE	Total ± SE	
CH	2 ± 0.07	1.5 ± 0.05	-0.5 ± 0.05	245 ± 12	178 ± 10	-66 ± 13	148 ± 82
NC	1.7 ± 0.03	1.5 ± 0.03	-0.2 ± 0.04	111 ± 4	91 ± 4	-20 ± 5	88 ± 39
NS	2.3 ± 0.04	1.5 ± 0.03	-0.8 ± 0.05	230 ± 8	146 ± 7	-85 ± 10	147 ± 58
SH	1.3 ± 0.05	2 ± 0.05	0.7 ± 0.04	53 ± 4	86 ± 4	33 ± 6	40 ± 15
SP	1 ± 0.03	1.1 ± 0.04	0.1 ± 0.03	25 ± 1	27 ± 2	2 ± 1	37 ± 14
VI	0.8 ± 0.05	1.7 ± 0.05	0.9 ± 0.05	51 ± 5	132 ± 6	81 ± 7	17 ± 6
YK	0.7 ± 0.03	1.3 ± 0.05	0.5 ± 0.02	29 ± 2	50 ± 4	20 ± 3	126 ± 62
All	1.6 ± 0.04	1.5 ± 0.04	-0.1 ± 0.03	745 ± 27	711 ± 31	-35 ± 28	599 ± 197