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Abstract 90 

Research in global change ecology relies heavily on global climatic grids derived from 91 

estimates of air temperature in open areas at around 2 m above the ground. These climatic 92 

grids thus do notto reflect conditions below vegetation canopies and near the ground surface, 93 

where critical ecosystem functions are controlled and most terrestrial species reside. Here, 94 

we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution 95 

for the 0–5 and 5–15 cm depth. These maps were created by calculating the difference (i.e., 96 

offset) between in-situ soil temperature measurements, based on time series from over 1200 97 

1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s 98 

major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an 99 

atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We 100 

show that mean annual soil temperature differs markedly from the corresponding 2 m 101 

gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across 102 

biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer 103 

(3.6 ± 2.3°C warmer than gridded air temperature), whereas soils in warm and humid 104 

environments are on average slightly cooler (0.7 ± 2.3°C cooler). The observed substantial and 105 

biome-specific offsets underpin emphasize that the projected impacts of climate and climate 106 

change on biodiversity and ecosystem functioning are inaccurately assessed when air rather 107 

than soil temperature is used, especially in cold environments. The global soil-related 108 

bioclimatic variables provided here are an important step forward for any application in 109 

ecology and related disciplines. Nevertheless, we highlight the need to fill remaining global 110 

gaps by collecting more in-situ measurements of microclimate conditions to further enhance 111 

the spatiotemporal resolution of global soil temperature products for ecological applications. 112 

 113 

Keywords: bioclimatic variables, global maps, microclimate, near-surface temperatures, soil-114 

dwelling organisms, soil temperature, temperature offset, weather stations   115 
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Introduction 116 

With the rapidly increasing availability of big data on species distributions, functional traits 117 

and ecosystem functioning (Bond-Lamberty & Thomson, 2018, Bruelheide et al., 2018, 118 

Kissling et al., 2018, Kattge et al., 2019, Lenoir et al., 2020), we can now study biodiversity 119 

and ecosystem responses to global changes in unprecedented detail (Senior et al., 2019, 120 

Steidinger et al., 2019, Van Den Hoogen et al., 2019, Antão et al., 2020). However, despite 121 

this increasing availability of ecological data, most spatially-explicit studies of ecological, 122 

biophysical and biogeochemical processes still make have to rely onuse of the same global 123 

gridded temperature data (Soudzilovskaia et al., 2015, Van Den Hoogen et al., 2019, Du et al., 124 

2020). Most of these gridded air temperature datasets are based on long-term climatologies 125 

of rather coarse spatiotemporal resolutions: monthly and annual means, or bioclimatic 126 

derivatives, based on 30-yr time series averaged within 1 km to 50 km grid cells. Additionally, 127 

these coarse temperature grids are All tThus far, these global gridded products are 128 

constructed based based onupon measurements from standard meteorological stations that 129 

record free-air temperature inside well-ventilated protective shields placed up to 2 m above-130 

ground in open, shade-free habitats, where abiotic conditions may differ substantially from 131 

those actually experienced by most organisms (World Meteorological Organization, 2008, 132 

Lembrechts et al., 2020). 133 

Ecological patterns and processes often relate more directly to below-canopy soil 134 

temperature rather than to well-ventilated air temperature inside a weather station. Near-135 

surface, rather than air, temperature better predicts ecosystem functions like biogeochemical 136 

cycling (e.g., organic matter decomposition, soil respiration and other aspects of the global 137 

carbon balance) (Schimel et al., 2004, Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016, 138 

Hursh et al., 2017, Gottschall et al., 2019, Davis et al., 2020, Perera-Castro et al., 2020, Jian et 139 

al., 2021). Similarly, the use of soil temperature in correlative analyses or predictive models 140 

may improve predictions of climate impacts on organismal physiology and behaviour, as well 141 

as on population and community dynamics and species distributions (Körner & Paulsen, 2004, 142 

Schimel et al., 2004, Ashcroft et al., 2008, Kearney et al., 2009, Scherrer et al., 2011, Opedal 143 

et al., 2015, Berner et al., 2020, Zellweger et al., 2020). Given the key role of soil-related 144 

processes for both aboveground and belowground parts of the ecosystem and their 145 

feedbacks to the atmosphere (Crowther et al., 2016), adequate soil temperature data are 146 
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critical for a broad range of fields of study, such as ecology, biogeography, biogeochemistry, 147 

agronomy, soil science and climate system dynamics. Nevertheless, existing global soil 148 

temperature products such as those from ERA5-Land (Copernicus Climate Change Service 149 

(C3S), 2019), with a resolution of 0.08 × 0.08 degrees (≈ 9 × 9 km at the equator), remain too 150 

coarse for most ecological applications.  151 

The direction and magnitude of the – often multi-degree – difference or offset between in-152 

situ soil temperature and coarse-gridded air temperature products result from a combination 153 

of two factors: (i) the (vertical) microclimatic difference between air and soil temperature, 154 

and (ii) the (horizontal) mesoclimatic difference between air temperature in flat, cleared 155 

areas (i.e., where meteorological stations are located) and air temperature within different 156 

vegetation types (e.g., below a dense canopy of trees) or topographies (e.g., within a ravine 157 

or on a ridge) (Lembrechts et al., 2020, De Frenne et al., 2021). In essence, the offset is thus 158 

the combination of both the vertical and horizontal differences that result from factors 159 

affecting the energy budget at the Earth’s surface, principally radiative energy: the ground 160 

absorbs radiative energy, which is transferred to the air by convective heat exchange, 161 

evaporation and spatial variation in net radiation, and lower convective conductance near the 162 

Earth’s surface results in horizontal and vertical variation in temperature (Richardson, 1922, 163 

Geiger, 1950). Both these vertical and horizontal differences in temperature vary significantly 164 

across the globe and in time as a result of environmental conditions affecting the radiation 165 

budget (e.g., as a result of topographic orientation, canopy cover or surface albedo), 166 

convective heat exchange and evaporation (e.g., foliage density, variation in the degree of 167 

wind shear caused by surface friction) and the capacity for the soil to store and conduct heat 168 

(e.g., water content and soil structure and texture) (Geiger, 1950, Zhang et al., 2008, Way & 169 

Lewkowicz, 2018, De Frenne et al., 2019).            170 

While the physics of soil temperatures have long been well-understood (Richardson, 1922, 171 

Geiger, 1950), the creation of high-resolution global gridded soil temperature products has 172 

not been feasible before, amongst others partially due to the absence of detailed global in-173 

situ soil temperature measurements (Lembrechts & Lenoir, 2019, Lembrechts et al., 2020). 174 

Recently, however, the call for microclimate temperature data with spatiotemporal 175 

resolutions relevant to the studied organism and, most importantly, values representative of 176 

in-situ conditions (i.e., microhabitat) as experienced by these organisms living close to the 177 



 

6 

ground surface or in the soil has become more urgent (Bramer et al., 2018), while global data 178 

availability has rapidly increased (Lembrechts et al., 2020). In this paper, we mainly address 179 

the point on the representativeness of in-situ conditionsthis issue by generating global 180 

gridded maps of below-canopy and near-surface soil temperature at 1-km² resolution (in line 181 

with most existing global air temperature products). These maps are more representative of 182 

the habitat conditions as experienced by organisms living under vegetation canopies, in the 183 

topsoil or near the soil surface. They were created using the abovementioned offset between 184 

gridded air temperature data and in-situ soil temperature measurements. We expect these 185 

soil temperature maps to be substantially more representative of actual microclimatic 186 

conditions than existing products – even though still at a relatively coarse spatial resolution 187 

of 1-km² and summarizing multi-decadal averages – as they capture relevant near-surface and 188 

below-ground abiotic conditions where ecosystem functions and processes operate (Daly, 189 

2006, Bramer et al., 2018, Körner & Hiltbrunner, 2018). Indeed, the offset between free-air 190 

(macroclimate) and soil (microclimate) temperature, and between cleared areas and other 191 

habitats, can easily reach up to ±10°C annually, even at the coarse 1-km² spatial resolution 192 

used here (Zhang et al., 2018, Lembrechts et al., 2019, Wild et al., 2019).  193 

To create the global gridded soil temperature maps introduced above, we used over 8500 194 

time series of soil temperature measured in-situ across the world’s major terrestrial biomes, 195 

compiled and stored in the SoilTemp database (Lembrechts et al., 2020) (Fig. 1a, 196 

Supplementary Material Fig. S1) and averaged into 1200 (or 1000 for the second soil layer) 197 

unique 1-km² pixels. First, to illustrate the magnitude of the studied effect, we visualized the 198 

global and biome-specific patterns in the mean annual offset between in-situ soil temperature 199 

(topsoil: 0–5 cm and second layer: 5–15 cm depth) and coarse-scale interpolated air 200 

temperature from ERA5-Land (soil temperature minus air temperature, hereafter called the 201 

temperature offset, sensu (De Frenne et al., 2021); elsewhere called the surface offset (Smith 202 

& Riseborough, 1996, Smith & Riseborough, 2002)) using the average within 1 × 1 km grid 203 

cells. Next, we used a machine learning approach with 31 environmental explanatory 204 

variables (including macroclimate, soil, topography, reflectance, vegetation and 205 

anthropogenic variables) to model the spatial variation in monthly temperature offsets at a 1 206 

× 1 km resolution for all continents except Antarctica (as absent in many of the used predictor 207 

variable layers). Using these offsets, we then calculated relevant soil-related bioclimatic 208 
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variables (SBIO), mirroring the existing global bioclimatic variables for air temperature. 209 

Finally, we compare our new global soil temperature product with a similar one calculated 210 

using coarser-resolution soil temperature data from ERA5-Land (Copernicus Climate Change 211 

Service (C3S), 2019). 212 

Methods 213 

Data acquisition 214 

Analyses are based on SoilTemp, a global database of microclimate time series (Lembrechts 215 

et al., 2020). We compiled soil temperature measurements from 9362 unique sensors (mean 216 

duration 2.9 years, median duration 1.0 year, ranging from 1 month to 41 years) from 60 217 

countries, using both published and unpublished data sources (Fig. 1, Supplementary Material 218 

Fig. S1). Each sensor corresponds to one independent time series.  219 

We used time series spanning a minimum of one month, with a temporal resolution of four 220 

hours or less. Sensors of any type were included (Supplementary Material Table S1), as long 221 

as they measured in situ. Sensors in experimentally manipulated plots, i.e., plots in which 222 

microclimate has been manipulated, such as in open top chambers, were excluded. Most data 223 

(> 90%) came from low-cost rugged microclimate loggers such as iButtons (Maxim Integrated, 224 

USA) or TMS4-sensors (Wild et al., 2019), with measurement errors of around 0.5–1°C (note 225 

that we are using degree °Celsius over Kelvin throughout, for ease of understanding), while 226 

in a minority of cases sensors with higher meteorological specifications such as industrial or 227 

scientific grade thermocouples and thermistors (measurement errors of less than 0.5°C) were 228 

used. Contributing datasets mostly consisted of short-term regional networks of microclimate 229 

measurements, yet also included a set (< 5%) of soil temperature sensors from long-term 230 

research networks equipped with weather stations (e.g., Pastorello et al., 2017). By combining 231 

these two types of data, a much higher spatial density of sensors and broader distribution of 232 

microhabitats could be obtained than by using weather station data only. 233 

About 68% of sensors measured in time intervals located between 2010 and 2020 and 93% 234 

between 2000 and 2020; we thus focus on the latter period in our analyses. Additionally, given 235 

the relatively short time frame covered by most individual sensors and thus the lack of 236 

spatially unbiased long-term time series, we were not able to test for systematic differences 237 
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in the temperature offset between old and recent data sets, and thus we did not correct for 238 

this in our models. We strongly urge future studies to assess such temporal dynamics in the 239 

offset, once long-term microclimate data have become sufficient and more available. 240 

For each of the individual 9362 time series, we calculated monthly mean, minimum (5% 241 

percentile of all monthly values) and maximum (95% percentile) temperature, after checking 242 

all time series for plausibility and erroneous data. These monthly values, while perhaps not 243 

fully intercomparable between the northern and southern hemisphere, are those that have 244 

traditionally been used to calculate bioclimatic variables (Fick & Hijmans, 2017). Months with 245 

more than one day of missing data, either at the beginning or end of the measurement period, 246 

or due to logger malfunctioning during measurement, were excluded, resulting in a final 247 

subset of 380 380,676 months of soil temperature time series that were used for further 248 

analyses. For each sensor with more than twelve months of data, we calculated moving 249 

averages of annual mean temperature, using each consecutive month as a starting month and 250 

calculating the mean temperature including the next eleven months. We used these moving 251 

averages to make maximal use of the full temporal extent covered by each sensor, because 252 

each time series spanned a different time period, often including parts of calendar years only. 253 

Next, these moving averages were further summarized to one mean annual average per 1-254 

km² pixel (see below, under ‘Global and biome-level analyses’). 255 

The selected dataset contained sensors installed strictly belowground, measuring 256 

temperature at depths between 0 and 200 cm below the ground surface. Sensors recording 257 

several measurements at the same site but located at different (vertical) depths were 258 

included separately (the 9362 unique sensors thus came from 7251 unique loggers). 259 

Sensors were grouped in different soil depth categories (0–5, 5–15, 15–30, 30–60, 60–100, 260 

100–200 cm, Supplementary Material Table S2) to incorporate the effects of soil temperature 261 

dampening. We limited our analyses to the topsoil (0–5 cm) and the second soil layer (5–15 262 

cm), as we currently lack sufficient global coverage to make trustworthy models at deeper 263 

soil depths (8519 time series, about 91%, came from the two upper depth layers). Due to 264 

uncertainty in identification of these soil depths between studies (e.g., due to litter layers), 265 

no finer categorisation is used. 266 



 

9 

We tested for potential bias in temporal resolution (i.e., measurement interval) by calculating 267 

mean, minimum and maximum temperature for a selection of 2000 months for data 268 

measured every 15 minutes, and the same data aggregated to 30, 60, 90, 120 and 240 269 

minutes. Monthly mean, minimum and maximum temperature calculated with any of the 270 

aggregated datasets differed on average less than 0.2°C from the ones with the highest 271 

temporal resolution. We were thus confident that pooling data with different temporal 272 

resolutions of 4 hours or finer would not significantly affect our results. 273 

Temperature offset calculation 274 

For each monthly value at each sensor location (see Supplementary Material Table S3 for 275 

number of data points per month), we extracted the corresponding monthly means of the 2 276 

m air temperature from the European Centre for Medium-Range Weather (ECMWF) 277 

Forecast’s 5th reanalysis (ERA5) (from 1979–1981) and ERA5-Land from 1981–2020 278 

(Copernicus Climate Change Service (C3S), 2019), hereafter called ERA5L. The latter dataset 279 

models the global climate with a spatial resolution of 0.08 × 0.08 degrees (≈ 9 × 9 km at the 280 

equator) with an hourly resolution, converted into monthly means using daily means for the 281 

whole month. Similarly, monthly minima and maxima were obtained from TerraClimate 282 

(Abatzoglou et al., 2018) for the period 2000 to 2020 at a 0.04 × 0.04 degrees (≈ 4 × 4 km at 283 

the equator) resolution. Monthly means for TerraClimate were not available, and we 284 

therefore estimated them by averaging the monthly minima and maxima. Finally, we also 285 

obtained monthly mean temperatures from CHELSA (Karger et al., 2017a, Karger et al., 2017b) 286 

for the period 2000 to 2013 at a 30 × 30 arc second (≈ 1 × 1 km at the equator) resolution. In 287 

our modelling exercises (see section ‘Integrative modelling’ below), we opted to use the mean 288 

temperature offsets as calculated based on ERA5L rather than on CHELSA. While CHELSA’s 289 

higher spatial resolution is definitely an advantage, its time period (stopping in 2013) 290 

insufficiently overlapped with the time period covered by our in-situ measurements (2000 to 291 

2020), soilso  temperature offsets based on the CHELSA dataset were only used for 292 

comparative purposes. We used TerraClimate to model offsets in monthly minimum and 293 

maximum temperature. 294 
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We calculated moving annual averages of the gridded air temperature data similar in the 295 

same way asto those we computed for soil temperature. These were used to create annual 296 

temperature offset values following the same approach as above. 297 

The offset between the in situ measured soil temperature in the SoilTemp database and the 298 

2 m free-air temperature obtained from the air-temperature grids (ERA5L, TerraClim and 299 

CHELSA, hereafter called ‘gridded air temperature’) was calculated by subtracting the 300 

monthly or annual mean air temperature from the monthly or annual mean soil temperature. 301 

Positive offset values indicate a measured soil temperature higher than gridded air 302 

temperature, while negative offset values represent cooler soils. Similarly, monthly minimum 303 

and maximum air temperature were subtracted from minimum and maximum soil 304 

temperature, respectively. Monthly minima and maxima of the soil temperature were 305 

calculated as, respectively, the 5% lowest and highest instantaneous measurement in that 306 

month, to correct for outliers, which can be especially pronounced at the soil surface (Speak 307 

et al., 2020). As a result, patterns in minima and maxima are more conservative estimates 308 

than if we had used the absolute lowest and highest values. 309 

Importantly, the temperature offset calculated here is a result of three key groups of drivers: 310 

(1) height effects (2 m versus 0–15 cm below the soil surface); (2) environmental or habitat 311 

effects (e.g., spatial variability in vegetation, snow or topography); and (3) spatial scale effects 312 

(resolution of gridded air temperature) (Lembrechts et al., 2020). We investigated the 313 

potential role of scale effects by comparing gridded air temperature data sources with 314 

different resolutions (ERA5L, TerraClimate and CHELSA, see below). Height effects and 315 

environmental effects are however not disentangled here, as the offset we propose 316 

incorporates both the difference between air and soil temperature (vertically), as well as the 317 

difference between free-air macroclimate and in situ microclimate (horizontally) in one 318 

measure (Lembrechts et al., 2020). While it can be argued that it would be better to treat 319 

both vertical and horizontal effects separately, this would require a similar database of 320 

coupled in-situ air and soil temperature measurements, which is not yet available. Using in 321 

situ measured air temperature could also solve spatial mismatches (i.e., spatially averaged air 322 

temperature represents the whole 1 to 81 km² pixel, depending on pixel size, not only the 323 

exact location of the sensor). However, coupled air and soil temperature measurements are 324 

not only rare, but the air temperature measurements also have large measurement errors, 325 
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especially in open habitats (Maclean et al., 2021). These errors can be up to several degrees 326 

in open habitats when using non-standardized sensors, loggers and shielding (Holden et al., 327 

2013, Terando et al., 2017, Maclean et al., 2021). Hence, using  in situ measured air 328 

temperature without correcting for these measurement errors would be misleading. 329 

Global and biome-level analyses 330 

For the purpose of visualization, annual offsets were first averaged in hexagons with a 331 

resolution of approximately 70 70,000 km², using the dggridR-package (version 2.0.4) in R 332 

(Barnes et al., 2017) (Fig. 1). Next, we plotted mean, minimum and maximum annual soil 333 

temperature as a function of corresponding gridded air temperature from ERA5, TerraClimate 334 

and CHELSA and used generalized additive models (GAMs, package mgcv 1.8-31; Wood, 2012) 335 

to visualise deviations from the 1:1-line (i.e., temperature offsets deviating from zero, 336 

Supplementary Figs. S4-5). 337 

All annual and monthly values within each soil depth category and falling within the same 1-338 

km² pixel were aggregated as a mean, resulting in a total of c. 1200 unique pixels at 0–5 cm, 339 

and c. 1000 unique pixels at 5–15 cm each month, across the globe (Supplementary Material 340 

Table S3). This averaging includes summarizing the data over space, i.e., multiple sensors 341 

within the same 1-km² pixel, and time, i.e., data from multi-year time series from a certain 342 

sensor, to reduce spatial and temporal autocorrelation and sampling bias. We assigned these 343 

1-km² averages to the corresponding Whittaker biome of their georeferenced location, using 344 

the package plotbiomes (version 0.0.0.9901) in R (Fig. 1 c, d, Supplementary Material Table 345 

S4-5 (Stefan & Levin, 2018)). We ranked biomes based on their offset and compared this with 346 

the mean annual precipitation in each biome (Fig. 1b). This was done separately for each air 347 

temperature data source (ERA5L, TerraClimate and CHELSA), soil depth (0–5 cm, 5–15 cm) 348 

and timeframe (ERA5L 1979–2020, 2000–2020), as well as for the offset between monthly 349 

minimum and maximum soil temperature and the minimum and maximum gridded air 350 

temperature from TerraClimate. Our analyses showed that patterns were robust to variation 351 

in spatial resolution, sensor depth, climate interpolation method and temporal scale 352 

(Supplementary Material Figs. S2–5). 353 

Acquisition of global predictor variables 354 
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To create spatial predictive models of the offset between in-situ soil temperature and gridded 355 

air temperature, we first sampled a stack of global map layers at each of the logger locations 356 

within the dataset. These layers included long-term macroclimatic conditions, soil texture and 357 

physiochemical information, vegetation, radiation, and topographic indices as well as 358 

anthropogenic variables. Details of all layers, including descriptions, units, and source 359 

information, are described in Supplementary Data S1. In short, information about soil texture, 360 

structure and physiochemical properties was obtained from SoilGrids (version 1 (Hengl et al., 361 

2017)), limited to the upper soil layer (top 5 cm). Long-term averages of macroclimatic 362 

conditions (i.e., monthly mean, maximum and minimum temperature, monthly precipitation) 363 

was obtained from CHELSA (version 2017 (Karger et al., 2017a)), which includes climate data 364 

averaged across 1979–2013, and from WorldClim (version 2 (Fick & Hijmans, 2017)). Monthly 365 

snow probability is based on a pixel-wise frequency of snow occurrence (snow cover >10%) 366 

in MODIS daily snow cover products (MOD10A1 & MYD10A1 (Hall et al., 2002)) in 2001–2019. 367 

Spectral vegetation indices (i.e., averaged MODIS NDVI product MYD13Q1) and surface 368 

reflectance data (i.e., MODIS MCD43A4) were obtained from the Google Earth Engine Data 369 

Catalog (developers.google.com/earth-engine/datasets) and averaged from 2015 to 2019. 370 

Landcover and topographic information were obtained from EarthEnv (Amatulli et al., 2018). 371 

Aridity index (AI) and potential evapotranspiration (PET) layers were obtained from CGIAR 372 

(Zomer et al., 2008). Anthropogenic information (population density) was obtained from the 373 

EU JRC (ghsl.jrc.ec.europa.eu/ghs_pop2019.php). Aboveground biomass data were obtained 374 

from GlobBiomass (Santoro, 2018). Resolved RESOLVE ecoregion classifications were used to 375 

categorize sampling locations into biomes (Dinerstein et al., 2017). With this set of predictor 376 

variables, we included information on all different categories of drivers of soil temperature. 377 

An important variable that had to be excluded was snow depth, due to the lack of a relevant 378 

1-km² resolution global product. The final set of predictor variables included 24 ‘static’ 379 

variables and eight monthly layers (i.e., maximum, mean, and minimum temperature, 380 

precipitation, cloud cover, solar radiation, water vapour pressure, and snow cover). As cloud 381 

cover estimates were not available for high-latitude regions in the Northern Hemisphere in 382 

January and December due to a lack of daylight, we excluded cloud cover as an explanatory 383 

variable for these months (i.e., 'EarthEnvCloudCover_MODCF_monthlymean_XX’, with XX 384 

representing the months in two-digit form Supplementary Data S1). 385 

https://developers.google.com/earth-engine/datasets/catalog/modis
https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php
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All variable map layers were reprojected and resampled to a unified pixel grid in EPSG:4326 386 

(WGS84) at 30 arc-sec resolution (≈ 1 × 1 km at the equator). Areas covered by permanent 387 

snow or ice (e.g., the Greenland ice cap or glaciated mountain ranges, identified using 388 

SoilGrids) were excluded from the analyses. Antarctic sampling points were excluded from 389 

the modelling data set owing to the limited coverage of several covariate layers in the region. 390 

Integrative modelling 391 

To generate global maps of monthly temperature offsets (Fig. 2), we trained Rrandom Fforest 392 

(RF) models for each month, using the temperature offsets as the response variables and the 393 

global variable layers as predictors (Hengl et al., 2018). We used a geospatial RF modelling 394 

pipeline as developed by van den Hoogen et al. (2021). RF models are a type of machine 395 

learning model that combines many classification trees using randomized subsets of the data, 396 

with each tree iteratively dividing data into groups of most closely related data points (Hengl 397 

et al., 2018). They are particularly valuable here due to their capacity to uncover nonlinear 398 

relationships (e.g., due to increased decoupling of soil from air temperature in colder and thus 399 

snow-covered areas) and their ability to capture complex interactions among covariates (e.g., 400 

between snow and vegetation cover) (Olden et al., 2008). Furthermore, they may currently 401 

have advantages over mechanistic microclimate models for global modelling (Maclean & 402 

Klinges, 2021), as the latter require highly detailed physical input parameters for calibration, 403 

and currently too much  computational time to cover the globe at a 1 km² resolution and over 404 

multiple decades. Nevertheless, we urge future endeavours to compare and potentially 405 

improve our results with estimates based on such mechanistic models. 406 

We performed a grid search procedure to tune the RF models across a range of 122 52 407 

hyperparameter settings (variables per split: 2–142, minimum leaf population: 2–512, in all 408 

combinations adding up to 12152 models, each time with 250 trees). During this procedure, 409 

we assessed each of the 52 model’s performance using k-fold cross-validation (k = 10; folds 410 

assigned randomly, stratified per biome), for each of the 122 models. The models’ mean and 411 

standard deviation values were the basis for choosing the best of all evaluated models. This 412 

procedure was repeated for each month separately for the two soil depth layers (0–5 cm, 5–413 

15 cm), for offsets in mean, minimum and maximum temperature. The importance of 414 

explanatory variables was assessed using the variable importance and ordered by mean 415 
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variable importance across all models. This variable importance adds up the decreases in the 416 

impurity criterion (i.e., the measure on which the local optimal condition is chosen) at each 417 

split of a node for each individual variable over all trees in the forest (van den Hoogen et al., 418 

2021). 419 

Soil bioclimatic variables 420 

The resulting global maps of the annual and monthly offsets between mean, minimum and 421 

maximum soil and air temperature were used to calculate relevant bioclimatic variables 422 

following the definition used in CHELSA, BIOCLIM, ANUCLIM and WorldClim (Xu & Hutchinson, 423 

2011, Booth et al., 2014, Fick & Hijmans, 2017, Karger et al., 2017a) (Fig. 3–4). We calculated 424 

11 soil bioclimatic layers (SBIO, Table 1). First, we calculated monthly soil mean, maximum 425 

and minimum temperature by adding monthly temperature offsets to the respective CHELSA 426 

monthly mean, maximum and minimum temperature (Karger et al., 2017a). Next, we used 427 

these soil temperature layers to compute the SBIO layers (O’Donnell & Ignizio, 2012). Wettest 428 

and driest quarters were identified for each pixel based on CHELSA’s monthly values. 429 

Model uncertainty 430 

To assess the uncertainty in the monthly models, we performed a stratified bootstrapping 431 

procedure, with total size of the bootstrap samples equal to the original training data (van 432 

den Hoogen et al., 2021). Using biomes as a stratification category, we ensured the samples 433 

included in each of the bootstrap training collections were proportionally representative of 434 

each biome’s total area. Next, we trained RF models (with the same hyperparameters as 435 

selected during the grid-search procedure) using each of 100 bootstrap iterations. Each of 436 

these trained RF models was then used to classify the covariate layer stack, to generate per-437 

pixel 95% confidence intervals and standard deviation for the modelled monthly offsets (Fig. 438 

5a, Supplementary Material Fig. S6a). The mean R² value of the RF models for the monthly 439 

mean temperature offset was 0.70 (from 0.64 to 0.78) at 0–5 cm and 0.76 (0.63–0.85) at 5 to 440 

15 cm across all twelve monthly models. Mean RMSE of the models was 2.20°C (1.94–2.51°C) 441 

at 0–5 cm, and 2.06°C (1.67–2.35°C) at 5–15 cm. 442 

Importantly, model uncertainty as reported in Fig. 5a and Supplementary Material Fig. S6a 443 

comes on top of existing uncertainties in (1) in-situ soil temperature measurements and (2) 444 
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the ERA5L macroclimate models as used in our models. However, both of those are usually 445 

under 1°C (Copernicus Climate Change Service (C3S), 2019, Wild et al., 2019). 446 

To assess the spatial extent of extrapolation, which is necessary due to the incomplete global 447 

coverage of the training data, we first performed a Principal Component Analysis (PCA) on the 448 

full environmental space covered by the monthly training data, including all explanatory 449 

variables as used in the models, and then transformed the composite image into the same PC 450 

spaces as of the sampled data (Van Den Hoogen et al., 2019). Next, we created convex hulls 451 

for each of the bivariate combinations from the first 10 to 12 PCs, covering at least 90% of the 452 

sample space variation, with the number of PCs depending on the month. Using the 453 

coordinates of these convex hulls, we assessed whether each pixel fell within or outside each 454 

of these convex hulls, and calculated the percentage of bivariate combinations for which this 455 

was the case (Fig. 5b, Supplementary Material Fig. S6b). This process was repeated for each 456 

month, and for each of the two soil depths separately.  457 

These uncertainty maps are important because one should be careful with extrapolation 458 

beyond the range of conditions covered by the environmental variables included in the 459 

original calibration dataset, especially in the case of non-linear patterns such as modelled 460 

here. The maps are provided as spatial masks to remove or reduce the weighting of the pixels 461 

for which predictions are beyond the range of values covered by the models during 462 

calibration. To assess this further, we used a spatial leave-one-out cross-validation analysis to 463 

test for spatial autocorrelation in the data set (Supplementary Material Fig. S7) (van den 464 

Hoogen et al., 2021). This approach trains a model for each sample in the data set on all 465 

remaining samples, excluding data points that fall within an increasingly large buffer around 466 

that focal sample. Results show lowest confidence for May to September at 5–15 cm, likely 467 

driven by uneven global coverage of data points. 468 

Finally, we compared the modelled mean annual temperature (SBIO1, topsoil layer) with a 469 

similar product based on monthly ERA5L topsoil (0–7 cm) temperature with a spatial 470 

resolution of 0.1 × 0.1 degrees (Copernicus Climate Change Service (C3S), 2019). The 471 

corresponding SBIO1 based on ERA5L was calculated using the means of the monthly 472 

averages for each month over the period 1981 to 2016, and averaging these 12 monthly 473 

values into one annual product. We then visualized spatial differences between SBIO1 and 474 
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ERA5, as well as differences across the macroclimatic gradient, to identify mismatches 475 

between both datasets. 476 

All geospatial modelling was performed using the Python API  in Google Earth Engine (Gorelick 477 

et al., 2017). The R statistical software, version 4.0.2 (R Core Team, 2020), was used for data 478 

visualisations. All maps were plotted using the Mollweide projection (which preserves relative 479 

areas) to avoid large distortions at high latitudes. 480 

Sources of uncertainty 481 

There is a temporal mismatch between the period covered by CHELSA (1979-2013) and our 482 

in-situ measurements (2000-2020), which prevented us from directly using CHELSA climate to 483 

calculate the temperature offsets used in our models. This temporal mismatch might affect 484 

the offsets calculated here because the relationship between temperature offset and 485 

macroclimate will change through time as the climate warms. Similarly, inter-annual 486 

differences in offsets due to specific weather conditions cannot be implemented in the used 487 

approach. However, we are confident that at the relatively coarse spatial (1 km²) and 488 

temporal (monthly averages) resolution we are working at, our results are sufficiently robust 489 

to withstand this these temporal issuesmismatch, given that we found high consistency in 490 

offset patterns between the different timeframes and air temperature datasets examined 491 

(Supplementary Material Figs. S2–5). Nevertheless, we strongly urge future research to 492 

disentangle these potential temporal dynamics, especially given the increasing rate at which 493 

the climate is warming (Xu et al., 2018, GISTEMP Team, 2021).  494 

Similarly, a potential bias could result from the mismatch in method and resolution between 495 

ERA5L – used to calculate the temperature offsets – and CHELSA, which was used to create 496 

the bioclimatic variables. However, even though temperature offsets have slightly larger 497 

variation when based on the coarser-grained ERA5L-data than on the finer-grained CHELSA-498 

data, Supplementary Material Figs. S2–5 show that relationships between soil and air 499 

temperature are largely consistent in all biomes and across the whole global temperature 500 

gradient. Therefore, the larger offsets created additional random scatter, yet no consistent 501 

bias.  502 
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Finally, we acknowledge that the 1-km² resolution gridded products might not be 503 

representative of conditions at the in-situ measurement locations within each pixel. This issue 504 

could be particularly significant for different vegetation types (here proxied at the pixel level 505 

using total aboveground biomass (unit: tons/ha i.e., Mg/ha, for the year 2010; Santoro, 2018) 506 

and NDVI (MODIS NDVI product MYD13Q1, averaged over 2015–2019)). To verify this, we 507 

compared a pixel’s estimated aboveground biomass with the dominant in-situ habitat (forest 508 

versus open) surrounding the sensors in that  pixel (Supplementary Table S6). Importantly, all 509 

sensors installed in forests fell indeed in pixels with more than 1 ton/ha aboveground 510 

biomass. Similarly, 75% or more of sensors in open terrain fell in pixels with biomass estimates 511 

of less than 1 ton/ha. Only in the temperate woodland biome was the match between in-situ 512 

habitat estimates and pixel-level aboveground biomass lower, with less than 95% of sensors 513 

in forested locations correctly placed in pixels with more than 1 ton/ha biomass, and less than 514 

50% of open terrain sensors in pixels with less than 1 ton/ha biomass. While our predictions 515 

will thus not be accurate for locations within a pixel that largely deviate from average 516 

conditions (e.g., open terrain in pixels identified as largely forested, or vice versa), they should 517 

be largely representative for those pixel-level averages. 518 

Results 519 

Biome-wide patterns in the temperature offset 520 

We found positive and negative temperature offsets of up to 10°C between in situ measured 521 

mean annual topsoil temperature and gridded air temperature (mean = 3.0 ± 2.1°C standard 522 

deviation, Fig. 1, 0–5 cm depth; 5–15 cm is available in Supplementary Material Figs. S2, 5). 523 

The magnitude and direction of these temperature offsets varied considerably within and 524 

across biomes. Mean annual topsoil temperature was on average 3.6 ± 2.3°C higher than 525 

gridded air temperature in cold and/or dry biomes, namely tundra, boreal forests, temperate 526 

grasslands, and subtropical deserts. In contrast, offsets were slightly negative in warm and 527 

wet biomes (tropical savannas, temperate forests, and tropical rainforests) where soils were, 528 

on average, 0.7 ± 2.7°C cooler than gridded air temperature (Fig. 1b, Supplementary Material 529 

Figs. S2 and 5; note, however, the lower spatial coverage in these biomes in Fig. 1a, c, d, 530 

Supplementary Material Table S4). Temperature offsets in annual minimum and maximum 531 

temperature amounted to c. 10°C maximum. While annual soil temperature minima were on 532 
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average higher than corresponding gridded air temperature minima in all biomes, 533 

temperature offsets of annual maxima followed largely the same biome-related trends as 534 

seen for the annual means, albeit with the higher variability expected for temperature 535 

extremes (Supplementary Material Figs. S2g, h, S4g, h). Using different air temperature data 536 

sources did not alter the annual temperature offset and biome-related patterns (see Methods 537 

and Supplementary Material Figs. S2–5).  538 

Soils in the temperate seasonal forest biome were on average 0.8°C (± 2.2°C) cooler than air 539 

temperature within 1-km² grid cells of forested habitats, and 1.0°C (± 4.0°C) warmer than the 540 

air within 1-km² grid cells of non-forested habitats, resulting in a biome-wide average of 0.5°C 541 

(Supplementary Material Table S7). Similar patterns were observed in other biomes. 542 

Temporal and spatial variation in temperature offsets 543 

Our Rrandom Fforest modelling approach highlighted a strong seasonality in monthly 544 

temperature offsets, especially towards higher latitudes (Fig. 2). High-latitude soils were 545 

found to be several degrees warmer than the air (monthly offsets of up to 25°C) during their 546 

respective winter months, and cooler (up to 10°C) in summer months, both at 0–5 cm (Fig. 2) 547 

and 5–15 cm (Supplementary Material Fig. S8) soil depths. In the tropics and subtropics, soils 548 

in dry biomes (e.g., in the Sahara Desert or southern Africa) were predicted to be warmer 549 

than air throughout most of the year, whilst soils in mesic biomes (e.g., tropical biomes in 550 

South America, central Africa and Southeast Asia) were modelled to be consistently cooler, at 551 

both soil depths. These global gridded products were then used to create temperature-based 552 

global bioclimatic variables for soils (SBIO, Fig. 3, Supplementary Material Fig. S9). 553 

Global variation in soil temperature 554 

We observed 17% less spatial variation in mean annual soil temperature globally (expressed 555 

by the standard deviation) than in air temperature, largely driven by the positive offset 556 

between soil and air temperature in cold environments (Fig. 4). Importantly, our machine 557 

learning models slightly (up to 1°C, or around 10% of variation) underestimated temperature 558 

offsets at both extremes of the temperature gradient at the 1-km² resolution (Supplementary 559 

Material Fig. S10) and likely even more in comparison with finer-resolution products. 560 

Estimates of the reduction in variation across space are thus conservative, especially in the 561 

coldest biomes. The reduction in spatial temperature variation was observed in all cold and 562 
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cool biomes, with tundra and boreal forests having both a significant positive mean 563 

temperature offset and a reduction of 20% and 22% in variation, respectively (Fig. 4c). In the 564 

warmest biomes (e.g., tropical savanna and subtropical desert), however, we found an 565 

increase in variation of, on average, 10%.  566 

Our bootstrap approach to validate modelled monthly offsets indicated high consistency 567 

among the outcomes of 100 bootstrapped models (Fig. 5, Supplementary Material Fig. S6a), 568 

with standard deviations in most months and across most parts of the globe around or below 569 

±1°C. One exception to this was the temperature offset at high latitudes of the northern 570 

hemisphere during winter months (standard deviation up to ±5°C in the 0–5 cm layer). 571 

Predictive performance was comparable across biomes, although with large variation in data 572 

availability (Supplementary Material Fig. S11). 573 

The importance of explanatory variables in the RF models was largely consistent across 574 

months. Macroclimatic variables such as incoming solar radiation as well as long-term 575 

averages in air temperature and precipitation were by far the most influential explanatory 576 

variables in the spatial models of the monthly temperature offset (Supplementary Material 577 

Figs. S12, 13).  578 

We highlight that the current availability of in-situ soil temperature measurements is 579 

significantly lower in the tropics (Supplementary Material Table S5), where our model had to 580 

extrapolate temperatures beyond the range used to calibrate the model (Fig. 5b, 581 

Supplementary Material Fig. S6b). 582 

Finally, our comparison with a mean annual soil temperature product derived from the 583 

coarse-resolution ERA5L topsoil temperature showed that spatial variability, e.g., driven by 584 

topographic heterogeneity, is much better captured here than in the coarser resolution of the 585 

ERA5L-based product (Fig. 6c-e). Nevertheless, our predictions at the coarse scale showed to 586 

be condensed within a 5°C range of values from the ERA5L-predictions, for more than 95% of 587 

pixels globally. Noteworthy, our predictions resulted in consistently cooler soil temperature 588 

predictions than topsoil conditions provided by ERA5L across large areas, such as the boreal 589 

and tropical forest biomes (Fig. 6a, b). Additionally, our models predicted lower values for 590 

SBIO1 than ERA5L in all regions with mean annual soil temperature below 0°C, except for a 591 

few locations around Greenland and Svalbard (Fig. 6a, b). 592 
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Discussion 593 

Global patterns in soil temperature 594 

We observed large spatiotemporal heterogeneity in the global offset between soil and air 595 

temperature, often in the order of several degrees annually and up to more than 20°C during 596 

winter months at high latitudes. These values are in line with empirical data from regional 597 

studies (Zhang et al., 2018, Lembrechts et al., 2019, Obu et al., 2019). Both annual and 598 

monthly offsets showed clear discrepancies between cold and dry versus warm and wet 599 

biomes. The modelled monthly offsets covaried strongly negatively with both long-term 600 

averages in free-air temperature and solar radiation, linking to the well-known decoupling of 601 

soil from air temperature due to snow (for cold extremes in cold and cool biomes) (Grundstein 602 

et al., 2005). However, the secondary importance of variables related to precipitation and soil 603 

structure hints to the additional distinction between wet and dry biomes at the warm end of 604 

the temperature gradient. There, where, buffering due to shading, evapotranspiration and 605 

the specific heat of water (mostly against warm extremes in warm and wet biomes) results in 606 

cooler soil temperature (Geiger, 1950, Grundstein et al., 2005, Hennon et al., 2010, Wang & 607 

Dickinson, 2012, De Frenne et al., 2013, Grünberg et al., 2020), while such buffering is not as 608 

strong in warm and dry biomes due to the lower water availability (Wang & Dickinson, 2012, 609 

Greiser et al., 2018, Zhou et al., 2021). As such, these results highlight strong macroclimatic 610 

impacts on the soil microclimate across the globe (see also De Frenne et al., 2019), yet with 611 

soil temperature importantly non-linearly related to air temperature at the global scale. This 612 

confirms that the latter is not sufficient as a proxy for temperature conditions near or in the 613 

soil. With our soil-specific global bioclimatic products, we have provided the means to correct 614 

for these important region-specific, non-linear differences between soil and air temperature 615 

at an unprecedented spatial resolution.  616 

Drivers of the temperature offset 617 

Our empirical modelling approach enabled us to accurately map global patterns in soil 618 

temperature. In doing so we did not aim to disentangle the mechanisms governing the 619 

temperature offset: such an endeavour would require modelling the biophysics of energy 620 

exchange at the soil surface across biomes (Kearney et al., 2019, Maclean et al., 2019, 621 

Maclean & Klinges, 2021). Importantly, many of the predictor variables used in our study (e.g., 622 
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long-term averages in macroclimatic conditions or solar radiation) are unlikely to represent 623 

direct causal relationships underlying the temperature offset, but may rather indirectly relate 624 

to many ensuing factors that affect the functioning of ecosystems at fine spatial scales which, 625 

in turn, feedback on local temperature offsets, such as energy and water balances, snow 626 

cover, wind intensity and vegetation cover (De Frenne et al., 2021). For example, while 627 

increased solar radiation itself would theoretically result in soils warming more than the air, 628 

high solar radiation at the global scale often coincides with high vegetation cover blocking 629 

radiation input to the soil, thus correlating with relatively cooler soils (De Frenne et al., 2021). 630 

Our results highlight, however, that the complex relationship between microclimatic soil 631 

temperature and macroclimatic air temperature is predictable across large spatial extents 632 

thanks to broad scale patterns, even if this is governed by a multitude of local-scale factors 633 

involving fine spatiotemporal resolutions. Nevertheless, the predictive quality of our models 634 

was lower in high latitude regions, where high variation in the in situ measured offsets – likely 635 

driven by the interactions between snow, local topography and vegetation – reduced 636 

predictive power of the models at the 1-km² resolution (Greiser et al., 2018, Way & 637 

Lewkowicz, 2018, Grünberg et al., 2020, Myers-Smith et al., 2020, Niittynen et al., 2020). 638 

Implications for microclimate warming 639 

Our results highlight clear biome-specific differences in mean annual temperature between 640 

air and soil temperatures, as well as a significant reduction in the spatial variation in 641 

temperature in the soil or near the soil surface, especially in cold and cool biomes (Fig. 4). 642 

These patterns remain even despite the presence of often strongly opposing monthly offset 643 

trends (Fig. 2). The observed correlation between long-term averages in macroclimatic 644 

conditions and the annual temperature offset illustrates that soil temperature is unlikely to 645 

warm at the same rate as air temperature when macroclimate warms. Indeed, one degree of 646 

air temperature warming could result in either a bigger or smaller soil temperature change, 647 

depending on where along the macroclimatic gradient this is happening. These effects might 648 

be seen in cold biome soils most strongly, as they not only experience the largest (positive) 649 

temperature offsets and reductions in climate range compared to air temperature (Fig. 4b, c), 650 

but they are also expected to experience the strongest magnitude of macroclimate warming 651 

(Cooper, 2014, Overland et al., 2014, Chen et al., 2021, GISTEMP Team, 2021). As a result, 652 



 

22 

mean annual temperatures in cold climate soils can be expected to warm slower than the 653 

corresponding macroclimate as offsets shrink with increasing macroclimate warming.  654 

Contrastingly, predicted climate warming in hot and dry biomes could be amplified in the 655 

topsoil, where we show soils to become increasingly warmer than the air at higher 656 

temperatures. Similarly, changes in precipitation regimes – and thus soil moisture – can 657 

significantly alter the relationship between air and soil temperature, with critical implications 658 

for soil moisture-atmosphere feedbacks, especially in hot biomes (Zhou et al., 2021). Indeed, 659 

as precipitation decreases, offsets could turn more positive and soil temperatures might 660 

warm even faster than the observed macroclimate warming. Therefore, future research 661 

should not only use soil temperature data as provided here to study belowground ecological 662 

processes (De Frenne et al., 2013, Lembrechts et al., 2020), it should also urgently investigate 663 

future scenarios of soil climate warming in light of changing air temperature and precipitation, 664 

at ecologically relevant spatial and temporal resolutions to incorporate the non-linear 665 

relationships exposed so far (Lembrechts & Nijs, 2020). 666 

Within-pixel heterogeneity 667 

We chose to use a 1-km² resolution spatial grid to model mismatches between soil and air 668 

temperature, aggregating all values from different microhabitats within the same 1-km² grid 669 

cell (e.g., sensors in forested versus open patches) as well as all daily and diurnal variation 670 

within a month. Additionally, we used coarse-grained free-air temperature rather than in-situ 671 

measured air temperatures.  We are aware that higher spatiotemporal resolutions would 672 

likely reveal the importance of locally heterogeneous variables. Finer-scale factors that affect 673 

the local radiation balance and wind (e.g., topography, snow and vegetation cover, 674 

urbanization) at the landscape to local scales and those that directly affect neighbouring 675 

locations (e.g. topographic shading and cold-air drainage, Whiteman, 1982, Ashcroft & Gollan, 676 

2012, Lembrechts et al., 2020) would probably have emerged as more important drivers at 677 

regional scales and with higher spatiotemporal resolutions than those used here 678 

(Supplementary Material Fig. S12). The latter is illustrated by the multi-degree Celsius 679 

difference in mean annual temperature between forested and non-forested locations within 680 

the same biome (Supplementary Material Table S7), as well as the lower accuracy obtained 681 

during winter months at high latitudes, where and when fine-scale spatial heterogeneity in 682 

snow cover and depth probably lowers models’ predictability at the 1-km² resolution. In-situ 683 
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measurements were largely from areas with a representative vegetation type, supporting the 684 

reliability of our predictions for the dominant habitat type within a pixel. However, improved 685 

accuracy at high latitudes will depend on the future development of high-resolution snow 686 

depth and/or snow water equivalent estimates (Luojus et al., 2010).  687 

The SoilTemp database (Lembrechts et al., 2020) will facilitate the necessary steps towards 688 

mapping soil temperature at higher spatiotemporal resolutions in the future, with its 689 

georeferenced time series of in situ measured soil and near-surface temperature and 690 

associated metadata. Nevertheless, when compared to existing soil temperature products 691 

such as those from ERA5L (Copernicus Climate Change Service (C3S), 2019), we emphasize 692 

that the increased resolution of our data products already provides a major technical 693 

advance, even though substantial finer within-pixel variation is still lost through 694 

spatiotemporal aggregation.  695 

Conclusions 696 

The spatial (biome-specific) and temporal (seasonally variable) offsets between air and soil 697 

temperature quantified here likely bias predictions of current and future climate impacts on 698 

species and ecosystems (Körner & Paulsen, 2004, Kearney et al., 2009, Cooper, 2014, Opedal 699 

et al., 2015, Graae et al., 2018, Zellweger et al., 2020, Bergstrom et al., 2021). Temperature 700 

in the topsoil rather than in the air ultimately defines the distribution and performance of 701 

most terrestrial species, as well as many ecosystem functions at or below the soil surface 702 

(Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016, Hursh et al., 2017, Gottschall et al., 2019). 703 

As many ecosystem functions are highly correlated with temperature (yet often non-lineary, 704 

Johnston et al., 2021), soil temperature rather than air temperature should in those instances 705 

be the preferred predictor for estimating their rates and temperature thresholds (Rosenberg 706 

et al., 1990, Coûteaux et al., 1995, Schimel et al., 1996). Correcting for the non-linear 707 

relationship between air and soil temperature identified here is thus vital for all fields 708 

investigating abiotic and biotic processes relating to terrestrial environments (White et al., 709 

2020). Indeed, soil temperature, macroclimate and land-use change will interact to define the 710 

future climate as experienced by organisms, and high-resolution soil temperature data is 711 

needed to tackle current and future challenges.  712 
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By making our global soil temperature maps and the underlying monthly offset data openly 713 

available, we offer gridded soil temperature data for climate research, ecology, agronomy 714 

and other life and environmental sciences. Future research has the important task of further 715 

improving the spatial and temporal resolution of global microclimate products as 716 

microclimate operates at much higher temporal resolutions, with temporal variation over 717 

hours, days, seasons and years (Potter et al., 2013, Bütikofer et al., 2020), as well as to confirm 718 

accuracy of predictions in undersampled regions in the underlying maps (Lembrechts et al., 719 

2021). However, we are convinced that the maps presented here bring us one step closer to 720 

having accessible climate data exactly where it matters most for many terrestrial organisms 721 

(Kearney & Porter, 2009, Ashcroft et al., 2014, Pincebourde et al., 2016, Niittynen & Luoto, 722 

2018, Lembrechts & Lenoir, 2019). We nevertheless highlight that there is still a long way to 723 

go towards global soil microclimate data with an optimal spatiotemporal resolution. We 724 

therefore urge all scientists to submit their microclimate time series to the SoilTemp database 725 

to fill data gaps and help to increase the spatial resolution until it matches with the scale at 726 

which ecological processes take place (Bütikofer et al., 2020, Lembrechts et al., 2020). 727 

 728 

Data availability 729 

All monthly data to train the models and reproduce the figures, sampled covariate data, and 730 

models are available at  https://doi.org/10.5281/zenodo.4558663. Soil bioclim layers SBIO1-731 

11 are also directly available in Google Earth Engine under 732 

projects/crowtherlab/soil_bioclim/soil_bioclim_0_5cm and 733 

projects/crowtherlab/soil_bioclim/soil_bioclim_5_15cm. 734 

 735 

Code availability 736 

All source code is available at https://doi.org/10.5281/zenodo.4558663. 737 
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Tables 1455 

Table 1: Overview of soil bioclimatic variables as calculated in this study. 1456 

 1457 
 1458 

  1459 

Bioclimatic variable Meaning 

SBIO1 annual mean temperature 

SBIO2 mean diurnal range (mean of monthly (max temp - min temp)) 

SBIO3 isothermality (SBIO2/SBIO7) (×100) 

SBIO4 temperature seasonality (standard deviation ×100) 

SBIO5 max temperature of warmest month 

SBIO6 min temperature of coldest month 

SBIO7 temperature annual range (SBIO5-SBIO6) 

SBIO8 mean temperature of wettest quarter 

SBIO9 mean temperature of driest quarter 

SBIO10 mean temperature of warmest quarter 

SBIO11 mean temperature of coldest quarter 
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Figure legends 1460 

 1461 

 1462 

Figure 1: Temperature offsets between soil and air temperature differed significantly among 1463 
biomes. (a) Distribution of in-situ measurement locations across the globe, coloured by the mean 1464 
annual temperature offset (in °C) between in situ measured soil temperature (topsoil, 0–5 cm depth) 1465 
and gridded air temperature (ERA5L). Offsets were averaged per hexagon, each with a size of 1466 
approximately 70,000 km².  Mollweide projection. (b) Mean annual temperature offsets per Whittaker 1467 
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biome (adapted from Whittaker 1970, based on geographic location of sensors averaged at 1 km²; 0–1468 
5 cm depth), ordered by mean temperature offset and coloured by mean annual precipitation. (c–d) 1469 
Distribution of sensors in 2D climate space for the topsoil (c, 0–5 cm depth, N = 4530) and the second 1470 
layer (d, 5–15 cm depth, N = 3989). Colours of hexagons indicate the number of sensors at each climatic 1471 
location, with a 40 × 40 km resolution. Grey dots in the background represent the global variation in 1472 
climatic space (obtained by sampling 1 000 000 random locations from the CHELSA world maps). 1473 
Overlay with grey lines depicts a delineation of Whittaker biomes. 1474 

 1475 

 1476 
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Figure 2: Global modelled temperature offsets between soil and air temperature show strong 1477 

spatiotemporal variation across months. Modelled annual (a) and monthly (b–m) temperature 1478 

offset (in °C) between in situ measured soil temperature (topsoil, 0–5 cm) and gridded air 1479 

temperature. Positive (red) values indicate soils that are warmer than the air. Dark grey represents 1480 

regions outside the modelling area. 1481 

 1482 
Figure 3: Soil bioclimatic variables. Global maps of bioclimatic variables for topsoil (0–5 cm depth) 1483 
climate, calculated using the maps of monthly soil climate (see Fig. 2), and the bioclimatic variables for 1484 
air temperature from CHELSA.  1485 

 1486 

 1487 
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 1488 

Figure 4: Mean annual soil temperature shows significantly lower spatial variability than air 1489 
temperature. (a) Global map of mean annual topsoil temperature (SBIO1, 0–5 cm depth, in °C), created 1490 
by adding the monthly offset between soil and air temperature for the period 2000–2020 (Fig. 2) to 1491 
the monthly air temperature from CHELSA. A black mask is used to exclude regions where our models 1492 
are extrapolating (i.e., interpolation values in Fig. 5 are < 0.9, 18% of pixels). Dark grey represents 1493 
regions outside the modelling area. (b–c) Density plots of mean annual soil temperature across the 1494 
globe (b) and for each Whittaker biome separately (c) for SBIO1 (dark grey, soil temperature), 1495 
compared with BIO1 from CHELSA (light grey, air temperature), created by extracting 1 000 000 1496 
random points from the 1-km² gridded bioclimatic products. The numbers in (c) represent the standard 1497 
deviations of air temperature (light grey) and soil temperature (dark grey). Biomes are ordered 1498 
according to the median annual soil temperature values from the highest temperature (subtropical 1499 
desert) to the lowest (tundra). 1500 
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 1502 

Figure 5: Models of the temperature offset between soil and air temperature have low standard 1503 
deviations and good global coverage. Analyses for the temperature offset between in situ measured 1504 
topsoil (0–5 cm depth) temperature and gridded air temperature. (a) Standard deviation (in °C) over 1505 
the predictions from a cross-validation analysis that iteratively varied the set of covariates 1506 
(explanatory data layers) and model hyperparameters across 100 models and evaluated model 1507 
strength using 10-fold cross-validation, for January (left) and July (right), as examples of the two most 1508 
contrasting months. (b) The fraction of axes in the multidimensional environmental space for which 1509 
the pixel lies inside the range of data covered by the sensors in the database. Low values indicate 1510 
increased extrapolation.  1511 
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 1513 

Figure 6: The mean annual soil temperature (SBIO1, 1 x 1 km resolution) modelled here is 1514 
consistently cooler than ERA5L (9 x 9 km) soil temperature in forested areas. (a) Spatial 1515 
representation of the difference between SBIO1 based on our model and based on ERA5L soil 1516 
temperature data. Negative values (blue colours) indicate areas where our model predicts cooler soil 1517 
temperature. Dark grey areas (Greenland and Antarctica) are excluded from our models. Asterisk in 1518 
Scandinavia indicates the highlighted area in panels d to f (see below). (b) Distribution of the difference 1519 
between SBIO1 and ERA5L along the macroclimatic gradient (represented by SBIO1 itself) based on a 1520 
random subsample of 50 000 points from the map in a). Red line from a Generalized Additive Model 1521 
(GAM) with k=4.  (c-e) High-resolution zoomed panels of an area of high elevational contrast in Norway 1522 
(from 66.0-66.4° N, 15.0-16.0° E) visualizing SBIO1 (c), ERA5L (d) and their difference (e), to highlight 1523 
the higher spatial resolution as obtained with SBIO1. 1524 
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