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ABSTRACT 6 

A distributed simulation model is presented that integrates post-earthquake household 7 

decisions into quantifying the seismic resilience of communities subjected to a sequence of 8 

earthquakes. A Simple Multi-Attribute Rating Technique (SMART) is used to model post-9 

earthquake household decision making at the building level while the earthquake sequence is 10 

modeled using time-dependent analysis during recovery from the first shock. Incremental 11 

dynamic analysis is used to develop fragility curves for first shock-damaged structures which 12 

are distinguished from the conventional fragility curves of undamaged structures. A case study 13 

of a prototype community that comprises households with different socio-economic 14 

characteristics in accordance with a typical small U.S. community is used to show the influence 15 

that household decisions have on the overall seismic resilience of the community. The results 16 

suggest that seismic events with a larger first shock have a more severe impact on the seismic 17 

resilience of communities than events with a smaller first shock regardless of the magnitude of 18 

the subsequent shock.  19 
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INTRODUCTION  22 

Severe earthquakes are rare events whose occurrence can lead to catastrophic social and 23 

economic losses. The extent of these losses plays a key role in the post-disaster decision of 24 

households to stay or abandon their residence within the community. The decision to leave can 25 

profoundly influence the recovery trajectory of the overall community since population loss 26 

can lead to a reduction in the allocated federal and state disaster funds (Xiao and Van Zandt 27 

2012). The resulting cycle, whereby population loss leads to a reduction in the influx of disaster 28 

relief funds, slows down recovery and promotes further population loss. This cycle can severely 29 

hamper the long-term recovery of a community. The process, which is dynamic in nature, is 30 

not well understood at present and provides general motivation for this research.   31 

 32 

The few available studies of post-event household decisions after various types of natural 33 

disasters (Brokopp et al. 2015, Nejat et al. 2016, Hikichi et al. 2017, Cong et al. 2018, and 34 

Burton et al. 2018) typically focus on three dimensions: 1) the types of decisions made by the 35 

households (repair, demolish and rebuild, abandon, etc.); 2) the factors affecting household 36 

decision (repair cost, household income, insurance coverage, etc.); and 3) the rules used to 37 

predict the decisions made by households. Chandrasekhar and Finn (2015) performed a field 38 

study after hurricane Sandy by distributing 100 surveys to homes within the Rockaways 39 

Peninsula of New York City. Three types of decisions made by households were reported: stay, 40 

undecided, or relocate. Based on the response of households to the survey, three factors were 41 

noted to affect the decisions made by households: social interaction (i.e., interaction with 42 

different civic groups and organizations), ability to find a job after the hurricane, and ability to 43 

find support from organizations to repair their damaged houses. Polese et al. (2018) studied the 44 

decisions made by different owners of severely damaged RC buildings after the L’Aquila 45 

earthquake in Italy. The study focused on the decision to repair or demolish/rebuild as a 46 

function of repair and retrofit costs, construction age, number of stories above ground, floor 47 



area, and total area covered. Markhvida and Baker (2018) proposed a framework that combines 48 

performance-based engineering with the decisions made by building owners based on real 49 

estate investment analysis. Burton et al. (2019) developed a housing recovery model that 50 

accounts for the decisions made by the households in the community after seismic events.  51 

 52 

None of the above studies accounted for the time-dependent nature of the problem, i.e., that 53 

household decision may vary during the recovery stage, nor did they consider the effect of 54 

earthquake sequences. Studies that considered the effect of earthquake sequences have focused 55 

only on individual building behavior and not community response, e.g., Li et al. 2014, Ryu et 56 

al. 2011, Abdelnaby 2017, Silwal and Ozbulut 2018, and Abdollahzadeh et al. 2019. Yet, 57 

earthquake sequences can have a profound effect on community resilience as evinced by the 58 

2010-11 Canterbury earthquakes (Potter et al. 2015 and Wilson 2013) and the 2011 Tohoku 59 

seismic events (Nojima 2012). To address the identified drawbacks in this little studied area, a 60 

distributed computing platform is used to dynamically model the response of communities 61 

subjected to earthquake sequences. The platform connects simulators, each of which addresses 62 

a particular aspect of the seismic resilience of communities (social, engineering and economic), 63 

while stepping through time. Deviating from most of the previous studies, this work 64 

incorporates household decisions at the building level rather than in an aggregate manner.  65 

 66 

The simulation model used in this paper employs different structural, social and economic 67 

parameters in predicting household decisions based on detailed models of each building, i.e. 68 

actual downtime and repair costs evaluated at the component level as discussed in Sediek et al. 69 

(2019a,b). These decisions are then considered in the recovery behavior of the community. 70 

Incremental dynamic analysis (IDA) (Vamvatsikos and Cornell 2002) is used to develop 71 

fragility curves for different archetypes of buildings to accurately account for the reduction in 72 

strength of the building set due to the effect of the first shock. The ability of the simulation 73 



model to step through time allows community response to be modeled during the different 74 

stages of the disaster, i.e., during the first shock, recovery from the first shock, during the 75 

second shock, and recovery from the second shock taking into account the actual state of the 76 

community at the time of each event. The proposed simulation model is demonstrated through 77 

a case study in which a small virtual community named “Pseudo City” is developed and then 78 

subjected to earthquake sequences to investigate its resilience.  79 

 80 

SIMULATION MODEL OVERVIEW 81 

Figure 1 shows the simulation model implemented in this study which extends the work in 82 

Sediek et al. (2019a,b) and Sediek et al. (2020a,b). The simulation model is designed to be 83 

modular where each aspect of the community is represented by a “simulator”, which is 84 

considered as a separate unit in the model. The simulators are connected together through a 85 

distributed computing scheme. The simulation model explicitly models the different stages of 86 

the disaster (i.e., first shock and second shock) and the recovery of the community.  87 

 88 

The proposed model is divided into seven different stages (see appended numbers in the 89 

simulator boxes in Figure 1). In stage 0, the city simulator broadcasts the attributes of the 90 

studied community. During stage 1, the ground motion, structural analysis, building damage, 91 

component damage, casualties, and debris simulators step through time (time step in sub-92 

seconds) to simulate real-time seismic damage and losses associated with the first shock. At 93 

stage 2, the repair cost, downtime, and unsafe placard simulators run for one time step to 94 

evaluate the final seismic losses resulting from the first shock. During stage 3, the available 95 

resources, physical recovery, downtime, household decision, healthcare system, social 96 

recovery, and total recovery simulators step through time (time step in days) to simulate the 97 

real-time recovery of the community from the first shock until the second shock is triggered by 98 

the ground motion simulator. During stages 4 and 5, the same procedures are repeated from 99 



stages 1 and 2, respectively, for the second shock while considering the state of the community 100 

and its buildings at the point when the second shock occurs. The final stage, stage 6, is where 101 

the recovery of the community is simulated and the seismic resilience of the community to the 102 

earthquake sequence is evaluated. More details about the implementation of each simulator can 103 

be found in Sediek et al. (2020a) and the MATLAB simulators developed/used in this study 104 

can be found in Sediek et al. (2021) 105 

 106 

DISTRIBUTED COMPUTING ENVIRONMENT 107 

Unlike the previous studies in Sediek et al. (2019a) and Sediek et al. (2020a), distributed 108 

computing in the simulation model in this study is enabled by the Simple Run-Time 109 

Infrastructure (SRTI 2019) developed at the University of Michigan under Project ICoR 110 

(Interdependencies in Community Resilience (ICoR 2019)). SRTI (2019) is designed to handle 111 

the data traffic between simulators. It ensures that data published by a simulator is directed to 112 

the simulator that needs to subscribe to it. This manner of passing data makes the proposed 113 

simulation model scalable and expandable. Adding/modifying any simulator in the model is a 114 

straightforward task where a user can add/modify any simulator without affecting the other 115 

simulators in the system as long as the outputs and inputs remain the same.  116 

 117 

The simulators can run on the same machine or on different machines to allow for the reuse of 118 

existing simulation models and distribution of execution cost of complex models to multiple 119 

nodes/processors (Lin et al. 2020, 2021). Figure 2 shows the distributed computing architecture 120 

of the proposed simulation model using the SRTI server. The Time Manager simulator shown 121 

in Figure 2 controls time stepping and the order of execution of the simulators within each time 122 

step. The developed Time Manager and other simulators in this study can be found in Sediek 123 

et al. (2021). 124 

 125 



MODELING POST-EARTHQUAKE DECISIONS OF HOUSEHOLDS 126 

The household decision simulator models the decision making process of a household; it (1) 127 

defines the possible decisions that can be made by the household in the wake of the earthquake, 128 

(2) defines and quantify the attributes that affect the household decision, and (3) formulates 129 

appropriate decision rule to predict household behavior. For the sake of simplicity, the 130 

simulator is limited to decisions made by those residing in single-family homes (one family per 131 

building). Decisions made by commercial building owners and residence of multifamily homes 132 

are outside the scope of this study but could conceivably be included using a similar 133 

methodology to that adopted here. 134 

 135 

Each household in the community is assumed to make one of three possible decisions after an 136 

earthquake. The first decision is “repair” which means that the household will do all the repairs 137 

required to restore the house to full functionality as specified in FEMA P-58 (FEMA 2012). 138 

The second alternative is “demolish” which means that the household will demolish and rebuild 139 

the house according to current seismic provisions (code A as specified in Sediek et al. (2020a)). 140 

The last decision is “abandon” which means that the household will leave the community 141 

without doing the first two options. In that case, the house is removed from the repair list in the 142 

physical recovery simulator and the functionality of that building is set to zero during the 143 

recovery stages (i.e., stage 3 and 6). Also, the population of the community is reduced by the 144 

number of persons in that house, i.e., population loss. 145 

 146 

The decision made by households are evaluated each time step during the recovery stage (stages 147 

3 and 6 shown in Figure 1) as the conditions change. Households that made a “repair” decision 148 

at a given time step will have three options in the next time step (repair, demolish or abandon). 149 

On the other hand, households that made a “demolish” decision will only have two options 150 

(demolish or abandon). It is assumed that households that made an “abandon” decision cannot 151 



return to either “repair” or “demolish” decisions and their houses are therefore removed from 152 

the repair list in the physical recovery simulator. Clearly, it is conceivable that households 153 

could reverse this decision, thus prompting a return of their homes back to the repair list in the 154 

physical recovery simulator. However, these cases are considered beyond the scope of the 155 

proposed simulation model. Treating the household decision as a time-dependent variable 156 

allows for modeling the variation of household decisions during the recovery from the first 157 

shock as well as the damage caused by the second shock. 158 

 159 

Decisions are based on the set of structural, economic and social attributes listed in Table 1 and 160 

are related to the socioeconomic characteristics of the household and the extent of damage the 161 

building suffered during the earthquake. Structural attributes include the construction age of 162 

the house and expected downtime, which is computed during the recovery stage by the 163 

downtime simulator as discussed in Sediek et al. (2020a). Although structural repairability is 164 

not included as an attribute in Table 1, it is automatically considered in FEMA P-58 (FEMA 165 

2012), which is adopted in the current study. In other words, if the structure is irreparable then 166 

it will be automatically replaced in FEMA P-58 and the household will then have one of two 167 

options “demolish” or “abandon. Repair will not be an option in this case. Economic attributes 168 

include the repair cost evaluated by the repair cost simulator, insurance coverage, household 169 

income, post-earthquake employment status, and disaster relief support received from 170 

organizations such as FEMA. Social attributes include social interaction of the household with 171 

the surrounding community, length of residence in the community, full-time residency, 172 

immigration status, racial and ethnic minority status, and affected students in the household 173 

evaluated based on the functionality of the surrounding schools in the community subscribed 174 

from the physical recovery simulator. 175 

 176 



As shown in Table 1, the attributes affecting the decisions made by households can be classified 177 

into two types: binary or continuous. Binary attributes have only two possible values while 178 

continuous attributes can have any value within a specific range. For instance, the post-179 

earthquake employment status of the household is a binary attribute where the possible values 180 

are employed or unemployed. However, household income is a continuous attribute that can 181 

take any value between the minimum and maximum household income in the community. A 182 

unified scale is necessary to add the effects of different types of attributes on the decisions 183 

made by households. To do so, continuous attributes, except downtime and repair cost, are first 184 

normalized using the following equation: 185 

𝑍௜ ൌ
𝑌௜ െ 𝑌௜,௠௜௡

𝑌௜,௠௔௫ െ 𝑌௜,௠௜௡
 (1) 

where, 𝑍௜ is the normalized attribute i, 𝑌௜ is the value of attribute i before normalization, and  186 

𝑌௜,௠௜௡  and 𝑌௜,௠௔௫  are the minimum and maximum values of attribute i, respectively. The 187 

downtime and repair cost of the house are normalized with respect to the replacement time and 188 

cost of the house, respectively. For binary attributes, two values are used (1 for yes and -1 for 189 

no). For example, insurance coverage is 1 if the building is insured and -1 if uninsured. The 190 

second step is to map the normalized continuous attributes to corresponding binary values. To 191 

do so, the following formula is used: 192 

𝑋௜ ൌ ൜
1              𝑍௜ ൒ 0.5

  െ1              𝑍௜ ൏ 0.5 (2) 

  
where, 𝑋௜ is the mapped binary value of attribute i and 𝑍௜ is the normalized attribute i evaluated 193 

from Eq.(1). 194 

 195 

The attractiveness of a decision is evaluated using the Simple Multi-Attribute Rating Technique 196 

(SMART) (Edwards 1971) which is widely used due to its efficiency and simplicity in 197 

modeling human decisions. The SMART technique is based on a linear additive model where 198 



the overall value of a specific decision k is evaluated using the total sum of the performance 199 

score of each attribute multiplied by the weight of that attribute. The SMART technique is 200 

modified to consider both the combination of different types of attributes (i.e. continuous and 201 

binary attributes) and the different effect of each attribute on different decisions (i.e. one 202 

attribute may possess a positive effect on a decision while it possesses a negative effect on 203 

another decision). For instance, high repair cost (i.e.  𝑋ଷ ൌ  1ሻ   has a positive effect on 204 

“demolish” and “abandon” decisions, while it has a negative effect on the “repair” decision. 205 

The first challenge is addressed by mapping all of the attributes to an equivalent binary value 206 

(𝑋௜) which is used as the performance score of each attribute. The second challenge is addressed 207 

by the sign of the weights in the weight’s matrix shown in Table 1. The key idea of the SMART 208 

technique is that the higher the total score of a specific decision, the higher expectation of the 209 

household to make that decision, and vice versa. The total score associated with each type of 210 

decision can be represented mathematically as follows: 211 

𝑈௞ሺ𝑡ሻ ൌ  ෍𝑤௜௞ ∗  𝑋௜ሺ𝑡ሻ       ∀ 𝐾𝜖 ሼ1,2,3ሽ

ଵଶ

௜ୀଵ

 (3) 

where 𝑈௞ሺ𝑡ሻ is the total score for decision k at time step t, k is an index for the available 212 

decisions (1 for repair, 2 for demolish and 3 for abandon), 𝑋௜ሺ𝑡ሻ is the binary value of attribute 213 

i evaluated from Eq.(2) at time step t, and 𝑤௜௞   is the weight that represents the effect of 214 

attribute i on decision k.  215 

 216 

The uncertainty in the influence of the considered attributes on different decisions is considered 217 

by assuming 𝑤௜௞′𝑠  to be random variables having lognormal distributions with median of 1 218 

and dispersion of 0.4. However, due to the scalability and adaptability of the proposed model, 219 

these values can be refined as more data becomes available from real communities (i.e. surveys 220 

from real households). After evaluating 𝑈௞ሺ𝑡ሻ for each decision k at time step t, the household 221 



will choose the decision with maximum 𝑈௞ሺ𝑡ሻ. Table 2 shows the attributes of three different 222 

hypothetical example households in the same community (hypothetical community for 223 

illustration purposes), Table 3 shows the weights matrix for the example households, and Table 224 

4 shows the evaluation of their post-earthquake decision to showcase the realism of the 225 

proposed model and its potential to simulate the behavior of households in the wake of 226 

earthquakes. 227 

 228 

MODELING THE SECOND SHOCK 229 

The effect of the second shock on the studied community is considered in the simulation model 230 

by running the same simulators from stage 1 shown in Figure 1 (i.e., ground motion, building 231 

damage, etc.) with updated building capacities (i.e., fragilities) to reflect damage to a building 232 

from the first shock. To this end, incremental dynamic analysis (IDA: Vamvatsikos and Cornell 233 

2002) is used to develop fragility curves for the first shock-damaged structures in the 234 

community which are distinguished in the presented study from the fragility curves associate 235 

with the undamaged structures.  236 

 237 

Building Models 238 

Three different building materials are considered: steel, RC, and wood buildings to simulate 239 

the distribution of building archetypes at the community level. Steel buildings are assumed to 240 

be the same as the special moment frame prototype buildings designed in NIST (2010) with 241 

four different heights: 2, 4, 8, and 20 stories. The buildings have three-bay steel SMFs on each 242 

of their exterior sides, which are assumed to resist all the seismic demands on the building. The 243 

interior frames are gravity frames that do not contribute to the seismic resistance of the building.  244 

The frames were designed with W24 columns and reduced beam sections (RBS) using ASTM 245 

A992 steel. The behavior of the steel archetype buildings is represented by 2D concentrated 246 



plasticity OpenSees (McKenna et al. 2000) models of the perimeter SMFs. In 2D concentrated 247 

plasticity models, the beams and columns of SMFs are modeled using elastic beam-column 248 

elements and connected by zeroLength elements which serve as rotational springs to represent 249 

the structure’s nonlinear behavior. The springs follow a bilinear hysteretic response based on 250 

the Modified Ibarra Krawinkler Deterioration Model (Ibarra et al. 2005) to simulate the strength 251 

and stiffness deterioration properties due to cyclic loading. A leaning column with gravity loads 252 

is linked to the frame by truss elements to simulate P-Delta effects. The parameters of the 253 

Modified Ibarra Krawinkler Deterioration Model are quantified using the experimental 254 

database of Lignos and Krawinkler (2012).  255 

 256 

RC buildings are assumed to be the same as the space special moment frame prototype 257 

buildings designed in Haselton and Deierlein (2007) and FEMA P695 (2009) with four 258 

different heights: 4, 8, 12, and 20 stories. They consist of four RC special moment resisting 259 

frames in each direction, which are assumed to resist all the seismic demands on the building. 260 

The bay width of the typical RC special moment resisting frame varies from 6.1 m (20 ft) for 261 

the 8 and 12 story buildings to 9.1 m (30 ft) for the 4 story building. For all building heights, 262 

the first story height is 4.57 m (15 ft) and the typical upper story height is 3.96 m (13 ft). The 263 

building is designed for a general high seismic site in California (Design category D, soil class 264 

D, Sms = 1.5g, and Sm1 = 0.9g). The longitudinal rebar diameters commonly used in the beams 265 

and columns are 25 mm (#8) and 28 mm (#9) with yield strength of 400 MPa (60 ksi). The 266 

design dead and live loads are 8 kN/m2 (175 psf) and 2.4 kN/m2 (50 psf), respectively. Further 267 

design details can be found in Haselton (2006). The same abovementioned modeling approach 268 

is used to simulate the behavior of the RC archetype buildings except that the parameters of 269 

the modified Ibarra-Medina-Krawinkler deterioration model (Ibarra et al. 2005) are quantified 270 

using the equations proposed by Haselton and Deierlein (2007) based on calibration to previous 271 

flexural column tests.  272 



 273 

The seismic demands of the wood-framed buildings are assumed to be resisted by wood shear 274 

walls. The behavior of the wood archetype buildings is represented by 3D OpenSees (McKenna 275 

et al. 2000) models of a conventional 2 ft × 6 ft (609.6 mm × 1828.8 mm) shear wall with 276 

overall dimensions of 8 ft × 8 ft (2438.4 mm × 2438.4 mm). The wood shear wall consists of 277 

an Oriented Strand Board (OSB) attached to horizontal and vertical framing members through 278 

equally spaced nails that provide the lateral strength to the wood shear walls. The wood framing 279 

members are modeled using elastic beam columns while the OSB is modeled using shell 280 

elements (ShellMTC4 in OpenSees). The nails that connect the OSB to the framing members 281 

are modeled using zero length elements. The cyclic behavior of the sheathing-to-framing 282 

connectors (i.e. the nails) is modeled using the SAWS material model developed by the CUREE-283 

Caltech Wood frame Project (Folz and Filliatrault 2001) and implemented in OpenSees 284 

(McKenna et al. 2000). The nonlinear nailing parameters are calibrated to physical data by 285 

Kong (2015). More details about the modeling approach of wood shear walls can be found in 286 

Kong (2015). 287 

 288 

Ground Motions 289 

 A suite of 22 far field ground motions (FEMA 2009) is used for both the first shock and second 290 

shock records to model the variability in both the mainshock and aftershock. The magnitude 291 

for each of the ground motions was between M6.5 and M7.6. Spectral scaling at a period of 292 

0.21 s with 5% elastic damping was used. There are many methodologies for modeling of 293 

ground motion sequences (e.g., Ryu et al. 2011, Hu et al. 2018, Khansefid and Bakhshi 2019, 294 

and Nithin et al. 2020). In this work, the second shock records are selected randomly from the 295 

22 ground motions to represent the variability between the first shock and the second shock 296 

records as per Nazari1et al. (2013) and Ryu et al. (2011). The earthquake sequences are applied 297 

to the OpenSees models by applying the first shock record, then waiting 20 seconds (i.e., 298 



applying a zero magnitude ground motion acceleration for twenty seconds of the time history) 299 

and then applying the second shock record. The spectral acceleration at the fundamental period 300 

of each building archetype with a damping ratio of 5% (Sa (T1, 5%)) is used as the ground 301 

motion intensity measure for the first shock and second shock. 302 

 303 

Fragility of Intact Buildings 304 

Incremental dynamic analysis (IDA) is performed using a total of 44 ground motion records 305 

(two components for each earthquake). Due to space limitations, the resulting IDA curves of 306 

one representative building archetype (steel 8-story SMF) are shown in Figure 3(a). Four 307 

damage states are defined in the developed fragility curves based on the HAZUS methodology 308 

(FEMA 2003): slight, moderate, extensive, and complete. The description of each damage state 309 

for each building archetype can be found in FEMA (2003). The engineering demand parameter 310 

(edp) used to define each damage state is the average inter-story drift ratio which is defined in 311 

FEMA (2003) as the roof displacement divided by the building height. The peak edp for each 312 

damage state for each design code (i.e., code A, B, and C defined in Sediek et al. (2020a)) is 313 

defined also in FEMA (2003) and shown for the representative building archetype (with code 314 

A) in Figure 3(a). The resulting fragility curves for the intact steel 8-story SMF archetype are 315 

shown in Figure 3(b). 316 

 317 

Fragility of First Shock-Damaged Buildings 318 

Three different IDAs are performed for each first shock-damaged building based on the post-319 

first shock damage state (i.e., slight, moderate, or extensive). The post-first shock damage state 320 

is associated with the peak first shock response which is assumed to be uncertain for each 321 

damage state (Ryu et al. 2011). The peak first shock response is assumed to have a lognormal 322 

distribution with a median equal to the median threshold for each damage state based on the 323 

limits defined in FEMA (2003) and a dispersion of 0.4 (Ryu et al. 2011). The first shock record 324 



is scaled so that the peak first shock response is equal to the target response. The IDA is then 325 

performed using sequences of first shock-second shock records where the second shock is 326 

scaled up to collapse. Due to residual deformation resulting from the first shock, the direction 327 

of the second shock plays an important role in the response of the buildings. Thus, the second 328 

shock responses are computed by applying both positive and negative scaling factors to the 329 

second shock records and considering the larger response. These procedures are then repeated 330 

for each building archetype (total of 9), design code (3 for each archetype) and post-first shock 331 

damage state (3 for each archetype) resulting in a total set of 108 fragility curves (intact and 332 

damaged). The parameters of the fragility curves of the 9 considered building archetypes with 333 

the latest and most stringent design code (code A) are listed in Table 6. 334 

 335 

Damage and loss estimation 336 

The building damage simulator evaluates the new damage states of the buildings during the 337 

second shock using the ground intensity measure at each building subscribed from the ground 338 

motion simulator (i.e. Sa (T1, 5%)). The new capacities of the buildings (limits of different 339 

damage states) are evaluated using the developed fragility curves based on the flowchart shown 340 

in Figure 4. It is assumed that partially repaired buildings at the time of the second shock are 341 

at the same first shock damage state (i.e., damaged fragilities are used). The component damage 342 

simulator subscribes to the building damage states and the structural responses from the 343 

building damage and structural analysis simulators, respectively, where the new damage states 344 

of all the components are evaluated using the log-normal fitted responses (engineering demand 345 

parameters) from the IDAs described earlier based on the post-first shock damage state of the 346 

building.  347 

 348 

The damage states of buildings and their components during and after the second shock stage 349 

depend on the damage states resulting from the first shock and the repair status of the buildings 350 



at the time of the second shock (obtained from stage 3 shown in Figure 1), which demonstrates 351 

the necessity of using time-dependent analysis. The casualties simulator subscribes to the 352 

building and component damage states in the community from the building damage and 353 

component damage simulators, respectively, to evaluate the casualties resulting from the 354 

second shock in buildings that are in the re-occupancy functionality state (RO) (obtained from 355 

the physical recovery simulator at the end of stage 3 (see Figure 1)). Casualties in temporary 356 

shelters after the first shock are not considered in the scope of this study. The debris, repair 357 

cost and unsafe placard status of the buildings are evaluated based on the new damage states 358 

of the buildings and their components after the second shock (i.e., after stage 4 shown in Figure 359 

1). The downtime of the building after a second shock, DTAS, is calculated using the flowchart 360 

in Figure 6 and: 361 

𝐷𝑇஺ௌ ൌ  𝑇஺ௌ ൅  𝑇௜௠௣
஺ௌ ൅  𝑇௥௘௣஺ௌ  (4) 

  
where 𝐷𝑇஺ௌ is the downtime of the building after the second shock defined from the beginning 362 

of stage 3 (see Figure 1), 𝑇஺ௌ is the time of the second shock defined from the beginning of 363 

stage 3, 𝑇௜௠௣
஺ௌ  is the delay time due to the impeding factors after the second shock defined from 364 

the beginning of stage 6 (see Figure 1), 𝑇௥௘௣஺ௌ  the time required to repair all the components in 365 

the building after the second shock, and 𝐷𝑇ெௌ is the downtime of the building after the first 366 

shock defined from the beginning of stage 3 (see Figure 1). 367 

 368 

Based on the new seismic losses evaluated in stages 4 and 5 (see Figure 1), the physical 369 

recovery simulator evaluates the new functionality of the buildings. Then, all the simulators in 370 

stage 6 continue evaluating the recovery paths of the community considering both the first 371 

shock and second shock. 372 

 373 



CASE STUDY: SEISMIC RESILIENCE OF PSEUDO CITY 374 

Building Portfolio 375 

A simplified protype community named “Pseudo City” is developed and modeled in order to 376 

demonstrate the capabilities of the simulation model. Figure 6 shows the spatial distribution of 377 

the buildings in Pseudo City. It consists of nine blocks or zones with a total of 1094 buildings 378 

and a population of approximately 8,000. Each zone represents households with different 379 

socioeconomic characteristics. The buildings have different occupancies, structural systems, 380 

heights and design codes leading to a total of 29 different archetypes that are listed in Table 7 381 

and designated according to the naming scheme described in Sediek et al. (2020a). The 382 

buildings are designated as ABC-D-E, where “A” is the material, “B” is the structural system, 383 

“C” is the design code, “D” is the number of stories and “E” is the occupancy of the building.  384 

For example, “CFA-12-1” is a concrete moment frame, new code (after 1994) 12-story 385 

commercial building. The naming scheme used by the city simulator is listed in Table 8. Most 386 

of the buildings are wooden residential buildings designed according to old codes which are 387 

typical of U.S. communities (Sediek et al. 2020a). The distribution of construction age and 388 

building type in Pseudo City (i.e., numbers listed in Table 7) is taken as the same as in Shelby 389 

county (NCSA 2018). More information about the distribution of the buildings in Pseudo City 390 

can be found in Sediek et al. (2021). 391 

 392 

The total number of construction workers available in Pseudo City before the earthquake is 393 

taken as 300, which is approximately 3.5% of the community’s population representing the 394 

same percentage of construction workers in the U.S. population as per data from the Bureau of 395 

Labor Statistics (BLS 2019). Table 9 lists the distribution of different skilled laborers 396 

associated with repair of building infrastructure in Pseudo City based on the demand for each 397 

skill set evaluated using the REDi methodology (Almufti and wilford 2013). The proposed 398 

model deals with the availability of construction workers in a rigorous manner where the 399 



availability of construction workers with different skills is considered separately in the 400 

Available Resources simulator. Although the uncertainty of the availability of workers in the 401 

community is not explicitly modeled, they are implicitly considered in the “available resources 402 

simulator” shown in Figure 1. In this simulator, the number of available workers at each time 403 

step is related to the number of injuries in the community at this time step which is uncertain 404 

as described in Sediek et al. (2020). The repair of the buildings is prioritized as in Sediek et al. 405 

(2020a). Repair priority used in this research is as follows: hospitals, schools, residential 406 

houses, commercial buildings, retail and other occupancies. 407 

 408 

Socioeconomic characteristics of households 409 

Each zone of Pseudo City is defined by a median household income (high income HI, moderate 410 

income MI, and low income LI) and the social interaction of the households within the 411 

community (high social HS, moderate social MS, and low social LS). The density of the 412 

buildings in each zone is assumed to be proportional to the household income level as shown 413 

in Figure 6. The median annual household income in Pseudo City is around $60,000, which is 414 

close to the national median (US Census Bureau 2017(a)). According to Pressman (2015), the 415 

income of middle class households is between 67 percent and 200 percent of the national 416 

median. Thus, low income (LI) is defined as below $40,000, moderate income (MI) is defined 417 

between $40,000 and $120,000, and high income (HI) is defined as above $120,000. The 418 

distribution of household income in Pseudo City is taken the same as the 2017 distribution of 419 

household income in the U.S. (US Census Bureau 2017 (a)). 420 

 421 

The social interaction of a household within the community is defined by the social network 422 

possessed by the household, neighborhood civic interaction, and engagement in community 423 

activities. It is quantified by an index that describes the degree of engagement of the household 424 

in the community. In real cities, this index can be measured through surveys. For Pseudo City, 425 



the social interaction index of the households in the community is randomized between the 426 

different zones to have low interaction (LS) below 33%, moderate interaction (MS) between 427 

33% and 67%, and high interaction (HS) above 67%. Table 10 shows the distribution of 428 

building occupation, household income and social interaction in different zones of Pseudo City. 429 

 430 

The damage caused by earthquakes is not typically covered by a standard homeowner insurance 431 

policy in the U.S. According to the Insurance Information Institute (I.I.I 2018), only 8% of 432 

homeowners who responded to a poll in May 2016 said they have earthquake insurance. In the 433 

Western US, this percentage can be as high as 14%. Based on these numbers, it is assumed that 434 

10% of households in Pseudo City have earthquake insurance. It is also assumed that 90% of 435 

the households without insurance will receive government support after the earthquake. 436 

Modeling the interaction between the households and the government to receive disaster 437 

assistance after the earthquake is not within the scope of this study.  438 

 439 

The length of residence of a household in Pseudo City is randomized with a lognormal 440 

distribution having a mean of 13 years, which is the average length of residence of households 441 

in U.S. communities (Emrath 2013). Around 25% of households in Pseudo City are considered 442 

racial minorities, which is the same percentage of racial minorities in the U.S. (US Census 443 

Bureau 2017 (b)). Only 41.4% of households in Pseudo City are assumed to have children in 444 

school (i.e. under 18 years old) matching the national average (NCES 2019). Based on national 445 

average data, 29% of these households have children in elementary or middle schools and 446 

12.4% have children in high schools (NCES 2019). The students are assigned to the nearest 447 

school in Pseudo City based on the location of their home. More details about Pseudo City can 448 

be found in Sediek et al. (2021). 449 

 450 



Seismic Hazard 451 

Pseudo city is assumed to be located in the New Madrid seismic zone. The scenario earthquakes 452 

are assumed to have an epicenter at 35°18'N, 90°18'W shown in Figure 6 as per Adachi and 453 

Ellingwood (2009). Two ground motion records are used to represent feasible seismic activity 454 

at this location: RSN 1961 (designated as EQ1) and RSN 5223 (designated as EQ2) from NGA-455 

East -- Central & Eastern North-America database in PEER (2019) recorded by the Lepanto 456 

Station. These ground motion records have been used by Lin and El-Tawil (2020) for the same 457 

seismic zone. The ground motion records are scaled at each building location to meet the PGA 458 

for a Mw 7.7 (for EQ1) and Mw 6.3 (for EQ2) earthquake scenario specified by USGS (2018) 459 

for this location. EQ1 is assumed to occur on a weekday at 11:00 AM while EQ2 is assumed 460 

to occur also on a weekday but at 8:00 PM. Figure 7 shows the scaled ground motion history 461 

for the two earthquakes at the location of one arbitrary building in Pseudo City. 462 

 463 

Effect of Post-Earthquake Household Decisions 464 

To account for the many uncertainties in the proposed methodology (i.e., damage, loss, and 465 

household decision assessment), the proposed model uses a Monte Carlo procedure to perform 466 

seismic resilience assessment. The sampling is performed based on the distribution properties 467 

of each aspect specified in the FEMA P-58 methodology (FEMA 2012) related to the 468 

component damage, component repair cost and time, and casualties associated with the damage 469 

of each component as well as the distribution of household decision weights matrix described 470 

earlier. FEMA P-58 evaluates the damage state of each structural and nonstructural component 471 

in each building in the community at each time step during the earthquake (for the non-472 

collapsed buildings) probabilistically based on the fragility curves specified in the FEMA P-58 473 

database (FEMA 2012b). The damage states are then converted probabilistically into seismic 474 

losses (downtime, repair cost and casualties) using the consequence functions specified in the 475 

FEMA P-58 database (FEMA 2012b). All results presented are based on 500 realizations for 476 



each earthquake (i.e., EQ1 and EQ2). The number of realizations is selected based on a 477 

sensitivity study where the number of simulations is progressively increased until convergence 478 

occurs (after 500 simulations). Convergence is deemed to occur when changes in the range, 479 

mean and standard deviation of the recovery time (TRE) and resilience index (%R) do not exceed 480 

10%. The results of the shown case study are fully documented in Sediek et al. (2021).   481 

 482 

Figure 8 (a) and (b) show the evolution of the physical recovery of Pseudo City after EQ1 and 483 

EQ2, respectively for the conducted Monte Carlo simulations “recovery clouds” as well as the 484 

mean recovery trajectory. The term “recovery clouds” was previously used by Burton et al. 485 

(2019) and Sediek et al. (2020a) to show the full range of possible recovery trajectories taking 486 

into consideration the inherent uncertainties in the proposed methodology. As shown, EQ1 and 487 

EQ2 reduced the functionality of the Pseudo City to 42% and 81% on average, respectively.  488 

 489 

Figure 8 (c) and (d) show the spatial distribution of post-earthquake household decisions in 490 

Pseudo City just after either EQ1 or EQ2 for one arbitrary Monte Carlo simulation. As shown, 491 

the percentage of households that decided to leave the community is significantly higher in 492 

zones with low to moderate household income for both earthquakes, which emphasizes the 493 

importance of considering the socioeconomic characteristics of the households in the 494 

community. Also, the percentage of households that decided to leave the community is 495 

significantly lower in zones with high social interaction for both earthquakes. After EQ1, only 496 

2.5% of households decided to leave the community in zone 7 (LI/HS) while 14% of households 497 

decided to leave the community in zone 9 (LI/LS). Whereas, for EQ2, only 0.8% of households 498 

decided to leave the community in zone 7 (LI/HS) while 6.9% of households decided to leave 499 

the community in zone 9 (LI/LS). It should be noted that these results are for demonstration 500 

purposes and can be refined as more data is available.  501 

 502 



To demonstrate the significance of considering households decisions in quantifying the seismic 503 

resilience of communities, Figure 9 compares the physical recovery trajectory of Pseudo City 504 

with and without considering the effect of household decisions on the functionality of the 505 

community for either earthquake (i.e., EQ1 and EQ2). The recovery of the community is 506 

affected in three ways: the final restored functionality (%Qmax), the recovery time to maximum 507 

functionality (TRE), and the physical resilience index defined as the normalized area under the 508 

physical recovery trajectory (%Rp). Pseudo City recovered only 90% and 95% of its full 509 

functionality due to the abandoned houses for EQ1 and EQ2, respectively. These trends agree 510 

with the results from the recovery model proposed in Burton et al. (2019) and demonstrated on 511 

Koreatown, East Hollywood and Lomita neighborhoods in Los Angeles. 512 

 513 

The recovery time (TRE) decreased when considering the effect of household decisions from 514 

160 weeks (~3.1 years) to 140 weeks (~2.7 years) and from 90 weeks (~1.7 years) to 75 weeks 515 

(~1.4 years) for EQ1 and EQ2, respectively. This decrease is attributed to the number of 516 

abandoned houses which are removed from the repair list in the physical functionality simulator 517 

thereby increasing the availability of resources for repair of other buildings (i.e., availability of 518 

construction workers in the community). Finally, the physical resilience index (%Rp) decreased 519 

from 93% to 85% when considering the effect of household decisions for EQ1 which is about 520 

a 10% reduction (demonstrated by the shaded area in Figure 9 (a)) suggesting the importance 521 

of considering the interdependency between the decisions made by households after the 522 

earthquake and the functionality of communities. For EQ2, the reduction in the resilience index 523 

is only 4% (from 98% to 94%) suggesting that the effect of household decisions is only 524 

significant in the case of larger magnitude seismic events (i.e., EQ1). 525 

 526 



Effect of Second Shock 527 

Two seismic scenarios are implemented to quantify the effect of second shocks on the seismic 528 

resilience of communities. Scenario 1 includes EQ1 as a first shock and EQ2 as a second shock 529 

that strikes the community 5 months after the first shock (i.e., first shock is larger than the 530 

second shock). Whereas scenario 2 includes EQ2 as a first shock and EQ1 as an second shock 531 

that strikes the community 5 months after the first shock (i.e., second shock is larger than the 532 

first shock). Figure 10 (a) and (b) show the effect of scenario 1 and 2, respectively, on the 533 

building damage states in Pseudo City. The mean number of buildings in the complete damage 534 

state increased dramatically due to the effect of the second shock from 82 to 163 and from 4 to 535 

98 in the case of scenario 1 and 2, respectively.   536 

 537 

Scenario 1 (i.e. larger first shock than the second shock) has a more severe effect on the damage 538 

to buildings in Pseudo City (in terms of number of buildings in the complete damage state after 539 

the second shock). Also, for scenario 1, the influence of the second shock is more severe than 540 

the first shock even though the magnitude of the second shock is smaller, which agrees with 541 

the case of the 2010-2011 Canterbury sequences (Potter et al. 2015 and Wilson 2013). This 542 

result is attributed to the reduced capacity of the damaged buildings in Pseudo City after the 543 

first shock and the time of the second shock (i.e., repairs are not completed on the moderately 544 

and extensively damaged buildings prior to the second shock). Figure 10 (c) and (d) show the 545 

decisions made by the households of Pseudo City after both the second shock and the second 546 

shock for scenario 1 and 2, respectively. For both scenarios, the mean number of households 547 

deciding to leave the community or deciding to demolish and rebuild their houses increased 548 

after the second shock due to severe damage.  549 

 550 

Figure 11 shows the recovery clouds of Pseudo city for the two implemented scenarios. As 551 

shown, scenario 1 has a more severe impact on the initial damage and overall recovery of 552 



Pseudo city than scenario 2. This result is attributed to the fact that Pseudo city regained most 553 

of its functionality after the lower magnitude first shock in scenario 2 prior to the occurrence 554 

of the second shock (most of the buildings are intact). Whereas only 50% of the cities 555 

functionality is restored after the first shock in scenario 1 at the time of the second shock. Thus, 556 

the recovery time increased from 200 weeks (~ 3.8 years) in scenario 2 to 270 weeks (~ 5.1 557 

years) in scenario 1. This increase in recovery time led to a decrease in the resilience index 558 

from 82% in scenario 2 to 73% in scenario 1. It can be concluded that the effect of the second 559 

shock is more dependent on the magnitude of the first shock than the magnitude of the second 560 

shock. Larger first shock scenarios result in more damage than smaller first shock scenarios 561 

regardless of the magnitude of the second shock. The effect of the second shock is also 562 

dependent on its time (i.e. percentage of buildings that regained their functionality prior to the 563 

occurrence of the second shock).  564 

 565 

To demonstrate the significance of considering the fragility curves for the first shock-damaged 566 

building archetypes (developed earlier) in the second shock stage, the simulation model is 567 

modified to use the fragility curves for undamaged buildings during both the first shock and 568 

the second shock for the two previously described scenarios. Figure 12 shows the mean 569 

physical recovery trajectories for both scenarios. For scenario 1, the physical resilience index 570 

decreased from 82% when using the fragility curves for undamaged buildings to 73% when 571 

using the fragility curves that consider damage (12% reduction shown as the shaded area in 572 

Figure 12 (a)).  For scenario 2, the physical resilience index decreased from 84% when using 573 

the undamaged building fragility curves to 82% when using the damaged building fragility 574 

curves (only 3% reduction shown as the shaded area in Figure 12 (b)). The presented results 575 

suggest that accurate fragility curves for the damaged buildings are important when evaluating 576 

community resistance for the case of a large first shock scenarios. For small first shock 577 



scenarios, the fragility curves for undamaged buildings can be used with little change in the 578 

physical recovery trajectory. 579 

 580 

SIMULATION MODEL LIMITATIONS 581 

Although the proposed simulation model combines the physical aspect of community 582 

resilience (related to the buildings) with the social aspect (related to the households in 583 

the community), there are other critical dimensions of community resilience that have 584 

not been accounted for in this study. For example, bridge and transportation network 585 

damage can affect traffic flow and, therefore, influence post-earthquake household 586 

decisions. Lifelines, such as power, gas and water systems, can also profoundly 587 

influence resilience, household decisions and the recovery trajectory of the community. 588 

Also, the interactions between the households in the community is not considered in 589 

the proposed simulation model. For example, if an individual household decided to 590 

abandon the community, this may affect surrounding households because there is now 591 

an abandoned property in the neighborhood. These aspects of community resilience 592 

and interactions can be accounted for in the future through the addition of relevant 593 

simulators. 594 

 595 

SUMMARY AND CONCLUSIONS 596 

This study presents a distributed computing simulation model that integrates post-earthquake 597 

household decisions into quantifying the seismic resilience of communities subject to an 598 

earthquake sequence. Post-earthquake household decision making is modeled using a Simple 599 

Multi-Attribute Rating Technique (SMART) based on a set of structural, economic and social 600 

attributes for each household in the community. Three possible decisions for each household 601 



are considered: repair the house, demolish and rebuild the house, or abandon the house. The 602 

second shock is modeled explicitly during the recovery stage from the first shock and 603 

incremental dynamic analysis (IDA) is used to develop fragility curves for the first shock-604 

damaged buildings, which could still be under repair due to the first shock. 605 

 606 

The proposed simulation model is demonstrated through a case study in which a small virtual 607 

community named “Pseudo City” is developed and modeled. Pseudo City is divided into nine 608 

zones with different socioeconomic characteristics of households. The studied community is 609 

subjected to two earthquakes with Mw 7.7 and Mw 6.3. The results show that households with 610 

low to moderate income are more likely to decide to abandon the community after an 611 

earthquake event. Also, considering the effect of the household decisions on the recovery of 612 

the community is more important in the case of large seismic events. After the Mw 7.7 event, 613 

considering the effect of the household decisions reduced the maximum restored functionality 614 

of the community by 10% on average and also reduced the resilience index by the same 615 

percentage. The simulation results suggest that a sequence with a larger first shock has a more 616 

severe impact on the seismic resilience of communities than a sequence with a smaller first 617 

shock regardless of the magnitude of the second shock. This is because the first shock damaged 618 

buildings are more prone to damage in the second shock, prolonging the recovery time.  619 
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