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ABSTRACT 

A community resilience model that takes into account the mutual interdependencies between the building 

portfolio, transportation network, and healthcare system both during and after a seismic event is presented. 

The model is modularized into independent simulators to facilitate modeling their interdependencies. The 

transportation network model accounts for the capacity reduction attributed to bridge damage and links 

blocked by debris from collapsed buildings. It also addresses the increased demand from ambulance trips 

ferrying injured people to healthcare facilities and trucks hauling away debris. The transportation network 

model is incorporated into a discrete event simulation environment that models the response of the 

healthcare system as well as the debris removal process in the aftermath of a seismic event. Measures are 

proposed to quantify and improve the seismic resilience of each individual system as well as the whole 

community considering the three systems’ mutual interdependencies. The capability of the proposed model 

to support hazard mitigation planning is demonstrated through a case study that highlights the effects of 

interdependencies between the three systems under consideration. Mitigation strategies to improve seismic 

resilience of a prototype community are proposed and assessed. 
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INTRODUCTION  

Severe earthquakes generate complex interactions between the building portfolio, transportation network 

and healthcare system of a community. The interdependencies between the three systems profoundly 

influence first response activities and extend into the long-term recovery effort. Building collapse produces 

debris piles that may block or reduce the capacity of adjacent roadways, thereby impairing the capacity of 

the transportation network. The transportation network’s capacity may be further compromised by seismic 

damage to the bridges within the network. The healthcare system, which itself may see damage to its 

buildings during a seismic event and hence has a reduced capacity, contributes traffic to the impaired 

transportation network in the form of ambulance trips. Post-earthquake casualties in the community affect 

the availability of the workforce (i.e., construction labor) in the community, which in turn affects the 

recovery of the building portfolio. The effort to haul away debris piles places additional demands on the 

transportation network, which at the same time, is called upon to also handle day-to-day traffic as the 

community strives to recover from the disruption. These complex interactions are shown in Figure 1. 

 

Previous studies have focused on the behavior of one of these infrastructure systems. For example, Burton 

et al. (2017), Gentile and Galasso (2020) and Fu et al. (2021) studied the response of the building portfolio. 

Kirsch et al. (2010), Mitrani-Reiser et al. (2012), and Hassan and Mahmoud (2020) focused on the response 

of the healthcare system, while Vishnu et al. (2018), Zhang et al. (2019) and Somy et al. (2021) analyzed 

the transportation network.  

 

Moving away from a focus on a single system, some studies have investigated the effect of the seismic 

debris field generated by damaged structures on the transportation network, e.g., Hirokawa and Osaragi 

(2016), Castro et al. (2019), and Feng et al. (2020). These studies used empirical approaches for modeling 

the debris field. A more rational approach for modeling the debris field can be found in Domaneschi et al. 

(2019) and Sediek et al. (2021a) who used a computational technique, the Applied Element Method (AEM), 

to model building collapse and the extent of the debris piles. However, Domaneschi et al. (2019) and Sediek 



et al. (2021a) did not explicitly consider the interdependency between the building system and 

transportation network.  

 

Buildings that collapse or are damaged during seismic events are no longer able to provide their intended 

service. Sediek et al. (2020) mapped the damage of the components of the buildings to their post-earthquake 

functionality. A reduced post-earthquake functionality of buildings affects the origin-destination (O-D) 

travel patterns since community residents who use those buildings as homes or for work will not travel to 

or from these locations. Shiraki et al. (2007) related the O-D reduction rates to the seismic intensity of the 

event. However, use of a constant reduction rate is not realistic because the level of building damage, and 

hence functionality loss, can greatly vary across the community.  

 

The effect of post-earthquake traffic (i.e., travel time) on the transportation network controls the number of 

ambulance trips that can be made. Fawcett and Oliveira (2000) proposed a regional simulation model for 

casualty treatment after earthquake disasters. In their model, they used the pre-earthquake travel times 

between all pairs of zones in the community to estimate the number of injuries that can be mobilized in 

each time interval. However, travel times can be impacted by the state of the transportation network. 

Ceferino et al. (2020) proposed a methodology to evaluate emergency response of the healthcare system 

based on a model that assesses the loss of hospital functionality and quantifies multi-severity injuries (i.e., 

injuries with different levels of severity) as a result of earthquake damage. However, their model did not 

consider the effect of the transportation network on the healthcare system.  

 

Unlike the Fawcett and Oliveira (2000) and Ceferino et al. (2020) studies, Cimellaro et al. (2013) used 

agent-based models to evaluate the functionality and resilience of healthcare facilities after seismic events 

taking into account the functionality of the roadway system. While the Cimellaro et al. (2013) study went 

farther than others by considering the condition of the roadway system on the healthcare system, it did not 

consider the opposite effect, i.e., the effect of the healthcare system on the transportation network. The trips 



made by ambulances in the first few days after the earthquake between the locations of the injured and the 

hospitals in the community affects the travel time and flow on the links of the transportation network. 

 

Based on the studies surveyed above, there are key limitations in the available models for assessing 

community resilience especially when dealing with mutual interdependencies between the infrastructure 

systems shown in Figure 1. Given these limitations and the dearth of research results, this paper proposes 

a new multidisciplinary simulation model that focuses on modeling the mutual interdependencies outlined 

in Figure 1 between the building portfolio, transportation network, and healthcare system in a community.  

 

The proposed model simulates the capacity of the transportation network as a function of the combined 

effect of bridge damage and the accumulation of debris resulting from the collapse of buildings. The 

transportation network model is then incorporated into a discrete event simulation environment that 

accounts for the response of the healthcare system as well as the debris removal process to model the 

aftermath of a seismic event. The capability of the proposed model to support hazard mitigation planning 

is demonstrated through a case study that highlights the mutual interdependencies between the three studied 

systems.  

 

SIMULATION MODEL OVERVIEW 

Figure 2 shows an overview of the proposed simulation model. The modular design implemented by Sediek 

et al. (2020) is used to connect the models (termed simulators) representing different aspects of the 

community. As shown in Figure 2, each of the simulated systems (i.e., building portfolio, transportation 

network, and healthcare system) is represented by a set of simulators. The ability to account for the 

interdependencies between the different systems is achieved through the connection between the individual 

simulators. The simulators are connected through two types of connections: sequential and interdependent 

as shown in Figure 2. Sequential connection implies that the latter simulator is dependent on the former 

one, whereas interdependent connection implies that both simulators are mutually dependent. 



 

The proposed simulation model runs in four stages, each with a different time scale. The model starts with 

the pre-earthquake stage where the community setup is loaded and broadcast to all the simulators in the 

simulation model through the city simulator. The pre-earthquake behavior of the transportation network is 

evaluated in the pre-earthquake traffic simulator. The second stage is during the earthquake, where the time 

step is taken in seconds After the earthquake, there is a transition stage where the bridge and building 

downtime simulators are executed in a single step to evaluate seismic losses. The final stage is the recovery 

stage, where the time step is taken in days in all the simulators except for the healthcare and post-

earthquake traffic simulators. For the healthcare simulator, the time step is taken in hours (i.e., 2 hours for 

each time step) to rigorously simulate the emergency response of the healthcare system in the community 

after the earthquake, as will be discussed later. For the post-earthquake traffic simulator, the time step is 

taken as 10 days after the first 30 days as discussed later. During the recovery stage, the recovery trajectory 

of the different systems in the community is evaluated with explicit modeling of the interdependencies 

between them.  

 

More details about the implementation of the city, ground motion, structural analysis, building damage, 

component damage, casualties, buildings downtime, building recovery, and available resources simulators 

can be found in Sediek et al. (2020). The implementation of the pre-earthquake traffic, debris, bridge 

damage, bridge downtime, bridge recovery, healthcare, debris removal, post-earthquake traffic, and 

network recovery simulators is discussed later. 

 

METHODOLOGY 

Pre-Earthquake Traffic Simulation 

As shown in Figure 2, the pre-earthquake traffic simulator receives information about the transportation 

network in the community under consideration from the city simulator. Transportation networks usually are 

comprised of two main components: roads and bridges. These networks are often represented 



mathematically using graph theory (Biggs et al. 1986). In graph theory, a network is represented by vertices 

(called nodes) connected together using edges (called links). In transportation networks, the nodes represent 

the intersection between the roads whereas the links are the roadways between these nodes. The level of 

detail included in the modeled transportation network (i.e., links represent only highways or every road in 

the region) depends on the available computational resources and the purpose of the simulation. Information 

about the transportation networks in the U.S. and around the world (i.e., node locations, links connecting 

nodes, capacity and maximum speed on roads, etc.) is publicly available in many open-source platforms 

(e.g., OpenStreetMap, OSM). 

 

The normal pre-earthquake traffic conditions of the transportation network (i.e., travel time, flow on links, 

and route choice of each vehicle) are evaluated in the pre-earthquake traffic simulator using a four-step 

model which has been developed and widely used since the 1950s (see Weiner 1997). The four steps are: 

trip generation, trip distribution, mode choice, and route assignment. Before applying the four-step model, 

the studied community is divided into smaller traffic analysis zones (TAZ). TAZs are geographic areas with 

relatively similar land use and activity. They represent the origins and destinations of travel activity within 

the studied community. Trip generation is performed to predict the trip productions and attractions between 

the different TAZs for different purposes (i.e., home-based, work-based, etc.). A cross-classification model 

is adopted in the present study because it is based on data from real cities (e.g., the travel demand model 

used by Memphis Urban Area Metropolitan Planning Organization [MPO]). 

 

Trip distribution is performed to distribute the predicted production and attractions between the different 

TAZs as origin-destination (O-D) pairs. A widely used gravity model (Isard 1956), based on Newton’s 

Theory of Gravity, is adopted to perform this step. Mode choice is performed to distribute the O-D pairs 

between the different modes of transportation available in the city (i.e., vehicles, bus, bike, etc.). A trip end 

model is adopted to perform this step in the current study based on data from real cities. The final step in 

the four-step model is route assignment which uses the O-D pairs developed by the mode choice step to 



assign the routes for each O-D pair based on the state of the transportation network (i.e., capacity and 

maximum speed of the links in the network). The most widely used method to perform this step is the static 

user equilibrium (UE) model proposed by Evans (1976) which is used herein. In this methodology, the 

transportation network is assumed to reach equilibrium when the cost of travel (i.e., travel time) on any 

route for any traveler in the O-D pair cannot be improved by choosing another route (Wardrop 1952).  

 

Debris Generation 

The debris simulator receives the damage state of each structural and nonstructural component in the 

building from the building and component damage simulators to characterize the seismic debris field in the 

community. As outlined in Sediek et al. (2021a), the seismic debris is characterized by two attributes: 

quantity and extent. The debris quantity is the amount of debris generated in tons, whereas the debris extent 

is the size of the footprint of the debris field around the damaged building. In the current study, the debris 

quantity is estimated using the methodology described in HAZUS (FEMA 2003).   

 

The extent of debris generated from the collapse of each building in the community is evaluated based on 

its type (i.e., RC, steel, ...etc.) using different approaches as summarized in Figure 3. For RC frame 

buildings, the approach developed by Sediek et al. (2021a) is adopted. In this approach, the seismic debris 

field is characterized using three types of data: (1) mode of collapse, (2) collapse direction, and (3) debris 

extent. The mode of collapse of the building is predicted using a deep neural network (DNN) based on the 

input ground motion and building height. Modes 1 and 2 are classified as aligned modes (aligned with one 

of the building’s axes), whereas modes 3 and 4 are classified as skewed modes as shown in Figure 3(a). 

The collapse direction is predicted using a uniformly distributed random number. As shown in Figure 3(a), 

the debris footprint is larger than the original footprint by the dimensions a, b, c, and d, where a is always 

assigned the largest dimension. These four dimensions are estimated probabilistically using the 3D 

lognormal distribution fit by Sediek et al. (2021a). The parameters of the fitted distributions are listed in 

Table 1 for different modes of collapse and building heights.  



 

For masonry buildings, the approach developed by Domaneschi et al. (2019) is adopted. In this approach, 

the area of the seismic debris field is assumed to be larger than the original building area by an amplification 

factor, ε, as shown in Figure 3(b). The amplification factor is evaluated as: 

𝜀 ൌ 1.228 ൅ 0.0787 ൬
𝐿
𝑊
൰ ൅ 0.0563ቆ

𝐴௙ℎ௕
ଶ

𝑉௕𝐿
ቇ (1) 

where L and W are the building length and width, respectively, Af is the footprint area of the building, hb is 

the building height, and Vb is the total masonry volume of the building.  

 

For other types of buildings in the community, the debris around the collapsed building is assumed to form 

a triangular prism with the long side adjacent to the collapsed building as shown in Figure 3(c) (Argyroudis 

et al. 2015). Per Argyroudis et al. (2015), the width of debris outside the building envelope (Wd) is evaluated 

as: 

𝑊ௗ ൌ ඨ𝑊ଶ ൅
2𝑘௩𝑊𝐻

tan 𝜃
െ𝑊 (2) 

where W is building width perpendicular to the road’s axis, kv is the proportion of the volume of debris with 

respect to the original volume, and θ is the angle of collapse. kv and θ are assumed to be statistically 

independent random variables with normal distribution, where: μkv = 0.5, σkv = 0.15, μθ = 45o, and σθ = 13.5o 

(Argyroudis et al. 2015). For all buildings, the percentage of roadway blockage adjacent to the collapsed 

buildings due to seismic debris is estimated by subtracting the building setback from the debris extent in 

the direction of the roadway. 

 

Bridge Damage and Recovery 

The bridge damage simulator receives the ground motion parameters from the ground motion simulator to 

evaluate the damage state of each bridge in the transportation network based on the fragility curves specified 

in HAZUS (FEMA 2003). Five damage states are differentiated in HAZUS: no damage, slight, moderate, 



extensive, and complete damage. Two types of links are attached to each bridge in the network: major and 

minor links. Major links are those links that are directly connected to and affected by damage to a bridge. 

Minor links are those links that are indirectly connected to and affected by damage to a bridge (i.e., the 

roadway under the bridge). For a major link, it is assumed that any damage to the bridge will cause complete 

closure of that link. For a minor link, only extensive and complete damage to the bridge are assumed to 

cause complete closure of that link based on the definition of extensive and complete damage states in 

HAZUS (FEMA 2003).  

 

The recovery process of the bridge is assumed to be discrete as per Padgett and DesRoches (2007) where 

the bridges are assumed to open when they reach either partial (e.g., 50%) or full (100%) functionality. 

Thus, three levels of bridge functionality are differentiated: closed (0%), partially open (50%), and open 

(100%). The partial functionality (i.e., 50%) of the bridge is interpreted as half capacity with a free flow 

speed of the major link attached to the bridge in the pre-earthquake condition. The repair time for these 

levels of functionality is taken as per Padgett and DesRoches (2007).  

 

Post-Earthquake Traffic Simulation 

The travel time and flow on each link in the transportation network are evaluated in the post-earthquake 

traffic simulator based on the updated conditions of the transportation network. The post-earthquake traffic 

simulator runs once every 10 time steps (i.e., 10 days) after the first 30 days during the recovery stage as 

discussed earlier due to the computational cost of the traffic analysis. It is assumed that the behavior of the 

transportation network is constant between these time steps after the first 30 days. During the first 30 days, 

the post-earthquake traffic simulator runs each time step to rigorously model the post-earthquake 

emergency response of the community. The 30-day threshold is chosen based on the emergency response 

of real communities against historical seismic events (e.g., Bruycker et al. 1983). 

 



The four-step model is adopted once again to perform the traffic analysis. The second and third steps in the 

model (i.e., trip distribution and modal split) are assumed to be the same as before the seismic event. 

However, the first and fourth steps are updated to consider the effect of the seismic event and the 

interdependencies discussed earlier. The trip productions and attractions between the TAZs are reduced 

based on the reduction in the functionality of each building in the TAZ. The reduction values are adopted 

from Sediek et al. (2020) based on the functionality state of each building (i.e., not functional, re-occupancy, 

basic functionality, and full functionality).  

 

A mutual interdependency that has not been previously studied in any significant depth but is considered 

in the current study is the interaction between the healthcare and the post-earthquake traffic simulators (see 

Figure 1 and Figure 2). The trips made by ambulances between the locations of injured people (i.e., 

produced) and hospitals in the community (i.e., attracted) and vice versa are added to the productions and 

attractions in the trip generation step. Another mutual interdependency exists between the debris removal 

and the post-earthquake traffic simulators (see Figure 2). The trips made by trucks to remove the generated 

debris from the locations of building collapse (i.e., produced) to the debris management sites and final 

disposal locations (i.e., attracted) and vice versa are also added to the productions and attractions in the trip 

generation step.  

 

Route assignment is performed using the static user equilibrium (UE) model discussed earlier. However, 

the capacity and free flow speed of each link in the network are updated based on the bridge functionality 

and extent of debris that encroaches onto surrounding roadways. The reduction of the capacity and free 

flow speed of a link in the transportation network is assumed to be the maximum of the reduction due to 

bridge damage and debris extent. The reduction due to debris extent on a link is assumed to be the maximum 

percentage of road blockage due to seismic debris generated from all the collapsed buildings adjacent to 

that link. The reduction due to bridge damage is assumed to be the maximum reduction in functionality of 

all the bridges attached to a link. Both reductions are updated each time step during the recovery stage as 



the debris is removed and bridges recover. The dynamic nature of the simulation model allows 

straightforward consideration of such complex interdependencies.  

 

Discrete-Event Simulation of Healthcare System 

Discrete-event simulation (DES) is the process of modeling the behavior of complex systems using an 

ordered sequence of well-defined events (Robinson 2004). It can be used to study what-if scenarios by 

changing the input parameters of the simulation and studying the effect of these changes on the modeled 

system. It has been widely used over the past decade to simulate the behavior of various engineering (e.g., 

Alvanchi et al. 2011), economic (e.g., Cigolini et al. 2014), and healthcare systems (e.g., Jun et al. 1999, 

Hamrock et al. 2003, and Hasan et al. 2020). In the present study, DES is used to model the behavior of the 

healthcare system during the post-earthquake stage. A fixed-increment time progression scheme is adopted 

where the time after the earthquake is divided into small equal intervals of two hours each and the state of 

the healthcare system is updated each time interval depending on the events occurring in this time interval.  

 

The healthcare simulator runs for the first 360 hours (i.e., 15 days) for a total of 180 time intervals. Figure 

4 shows a schematic diagram for the DES implemented in the healthcare simulator. As shown, the 

simulation is separated spatially into two locations (i.e., the injuries are assumed to be in one of two 

locations): traffic analysis zones (TAZs) or hospitals. First, the number of injuries and fatalities in each 

TAZ is evaluated during the earthquake stage in the casualties simulator. It is assumed that 60% of the 

injuries in TAZs are trapped inside buildings and need to be rescued during the recovery stage as per 

Facwett and Oleveria (2000). The rescue rate in each time interval is assumed to follow an exponential 

decay function (i.e., Ae-Bt) defined by parameters A and B that depend on the emergency response 

capabilities of the studied community, where t is the time after earthquake.  

 

The other 40% are transported to the hospitals in the community during the recovery stage based on the 

availability of ambulances and beds in the hospitals. The ambulances are distributed among the hospitals 



based on the availability of beds in each hospital which is evaluated in the physical recovery simulator. The 

ambulances are distributed among TAZs based on the smallest travel time on the transportation network. 

The number of injuries that can be mobilized between the TAZs and hospitals using a specific ambulance 

in a certain time interval depends on the travel time on the transportation network subscribed from the post-

earthquake traffic simulator and the loading and unloading times of the injured into and out of the 

ambulances. The loading and unloading times are assumed to be random variables having a triangular 

(4.36,1.8) + 0.83 minutes and lognormal distributions (-0.49,3.36,5.54) minutes, respectively as per Su et 

al. (2008). 

 

The admission of the injuries to the hospital depends on the number of beds available in the hospital. 

Previous earthquakes showed that multiple patients can occupy the space allocated to one bed during post-

earthquake emergencies in real hospitals. For example, after the Mw 7.8 Kashmir earthquake, Mulvey et al. 

(2008) reported that up to 4 patients on average occupied the space allocated for one bed during the first 72 

hours in a military hospital in the Forward Kahuta town. Therefore, a multiplier of 4 is assumed for the 

number of patients that can be admitted to hospitals during the post-earthquake stage. The total number of 

beds available at any time in the hospital is proportional to the physical functionality of the hospital (Sediek 

et al. 2020) as well as the social functionality of the medical staff in the hospital which is assumed 

proportional to the number of injuries in the community (i.e., the percentage of injuries in the medical staff 

is assumed the same as the percentage of injuries in the population of the community). Based on Sediek et 

al. (2020), it is also assumed that 5% of the injuries waiting admission to hospitals or waiting mobilization 

from TAZs each time step (i.e., 2 hours) are taken to a hospital beyond the study region using resources 

outside the considered community.  

 

The length of stay of an injured person in a hospital is assumed to be a random variable with lognormal 

distribution having a median of 3 days, dispersion of 0.4 and maximum of 64 days as was observed after 

the Mw 7.7 2001 Gujarat earthquake (Phalkey et al. 2011). During the first days after the earthquake, there 



is a high mortality rate which is about 20-25 % according to Coupland (1994). The proposed simulation 

model considers a variable mortality rate for untreated injuries based on where the injured person is located 

(i.e., trapped inside a collapsed building or waiting admission to the hospital) and the number of days after 

the earthquake as listed in Table 2.  

 

Discrete-Event Simulation of Debris Removal 

Debris removal is generally performed in two stages: (1) clearing emergency routes to expedite rescue 

operations; and (2) clearing remaining roadways as a means to recovery (FEMA 325 2007). The transition 

between stage 1 and stage 2 depends on the impact of the seismic debris on the road network as well as the 

number of trapped people after an earthquake. FEMA-325 (2007) classifies seismic debris into: 

construction and demolition debris; white goods; hazardous waste; and soil, mud, and sand. Generally, 

specific procedures are required to remove each debris type. However, FEMA-325 (2007) proposes a 

general framework for all types of debris as shown in Figure 5. The debris is first collected from the 

building’s location to a temporary debris management site (TDMS), where it is sorted, reduced, and 

recycled before transportation to its final disposal landfill. The location of the TDMS in the community is 

ideally predefined before the earthquake based on the specifications suggested by the US EPA (U.S. 

Environmental Protection Agency) and UNEP (United Nation Environment Program). It should be located 

near the impacted area of the community but away from residential and commercial neighborhoods. The 

optimal choice of TDMS is an open research question that has been rarely studied (Kim et al. 2018) and 

outside the scope of the current study.  

 

In the debris removal simulator, DES is used to simulate the process of debris removal from TAZs to 

TDMSs and then to landfills (LFs) during the post-earthquake stage. Similar to the healthcare system, a 

fixed-increment time progression scheme is adopted where the time after the earthquake is divided into 

small equal intervals of one day each. The debris removal simulator runs for the first 365 days (i.e., 1 year) 

after the earthquake. Figure 6 shows a schematic diagram for the DES implemented in the debris removal 



simulator. As shown, the trucks in the community are distributed to transport the debris from the building 

locations (i.e., TAZs) to TDMSs or from TDMSs to LFs or from TDMSs to recycling facilities in the 

community. The number of trucks assigned to each task is a decision parameter that can be optimized to 

enhance the performance of the debris removal system in the community. First, the amount of debris (in 

tons) evaluated by the debris simulator at the location of each building is converted into cubic yards (CY) 

using a factor of 2 as specified by FEMA (2010) for construction and demolition debris.  

 

The trucks used to transport the debris from the buildings to TDMSs are distributed among the TDMSs 

based on the available space in the TDMSs. It is assumed that the capacity of each TDMS is 30,000 CY as 

per Kim et al. (2018). The number and locations of TDMSs in the community is an input parameter to the 

proposed model and can be optimized to enhance the performance of the debris removal process. The debris 

is collected from the building locations based on the importance of the adjacent roadway in the 

transportation network (i.e., main roads then local roads) and the amount of debris at a collapsed building 

site (i.e., buildings with large amount of debris first). The amount of debris that can be mobilized between 

the TAZs and TDMSs using a specific truck in a certain time interval depends on the capacity of the truck 

and the travel time on the transportation network evaluated by the post-earthquake traffic simulator and the 

loading and unloading times of the debris in and out of the trucks.  

 

The loading and unloading times are assumed to be random variables having a lognormal distribution with 

median of 1hr. and 0.5 hr., respectively and dispersion of 0.4 for both as per Askarizadeh et al. (2016). The 

capacity of the truck is assumed to be 18 CY as per Kim et al. (2018). The collected debris is sorted at a 

TDMS into recyclable and non-recyclable debris. The recyclable percentage of construction debris is 

assumed to be a random variable with a normal distribution, minimum of 0.05, maximum of 0.15, and mean 

of 0.08 as per Kim et al. (2018). Excess recyclable debris over the daily recycling rate of TDMSs is 

mobilized to recycling facilities as shown in Figure 6. A recyclable rate of 4500 CY/day is assumed at each 



TDMS as per Kim et al. (2018). The non-recyclable debris is mobilized from TDMS to its final location in 

landfills (LFs). 

 

MEASURING COMMUNITY PERFORMANCE 

The first step to enhance the seismic resilience of a community is to quantify in order to measure the effect 

of different mitigation strategies on the performance of the community. Several parameters are defined to 

quantify the performance of both the transportation network and healthcare system.  

 

Transportation Network 

The performance of the transportation network is quantified using two parameters: network resilience index 

(%NRI) and network performance index (NPI). The network resilience index (%NRI) is defined as the area 

under the recovery path of the transportation network until full recovery (i.e., returning back to 100% 

functionality) as shown in Figure 9(a) and expressed mathematically as: 

%𝑁𝑅𝐼 ൌ
׬ %𝑄்ேሺ𝑡ሻ
்ಿಷ
଴

𝑇ேி
 (3) 

where TNF is the time required for the transportation network to return back to 100% functionality and 

%𝑄்ேሺ𝑡ሻ is the weighted functionality of the transportation network (based on link capacity) at time t 

during the recovery stage. The weighted functionality of the transportation network is evaluated in the 

network recovery simulator as: 

%𝑄்ேሺ𝑡ሻ ൌ
∑ 𝐶௜ ൈ %𝑞௜ሺ𝑡ሻ
௡
௜ୀଵ
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௡
௜ୀଵ

 (4) 

where n is the number of links in the transportation network, Ci is the traffic flow capacity of link i, and  

%𝑞௜ሺ𝑡ሻ is the functionality of link i at time t during the recovery stage which is calculated as: 

%𝑞௜ሺ𝑡ሻ ൌ 1 െ %𝐵௜ሺ𝑡ሻ (5) 



where %𝐵௜ሺ𝑡ሻ is the percentage blockage of link i at time t during the recovery stage evaluated based on 

the bridge damage and extent of building debris as described earlier. %NRI captures the effect of damage 

and recovery of bridges and buildings on the functionality of the transportation network. 

 

NPI is defined as the area under the mean travel time ratio (MTTR) curve of the transportation network as 

shown in Figure 9(b). Values closer to one suggest that the post-earthquake behavior of the transportation 

network is close to that experienced before the earthquake. NPI captures the effect of building functionality, 

debris removal trips, and healthcare trips on the O-D demand in the transportation network. It also captures 

the effect of bridge damage and building debris on the capacity of the links. NPI can be expressed 

mathematically as: 

𝑁𝑃𝐼 ൌ
׬ 𝑀𝑇𝑇𝑅ሺ𝑡ሻ
்ಿು
଴

𝑇ே௉
 (6) 

where TNP is the time required to return back to the pre-earthquake travel time on the transportation network 

and 𝑀𝑇𝑇𝑅ሺ𝑡ሻ is the mean travel time ratio of the transportation network at time t during the recovery stage. 

MTTR is defined as the ratio between the weighted mean travel time (MTT) on the links of the transportation 

network in the community at any time t during the recovery stage and the weighted mean travel time on the 

links of the transportation network before the earthquake (MTTo) which can be expressed mathematically 

as: 

𝑀𝑇𝑇𝑅ሺ𝑡ሻ ൌ
𝑀𝑇𝑇ሺ𝑡ሻ
𝑀𝑇𝑇௢

 (7) 

𝑀𝑇𝑇 ൌ
∑ 𝐶௜ ൈ 𝜏௜
௡
௜ୀଵ

∑ 𝐶௜
௡
௜ୀଵ

 
(8) 

where 𝜏௜ is the travel time on link i.  

 



Healthcare System 

Three performance parameters are used to quantify the performance of each mechanism in the healthcare 

system inside the community: hospital utilization index (%HUI), in-community mobilization index (%IMI) 

and waiting admission index (%WAI). The hospital utilization index (%HUI) is defined as the area under 

the normalized treatment curve of the healthcare system (i.e., normalized number of injuries treated in the 

hospitals during the recovery stage) as shown in Figure 10(a). A value of 100% means that the hospitals 

are working at full capacity (i.e., fully utilized) during the recovery stage. %HUI can be expressed 

mathematically as: 

%𝐻𝑈𝐼 ൌ
׬ 𝐼መ் ோாሺ𝑡ሻ
்ಹ
଴

𝑇ு
ൈ 100 (9) 

where 𝐼መ் ோாሺ𝑡ሻ  is the number of injuries treated at the hospitals at time t during the recovery stage 

normalized by the capacity of the hospitals in the community at the same time t.  𝑇ு is the time required to 

discharge the last injury from the hospitals in the community. 

 

The in-community mobilization index (%IMI) is defined as the area under the normalized curve of 

mobilized injuries inside the community (i.e., normalized number of injuries mobilized from buildings to 

the hospitals during the recovery stage) as shown in Figure 10(b). A value of 100% suggests that the 

available ambulances in the community are able to mobilize all of the injuries waiting mobilization during 

the recovery stage. %IMI can be expressed mathematically as: 

%𝐼𝑀𝐼 ൌ
׬ 𝐼መெூሺ𝑡ሻ
்ಾ಺

଴

𝑇ெூ
ൈ 100 (10) 

where 𝐼መெூሺ𝑡ሻ is the number of injuries mobilized inside the community at time t during the recovery stage 

normalized by the number of injuries awaiting mobilization at the same time t. 𝑇ெூ is the time required to 

reach zero injuries mobilized inside the community. 

 



Similar to %HUI, the waiting admission index (%WAI) is defined as the area under the normalized waiting 

admission curve of the healthcare system (i.e., normalized number of injuries waiting admission to the 

hospitals during the recovery stage) as shown in Figure 10(c). A value of 0% suggests that the healthcare 

system is working efficiently without any injuries waiting admission during the recovery stage. %WAI can 

be expressed mathematically as: 

%𝑊𝐴𝐼 ൌ
׬ 𝐼መௐ஺ሺ𝑡ሻ
்ೈಲ

଴

𝑇ௐ஺
ൈ 100 (11) 

where 𝐼መௐ஺ሺ𝑡ሻ is the number of injuries waiting admission to the hospitals at time t during the recovery stage 

normalized by the capacity of the hospitals in the community at the same time t. 𝑇ௐ஺ is the time required 

to reach zero injuries waiting admission to the hospitals. 

 

ILLUSTRATIVE CASE STUDY: SEISMIC RESILIENCE OF ARCHETYPE COMMUNITY 

Community Setup 

The simulation model and its capabilities are demonstrated through a case study that focuses on modeling 

the seismic resilience of part of Shelby County, Tennessee (shown in Figure 7). The building portfolio data 

is the same as per Sediek et al. (2020) which was extracted from the database provided in Ergo-EQ software 

version 4.0 Beta 2 (NCSA 2018) and mapped to the 100 different archetype buildings developed by Sediek 

et al. (2020). The studied area is approximately 14 km2 (5.4 mi2) with a population of approximately 40,000 

(Statistical Atlas 2018) which is considered a typical midsize community. The building portfolio consists 

of around 8600 buildings, mostly wooden as is typical of US residential communities. 

 

The transportation network data is extracted using the open-source platform OpenStreetMap (OSM) and 

processed to define the traffic analysis zones (TAZs) using the traffic planning software PTV Visum. Only 

main roads are modeled in the case study (Figure 7). Local roadways are beyond the scope of this case 

study. The studied transportation network consists of 306 nodes, 503 links, and 204 TAZs. The traffic 

demand model used by Memphis MPO (2016) is adopted to predict the trip productions and attractions and 



perform modal split for trips with different purposes (i.e., home-based, work-based, etc.) between the 

different TAZs. Detailed information about the bridges in the studied area is collected from the National 

Bridge Inventory (NBI 2019), which provides the location of each bridge (Figure 7) and representative 

values for various bridge parameters required for HAZUS (FEMA 2003) fragility curves. 

 

There are three hospitals in the studied community (Figure 7) that are 2, 4, and 12 stories high with a total 

number of beds during normal operation of 140, 223, and 326, respectively (Sediek et al. 2020). Braun et 

al. (1990) reported that cities staff an average of one ambulance per 51,223 people. However, in extreme 

events as earthquakes this number should be increased. Therefore, it is assumed that 4 ambulances are 

available in the studied community after the earthquake. This number is an input parameter to the proposed 

model and can be refined as more data become available from real communities. The rescue rate parameters 

A and B, defined earlier, are assumed to be 1500 and 1.125 based on a sensitivity study to ensure that all 

injured are rescued within 24 hours of the earthquake. In real communities, such parameters should be 

calibrated based on the emergency response capacity of the community. It is also assumed that 10,10, and 

5 trucks are available to transport debris from the building sites to TDMS, transport debris from TDMS to 

the landfill, and transport debris from TDMS to recycling facilities, respectively. It is assumed that two 

TDMSs, one landfill, and one recycling facility are available and located in the arbitrary locations shown 

in Figure 7.  

 

Seismic Hazard 

The seismic event is the ground motion record RSN 1961 (PEER 2018) which was recorded at the Lepanto 

station near the studied community to represent the seismic activity in the studied area (Sediek et al. 2020, 

and Lin and El-Tawil 2020). The epicenter is located at 35°18'N, 90°18'W and the peak ground acceleration 

(PGA) is scaled at each building location to meet the PGA for a Mw 7.7 earthquake scenario specified by 

the United States Geological Survey (USGS 2018) for the studied region. The earthquake event is assumed 

to occur on a weekday at 8:00 PM. 



 

Results and Discussion 

To account for the many uncertainties inherent in the factors affecting the behavior of the different systems 

of the community after a seismic event, the model uses a Monte Carlo procedure to perform loss and 

recovery calculations. The sampling is performed based on the distribution properties of each component 

specified in the FEMA P-58 methodology (FEMA 2012) for evaluation of component losses as well as the 

distribution properties for each variable discussed earlier related to the healthcare system and debris 

removal. The proposed simulation model is computationally demanding due to the traffic analysis 

performed at each time step during the recovery stage as well the adopted Monte Carlo procedure. Therefore, 

the proposed simulation model is implemented and run within a parallel computing environment. The 

parallelization is performed for the computation of the response and losses of redundant elements of the 

community in the same realization and time step (e.g., different buildings in the community). A realization 

in the proposed simulation model represents one Monte Carlo simulation for all the simulators described 

earlier with a different set of random numbers (i.e., different damage of buildings, losses, etc.). Also, the 

traffic analysis is performed once every 10 time steps (i.e., 10 days) after the first 30 days as discussed 

earlier.  

 

The computational time for running a single Monte Carlo realization for the presented case study is 

approximately 4 hours on a personal computer with four cores and 32 GB RAM. As shown, the proposed 

simulation model is computationally demanding due to the complex interdependencies inherent between 

the different simulators. However, it can be used to model larger communities (i.e., city or county level) 

with some reduction of the resolution of the transportation network (e.g., modeling main roads only in the 

county) as it is the controlling parameter for the computational cost of the proposed model. The results 

shown are for one arbitrary Monte Carlo simulation with a constant seed (i.e., same set of random numbers) 

to be able to demonstrate the capabilities of the proposed model under different conditions (i.e., input 



parameters for different scenarios). The complete set of parameters and results of the presented case study 

are documented and publicly available at Sediek et al. (2021b). 

 

Figure 8 shows the spatial distribution of the traffic flow along the links of the transportation network during 

the recovery stage immediately after the earthquake and at three other points in time. As shown in Figure 

8(a), 55 of the 503 links (~ 11%) in the transportation network lost their functionality (i.e., closed due to 

debris blockage or bridge damage) immediately after the earthquake. Most of the traffic flow was 

concentrated around the location of the hospitals due to ambulance trips made to and from hospitals as well 

as around the location of the landfill and TDMSs due to transportation of debris (Figure 8(a)).  The 

functionality of a significant number of links (i.e., 31 out of 55) was restored within 90 days (i.e., 3 months) 

of the seismic event as shown in Figure 8(c) due to removal of seismic debris from collapsed buildings and 

repair of bridges. This progress is also reflected in the recovery trajectory of the transportation network as 

shown in Figure 9(a) where the functionality of the transportation network increased from 81% immediately 

after the earthquake to 89% 90 days after the event.  

 

The transportation network was restored to full functionality after 1 year (i.e., 365 days) as shown in Figure 

8(d) and Figure 9(a). It should be noted that although the transportation network reached its full 

functionality, the traffic flow did not return to the pre-earthquake case due to the loss of functionality of 

some of the buildings. As reported by Sediek et al. (2020), the building portfolio reached its full 

functionality after 4.6 years which is much longer than the restoration time for the transportation network. 

The network resilience index (%NRI) of the transportation network was 90.5% as shown in Figure 9(a) 

which is considered acceptable but can be further enhanced. Figure 9(b) shows the mean travel time ratio 

(MTTR) of the studied transportation network during the recovery stage. Immediately after the earthquake, 

the MTTR of the network was 1.3 due to the loss of functionality of the roads as well as the large number 

of trips made to mobilize injuries and transport debris. However, the MTTR of the network dropped 

significantly during the recovery stage due to the decrease in the trips made as well as the increase in the 



network functionality. The network performance index (NPI) of the studied network was 1.18 which is 

close to 1 implying good performance of the network after the seismic event. 

 

Figure 10 shows the evolution of the social functionality (i.e., injured in the community and healthcare 

system) during the recovery stage. As noted in Figure 10, the time scale is in hours which is different from 

the time scale of the previous systems (i.e., building portfolio and transportation network). This ability to 

use multiple time scales is an important capability of the simulation model which allows for different spatial 

and temporal scales even within the same stage (e.g., recovery stage). As shown in Figure 10(a), the number 

of treated injuries in the hospitals increased over the first few hours due to mobilization of injuries from the 

building locations to the hospitals. Eighteen hours after the earthquake, the capacity of the hospitals in the 

community was reached and the number of injuries waiting admission increased as shown in Figure 10(b). 

The maximum number of injuries waiting admission was reached after 58 hours from the occurrence of the 

earthquake as shown in Figure 10(b).  

 

As shown in Figure 10(c), the normalized number of injuries mobilized inside the community was almost 

constant over the first 24 hours after the earthquake as the number of injuries waiting mobilization was 

much more than the capacity of the ambulances due to the continuous rescue of the injured. However, after 

24 hours, rescue of those injured stopped but the mobilization of the injured continued causing the sharp 

increase shown in Figure 10(c) until reaching a value of 1 (i.e., all the injuries waiting mobilization are 

mobilized). The time required to reach zero injuries (i.e., treat all who were injured) was 270 hours (~11 

days). As shown in Figure 10, %HUI, %IMI, and %WAI were 51%, 15%, and 50% respectively.  

 

Impact of Interdependencies  

The proposed simulation model shown in Figure 2 was modified to study the effect of removing or adding 

interdependencies between the different systems by simply removing or adding the connection (shown by 

the arrows connecting the boxes in Figure 2) between the relevant simulators. Two types of 



interdependencies were studied: those between the post-earthquake traffic simulator and the debris removal 

simulator, and healthcare simulator. The first interdependency considers the effect of building debris 

(related to building portfolio) on the functionality of the links in the transportation network. The lack of 

considering the second interdependency means that the healthcare system is not affected (i.e., constrained) 

by the functionality of the transportation network. In this case, all the injured who are rescued are assumed 

to be mobilized in one time step with no constraint on the number of trips that can be made through the 

transportation network. This assumption is made by most of the studies available in the literature (e.g., 

Ceferino et al. 2020). 

 

Figure 11(a) shows the recovery trajectory of the studied transportation network with and without 

considering the first interdependency. Considering the interdependency between the post-earthquake traffic 

and debris removal simulators (indexed as “bridge only” in Figure 11(a)) had two effects on the recovery 

trajectory of the transportation network. First, it shifted the recovery trajectory to the right (green shaded 

area in Figure 11(a)) due to the time required to remove the debris from the partially and totally blocked 

links. The second effect was to reduce the initial post-earthquake functionality of the network from 90% to 

81% (9% reduction) due to the partial and total blockage of the links affected by the debris resulting from 

the collapse of the buildings.  

 

Figure 11(b) shows the effect of the interdependency between post-earthquake traffic and healthcare 

simulators on the performance of the healthcare system through % HUI, %WAI, and %IMI. As shown, 

neglecting the interdependency between post-earthquake traffic and healthcare simulators had a significant 

effect on %IMI which increased from 15% to 100%. This result is attributed to the assumption that there 

was no constraint on the number of injured that can be mobilized to the hospitals in the community at any 

time step. This effect is also reflected in %HUI and %WAI which increased from 51% to 64% and from 

50% to 98%, respectively, for the same reason. As shown, the novel approach implemented to consider the 

mutual interdependency between the transportation network and healthcare system in the community has a 



significant effect (i.e., more realistic) on the predicted behavior of the healthcare system in the community. 

This approach enables a better understanding of how these systems will function and an improved ability 

to enhance the behavior of these two systems after seismic events. 

 

Effectiveness of Hazard Mitigation Plans 

The capability of the simulation model to support decision makers in studying the effect of different 

mitigation actions on the behavior of the studied systems (i.e., healthcare, building portfolio, and 

transportation network) is demonstrated through a sensitivity study that comprises different mitigation 

actions. For the healthcare system, the studied mitigation action entailed three activities. The first activity 

was increasing the number of ambulances available after the earthquake from 4 to 8. The second activity 

was adding a field hospital near to the 12-story hospital (i.e., the same TAZ) with an additional 180 beds. 

The third activity was enhancing the emergency response of the rescue team in the community after the 

earthquake (e.g., receiving supporting rescue personnel from nearby zones or states) by changing the rescue 

rate parameters A and B defined earlier from 1500 to 2000 and from 1.15 to 1.1, respectively.  

 

For the building portfolio, the mitigation action entailed a community-wide building retrofit plan to upgrade 

the seismic resistance of all buildings that were built according to design codes prior to 1973 to meet current 

design requirements. For debris removal mitigation action, the number of trucks available to collect debris 

from the building sites and transport it to TDMS and to transport debris from TDMS to the landfill was 

increased to 20. The number of TDMSs available in the community was increased to 3 with the same 

assumed capacity per TDM (i.e., 30,000 CY). All possible combinations of these three mitigation strategies 

were considered leading to eight different scenarios as defined in Table 3. It should be noted that these 

mitigation actions are for the purpose of demonstrating the capabilities of the proposed simulation model 

only and that no mitigation decisions can be made based on a single case and a single event without taking 

into account the uncertainties. More work is required to have valid quantitative mitigation plans and one 

case is not sufficient for such purpose. 



 

Figure 12 shows the effect that the mitigation actions related to debris removal and the building portfolio 

had on the transportation network. As shown in Figure 12(a), upgrading the seismic design of the buildings 

in the community led to an increase in the initial functionality of the transportation network from 81% to 

90% (9% increase) which is attributed to the lower number of collapsed buildings (mainly RC and steel 

buildings). This increase in initial functionality is also reflected in the initial MTTR after the earthquake 

which decreased from 1.30 to 1.05 (20% reduction) as shown in Figure 12(b), NPI which decreased from 

1.18 to 1.02 (14% reduction), and %NRI which increased from 90.5% to 95% (5% increase). The mitigation 

actions related to debris removal shifted the recovery trajectory of the transportation network to the left due 

to the expedited clearance of the roadways as shown in Figure 12(a). This outcome is also reflected in %NRI 

which increased from 90.5% to 92% (1.5% increase), and NPI which decreased from 1.18 to 1.1 (7% 

reduction). 

 

Figure 13 shows the effect that the mitigation actions related to the healthcare system and the building 

portfolio had on the number of injured waiting admission to hospitals as well as the number of injured being 

mobilized. As shown in Figure 13(a), the proposed mitigation actions had a significant effect on %WAI 

which decreased from 50% to 12% (76% reduction) due to the increased number of available beds in the 

community. Also, the number of fatalities in the community significantly decreased from 384 to 278 due 

to the reduced number of collapsed buildings in the community resulting from the seismic design upgrade. 

Upgrading the seismic design of buildings along with the mitigation actions for the healthcare system had 

the most significant effect on %WAI which decreased from 50% to almost 0 (1% as shown in Figure 13(a)) 

due to both the increased number of available beds as well as reduced number of collapsed buildings in the 

community. Also, these two mitigation strategies had a significant effect on the number of fatalities in the 

community which decreased from 384 to 127 for the same reasons. 

 



Increasing the number of ambulances as well as enhancing the emergency response of the rescue team in 

the community had a significant effect on the time required to mobilize all the injuries waiting mobilization 

in the community which decreased from 65 to 38 hours (42% reduction) as shown in Figure 13(b). 

Upgrading the seismic design of the buildings had a similar effect, due to the reduced number of injured 

resulting from collapsed buildings, where the time required to mobilize all the injuries waiting mobilization 

in the community decreased from 65 to 45 hours (30% reduction). 

 

Choosing the appropriate mitigation strategy depends on many factors which are community specific 

beyond just the performance parameters discussed earlier (e.g., %NRI, NPI, %WAI, %IMI, etc.). One of 

these factors is the initial investment required for each plan (e.g., the cost of upgrading the design of current 

buildings versus repairing them after a seismic event). Another factor is the social aspect of the problem. 

For example, the mitigation actions related to the healthcare systems may have a significant economic cost. 

However, the social gain from such mitigation actions (i.e., reducing number of fatalities or number of 

injuries mobilized outside the community) may be much higher than the economic cost. As demonstrated, 

the proposed simulation model can be used by decision makers in the community to make such tradeoffs 

and decide on viable mitigation strategies to be executed. 

 

SIMULATION MODEL LIMITATIONS 

Although the proposed simulation model considers the interdependencies between the building portfolio, 

transportation network and healthcare system during and after seismic events, there are still other critical 

dimensions of community resilience that have not been accounted for in this study. Damage and recovery 

of lifeline systems is one of these critical dimensions which deeply influence resilience and the recovery 

trajectory. Also, social losses are only expressed in terms of casualties, which is not the case in real 

communities where other short- and long-term social vulnerability indicators affect the resilience of 

communities including relocation, business disruption, job loss, supply disruption, family stress and 

neighborhood disruption that are outside the scope of this study. For example, shortage of medical staff in 



hospitals is assumed to be because of casualties only in the proposed simulation model. However, other 

reasons may also cause this shortage such as injury of a family member of the staff, or their relocation to 

other cities, etc. All of these dimensions can be added to the proposed model with the addition of appropriate 

simulators and their connection with the rest of the system model shown in Figure 2.  

 

Also, the presented results and mitigation strategies are based on the assumptions discussed earlier related 

to the building portfolio, transportation network, and healthcare system. Clearly, the results (i.e., building 

collapse, injuries and recovery outcomes) will change when using different input parameters. However, the 

proposed model allows for the ability to evaluate multiple scenarios and strategies taking into consideration 

the effect of interdependencies between the three critical systems discussed earlier which provides the 

necessary data to make informed decisions. Another limitation is that the shown results and mitigation 

strategies are based on only one Monte Carlo simulation which does not necessarily represent the big picture 

statistically, because other random realizations may give different results. However, the proposed model 

allows for the ability to evaluate multiple Monte Carlo realizations for multiple scenarios conditioned upon 

the availability of required computational resources. Also, a lot of the parameters discussed earlier that are 

adopted from other studies that are not originally developed for the studied region. This is attributed to the 

lack of the availability of the data in the studied region.  

 

SUMMARY AND CONCLUSIONS 

A simulation-based model is presented for the assessment and quantification of seismic resilience of 

communities while considering the mutual interdependencies between the building portfolio, transportation 

network, and healthcare system. The model was modularized into independent simulators, each 

representing an aspect of the overall problem to facilitate modeling such complex interdependencies. The 

proposed model combined the effect of bridge damage and accumulation of debris resulting from the 

collapsed buildings on the transportation network. The post-disaster origin-destination (O-D) patterns of 

households along with the functionality of the road network were used in a traffic analysis to update the 



traffic flow and time through the links of the transportation network. The updated traffic flow and time 

were used in a discrete event simulation (DES) environment to simulate the behavior of the healthcare 

system as well as the debris removal process in the aftermath of a seismic event.  

 

Resilience measures for each system were proposed to assess and improve the seismic resilience of the 

individual systems and the community as a whole. The model was demonstrated through a case study in 

which the building portfolio, transportation network, and healthcare system of a part of Shelby County, 

Tennessee, was subjected to a Mw 7.7 earthquake located northwest of Memphis. The results of one 

realization showed that 11% of the links in the studied transportation network lost their functionality due 

to debris accumulation and bridge damage which adversely affected the mobilization of injured people as 

well as debris removal from the community. In order to demonstrate the capability of the simulation model 

to support hazard mitigation planning, a sensitivity study was performed to investigate the effect of three 

mitigation actions related to the three studied systems (i.e., healthcare, building portfolio, and debris 

removal). All possible combinations between the three mitigation actions were considered leading to eight 

different scenarios. The results of the case study showed that upgrading the seismic design of buildings and 

increasing the number of ambulances and hospital beds in the community reduced the number of fatalities 

by 50%. Also, upgrading the seismic design of buildings and increasing the number of trucks used to 

transport debris in the community improved the seismic resilience of the transportation network by 5%. 

 

The proposed simulation model is a key step forward towards quantifying and enhancing the seismic 

resilience of communities while considering the mutual interdependencies between the different critical 

systems in a community. Choosing the appropriate mitigation strategy to improve the seismic resilience of 

a community is a challenging task that depends on many factors beyond just the economic cost. For example, 

the mitigation actions required for the healthcare systems may have a significant economic cost. However, 

the social gain from such mitigation actions (i.e., reducing number of fatalities or number of injuries 

mobilized outside the community) may be much higher than the economic cost. The simulation model can 



be used by decision makers in the community to make such tradeoffs and decide on viable mitigation 

strategies to be executed. 
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Figure 1: Interdependencies between community sectors 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 



 

Figure 2: Simulation model overview 
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Figure 3: Assumed shape of seismic debris pile resulting from the collapse of: (a) RC frame; (b) 

masonry; and (c) other types of buildings in the community. 

 

 

 



 



 

Figure 4: Overview of DES implemented in healthcare simulator 

 

 



 

Figure 5: Debris removal process outlined in FEMA-325 (2007) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure 6: Overview of DES implemented in debris removal simulator 
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Figure 7: Studied community  2 
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(c) (d) 

Figure 8: Spatial distribution of link flow in the transportation network for one 13 

arbitrary Monte Carlo simulation: (a) immediately after the earthquake; (b) after 1 14 

month; (c) after 3 months; and (d) after 12 months 15 



  

(a) (b) 

Figure 9: Illustration of: (a) recovery trajectory of the transportation network after 16 

the earthquake for one arbitrary Monte Carlo simulation; and (b) mean travel time 17 

ratio (MTTR) of the studied network during the recovery stage 18 
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(c) 

Figure 10: Illustration of number of injuries for one arbitrary Monte Carlo 31 

simulation: (a) receiving treatment in in the hospitals; (b) mobilized between building 32 

locations and the hospitals during the recovery stage; and (c) awaiting admission to 33 

the hospitals during the recovery stage 34 
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(a) (b) 

Figure 11: Effect of interdependencies between: (a) post-earthquake traffic simulator 37 

and debris removal simulator; and (b) post-earthquake traffic simulator and 38 

healthcare simulator 39 

 40 

 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 



  

(a) (b) 

Figure 12: Effect of studied mitigation strategies on: (a) transportation network 53 

recovery trajectory, and (b) mean travel time ratio (MTTR) 54 
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(a) (b) 

Figure 13: Effect of studied mitigation strategies on: (a) number of injuries waiting 68 

admission to hospitals, and (b) number of injuries mobilized.  69 
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