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Abstract

Research in global change ecology relies heavily on global climatic grids derived from
estimates of air temperature in open areas at around 2 m above the ground. These climatic
grids thus do notte reflect conditions below vegetation canopies and near the ground surface,
where critical ecosystem functions are controlled and most terrestrial species reside. Here
we provide global maps of soil temperature and bioclimatic variables at a 1-km? resolution
for the 0-5 and 5-15 cm depth. These maps were created by calculating the difference (i.e.,
offset) between in-situ soil temperature measurements, based on time series from over 1200
1-km? pixels (summarized from 8500 unique temperature sensors) across all the world’s
major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an
atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We
show that mean annual soil temperature differs markedly from the corresponding 2 m
gridded air temperature, by up to 10°C (mean = 3.0 + 2.1°C), with substantial variation across
biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer
(3.6 £ 2.3°C warmer than gridded air temperature), whereas soils in warm and humid
environments are on average slightly cooler (0.7 + 2.3°C cooler). The observed substantial and
biome-specific offsets urderpir-emphasize that the projected impacts of climate and climate
change on biodiversity and ecosystem functioning are inaccurately assessed when air rather
than soil temperature is used, especially in cold environments. The global soil-related
bioclimatic variables provided here are an important step forward for any application in
ecology and related disciplines. Nevertheless, we highlight the need to fill remaining global
gaps by collecting more in-situ measurements of microclimate conditions to further enhance

the spatiotemporal resolution of global soil temperature products for ecological applications.

Keywords: bioclimatic variables, global maps, microclimate, near-surface temperatures, soil-
dwelling organisms, soil temperature, temperature offset, weather stations
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Introduction

With the rapidly increasing availability of big data on species distributions, functional traits
and ecosystem functioning (Bond-Lamberty & Thomson, 2018, Bruelheide et al., 2018,
Kissling et al., 2018, Kattge et al., 2019, Lenoir et al., 2020), we can now study biodiversity
and ecosystem responses to global changes in unprecedented detail (Senior et al., 2019,
Steidinger et al., 2019, Van Den Hoogen et al., 2019, Antdo et al., 2020). However, despite
this increasing availability of ecological data, most spatially-explicit studies of ecological,

biophysical and biogeochemical processes still make-have to rely onuse-ef the same global

gridded temperature data (Soudzilovskaia et al., 2015, Van Den Hoogen et al., 2019, Du et al.,

2020).
Al—Thus far, t
eonstructed-based “90n measurements from standard meteorological stations that

record free-air temperature inside well-ventilated protective shields placed up to 2 m above-
ground in open, shade-free habitats, where abiotic conditions may differ substantially from
those actually experienced by most organisms (World Meteorological Organization, 2008,

Lembrechts et al., 2020).

Ecological patterns and processes often relate more directly to below-canopy soil
temperature rather than to well-ventilated air temperature inside a weather station. Near-
surface, rather than air, temperature better predicts ecosystem functions like biogeochemical
cycling (e.g., organic matter decomposition, soil respiration and other aspects of the global
carbon balance) (Schimel et al., 2004, Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016,
Hursh et al., 2017, Gottschall et al., 2019, Davis et al., 2020, Perera-Castro et al., 2020, Jian et
al., 2021). Similarly, the use of soil temperature in correlative analyses or predictive models
may improve predictions of climate impacts on organismal physiology and behaviour, as well
as on population and community dynamics and species distributions (Kérner & Paulsen, 2004,
Schimel et al., 2004, Ashcroft et al., 2008, Kearney et al., 2009, Scherrer et al., 2011, Opedal
et al., 2015, Berner et al., 2020, Zellweger et al., 2020). Given the key role of soil-related
processes for both aboveground and belowground parts of the ecosystem and their

feedbacks to the atmosphere (Crowther et al., 2016), adequate soil temperature data are
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critical for a broad range of fields of study, such as ecology, biogeography, biogeochemistry,
agronomy, soil science and climate system dynamics. Nevertheless, existing global soil
temperature products such as those from ERA5-Land (Copernicus Climate Change Service
(C3S), 2019), with a resolution of 0.08 x 0.08 degrees (= 9 x 9 km at the equator), remain too

coarse for most ecological applications.

The direction and magnitude of the — often multi-degree — difference or offset between in-
situ soil temperature and coarse-gridded air temperature products result from a combination
of two factors: (i) the (vertical) microclimatic difference between air and soil temperature,
and (ii) the (horizontal) mesoclimatic difference between air temperature in flat, cleared
areas (i.e., where meteorological stations are located) and air temperature within different
vegetation types (e.g., below a dense canopy of trees) or topographies (e.g., within a ravine
or on a ridge) (Lembrechts et al., 2020, De Frenne et al., 2021). In essence, the offset is thus
the combination of both the vertical and horizontal differences that result from factors
affecting the energy budget at the Earth’s surface, principally radiative energy: the ground
absorbs radiative energy, which is transferred to the air by convective heat exchange,
evaporation and spatial variation in net radiation, and lower convective conductance near the
Earth’s surface results in horizontal and vertical variation in temperature (Richardson, 1922,
Geiger, 1950). Both these vertical and horizontal differences in temperature vary significantly
across the globe and in time as a result of environmental conditions affecting the radiation
budget (e.g., as a result of topographic orientation, canopy cover or surface albedo),
convective heat exchange and evaporation (e.g., foliage density, variation in the degree of
wind shear caused by surface friction) and the capacity for the soil to store and conduct heat
(e.g., water content and soil structure and texture) (Geiger, 1950, Zhang et al., 2008, Way &
Lewkowicz, 2018, De Frenne et al., 2019).

While the physics of soil temperatures have long been well-understood (Richardson, 1922,
Geiger, 1950), the creation of high-resolution global gridded soil temperature products has
not been feasible before, ially due to the absence of detailed global in-
situ soil temperature measurements (Lembrechts & Lenoir, 2019, Lembrechts et al., 2020).
Recently, however, the call for microclimate temperature data

representative of

in-situ conditions (i.e., microhabitat) as experienced by organisms
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has become more urgent (Bramer et al., 2018), while global data
availability has rapidly increased (Lembrechts et al., 2020). In this paper, we mainly-address
the—point—on—the—representativeness—oefin-sit—conditionsthis_issue by generating global
gridded maps of below-canopy and near-surface soil temperature at 1-km? resolution (in line
with most existing global air temperature products). These maps are representative of
the habitat conditions as experienced by organisms living under vegetation canopies, in the
topsoil or near the soil surface. They were created using the abovementioned offset between
gridded air temperature data and in-situ soil temperature measurements. We expect these
soil temperature maps to be substantially more representative of actual microclimatic
conditions than existing products — even though still at a relatively coarse spatial resolution
of 1-km? and summarizing multi-decadal averages — as they capture relevant near- and
below-ground abiotic conditions where ecosystem functions and processes operate (Daly,
2006, Bramer et al., 2018, Kérner & Hiltbrunner, 2018). Indeed, the offset between free-air
(macroclimate) and soil (microclimate) temperature, and between cleared areas and other
habitats, can easily reach up to +10°C annually, even at the coarse 1-km? spatial resolution

used here (Zhang et al., 2018, Lembrechts et al., 2019, Wild et al., 2019).

To create the global gridded soil temperature maps introduced above, we used over 8500
time series of soil temperature measured in-situ across the world’s major terrestrial biomes,
compiled and stored in the SoilTemp database (Lembrechts et al., 2020) (Fig. 1a,
Supplementary Material Fig. S1) and averaged into 1200 (or 1000 for the second soil layer)
unique 1-km? pixels. First, to illustrate the magnitude of the studied effect, we visualized the
global and biome-specific patterns in the mean annual offset between in-situ soil temperature
( 0-5 cm and 5-15 cm depth) and coarse-scale interpolated air
temperature from ERA5-Land (soil temperature minus air temperature, hereafter called the
temperature offset, sensu (De Frenne et al., 2021); elsewhere called the surface offset (Smith
& Riseborough, 1996, Smith & Riseborough, 2002)) using the average within 1 x 1 km grid
cells. Next, we used a machine learning approach with 31 environmental explanatory
variables (including macroclimate, soil, topography, reflectance, vegetation and
anthropogenic variables) to model the spatial variation in monthly temperature offsets ata 1
x 1 km resolution for all continents except Antarctica (as absent in many of the used predictor

variable layers). Using these offsets, we then calculated relevant soil-related bioclimatic
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variables (SBIO), mirroring the existing global bioclimatic variables for air temperature.
Finally, we compare our new global soil temperature product with a similar one calculated
using coarser-resolution soil temperature data from ERA5-Land (Copernicus Climate Change

Service (C3S), 2019).

Methods

Data acquisition

Analyses are based on SoilTemp, a global database of microclimate time series (Lembrechts
et al., 2020). We compiled soil temperature measurements from 9362 unique sensors (mean
duration 2.9 years, median duration 1.0 year, ranging from 1 month to 41 years) from 60
countries, using both published and unpublished data sources (Fig. 1, Supplementary Material

Fig. S1). Each sensor corresponds to one independent time series.

We used time series spanning a minimum of one month, with a temporal resolution of four
hours or less. Sensors of any type were included (Supplementary Material Table S1), as long
as they measured in situ. Sensors in experimentally manipulated plots, i.e., plots in which
microclimate has been manipulated, were excluded. Most data
(>90%) came from low-cost rugged microclimate loggers such as iButtons (Maxim Integrated,
USA) or TMS4-sensors (Wild et al., 2019), with measurement errors of around 0.5-1°C (note
that we are using C over K throughout, for ease of understanding), while
in a minority of cases sensors with higher meteorological specifications such as industrial or
scientific grade thermocouples and thermistors (measurement errors of less than 0.5°C) were
used. Contributing datasets mostly consisted of short-term regional networks of microclimate
measurements, yet also included a set (< 5%) of soil temperature sensors from long-term
research networks equipped with weather stations (e.g., Pastorello et al., 2017). By combining
these two types of data, a much higher spatial density of sensors and broader distribution of

microhabitats could be obtained than by using weather station data only.

About 68% of sensors measured in time intervals located between 2010 and 2020 and 93%
between 2000 and 2020; we thus focus on the latter period in our analyses. Additionally, given

the relatively short time frame covered by most individual sensors_and thus the lack of

spatially unbiased long-term time series, we were not able to test for systematic differences




238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

in the temperature offset between old and recent data sets, and thus we did not correct for
this in our models. We strongly urge future studies to assess such temporal dynamics in the

offset; once long-term microclimate data have become sufficient and more available.

For each of the individual 9362 time series, we calculated monthly mean, minimum (5%
percentile of all monthly values) and maximum (95% percentile) temperature, after checking
all time series for plausibility and erroneous data. These monthly values, while perhaps not
fully intercomparable between the northern and southern hemisphere, are those that have
traditionally been used to calculate bioclimatic variables (Fick & Hijmans, 2017). Months with
more than one day of missing data, either at the beginning or end of the measurement period,
or due to logger malfunctioning during measurement, were excluded, resulting in a final
subset of 380-380,676 months of soil temperature time series that were used for further
analyses. For each sensor with more than twelve months of data, we calculated moving
averages of annual mean temperature, using each consecutive month as a starting month and
calculating the mean temperature including the next eleven months. We used these moving

averages to make maximal use of the full temporal extent covered by each sensor, because

each time series spanned a different time period, often including parts of calendar years only.

The selected dataset contained sensors installed strictly belowground, measuring
temperature at depths between 0 and 200 cm below the ground surface. Sensors recording
several measurements at the same site but located at different (vertical) depths were

included separately (the 9362 unique sensors thus came from 7251 unique loggers).

Sensors were grouped in different soil depth categories (0-5, 5-15, 15-30, 30-60, 60-100,
100-200 cm, Supplementary Material Table S2) to incorporate the effects of soil temperature
dampening. We limited our analyses to the topsoil (0—5 cm) and the second soil layer (5-15
cm), as we currently lack sufficient global coverage to make trustworthy models at deeper
soil depths (8519 time series, about 91%, came from the two upper depth layers). Due to
uncertainty in identification of these soil depths between studies (e.g., due to litter layers),

no finer categorisation is used.
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We tested for potential bias in temporal resolution (i.e., measurement interval) by calculating
mean, minimum and maximum temperature for a selection of 2000 months for data
measured every 15 minutes, and the same data aggregated to 30, 60, 90, 120 and 240
minutes. Monthly mean, minimum and maximum temperature calculated with any of the
aggregated datasets differed on average less than 0.2°C from the ones with the highest
temporal resolution. We were thus confident that pooling data with different temporal

resolutions of 4 hours or finer would not significantly affect our results.
Temperature offset calculation

For each monthly value at each sensor location (see Supplementary Material Table S3 for
number of data points per month), we extracted the corresponding monthly means of the 2
m air temperature from the European Centre for Medium-Range Weather (ECMWF)
Forecast’s 5™ reanalysis (ERA5) (from 1979-1981) and ERAS5-Land from 1981-2020
(Copernicus Climate Change Service (C3S), 2019), hereafter called ERASL. The latter dataset
models the global climate with a spatial resolution of 0.08 x 0.08 degrees (= 9 x 9 km at the
equator) with an hourly resolution, converted into monthly means using daily means for the
whole month. Similarly, monthly minima and maxima were obtained from TerraClimate
(Abatzoglou et al., 2018) for the period 2000 to 2020 at a 0.04 x 0.04 degrees (= 4 x 4 km at
the equator) resolution. Monthly means for TerraClimate were not available, and we
therefore estimated them by averaging the monthly minima and maxima. Finally, we also
obtained monthly mean temperatures from CHELSA (Karger et al., 2017a, Karger et al., 2017b)
for the period 2000 to 2013 at a 30 x 30 arc second (= 1 x 1 km at the equator) resolution. In
our modelling exercises (see section ‘Integrative modelling’ below), we opted to use the mean
temperature offsets as calculated based on ERASL rather than on CHELSA. While CHELSA's
higher spatial resolution is definitely an advantage, its time period (stopping in 2013)
insufficiently overlapped with the time period covered by our in-situ measurements (2000 to
2020), soilse— temperature offsets based on the CHELSA dataset were only used for
comparative purposes. We used TerraClimate to model offsets in monthly minimum and

maximum temperature.
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We calculated moving annual averages of the gridded air temperature data similarin the

same way aste-these-we-computed for soil temperature. These were used to create annual

temperature offset values following the same approach as above.

The offset between the in situ measured soil temperature in the SoilTemp database and the
2 m free-air temperature obtained from the air-temperature grids (ERA5L, TerraClim and
CHELSA, hereafter called ‘gridded air temperature’) was calculated by subtracting the
monthly or annual mean air temperature from the monthly or annual mean soil temperature.
Positive offset values indicate a measured soil temperature higher than gridded air
temperature, while negative offset values represent cooler soils. Similarly, monthly minimum
and maximum air temperature were subtracted from minimum and maximum soil
temperature, respectively. Monthly minima and maxima of the soil temperature were
calculated as, respectively, the 5% lowest and highest instantaneous measurement in that
month, to correct for outliers, which can be especially pronounced at the soil surface (Speak
et al., 2020). As a result, patterns in minima and maxima are more conservative estimates

than if we had used the absolute lowest and highest values.

Importantly, the temperature offset calculated here is a result of three key groups of drivers:
(1) height effects (2 m versus 0—15 cm below the soil surface); (2) environmental or habitat
effects (e.g., spatial variability in vegetation, snow or topography); and (3) spatial scale effects
(resolution of gridded air temperature) (Lembrechts et al., 2020). We investigated the
potential role of scale effects by comparing gridded air temperature data sources with
different resolutions (ERASL, TerraClimate and CHELSA, see below). Height effects and
environmental effects are however not disentangled here, as the offset we propose
incorporates both the difference between air and soil temperature (vertically), as well as the
difference between free-air macroclimate and in situ microclimate (horizontally) in one
measure (Lembrechts et al., 2020). While it can be argued that it would be better to treat
both vertical and horizontal effects separately, this would require a similar database of
coupled in-situ air and soil temperature measurements, which is not yet available. Using in
situ measured air temperature could also solve spatial mismatches (i.e., spatially averaged air
temperature represents the whole 1 to 81 km? pixel, depending on pixel size, not only the
exact location of the sensor). However, coupled air and soil temperature measurements are

not only rare, but the air temperature measurements also have large measurement errors,
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especially in open habitats (Maclean et al., 2021). These errors can be up to several degrees
in open habitats when using non-standardized sensors, loggers and shielding (Holden et al.,
2013, Terando et al., 2017, Maclean et al., 2021). Hence, using— in situ measured air

temperature without correcting for these measurement errors would be misleading.

Global and biome-level analyses

For the purpose of visualization, annual offsets were first averaged in hexagons with a

resolution of approximately 70-70,000 km?, using the dggridR-package (version 2.0.4) in R

(Barnes et al., 2017) (Fig. 1). Next, we plotted mean, minimum and maximum annual soil
temperature as a function of corresponding gridded air temperature from ERA5, TerraClimate
and CHELSA and used generalized additive models (GAMs, package mgcv 1.8-31; Wood, 2012)
to visualise deviations from the 1:1-line (i.e., temperature offsets deviating from zero,

Supplementary Figs. S4-5).

All annual and monthly values within each soil depth category and falling within the same 1-
km? pixel were aggregated as a mean, resulting in a total of c. 1200 unique pixels at 0-5 cm,
and c. 1000 unique pixels at 5-15 cm each month, across the globe (Supplementary Material
Table S3). This averaging includes summarizing the data over space, i.e., multiple sensors
within the same 1-km? pixel, and time, i.e., data from multi-year time series from a certain
sensor, to reduce spatial and temporal autocorrelation and sampling bias. We assigned these
1-km? averages to the corresponding Whittaker biome of their georeferenced location, using

the package plotbiomes (version 0.0.0.9901) in R (Fig. 1 ¢, d, Supplementary Material Table

S4-5 (Stefan & Levin, 2018)). We ranked biomes based on their offset and compared this with
the mean annual precipitation in each biome (Fig. 1b). This was done separately for each air
temperature data source (ERASL, TerraClimate and CHELSA), soil depth (0-5 cm, 5-15 cm)
and timeframe (ERA5L 1979-2020, 2000-2020), as well as for the offset between monthly
minimum and maximum soil temperature and the minimum and maximum gridded air
temperature from TerraClimate. Our analyses showed that patterns were robust to variation
in spatial resolution, sensor depth, climate interpolation method and temporal scale

(Supplementary Material Figs. S2-5).

Acquisition of global predictor variables
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To create spatial predictive models of the offset between in-situ soil temperature and gridded
air temperature, we first sampled a stack of global map layers at each of the logger locations
within the dataset. These layers included long-term macroclimatic conditions, soil texture and
physiochemical information, vegetation, radiation, and topographic indices as well as
anthropogenic variables. Details of all layers, including descriptions, units, and source
information, are described in Supplementary Data S1. In short, information about soil texture,
structure and physiochemical properties was obtained from SoilGrids (version 1 (Hengl et al.,
2017)), limited to the upper soil layer (top 5 cm). Long-term averages of macroclimatic
conditions (i.e., monthly mean, maximum and minimum temperature, monthly precipitation)
was obtained from CHELSA (version 2017 (Karger et al., 2017a)), which includes climate data
averaged across 1979-2013, and from WorldClim (version 2 (Fick & Hijmans, 2017)). Monthly
snow probability is based on a pixel-wise frequency of snow occurrence (snow cover >10%)
in MODIS daily snow cover products (MOD10A1 & MYD10A1 (Hall et al., 2002)) in 2001-2019.
Spectral vegetation indices (i.e., averaged MODIS NDVI product MYD13Q1) and surface
reflectance data (i.e., MODIS MCD43A4) were obtained from the Google Earth Engine Data

Catalog (developers.google.com/earth-engine/datasets) and averaged from 2015 to 2019.

Landcover and topographic information were obtained from EarthEnv (Amatulli et al., 2018).
Aridity index (Al) and potential evapotranspiration (PET) layers were obtained from CGIAR
(Zomer et al., 2008). Anthropogenic information (population density) was obtained from the

EU JRC (ghsl.jrc.ec.europa.eu/ghs pop2019.php). Aboveground biomass data were obtained

from GlobBiomass (Santoro, 2018). Reselved-RESOLVE ecoregion classifications were used to
categorize sampling locations into biomes (Dinerstein et al., 2017). With this set of predictor
variables, we included information on all different categories of drivers of soil temperature.
An important variable that had to be excluded was snow depth, due to the lack of a relevant
1-km? resolution global product. The final set of predictor variables included 24 ‘static’
variables and eight monthly layers (i.e., maximum, mean, and minimum temperature,
precipitation, cloud cover, solar radiation, water vapour pressure, and snow cover). As cloud
cover estimates were not available for high-latitude regions in the Northern Hemisphere in
January and December due to a lack of daylight, we excluded cloud cover as an explanatory
variable for these months (i.e., 'EarthEnvCloudCover_MODCF_monthlymean_XX’, with XX

representing the months in two-digit form Supplementary Data S1).
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All variable map layers were reprojected and resampled to a unified pixel grid in EPSG:4326
(WGS84) at 30 arc-sec resolution (= 1 x 1 km at the equator). Areas covered by permanent
snow or ice (e.g., the Greenland ice cap or glaciated mountain ranges, identified using
SoilGrids) were excluded from the analyses. Antarctic sampling points were excluded from

the modelling data set owing to the limited coverage of several covariate layers in the region.

Integrative modelling

To generate global maps of monthly temperature offsets (Fig. 2), we trained Rrandom Fforest
(RF) models for each month, using the temperature offsets as the response variables and the
global variable layers as predictors_(Hengl et al., 2018). We used a geospatial RF modelling

pipeline as developed by van den Hoogen et al. (2021). RF models_are a type of machine

learning model that combines many classification trees using randomized subsets of the data,

with each tree iteratively dividing data into groups of most closely related data points (Hengl

et al., 2018). They are particularly valuable here due to their capacity to uncover nonlinear

relationships (e.g., due to increased decoupling of soil from air temperature in colder and thus
snow-covered areas) and their ability to capture complex interactions among covariates (e.g.,

between snow and vegetation cover) (Olden et al., 2008). Furthermore, they may currently

have advantages over mechanistic microclimate models for global modelling (Maclean &

Klinges, 2021), as the latter require highly detailed physical input parameters for calibration,

and currently too much -computational time to cover the globe at a 1 km? resolution and over

multiple decades. Nevertheless, we urge future endeavours to compare and potentially

improve our results with estimates based on such mechanistic models.

We performed a grid search procedure to tune the RF models across a range of 422-52
hyperparameter settings (variables per split: 2-142, minimum leaf population: 2-532, in all

combinations adding up to 32152 models, each time with 250 trees). During this procedure,

we assessed each of the 52 model’s performance using k-fold cross-validation (k = 10; folds
assigned randomly, stratified per biome)fereach-efthe 122 models. The models’ mean and
standard deviation values were the basis for choosing the best of all evaluated models. This
procedure was repeated for each month separately for the two soil depth layers (0-5 cm, 5—
15 cm), for offsets in mean, minimum and maximum temperature. The importance of

explanatory variables was assessed using the variable importance and ordered by mean
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variable importance across all models. This variable importance adds up the decreases in the
impurity criterion (i.e., the measure on which the local optimal condition is chosen) at each
split of a node for each individual variable over all trees in the forest (van den Hoogen et al.,

2021).

Soil bioclimatic variables

The resulting global maps of the annual and monthly offsets between mean, minimum and
maximum soil and air temperature were used to calculate relevant bioclimatic variables
following the definition used in CHELSA, BIOCLIM, ANUCLIM and WorldClim (Xu & Hutchinson,
2011, Booth et al., 2014, Fick & Hijmans, 2017, Karger et al., 2017a) (Fig. 3—4). We calculated
11 soil bioclimatic layers (SBIO, Table 1). First, we calculated monthly soil mean, maximum
and minimum temperature by adding monthly temperature offsets to the respective CHELSA
monthly mean, maximum and minimum temperature (Karger et al., 2017a). Next, we used
these soil temperature layers to compute the SBIO layers (O’Donnell & Ignizio, 2012). Wettest

and driest quarters were identified for each pixel based on CHELSA’s monthly values.

Model uncertainty

To assess the uncertainty in the monthly models, we performed a stratified bootstrapping
procedure, with total size of the bootstrap samples equal to the original training data (van
den Hoogen et al., 2021). Using biomes as a stratification category, we ensured the samples
included in each of the bootstrap training collections were proportionally representative of
each biome’s total area. Next, we trained RF models (with the same hyperparameters as
selected during the grid-search procedure) using each of 100 bootstrap iterations. Each of
these trained RF models was then used to classify the covariate layer stack, to generate per-
pixel 95% confidence intervals and standard deviation for the modelled monthly offsets (Fig.
5a, Supplementary Material Fig. S6a). The mean R? value of the RF models for the monthly
mean temperature offset was 0.70 (from 0.64 to 0.78) at 0—-5 cm and 0.76 (0.63—-0.85) at 5 to
15 cm across all twelve monthly models. Mean RMSE of the models was 2.20°C (1.94-2.51°C)

at 0-5 cm, and 2.06°C (1.67-2.35°C) at 5-15 cm.

Importantly, model uncertainty as reported in Fig. 5a and Supplementary Material Fig. S6a

comes on top of existing uncertainties in (1) in-situ soil temperature measurements and (2)
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the ERA5L macroclimate models as used in our models. However, both of those are usually

under 1°C (Copernicus Climate Change Service (C3S), 2019, Wild et al., 2019).

To assess the spatial extent of extrapolation, which is necessary due to the incomplete global
coverage of the training data, we first performed a Principal Component Analysis (PCA) on the
full environmental space covered by the monthly training data, including all explanatory
variables as used in the models, and then transformed the composite image into the same PC
spaces as of the sampled data (Van Den Hoogen et al., 2019). Next, we created convex hulls
for each of the bivariate combinations from the first 10 to 12 PCs, covering at least 90% of the
sample space variation, with the number of PCs depending on the month. Using the
coordinates of these convex hulls, we assessed whether each pixel fell within or outside each
of these convex hulls, and calculated the percentage of bivariate combinations for which this
was the case (Fig. 5b, Supplementary Material Fig. S6b). This process was repeated for each

month, and for each of the two soil depths separately.

These uncertainty maps are important because one should be careful with extrapolation
beyond the range of conditions covered by the environmental variables included in the
original calibration dataset, especially in the case of non-linear patterns such as modelled
here. The maps are provided as spatial masks to remove or reduce the weighting of the pixels
for which predictions are beyond the range of values covered by the models during
calibration. To assess this further, we used a spatial leave-one-out cross-validation analysis to
test for spatial autocorrelation in the data set (Supplementary Material Fig. S7) (van den
Hoogen et al., 2021). This approach trains a model for each sample in the data set on all
remaining samples, excluding data points that fall within an increasingly large buffer around
that focal sample. Results show lowest confidence for May to September at 5-15 cm, likely

driven by uneven global coverage of data points.

Finally, we compared the modelled mean annual temperature (SBIO1, topsoil layer) with a
similar product based on monthly ERA5L topsoil (0—-7 cm) temperature with a spatial
resolution of 0.1 x 0.1 degrees (Copernicus Climate Change Service (C3S), 2019). The
corresponding SBIO1 based on ERA5L was calculated using the means of the monthly
averages for each month over the period 1981 to 2016, and averaging these 12 monthly

values into one annual product. We then visualized spatial differences between SBIO1 and
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ERA5, as well as differences across the macroclimatic gradient, to identify mismatches

between both datasets.

All geospatial modelling was performed using the Python API in Google Earth Engine (Gorelick
et al., 2017). The R statistical software, version 4.0.2 (R Core Team, 2020), was used for data
visualisations. All maps were plotted using the Mollweide projection (which preserves relative

areas) to avoid large distortions at high latitudes.

Sources of uncertainty

There is a temporal mismatch between the period covered by CHELSA (1979-2013) and our
in-situ measurements (2000-2020), which prevented us from directly using CHELSA climate to
calculate the temperature offsets used in our models. This temporal mismatch might affect
the offsets calculated here because the relationship between temperature offset and

macroclimate will change through time as the climate warms. Similarly, inter-annual

differences in offsets due to specific weather conditions cannot be implemented in the used

approach. However, we are confident that_at the relatively coarse spatial (1 km?) and

temporal (monthly averages) resolution we are working at, our results are sufficiently robust

to withstand this-these temporal issuesmismateh, given that we found high consistency in

offset patterns between the different timeframes and air temperature datasets examined
(Supplementary Material Figs. S2-5). Nevertheless, we strongly urge future research to
disentangle these potential temporal dynamics, especially given the increasing rate at which

the climate is warming (Xu et al., 2018, GISTEMP Team, 2021).

Similarly, a potential bias could result from the mismatch in method and resolution between
ERASL — used to calculate the temperature offsets — and CHELSA, which was used to create
the bioclimatic variables. However, even though temperature offsets have slightly larger
variation when based on the coarser-grained ERA5L-data than on the finer-grained CHELSA-
data, Supplementary Material Figs. S2-5 show that relationships between soil and air
temperature are largely consistent in all biomes and across the whole global temperature
gradient. Therefore, the larger offsets created additional random scatter, yet no consistent

bias.
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Finally, we acknowledge that the 1-km? resolution gridded products might not be
representative of conditions at the in-situ measurement locations within each pixel. This issue
could be particularly significant for different vegetation types (here proxied at the pixel level
using total aboveground biomass (unit: tons/hai.e., Mg/ha, for the year 2010; Santoro, 2018)
and NDVI (MODIS NDVI product MYD13Q1, averaged over 2015-2019)). To verify this, we
compared a pixel’s estimated aboveground biomass with the dominant in-situ habitat (forest
versus open) surrounding the sensors in that- pixel (Supplementary Table S6). Importantly, all
sensors installed in forests fell indeed in pixels with more than 1 ton/ha aboveground
biomass. Similarly, 75% or more of sensors in open terrain fell in pixels with biomass estimates
of less than 1 ton/ha. Only in the temperate woodland biome was the match between in-situ
habitat estimates and pixel-level aboveground biomass lower, with less than 95% of sensors
in forested locations correctly placed in pixels with more than 1 ton/ha biomass, and less than
50% of open terrain sensors in pixels with less than 1 ton/ha biomass. While our predictions
will thus not be accurate for locations within a pixel that largely deviate from average
conditions (e.g., open terrain in pixels identified as largely forested, or vice versa), they should

be largely representative for those pixel-level averages.

Results

Biome-wide patterns in the temperature offset

We found positive and negative temperature offsets of up to 10°C between in situ measured
mean annual topsoil temperature and gridded air temperature (mean = 3.0 + 2.1°C standard
deviation, Fig. 1, 0-5 cm depth; 5-15 cm is available in Supplementary Material Figs. S2, 5).
The magnitude and direction of these temperature offsets varied considerably within and
across biomes. Mean annual topsoil temperature was on average 3.6 + 2.3°C higher than
gridded air temperature in cold and/or dry biomes, namely tundra, boreal forests, temperate
grasslands, and subtropical deserts. In contrast, offsets were slightly negative in warm and
wet biomes (tropical savannas, temperate forests, and tropical rainforests) where soils were,
on average, 0.7 + 2.7°C cooler than gridded air temperature (Fig. 1b, Supplementary Material
Figs. S2 and 5; note, however, the lower spatial coverage in these biomes in Fig. 1a, c, d,
Supplementary Material Table S4). Temperature offsets in annual minimum and maximum

temperature amounted to c. 10°C maximum. While annual soil temperature minima were on
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average higher than corresponding gridded air temperature minima in all biomes,
temperature offsets of annual maxima followed largely the same biome-related trends as
seen for the annual means, albeit with the higher variability expected for temperature
extremes (Supplementary Material Figs. S2g, h, S4g, h). Using different air temperature data
sources did not alter the annual temperature offset and biome-related patterns (see Methods

and Supplementary Material Figs. S2-5).

Soils in the temperate seasonal forest biome were on average 0.8°C (+ 2.2°C) cooler than air
temperature within 1-km? grid cells of forested habitats, and 1.0°C (+ 4.0°C) warmer than the
air within 1-km? grid cells of non-forested habitats, resulting in a biome-wide average of 0.5°C

(Supplementary Material Table S7). Similar patterns were observed in other biomes.
Temporal and spatial variation in temperature offsets

Our Rrandom Fforest modelling approach highlighted a strong seasonality in monthly
temperature offsets, especially towards higher latitudes (Fig. 2). High-latitude soils were
found to be several degrees warmer than the air (monthly offsets of up to 25°C) during their
respective winter months, and cooler (up to 10°C) in summer months, both at 0-5 cm (Fig. 2)
and 5-15 cm (Supplementary Material Fig. S8) soil depths. In the tropics and subtropics, soils
in dry biomes (e.g., in the Sahara Desert or southern Africa) were predicted to be warmer
than air throughout most of the year, whilst soils in mesic biomes (e.g., tropical biomes in
South America, central Africa and Southeast Asia) were modelled to be consistently cooler, at
both soil depths. These global gridded products were then used to create temperature-based

global bioclimatic variables for soils (SBIO, Fig. 3, Supplementary Material Fig. S9).
Global variation in soil temperature

We observed 17% less spatial variation in mean annual soil temperature globally (expressed
by the standard deviation) than in air temperature, largely driven by the positive offset
between soil and air temperature in cold environments (Fig. 4). Importantly, our machine
learning models slightly (up to 1°C, or around 10% of variation) underestimated temperature
offsets at both extremes of the temperature gradient at the 1-km? resolution (Supplementary
Material Fig. S10) and likely even more in comparison with finer-resolution products.
Estimates of the reduction in variation across space are thus conservative, especially in the

coldest biomes. The reduction in spatial temperature variation was observed in all cold and
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cool biomes, with tundra and boreal forests having both a significant positive mean
temperature offset and a reduction of 20% and 22% in variation, respectively (Fig. 4c). In the
warmest biomes (e.g., tropical savanna and subtropical desert), however, we found an

increase in variation of, on average, 10%.

Our bootstrap approach to validate modelled monthly offsets indicated high consistency
among the outcomes of 100 bootstrapped models (Fig. 5, Supplementary Material Fig. S6a),
with standard deviations in most months and across most parts of the globe around or below
+1°C. One exception to this was the temperature offset at high latitudes of the northern
hemisphere during winter months (standard deviation up to +5°C in the 0-5 cm layer).
Predictive performance was comparable across biomes, although with large variation in data

availability (Supplementary Material Fig. S11).

The importance of explanatory variables in the RF models was largely consistent across
months. Macroclimatic variables such as incoming solar radiation as well as long-term
averages in air temperature and precipitation were by far the most influential explanatory
variables in the spatial models of the monthly temperature offset (Supplementary Material

Figs. S12, 13).

We highlight that the current availability of in-situ soil temperature measurements is
significantly lower in the tropics (Supplementary Material Table S5), where our model had to
extrapolate temperatures beyond the range used to calibrate the model (Fig. 5b,

Supplementary Material Fig. S6b).

Finally, our comparison with a mean annual soil temperature product derived from the
coarse-resolution ERA5L topsoil temperature showed that spatial variability, e.g., driven by
topographic heterogeneity, is much better captured here than in the coarser resolution of the
ERA5L-based product (Fig. 6¢-e). Nevertheless, our predictions at the coarse scale showed to
be condensed within a 5°C range of values from the ERA5L-predictions, for more than 95% of
pixels globally. Noteworthy, our predictions resulted in consistently cooler soil temperature
predictions than topsoil conditions provided by ERASL across large areas, such as the boreal
and tropical forest biomes (Fig. 6a, b). Additionally, our models predicted lower values for
SBIO1 than ERASL in all regions with mean annual soil temperature below 0°C, except for a

few locations around Greenland and Svalbard (Fig. 6a, b).
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Discussion

Global patterns in soil temperature

We observed large spatiotemporal heterogeneity in the global offset between soil and air
temperature, often in the order of several degrees annually and up to more than 20°C during
winter months at high latitudes. These values are in line with empirical data from regional
studies (Zhang et al., 2018, Lembrechts et al., 2019, Obu et al., 2019). Both annual and
monthly offsets showed clear discrepancies between cold and dry versus warm and wet
biomes. The modelled monthly offsets covaried strongly negatively with both long-term
averages in free-air temperature and solar radiation, linking to the well-known decoupling of
soil from air temperature due to snow (for cold extremes in cold and cool biomes) (Grundstein
et al., 2005). However, the secondary importance of variables related to precipitation and soil
structure hints to the additional distinction between wet and dry biomes at the warm end of
the temperature gradient. There,—~where, buffering due to shading, evapotranspiration and
the specific heat of water (mostly against warm extremes in warm and wet biomes) results in
cooler soil temperature (Geiger, 1950, Grundstein et al., 2005, Hennon et al., 2010, Wang &

Dickinson, 2012, De Frenne et al., 2013, Grinberg et al., 2020), while such buffering is not as

strong in warm and dry biomes due to the lower water availability (Wang & Dickinson, 2012,

Greiser et al., 2018, Zhou et al., 2021). As such, these results highlight strong macroclimatic
impacts on the soil microclimate across the globe (see also De Frenne et al., 2019), yet with
soil temperature importantly non-linearly related to air temperature at the global scale. This
confirms that the latter is not sufficient as a proxy for temperature conditions near or in the
soil. With our soil-specific global bioclimatic products, we have provided the means to correct
for these important region-specific, non-linear differences between soil and air temperature

at an unprecedented spatial resolution.
Drivers of the temperature offset

Our empirical modelling approach enabled us to accurately map global patterns in soil
temperature. In doing so we did not aim to disentangle the mechanisms governing the
temperature offset: such an endeavour would require modelling the biophysics of energy
exchange at the soil surface across biomes (Kearney et al., 2019, Maclean et al., 2019,

Maclean & Klinges, 2021). Importantly, many of the predictor variables used in our study (e.g.,
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long-term averages in macroclimatic conditions or solar radiation) are unlikely to represent
direct causal relationships underlying the temperature offset, but may rather indirectly relate
to many ensuing factors that affect the functioning of ecosystems at fine spatial scales which,
in turn, feedback on local temperature offsets, such as energy and water balances, snow
cover, wind intensity and vegetation cover (De Frenne et al., 2021). For example, while
increased solar radiation itself would theoretically result in soils warming more than the air,
high solar radiation at the global scale often coincides with high vegetation cover blocking
radiation input to the soil, thus correlating with relatively cooler soils (De Frenne et al., 2021).
Our results highlight, however, that the complex relationship between microclimatic soil
temperature and macroclimatic air temperature is predictable across large spatial extents
thanks to broad scale patterns, even if this is governed by a multitude of local-scale factors
involving fine spatiotemporal resolutions. Nevertheless, the predictive quality of our models
was lower in high latitude regions, where high variation in the in situ measured offsets — likely
driven by the interactions between snow, local topography and vegetation — reduced
predictive power of the models at the 1-km? resolution (Greiser et al., 2018, Way &

Lewkowicz, 2018, Griinberg et al., 2020, Myers-Smith et al., 2020, Niittynen et al., 2020).
Implications for microclimate warming

Our results highlight clear biome-specific differences in mean annual temperature between
air and soil temperatures, as well as a significant reduction in the spatial variation in
temperature in the soil or near the soil surface, especially in cold and cool biomes (Fig. 4).
These patterns remain even despite the presence of often strongly opposing monthly offset
trends (Fig. 2). The observed correlation between long-term averages in macroclimatic
conditions and the annual temperature offset illustrates that soil temperature is unlikely to
warm at the same rate as air temperature when macroclimate warms. Indeed, one degree of
air temperature warming could result in either a bigger or smaller soil temperature change,
depending on where along the macroclimatic gradient this is happening. These effects might
be seen in cold biome soils most strongly, as they not only experience the largest (positive)
temperature offsets and reductions in climate range compared to air temperature (Fig. 4b, c),
but they are also expected to experience the strongest magnitude of macroclimate warming

(Cooper, 2014, Overland et al., 2014, Chen et al., 2021, GISTEMP Team, 2021). As a result,
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mean annual temperatures in cold climate soils can be expected to warm slower than the

corresponding macroclimate as offsets shrink with increasing macroclimate warming.

Contrastingly, predicted climate warming in hot and dry biomes could be amplified in the
topsoil, where we show soils to become increasingly warmer than the air at higher
temperatures. Similarly, changes in precipitation regimes — and thus soil moisture — can
significantly alter the relationship between air and soil temperature, with critical implications
for soil moisture-atmosphere feedbacks, especially in hot biomes (Zhou et al., 2021). Indeed,
as precipitation decreases, offsets could turn more positive and soil temperatures might
warm even faster than the observed macroclimate warming. Therefore, future research
should not only use soil temperature data as provided here to study belowground ecological
processes (De Frenne et al., 2013, Lembrechts et al., 2020), it should also urgently investigate
future scenarios of soil climate warming in light of changing air temperature and precipitation,
at ecologically relevant spatial and temporal resolutions to incorporate the non-linear

relationships exposed so far (Lembrechts & Nijs, 2020).
Within-pixel heterogeneity

We chose to use a 1-km? resolution spatial grid to model mismatches between soil and air
temperature, aggregating all values from different microhabitats within the same 1-km? grid
cell (e.g., sensors in forested versus open patches) as well as all daily and diurnal variation

within a month. Additionally, we used coarse-grained free-air temperature rather than in-situ

measured air temperatures. -We are aware that higher spatiotemporal resolutions would

likely reveal the importance of locally heterogeneous variables. Finer-scale factors that affect
the local radiation balance and wind (e.g., topography, snow and vegetation cover,
urbanization) at the landscape to local scales and those that directly affect neighbouring
locations (e.g. topographic shading and cold-air drainage, Whiteman, 1982, Ashcroft & Gollan,
2012, Lembrechts et al., 2020) would probably have emerged as more important drivers at
regional scales and with higher spatiotemporal resolutions than those used here
(Supplementary Material Fig. S12). The latter is illustrated by the multi-degree Celsius
difference in mean annual temperature between forested and non-forested locations within
the same biome (Supplementary Material Table S7), as well as the lower accuracy obtained
during winter months at high latitudes, where and when fine-scale spatial heterogeneity in

snow cover and depth probably lowers models’ predictability at the 1-km? resolution. In-situ

22



684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

measurements were largely from areas with a representative vegetation type, supporting the
reliability of our predictions for the dominant habitat type within a pixel. However, improved
accuracy at high latitudes will depend on the future development of high-resolution snow

depth and/or snow water equivalent estimates (Luojus et al., 2010).

The SoilTemp database (Lembrechts et al., 2020) will facilitate the necessary steps towards
mapping soil temperature at higher spatiotemporal resolutions in the future, with its
georeferenced time series of in situ measured soil and near-surface temperature and
associated metadata. Nevertheless, when compared to existing soil temperature products
such as those from ERASL (Copernicus Climate Change Service (C3S), 2019), we emphasize
that the increased resolution of our data products already provides a major technical
advance, even though substantial finer within-pixel variation is still lost through

spatiotemporal aggregation.
Conclusions

The spatial (biome-specific) and temporal (seasonally variable) offsets between air and soil
temperature quantified here likely bias predictions of current and future climate impacts on
species and ecosystems (Korner & Paulsen, 2004, Kearney et al., 2009, Cooper, 2014, Opedal
et al., 2015, Graae et al., 2018, Zellweger et al., 2020, Bergstrom et al., 2021). Temperature
in the topsoil rather than in the air ultimately defines the distribution and performance of
most terrestrial species, as well as many ecosystem functions at or below the soil surface
(Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016, Hursh et al., 2017, Gottschall et al., 2019).
As many ecosystem functions are highly correlated with temperature (yet often non-lineary,
Johnston et al., 2021), soil temperature rather than air temperature should in those instances
be the preferred predictor for estimating their rates and temperature thresholds (Rosenberg
et al.,, 1990, Colteaux et al., 1995, Schimel et al., 1996). Correcting for the non-linear
relationship between air and soil temperature identified here is thus vital for all fields
investigating abiotic and biotic processes relating to terrestrial environments (White et al.,
2020). Indeed, soil temperature, macroclimate and land-use change will interact to define the
future climate as experienced by organisms, and high-resolution soil temperature data is

needed to tackle current and future challenges.
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By making our global soil temperature maps and the underlying monthly offset data openly
available, we offer gridded soil temperature data for climate research, ecology, agronomy
and other life and environmental sciences. Future research has the important task of further
improving the spatial and temporal resolution of global microclimate products as
microclimate operates at much higher temporal resolutions, with temporal variation over
hours, days, seasons and years (Potter et al., 2013, Bltikofer et al., 2020), as well as to confirm
accuracy of predictions in undersampled regions in the underlying maps (Lembrechts et al.,
2021). However, we are convinced that the maps presented here bring us one step closer to
having accessible climate data exactly where it matters most for many terrestrial organisms
(Kearney & Porter, 2009, Ashcroft et al., 2014, Pincebourde et al., 2016, Niittynen & Luoto,
2018, Lembrechts & Lenoir, 2019). We nevertheless highlight that there is still a long way to
go towards global soil microclimate data with an optimal spatiotemporal resolution. We
therefore urge all scientists to submit their microclimate time series to the SoilTemp database
to fill data gaps and help to increase the spatial resolution until it matches with the scale at

which ecological processes take place (Bitikofer et al., 2020, Lembrechts et al., 2020).

Data availability

All monthly data to train the models and reproduce the figures, sampled covariate data, and

models are available at https://doi.org/10.5281/zenod0.4558663. Soil bioclim layers SBIO1-

11 are also directly available in Google Earth Engine under
projects/crowtherlab/soil_bioclim/soil_bioclim_0_5cm and

projects/crowtherlab/soil_bioclim/soil_bioclim_5 15cm.

Code availability

All source code is available at https://doi.org/10.5281/zenod0.4558663.
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Tables

Table 1: Overview of soil bioclimatic variables as calculated in this study.

Bioclimatic variable

Meaning

SBIO1
SBIO2
SBIO3
SBIO4
SBIOS
SBIO6
SBIO7
SBIOS
SBIO9
SBIO10
SBIO11

annual mean temperature

mean diurnal range (mean of monthly (max temp - min temp))
isothermality (SBIO2/SBIO7) (x100)

temperature seasonality (standard deviation x100)

max temperature of warmest month

min temperature of coldest month

temperature annual range (SBIO5-SBIO6)

mean temperature of wettest quarter

mean temperature of driest quarter

mean temperature of warmest quarter

mean temperature of coldest quarter
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1463  Figure 1: Temperature offsets between soil and air temperature differed significantly among
1464  biomes. (a) Distribution of in-situ measurement locations across the globe, coloured by the mean
1465  annual temperature offset (in °C) between in situ measured soil temperature (topsoil, 0-5 cm depth)
1466  and gridded air temperature (ERA5L). Offsets were averaged per hexagon, each with a size of
1467  approximately 70,000 km? Mollweide projection. (b) Mean annual temperature offsets per Whittaker
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1468
1469
1470
1471
1472
1473
1474

1475

1476

biome (adapted from Whittaker 1970, based on geographic location of sensors averaged at 1 km? 0—
5 cm depth), ordered by mean temperature offset and coloured by mean annual precipitation. (c—d)
Distribution of sensors in 2D climate space for the topsoil (c, 0-5 cm depth, N = 4530) and the second
layer (d, 5-15 cm depth, N = 3989). Colours of hexagons indicate the number of sensors at each climatic
location, with a 40 x 40 km resolution. Grey dots in the background represent the global variation in
climatic space (obtained by sampling 1 000 000 random locations from the CHELSA world maps).
Overlay with grey lines depicts a delineation of Whittaker biomes.
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Figure 2: Global modelled temperature offsets between soil and air temperature show strong
spatiotemporal variation across months. Modelled annual (a) and monthly (b—m) temperature
offset (in °C) between in situ measured soil temperature (topsoil, 0-5 cm) and gridded air
temperature. Positive (red) values indicate soils that are warmer than the air. Dark grey represents
regions outside the modelling area.
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Figure 3: Soil bioclimatic variables. Global maps of bioclimatic variables for topsoil (0—5 cm depth)

climate, calculated using the maps of monthly soil climate (see Fig. 2), and the bioclimatic variables for
air temperature from CHELSA.
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Figure 4: Mean annual soil temperature shows significantly lower spatial variability than air
temperature. (a) Global map of mean annual topsoil temperature (SBIO1, 0-5 cm depth, in °C), created
by adding the monthly offset between soil and air temperature for the period 20002020 (Fig. 2) to
the monthly air temperature from CHELSA. A black mask is used to exclude regions where our models
are extrapolating (i.e., interpolation values in Fig. 5 are < 0.9, 18% of pixels). Dark grey represents
regions outside the modelling area. (b—c) Density plots of mean annual soil temperature across the
globe (b) and for each Whittaker biome separately (c) for SBIO1 (dark grey, soil temperature),
compared with BIO1 from CHELSA (light grey, air temperature), created by extracting 1 000 000
random points from the 1-km? gridded bioclimatic products. The numbers in (c) represent the standard
deviations of air temperature (light grey) and soil temperature (dark grey). Biomes are ordered
according to the median annual soil temperature values from the highest temperature (subtropical
desert) to the lowest (tundra).
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Figure 5: Models of the temperature offset between soil and air temperature have low standard
deviations and good global coverage. Analyses for the temperature offset between in situ measured
topsoil (0-5 cm depth) temperature and gridded air temperature. (a) Standard deviation (in °C) over
the predictions from a cross-validation analysis that iteratively varied the set of covariates
(explanatory data layers) and model hyperparameters across 100 models and evaluated model
strength using 10-fold cross-validation, for January (left) and July (right), as examples of the two most
contrasting months. (b) The fraction of axes in the multidimensional environmental space for which
the pixel lies inside the range of data covered by the sensors in the database. Low values indicate
increased extrapolation.
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Figure 6: The mean annual soil temperature (SBIO1, 1 x 1 km resolution) modelled here is
consistently cooler than ERA5L (9 x 9 km) soil temperature in forested areas. (a) Spatial
representation of the difference between SBIO1 based on our model and based on ERA5L soil
temperature data. Negative values (blue colours) indicate areas where our model predicts cooler soil
temperature. Dark grey areas (Greenland and Antarctica) are excluded from our models. Asterisk in
Scandinavia indicates the highlighted area in panels d to f (see below). (b) Distribution of the difference
between SBIO1 and ERA5L along the macroclimatic gradient (represented by SBIO1 itself) based on a
random subsample of 50 000 points from the map in a). Red line from a Generalized Additive Model
(GAM) with k=4. (c-e) High-resolution zoomed panels of an area of high elevational contrast in Norway
(from 66.0-66.4° N, 15.0-16.0° E) visualizing SBIO1 (c), ERA5L (d) and their difference (e), to highlight
the higher spatial resolution as obtained with SBIO1.
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