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The uniform distribution of stresses in flying-wing aircraft improves the aeroelastic flight envelope. In this paper,
we document the effect of wing cross-section configuration on the stress distribution and flutter characteristics of a
flying-wing aircraft. We determined the flow of stresses through the wing structure, and changed the structure to
avoid stress strangulations. The emerging structure is more stable. We used the computer programs Gmsh,
Variational Asymptotic Beam Sectional Analysis, and Nonlinear Aeroelastic Trim and Stability of High Altitude
Long Endurance Aircraft. The wing structure was evolved by holding fixed the flight condition,mass per unit length,
and material type. The results indicate that particular configurations of wing cross sections favor a uniform stress
distribution, and therefore aeroelastic stability. The configuration with higher flutter speed is associated with the
smoother flow of stresses through the wing structure.

Nomenclature
a = deformed beam aerodynamic frame of reference
B = deformed beam cross-sectional frame of reference
b = undeformed beam cross-sectional frame of reference
Bi = unit vectors of deformed beam cross-sectional frame of

reference (i ! 1; 2; 3)
bi = unit vectors in undeformed beam cross-sectional frame

of reference (i ! 1; 2; 3)
c = chord
CBi = transformation matrix from the inertial frame i to

deformed frame B
Cbi = transformation matrix from the inertial frame i to

deformed frame b
CiB = transformation matrix from the deformed frame B to

inertial frame i
Cib = transformation matrix from the undeformed frame b to

inertial frame i
cd0 ,
cl0

= aerodynamic drag and lift coefficients at zero angle of
attack

clα = lift coefficient with respect to (w.r.t.) angle of attack (α)
clβ = lift coefficient w.r.t. flap deflection (β)
cmβ = pitch moment coefficient flap deflection (β)
e = offset of aerodynamic center from the origin of frame of

reference along b2
e1 = column matrix
F = column matrix of internal force measured in Bi basis
f = columnmatrix of distributed, applied forcemeasured in

Bi basis

g = gravitational vector in Bi basis
H = column matrix of cross-sectional angular momentum

measured in Bi basis
I = cross-sectional inertia matrix
i = inertial frame of reference
ii = unit vectors for inertial frame of reference, where i is

equal to 1, 2, 3
K = column matrix of deformed beam curvature and twist

measured in Bi basis
k = column matrix of undeformed beam initial curvature

and twist measured in bi basis
M = columnmatrix of internalmomentmeasured inBi basis
m = column matrix of distributed, applied moment mea-

sured in Bi basis
P = column matrix of cross-sectional linear momentum

measured in Bi basis
r = column matrix of position vector measured in bi basis
u = column matrix of displacement vector measured in bi

basis
V = column matrix of velocity measured in Bi basis
x1 = axial coordinate of beam
α = angle of attack
β = trailing-edge flap angle
γ = column matrix of one-dimensional (1-D) generalized

force strain measures
Δ = identity matrix
κ = column matrix of elastic twist and curvature measures

(1-D generalized moment strain measures)
λ = column matrix of induced flow states
μ = mass per unit length
ξ = column matrix of center of mass offset from the frame-

of-reference origin
ρ = air density
ψ = column matrix of small incremental rotations
Ω = column matrix of cross-sectional angular velocity
"# 0 = partial derivative with respect to x1
"⋅# = partial derivative with respect to time
"^# = nodal variable

I. Introduction

N EW ideas guide the design of new aircraft that can fly faster and
farther, and consume less fuel. To this end, helpful is a design

theory that can predict the evolutionary trend in the design and
performance of aircraft. The constructal law is the basis for such a
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theory [1–6]. It is the law of physics that accounts for the phenome-
non of evolution in nature: “For a finite-size flow system to persist in
time (to live), its configuration must evolve freely such that it
provides greater access to its currents.”
Constructal law governs energy flow configuration and evolu-

tionary design in nature [7,8]. Many constructal law applications to
the evolutionary design of engineering and biological systems are
reviewed in articles and books [7–9]. Constructal law anticipates the
evolution of airplanes, helicopters, and ships that are in complete
accord with the evolution of animal locomotion [1–4]. The construc-
tal approach predicts the evolution of the most basic physical char-
acteristics, such as fuel load, speed, wingspan, fuselage, length, and
engine size [1,3,5]. Large or small, airplanes exhibit a proportionality
between wingspan and fuselage length, and between fuel load and
body size [1,6]. This scaling is analogous to animal design, where the
mass of the motive organs (muscles, heart, lungs) is proportional to
the body size [1].
Optimization methods have been used frequently in the design of

aircraft parts. Rao et al. [10] employed a topology optimization
method to develop an optimal aircraft wing. They selected the iso-
truss construction for the Dornier aircraft wing. They found an
optimal design as well as the optimum shape and material distribu-
tion,which are subjected to a specific set of constraints. Schuhmacher
et al. [11] used the multidisciplinary design optimization method to
design a wing box for a Fairchild Dornier regional jet. The topology
optimization was used by Zhu et al. [12] to investigate dynamic
responses, aircraft body structure, and shape-preserving design in
aerospace systems. Oktay et al. [13] determined the optimum design
of the ribs by using topology optimization and computational fluid
dynamics. Most of the studies of the aircraft wing considered the
wing as a thin-wall beam structure [14–19].
In the present study,we use the constructal law and the evolution of

the flow of stresses to design different wing rib configurations,
including rectangular, triangle, polygon, circle, and oval. The con-
cept of flow of stresses was introduced in evolutionary design by
Bejan and coworkers [8,20,21], who showed that if the strangulation
of internal stresses are avoided, the loaded structure is the lightest and
strongest.
Mardanpour et al. [6] presented the effect of engine placement on

the aeroelastic stability and flow of stress through the aircraft wing.
They showed that there is a relationship between aeroelastic insta-
bility and stress strangulation. Their study simulated the engines of a
flying wing as rigid bodies with thrusts, angular momentums,
masses, and inertias. These engines represented discontinuities in
terms of externally applied loads. Their results showed that these
discontinuities’ locations significantly affect the flow of stresses,
hence the aeroelastic flight envelope.
Furthermore, Izadpanahi et al. [22] showed that the curvature and

sweep of the wing can affect the aeroelastic stability and stress
distribution of flying-wing aircraft. They found that higher flutter
speed could be achieved if strangulation is avoided in the flow of
stresses.
Thewing contains a frame that is constructed from spars, ribs, and

stringers. Ribs play a vital role in carrying the air load from the wing
surface to the spars [23]. In this paper, we explore the effect of wing
ribs on the stability and flow of stresses of a flying-wing aircraft. We
seek a better cross-section configuration that has a smoother flow of
stresses and higher stability. Aircraft with nine different wing cross-
section configurations are designed, and the stability analyses are
performed to obtain the flutter characteristic. Next, we trim the air-
craft under the same cruise condition, and we present the stresses in
several directions to document the flow of stresses through a flying
aircraft wing.

II. Theory
The structure of a wing-shaped body loaded in bending was

studied as an evolutionary design for stresses and fluid flow in
Kim et al. [24] and Ref. [8] (section 8.6 and problem 8.1). In the
following work, the wing is treated as an elastic body subjected to
three-dimensional time-dependent aerodynamic loading, whereas

the design of the structure evolves toward smoother flow of stresses
and higher flutter speed.

A. Nonlinear Composite Beam Theory

The fully intrinsic nonlinear composite beam theory is based on
first-order partial differential equations of motion for the beam,
which are independent of displacement and rotation variables. The
equations contain variables that are expressed in terms of the bases of
the reference frames for the undeformed and deformed beams, b"x1#
and B"x1; t#, respectively; see Fig. 1. These equations are based on
force, moment, angular velocity, and velocity with nonlinearities of
second order. The equations of motion are

F 0
B $ ~KBFB $ fB ! _PB $ ~ΩBPB

M 0
B $ ~KBMB $ " ~e1 $ ~γ#FB $mB ! _HB $ ~ΩBHB $ ~VBPB (1)

where the generalized strains and velocities are related to stress
resultants and moments by the structural constitutive equations

!
γ
κ

"
!

#
R S
ST T

$!
FB

MB

"
(2)

and the inertial constitutive equations [6]

!
PB

HB

"
!

#
μΔ −μ~ξ
μ~ξ I

$!
VB

ΩB

"
(3)

Finally, strain- and velocity-displacement equations are used to
derive the intrinsic kinematical partial differential equations [25],
which are given as [6]

V 0
B $ ~KBVB $ " ~e1 $ ~γ#ΩB ! _γ

Ω 0
B $ ~KBΩB ! _κ (4)

In this set of equations, FB andMB are column matrices of cross-
sectional stress and moment resultant measures in the B frame,
respectively;VB andΩB are columnmatrices of cross-sectional frame
velocity and angular velocity measures in the B frame, respectively;
PB andHB are column matrices of cross-sectional linear and angular
momentum measures in the B frame, respectively; R, S, and T are
3 × 3 partitions of the cross-sectional flexibilitymatrix;Δ is the 3 × 3
identity matrix; I is the 3 × 3 cross-sectional inertia matrix; ξ is
b 0 ξ2 ξ3 cT , with ξ2 and ξ3 representing the position coordinates
of the cross-sectional mass center with respect to the reference line; μ
is the mass per unit length; ~"# denotes the antisymmetric 3 × 3matrix
associated with the column matrix over which the tilde is placed; "⋅#
denotes the partial derivativewith respect to time; and "# 0 denotes the
partial derivativewith respect to the axial coordinate, x1.More details

Fig. 1 Schematic of beam deformation [25].
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about these equations can be found in Ref. [26]. This is a complete set
of first-order, partial differential equations. To solve the system of
equations, one may eliminate γ and κ using Eq. (3) and PB and HB

using Eq. (4). Then, 12 boundary conditions are needed in terms of
force FB, moment MB, velocity VB, and angular velocity ΩB. The
maximum degree of nonlinearities is two, and because displacement
and rotation variables do not appear, singularities caused by finite
rotations are avoided. If needed, the position and the orientation can
be calculated as postprocessing operations by integrating

r 0i ! Cibe1

ri $ u 0
i ! CiB"e1 $ γ# (5)

and

"Cbi# 0 ! − ~kCbi

"CBi# 0 ! −" ~k$ ~κ#CBi (6)

Here, C defines the transformation matrix, r is column matrix of
position vector measured in bi basis, and u indicates the column
matrix of displacement vector measured in bi basis [6].

B. Variational Asymptotic Beam Sectional Analysis (VABS)

Reference [27] adopted the variational asymptotic method (VAM)
of Berdichevskii [28] to reduce the formulation of a three-dimen-
sional elasticity problem into a one-dimensional (1-D) formulation.
VAM finds the stationary point of a function that has one or more
small parameters. It is the right tool for the dimensional reduction in
structures such as beams, plates, and shells. This mathematical
approach and the Hamilton extended principle lead to the geometri-
cally exact nonlinear composite beam theory of Hodges and its cross-
sectional analysis [26,27].
For the cross-sectional analysis, the solution to the minimization

problem of VAM is obtained from a finite-element numerical
approach that is built into the software package VABS. The results
lead to the components of the 6 × 6 sectional constitutive and inertial
matrices next [6]:

8
>>>>>><

>>>>>>:

γ11
2γ12
2γ13
κ1
κ2
κ3

9
>>>>>>=

>>>>>>;

!

2

6666664

R11 R12 R13 S11 S12 S13
R12 R22 R23 S21 S22 S23
R13 R23 R33 S31 S32 S33
S11 S21 S31 T11 T12 T13

S12 S22 S32 T12 T22 T23

S13 S23 S33 T13 T23 T33

3

7777775

8
>>>>>><

>>>>>>:

F1

F2

F3

M1

M2

M3

9
>>>>>>=

>>>>>>;

(7)

8
>>>>>><

>>>>>>:

P1

P2

P3

H1

H2

H3

9
>>>>>>=

>>>>>>;

!

2

6666664

μ 0 0 0 μ !x3 −μ !x2
0 μ 0 −μ !x3 0 0
0 0 μ μ !x2 0 0
0 −μ !x3 μ !x2 i2 $ i3 0 0
μ !x3 0 0 0 i2 i23
−μ !x2 0 0 0 i23 i3

3

7777775

8
>>>>>><

>>>>>>:

F1

F2

F3

M1

M2

M3

9
>>>>>>=

>>>>>>;

(8)

VABS [27,29,30] is a commercial software that uses thevariational
method to simplify a three dimensional (3-D) nonlinear analysis. It
projects 3-D slender structures to a two-dimensional (2-D) cross-
sectional and one-dimensional (1-D) beam analysis. VABS decreases
the analysis time from hours to seconds while maintaining the
accuracy of detailed 3-D finite element analysis. It uses a finite
element mesh of the cross section and material properties as inputs
to calculate the cross-sectional properties (e.g., structural properties
and inertial properties). It also performs stress recovery using inputs
such as axial and shear forces, moments, distributed forces, and
moments including applied and inertial [22].

C. Finite State Induced Model
The 2-D finite state aerodynamic model of Peters et al. [31] is a

state-space, thin-airfoil, inviscid, incompressible approximation of
an infinite-state representation of the aerodynamic loads, which
accounts for induced flow in the wake and apparent mass effects,
using known airfoil parameters. It accommodates large motion of the
airfoil as well as deflection of a small trailing-edge flap. Although the
two-dimensional version of this model does not account for three-
dimensional effects associated with the wing tip, published data
[31–33] show that this theory is an excellent approximation of
aerodynamic loads acting on high-aspect-ratio wings. The lift, drag,
and pitching moment at the quarter-chord are given by

Laero ! ρb
h
"cl0 $ clβ β#VTVa2 − clα

_Va3b∕2

− clαVa2"Va3 $ λ0 −Ωa1b∕2# − cdoVTVa3

i
(9)

Daero ! ρb
h
−"cl0 $ clβ β#VTVa3 $ clα"Va3 $ λ0#2 − cdoVTVa2

i

(10)

Maero ! 2ρb
h
"cm0

$ cmβ
β#VT − cmα

VTVa3 − bclα∕8Va2Ωa1

− b2clα
_Ωa1∕32$ bclα

_Va3∕8
i

(11)

VT ! "V2
a2 $ V2

a3 #
1∕2 (12)

sin α !
−Va3

VT
(13)

αrot !
Ωa1b∕2
VT

(14)

and Va2 , Va3 are the measured values of Va, and β is the angle of flap
deflection. The effect of unsteady wake (induced flow) and apparent
mass appear as λ0 and acceleration terms in the force and moment
equations. The induced flowmodel of Peters et al. [31] is included to
calculate λ0 as

h
Ainduced flow

i
f_λg$

%
VT

b

&
fλg !

%
− _Va3 $

b

2
_Ωa1

&n
cinduced flow

o

(15)

λ0 !
1

2

n
binduced flow

o
Tfλg (16)

where λ is the column matrix of induced flow states, and
%Ainduced flow&; fcinduced flowg; fbinduced flowg are constant matrices derived
in Refs. [6,31].

D. Aeroelastic System

The aeroelastic system is described by coupling the aerodynamic
equations with the structural equations,

%A&f _xg$ fB"x#g ! ffcontg (17)

where, fxg and fcont represent the vector of all the aeroelastic vari-
ables and the vector of the flight controls, respectively. The resulting
nonlinear ordinary differential equations are linearized about a static
equilibrium state. The linearized system can be represented as

%A&f _̂xg$ %B&fx̂g ! ff̂contg (18)

where " ^# indicates the perturbation about the steady-state values [6].
The equilibrium state is governed by nonlinear algebraic equa-

tions, which the code Nonlinear Aeroelastic Trim and Stability of
HALEAircraft (NATASHA) [34,35] solves to obtain the steady-state

Article in Advance / MOSHTAGHZADEH ETAL. 3

D
ow

nl
oa

de
d 

by
 K

ar
in

a 
B

us
til

lo
 o

n 
Se

pt
em

be
r 1

3,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

J0
60

41
0 



trim solution using the Newton–Raphson procedure [34]. This com-
puter program is developed based on nonlinear composite beam
theory of Hodges [25] and the finite induced flow model of Peters
et al. [31]. NATASHA has been verified and validated with both
experimental and numerical benchmarks [6,32,33,36–42].

III. Numerical Simulation
We used three computer programs, Gmsh [43], VABS, and NATA-

SHA; several functions and scripts are developed in MATLAB to
connect these software packages and perform the postprocessing of
stresses [22,44]. Gmsh has four different modules for creating geom-
etry, mesh, solving, and postprocessing. In this paper, we used only
the geometry and mesh modules of this software. The finite element
method is used in Gmsh to mesh the cross section of a flying aircraft.
We imported these geometries and meshes, with the material proper-
ties, into the VABS software to obtain the cross-sectional properties
of the fuselage and wings of the aircraft. Next, these properties are
used in the computer program NATASHA to perform the stability
analysis and provide the trim state results. Finally, these results are
returned to the VABS software to acquire the stresses through the
wings. Figure 2 presents a schematic view of the numerical simu-
lation procedure in this study.
The design of the aircraft contains twowings with a length of 18m

and a fuselagewith a length of 4m.Weused airfoil NACA0012with a
chord of 1 m in this study. Each wing has 18 elements, and the
fuselage has four elements. The fuselage is linearly tapered from the
center to the root of each wing, and it is treated as a rigid body. There
are two enginesmounted on the fuselage of the aircraft, inwhich each

engine has a mass equal to 10 kg. This value is constant in all cases
that are presented. Nine flaps are considered for eachwing, which are
distributed between the midspan and the tip of the wings. The
schematic view of the designed aircraft is shown in Figs. 3 and 4.
Nine cross-sectional configurations of the wings are displayed in

Table 1, and the mechanical properties of these configurations are
presented in Tables 2–4. Additionally, Table 5 lists the aerodynamic
properties.

IV. Results and Discussion
First, we present the stability of the flying-wing aircraft for all of

the nine cases under scrutiny. Next, we analyze the flow of stresses in
two separate studies while the total mass in the plane of the cross
sections remains identical. In the first study that includes the con-
figurations I–V,we examine the significance of the flow of stresses as
wemorph the pathways for stresses from the lead-lag direction (b2) to
the plunge direction (b3). This study sheds light on the fact that the
pathways with thicker branches in the plunge direction improve the
aeroelastic stability of the aircraft. In the second case study that
includes the configurations V–IX, we focused on improving the flow
of stresses in the b3 direction by morphing the pathways of the
stresses toward smoother shapes, examining rectangular, triangular,
polygonal, circular, and oval configurations.
We investigated the stresses and concluded that the most dominant

stresses are σ11, σ12, σ13. These findings are in accord with our earlier
studies [6,22,44,45]. Therefore, we present σ11, σ12, σ13, and Von
Mises stresses in this paper.

Fig. 2 The simulation procedure.

Fig. 3 3-D view of the flying-wing aircraft.

Fig. 4 Top view of the flying-wing aircraft.
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The flutter speed and frequency of cases I–IX are presented in
Fig. 5 and Table 6. These results illustrate that the stability of the
flying-wing aircraft increases significantly by changing the con-
figuration of the wing cross section. Cases I–V show that removing
the mass from the b2 direction and adding the removed mass to
the branches in the b3 direction increases the flutter speed.

Furthermore, cases V–IX indicate that shapes such as a rectangle,
triangle, polygon, circle, and oval affect the flutter speed of the
aircraft significantly. Table 6 shows that the divergence speed
increases by changing the wing cross-section configuration from
case I to IX. The divergence speed of case IX is approximately 21%
greater than case I.”

Table 2 The cross-sectional properties of the wings for cases I, II, and III in SI unit system

Property Case I Case II Case III
Span, m 20 20 20

R, N−1 2

4
3.79×10−9 0 0

0 1.12×10−8 5.33×10−12

0 5.33×10−12 6.15×10−7

3

5

2

4
3.80×10−9 0 0

0 1.20×10−8 3.54×10−12

0 3.54×10−12 1.20×10−7

3

5

2

4
3.85×10−9 0 0

0 1.32×10−8 −1.93×10−13

0 −1.93×10−13 1.06×10−7

3

5

S, N−1 ⋅m−1 2

4
0 −7.10×10−13 2.45×10−9

2.45×10−11 0 0
−4.10×10−7 0 0

3

5

2

4
0 3.60×10−14 2.56×10−9

2.55×10−13 0 0
−4.13×10−7 0 0

3

5

2

4
0 1.65×10−13 2.96×10−9

−2.31×10−13 0 0
−4.29×10−7 0 0

3

5

T, N−1 ⋅m−2 2

4
3.03×10−6 0 0

0 5.11×10−6 −1.67×10−11
0 −1.67×10−11 5.43×10−8

3

5

2

4
3.552×10−6 0 0

0 4.892×10−6 6.521×10−13

0 6.521×10−13 5.464×10−8

3

5

2

4
3.43×10−6 0 0

0 4.49×10−6 2.97×10−12

0 2.97×10−12 5.57×10−8

3

5

I, kg ⋅m
2

4
3.86×10−1 0 0

0 3.81×10−3 1.11×10−9

0 1.11×10−9 3.82×10−1

3

5

2

4
3.86×10−1 0 0

0 4.10×10−3 1.83×10−11

0 1.83×10−11 3.82×10−1

3

5

2

4
3.83×10−1 0 0

0 4.49×10−3 −1.35×10−12
0 −1.35×10−12 3.78×10−1

3

5

ξ; m
2

4
0

5.09 × 10−2

−2.36 × 10−18

3

5

2

4
0

5.26 × 10−2

−3.23 × 10−19

3

5

2

4
0

5.89 × 10−2

−6.82 × 10−19

3

5

Mass, kg ⋅m−1 5.513 5.514 5.513

Chord, m 1 1 1

Table 3 Properties of the wings for cases IV, V, and VI in SI units system

Property Case IV Case V Case VI
Span, m 20 20 20

R, N−1 2

4
3.90×10−9 0 0

0 1.50×10−8 −4.12×10−12

0 −4.12×10−12 9.50×10−8

3

5

2

4
3.92×10−9 0 0

0 2.28×10−8 −3.20×10−12

0 −3.20×10−12 8.78×10−8

3

5

2

4
3.91×10−9 0 0

0 1.79×10−8 −1.20×10−10

0 −1.20×10−10 9.04×10−8

3

5

S, N−1 ⋅m−1 2

4
0 4.61×10−14 3.06×10−9

1.63×10−11 0 0
−3.98×10−7 0 0

3

5

2

4
0 −3.03×10−14 3.28×10−9

1.78×10−11 0 0
−4.18×10−7 0 0

3

5

2

4
0 −1.23×10−10 3.27×10−9

−9.86×10−10 0 0
−3.99×10−7 0 0

3

5

T, N−1 ⋅m−2 2

4
3.29×10−6 0 0

0 4.18×10−6 8.98×10−14

0 8.98×10−14 5.69×10−8

3

5

2

4
3.12×10−6 0 0

0 3.92×10−6 1.29×10−12

0 1.29×10−12 5.49×10−8

3

5

2

4
3.15×10−6 0 0

0 3.88×10−6 1.38×10−9

0 1.38×10−9 5.75×10−8

3

5

I, kg ⋅m
2

4
3.78×10−1 0 0

0 4.82×10−3 −4.27×10−12
0 −6.74×10−13 3.73×10−1

3

5

2

4
3.94×10−1 0 0

0 5.09×10−3 −6.74×10−13
0 −4.27×10−12 3.85×10−1

3

5

2

4
3.75×10−1 0 0

0 5.17×10−3 −1.48×10−4

0 −1.48×10−4 3.70×10−1

3

5

ξ, m
2

4
0

6.31 × 10−2

−8.48 × 10−19

3

5

2

4
0

6.14 × 10−2

8.92 × 10−19

3

5

2

4
0

6.23 × 10−2

5.46 × 10−5

3

5

Mass, kg ⋅m−1 5.512 5.513 5.514

Chord, m 1 1 1

Table 1 The configurations of the wing cross sections

Case Configuration Case Configuration Case Configuration

I II III

IV V VI

VII VIII IX
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This study shows that case IX experiences flutter instability at
50.16 m∕s with 0.87 Hz, which has the highest flutter speed among
the cases. The normalized real and imaginary parts of eigenvalues
of this case are presented in Fig. 6. The eigenvalues and speed
are normalized with the associated flutter frequency and speed,

respectively. This figure presents the coalescence of first bending
and short-period modes of the aircraft at the frequency of 0.87 Hz.
Figure 7 shows the body-freedom flutter mode of the aircraft for
case IX.
The naturalmode shapes and frequencies are presented in Table 7.

The results demonstrate that the natural frequencies vary by chang-
ing the wing cross-section configuration. The frequencies of first
and third bending modes increase from case I to IX, whereas the
second bending mode frequency slightly decreases from case I to
III, and then it increases from case III to IX. The frequencies of
torsional modes decrease from case I to II, and then increase from
case II to IX.

Table 4 The cross-sectional properties of the wings for cases VII, VIII, and IX in SI unit system

Property Case VII Case VIII Case IX
Span, m 20 20 20

R, N−1 2

4
3.86×10−9 0 0

0 1.90×10−8 1.66×10−13

0 1.66×10−13 8.46×10−8

3

5

2

4
3.88×10−9 0 0

0 1.78×10−8 3.26×10−12

0 3.26×10−12 8.50×10−8

3

5

2

4
3.87×10−9 0 0

0 1.68×10−8 1.96×10−12

0 1.96×10−12 8.13×10−8

3

5

S, N−1 ⋅m−1 2

4
0 −1.42×10−14 2.79×10−9

−7.50×10−13 0 0
−3.76×10−7 0 0

3

5

2

4
0 2.72×10−14 2.97×10−9

−9.44×10−12 0 0
−3.63×10−7 0 0

3

5

2

4
0 5.04×10−14 3.08×10−9

−1.04×10−11 0 0
−3.47×10−7 0 0

3

5

T, N−1 ⋅m−2 2

4
3.00×10−6 0 0

0 3.73×10−6 −2.86×10−13

0 −2.86×10−13 5.58×10−8

3

5

2

4
2.82×10−6 0 0

0 3.66×10−6 1.60×10−13

0 1.60×10−13 5.44×10−8

3

5

2

4
2.74×10−6 0 0

0 3.60×10−6 5.24×10−13

0 5.24×10−13 5.86×10−8

3

5

I, kg ⋅m
2

4
3.82×10−1 0 0

0 5.41×10−3 1.30×10−13

0 1.30×10−13 3.76×10−1

3

5

2

4
3.94×10−1 0 0

0 5.51×10−3 −1.25×10−12
0 −1.25×10−12 3.88×10−1

3

5

2

4
3.66×10−1 0 0

0 5.60×10−3 −1.35×10−12
0 −1.35×10−12 3.60×10−1

3

5

ξ, m
2

4
0

5.56 × 10−2

−3.60 × 10−19

3

5

2

4
0

6.03 × 10−2

−1.28 × 10−18

3

5

2

4
0

5.80 × 10−2

4.27 × 10−18

3

5

Mass, kg ⋅m−1 5.513 5.513 5.514

Chord, m 1 1 1

Table 5 The aerodynamic properties and coefficients of the wings

Property e, m clα clβ cd0 cm0
cmα

cmβ
ρ, kg ⋅m−3

Value 0.25 2π 1 0.01 0.0 −0.08 −0.25 0.0889

Fig. 5 Flutter characteristics of nine cross-section configurations of a wing.

Table 6 Aeroelastic instability characteristics of nine cross-section configurations of a wing

Case I II III IV V VI VII VIII IX

Flutter speed, m∕s 42.50 43.28 45.16 46.87 47.97 48.44 49.06 49.84 50.16
Flutter frequency, Hz 0.71 0.73 0.77 0.81 0.83 0.84 0.85 0.86 0.87
Divergence speed, m∕s 66.72 69.37 73.12 76.09 77.97 79.06 79.53 80.62 80.94
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The stability analysis demonstrates the advantage of using cir-
cular and oval voids in the design of a wing cross section. In the
following sections, we present how the stresses flow through the
configurations, and we discuss the analogy between instability and
stress distributions.

A. Case Study 1

In this section, we study the flow of stresses of the wing cross-
section configuration I–V.Wederived the flowof stresses for all cases
under the same flight condition at the cruise speed of 40 m∕s. Case I
does not have any branches in the plunge direction (b3). The thick-
ness of the branches in the b3 direction increases from case II to IV.
Therefore, the thickness of the strip in the b2 decreases. Case V
presents a configuration that only has branches in theb3 direction.We
present the flow of stresses for these cases in Figs. 8–11.
Figure 8 shows the distribution of σ11, which indicates that all the

configurations are under compression at the upper surface and under

tension at the lower surface of the wing. The magnitude of this
component of the stress decreases from case I to V. The distribution
of σ11 becomes smoother when the configuration changes from case I
to V. Case V has the highest flutter speed. Our study shows that this
case has the smoothest distribution of σ11 among the other cases.
Figures 9 and 10 present the σ12 and σ13 distributions. σ13 flows

mainly in the stress-carrying pathways, in the b2 direction. As the
thickness of the pathway in the b2 direction decreases, stress stran-
gulation occurs; see case V. However, the magnitude of these stresses
is significantly smaller than σ11: σ12 is one order of magnitude
smaller, and σ13 is two orders of magnitude smaller than σ11. These
findings indicate that σ11 plays themajor role in affecting the stability
of the aircraft.
Figure 11 illustrates the Von Mises stress distribution of case I–V.

The strip (i.e., the stress pathway in the b2 direction) does not carry a
significant amount of the flow of Von Mises stresses. Hence, the
burden of carrying the flow of Von Mises stresses belongs mainly to
the skin of the wing profile. The Von Mises stress concentration
decreases in the outer region of the cross section from case I to V.
Finally, case V has a lower magnitude of Von Mises stress distribu-
tion, resulting in higher flutter speed than in the other cases in this
section of the study.
This study indicates that stresses flow mainly in the plunge direc-

tion (b3) throughout the cross section of the wing, and the strip in the
b2 direction does not play a major role in carrying the stresses.
Furthermore, smoother flow of stresses and better stability occur in
case V, which has wider branches in the b3 direction. Therefore, we
focus on improving the stress-carrying pathway configurations that
are affective in the b3 direction.

B. Case Study 2

Based on the conclusion reached in the preceding section, here we
concentrate on the flow of stresses in the plunge direction b3 through
the cross section of thewing. We design the configurations only with

Fig. 6 Eigenvalue behavior of case IX: a) real parts, and b) imaginary parts.

Fig. 7 Body-freedom flutter mode shape of case IX.

Table 7 Natural mode shape frequencies of nine cross-section configurations of a wing

Frequency, Hz
Mode I II III IV V VI VII VIII IX
First bending 1.13 1.36 1.43 1.48 1.52 1.54 1.56 1.58 1.60
Second bending 3.90 3.88 3.85 3.98 4.07 4.13 4.20 4.22 4.30
Third bending 6.91 7.09 7.41 7.68 7.87 7.97 8.11 8.17 8.31
First torsional 12.91 12.09 12.42 12.82 12.93 13.17 13.28 13.53 14.23
Second torsional 39.51 36.55 37.52 38.72 39.10 39.82 40.18 40.92 43.01
Third torsional 66.67 61.51 63.13 65.15 65.71 66.96 67.51 68.80 72.38
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Fig. 9 Study 1, σ12 (pa) distribution of wing cross section at the cruise speed of 40 m∕s.

Fig. 8 Study 1, σ11 (pa) distribution of wing cross section at the cruise speed of 40 m∕s.

Fig. 10 Study 1, σ13 (pa) distribution of wing cross section at the cruise speed of 40 m∕s.
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branches in the b3 direction, and morph these stress–carrying path-
ways using shapes, such as a rectangle, triangle, polygon, circle, and
oval. Similar to our approach in the preceding section, we maintain
the same flight condition (i.e., cruise speed of 40 m∕s) and cross-
sectional mass distribution. Figures 12–15 present the stress distri-
bution for case V–IX. The distribution of σ11 indicates that the upper
and lower wing surfaces are under compression and tension, respec-
tively. Themagnitude of σ11 decreases from caseV to IX. Case IXhas
a smoother flow of stresses compared to the other configurations and
has a higher flutter speed.
Figures 13 and 14 show σ12 and σ13 distributions. Stress strangu-

lation for both σ12 and σ13 appear in all stress-carrying pathways of
the configurations. However, because themagnitude of these stresses
are considerably smaller than σ11, their effect on the aeroelastic
stability of the aircraft is less significant.

Figure 15 shows the Von Mises stress distribution for case V–IX.
Case V is exhibiting significant stress strangulation at the root of the
wing. This stress strangulation becomes smoother as we morph the
configuration from the rectangular pattern in case V, to the oval
pattern in case IX. Case IX has a smoother flow of stresses and
achieves higher flutter speed. Noteworthy is that case IX has the
smoothest stress distribution and the highest flutter speed among all
the configurations in this study.
This section shows that the configurations with curved or smooth

edges achieve a smoother flow of stresses, which results in a higher
flutter speed than in other configurations.
The stress distribution of σ11 for cases with sharp edges, such as a

rectangular pattern in case Vand triangular pattern in case VI, shows
that the stresses accumulate around those edges, the stress strangu-
lations increase, and the flutter speed decreases.

Fig. 11 Study 1, Von Mises stress (pa) distribution of wing cross section at the cruise speed of 40 m∕s.

Fig. 12 Study 2, σ11 (pa) distribution of wing cross section at the cruise speed of 40 m∕s.
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Fig. 14 Study 2, σ13 (pa) distribution of wing cross section at the cruise speed of 40 m∕s.

Fig. 15 Study 2, Von Mises stress (pa) distribution of wing cross section at the cruise speed of 40 m∕s.

Fig. 13 Study 2, σ12 (pa) distribution of wing cross section at the cruise speed of 40 m∕s.
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V. Conclusions
The configuration of the cross section of the wing significantly

affects the aeroelastic stability of a flying-wing aircraft. In this paper,
we invoked the constructal law and the concept of the flow of stresses
to investigate the aeroelastic stability of nine configurations of the
cross sections of thewings of a flying-wing aircraft. Themass per unit
length, material, and cruise condition are maintained constant as the
configurations of the cross sections of the wings change.
The results show that the magnitude and the flow of stresses

change from case I to case IX. This indicates that σ11 and Von Mises
stresses have a critical role in the analysis and prediction of the
aeroelastic instabilities of the aircraft.
The first section of this study compares the significance of the flow

of stresses in the stress-carrying pathways in the lead-lag direction
(b2) with the stress-carrying pathways in the plunge direction (b3).
We remove mass from the strip in the b2 direction and generate
branches in the b3 direction while the total cross-sectional mass
remains constant. Our results indicate that the branches in the b3
direction are the major stress-carrying pathway compared with the
strip in the b2 direction, and play the major role in the flow of stresses
affecting the aeroelastic stability of the flying-wing aircraft.
The focus of the second section of our study was to improve the

distribution of the flow of stresses and avoid stress strangulations in
the configurations where the branching is the dominant pattern. We
implemented shapes such as rectangular, triangular, polygonal, cir-
cular, and oval to design the cross sections. The results show that the
flow of stresses is smoother in the shapes with curved edges, such as
circle and oval. Hence, the aeroelastic stability of the aircraft
improves. On the other hand, the configurations with sharp edges,
such as rectangle or triangle, create stress concentrates in the wing
cross section, and the flutter speed drops.
Finally, comparing the stability results shows that the cases with

higher flutter speed are associated with the cross-sectional patterns
that have the smoothest flow of stresses in the pathways oriented in
the plunge direction of the airfoil. The cases with circular and oval
voids are among the best designs that accommodate the flow of the
stresses smoothly around the curved geometries.
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