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The aeroelastic flight envelops of flying wing aircraft can be extended with a better flow

of stresses in the structure. In the present study, we investigate the e�ect of cross-section

configuration on the stress distribution and aeroelastic behavior of a flying wing aircraft. We

invoke the constructal law and the principle; the prevention of stress strangulation leads to a

wing design associated with the most stable and lightest structure. We used three computer

programs Gmsh, VABS (Variational Asymptotic Beam Sectional Analysis), and NATASHA

(Nonlinear Aeroelastic Trim And Stability of HALE Aircraft) to study stress distribution and

stability of the flying wing aircraft. The results indicate that di�erent wing cross-section designs

a�ect stress distribution as well as the aeroelastic stability of the aircraft. Furthermore, the

design with less stress strangulation is associated with a higher flutter speed structure.

Nomenclature

0 Deformed beam aerodynamic frame of reference

1 Undeformed beam cross-sectional frame of reference

⌫ Deformed beam cross-sectional frame of reference

b8 Unit vectors in undeformed beam cross-sectional frame of reference (8 = 1, 2, 3)

B8 Unit vectors of deformed beam cross-sectional frame of reference (8 = 1, 2, 3)

2 Chord

⇠18 Transformation matrix from the inertial frame 8 to deformed frame 1

⇠⌫8 Transformation matrix from the inertial frame 8 to deformed frame ⌫

⇠81 Transformation matrix from the undeformed frame 1 to inertial frame 8

⇠8⌫ Transformation matrix from the deformed frame ⌫ to inertial frame 8

230 , 2;0 Aerodynamic drag and lift coe�cients at zero angle of attack
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2<V Pitch moment coe�cient w.r.t. flap deflection (V)

2;U Lift coe�cient w.r.t. angle of attack (U)

2;V Lift coe�cient w.r.t. flap deflection (V)

41 Column matrix

4 O�set of aerodynamic center from the origin of frame of reference along b2

5 Column matrix of distributed, applied force measured in B8 basis

� Column matrix of internal force measured in B8 basis

g Gravitational vector in B8 basis

� Column matrix of cross-sectional angular momentum measured in B8 basis

8 Inertial frame of reference

i8 Unit vectors for inertial frame of reference (8 = 1, 2, 3)

� Cross-sectional inertia matrix

: Column matrix of undeformed beam initial curvature and twist measured in b8 basis

 Column matrix of deformed beam curvature and twist measured in B8 basis

< Column matrix of distributed, applied moment measured in B8 basis

" Column matrix of internal moment measured in B8 basis

% Column matrix of cross-sectional linear momentum measured in B8 basis

A Column matrix of position vector measured in b8 basis

D Column matrix of displacement vector measured in b8 basis

+ Column matrix of velocity measured in B8 basis

G1 Axial coordinate of beam

U Angle of attack

V Trailing edge flap angle

W Column matrix of 1D generalized force strain measures

� Identity matrix

^ Column matrix of elastic twist and curvature measures (1D generalized moment strain measures)

_ Column matrix of induced flow states

` Mass per unit length

b Column matrix of center of mass o�set from the frame of reference origin

d Air density

k Column matrix of small incremental rotations

⌦ Column matrix of cross-sectional angular velocity
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( ) 0 Partial derivative with respect to G1

§( ) Partial derivative with respect to time

ˆ( ) Nodal variable

I. Introduction

Humans now require air vehicles that are more a�ordable and capable of flying faster and further. As a result,

designers are constantly focusing on providing more energy-e�cient vehicles. This phenomenon is characterized in

thermodynamics in terms of the system’s "energy-conversion e�ciency": the higher the e�ciency, the better the design

[1]. The thermodynamics laws describe the phenomena of irreversibility and energy conservation. The constructal law

explains the phenomenon of natural evolution and change: “For a finite-size flow system to persist in time (to live), its

configuration must evolve in such a way that provides greater and greater access to the currents that flow through it" [2].

The constructal law provides a solution for a problem by predicting configurations without making any assumptions.

Bejan et al. [3] demonstrated that design evolution is a natural and predictable phenomenon in nature.

Several successive constructal law applications in the evolutionary design of engineering and biological systems are

presented in the books "Shape and Structure, from Engineering to Nature" and "Design with constructal theory" [4, 5].

Constructal law predicts the evolution of human-and-machine species such as helicopters, aircraft, and ships in which

are perfect agreement with the evolution of animals [6–9]. We can study the evolution of airplanes (e.g., fuel load,

speed, wings, fuselage, and engine) by employing theories derived from the Constructal law [10–12]. For example,

"Large or small, airplanes exhibit a proportionality between wingspan and fuselage length, and between fuel load and

body size" [1, 10]. The e�ciency and stability of an aircraft can be significantly influenced by selecting the proper

engine size; "this scaling is analogous to animal design, where the mass of the motive organs (muscles, heart, lungs) is

proportional to the body size" [7].

In the design of airplane parts, a variety of strategies have been used [13–16]. Schumacher et al. [15] applied the

Multidisciplinary Design Optimization (MDO) method in the design process of a wing box of a Fairchild Dornier

regional jet family. Rao et al. [16] used a topology optimization method to find the best design of wing of Dornier

aircraft, which was designed by considering the optimum material distribution and configuration. Hong Zhu et al. [17]

studied topology optimization in a variety of aircraft aspects, including shape-preserving design in aerospace, dynamic

responses, and aircraft body structure. These methods work by searching through predetermined configurations and

selecting the best one that meets the design goals. According to the constructal law, the designer has no presumptions

when discovering and constructing the configuration and derives the appropriate geometry from the principles. The

constructal approach facilitates the design to improve [18].
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The flow plays an essential part in evaluating a system. In flow systems, three main properties stand out: what flows

through the system (fluid, heat, mass, stress, etc.), how much flows can transfer (flow rate, current, tra�c, etc.), and

where the stream is located (location and configuration). The where (geometry, configuration, and design) is the focus

of the discoveries based on the constructal law [1, 19]. The main idea investigated by the constructal law is the location

where the stream runs [20]. The stability of a flexible structure is a�ected by the strangulation (or concentration) of

the flow of stresses. When the cross-section is homogeneous, the stress flows smoothly, resulting in the lightest and

strongest structure possible[20]. To seek various wing cross-section configurations, we use the constructal law and the

evolution of the flow of stresses in this work.

Mardanpour et al. [1] demonstrated how a design parameter like engine placement has a significant impact on

aeroelastic stability and stress distribution in the aircraft’s wings. Izadpanahi et al. [21, 22] found that if the flow

of stresses is not strangled through wings of aircraft, higher flutter can be achieved. In addition, Moshtaghzadeh et

al. [18, 22] investigated the relationship between aeroelastic instabilities and stress strangulation through the wing

cross-section and the wing. It is demonstrated that circular and oval voids are the most e�ective designs, allowing

stresses to flow easily around curved geometries.

In this paper, we derive an aeroelastic constructal theory to scale up (add complexity) to the design of the wing

cross-section. We use the numerical simulation program Nonlinear Aeroelastic Trim And Stability of HALE Aircraft

(NATASHA)[23, 24] to analyze the stability of the aircraft. This computer program benefits from the nonlinear

composite beam theory of Hodges [25] and the finite induced flow model of Peters et al. [26]. NATASHA has been

verified and validated with both experimental and numerical benchmarks [27–35]. The flow of stresses of the trimmed

aircraft with di�erent wing designs is recovered using Variational Asymptotic Beam Sectional Analysis (VABS). Finally,

the contour of each stress tensor component will be plotted, and the relationship with the flutter characteristics will be

explored.

II. Theory

A. Nonlinear Composite Beam Theory

The fully intrinsic nonlinear composite beam theory is based on first-order partial di�erential equations of motion

for the beam, which are independent of displacement and rotation variables. The equations contain variables that are

expressed in terms of the bases of the reference frames for the undeformed and deformed beams, 1(G1) and ⌫(G1, C),

respectively; see Fig. 1. These equations are based on force, moment, angular velocity, and velocity with nonlinearities
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B 1
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Fig. 1 The essential features of beam kinematics [25].

of second order. The equations of motion are:

� 0
⌫ + e ⌫�⌫ + 5⌫ = §%⌫ + e⌦⌫%⌫

" 0
⌫ + e ⌫"⌫ + (e41 + eW)�⌫ + <⌫ = §�⌫ + e⌦⌫�⌫ + e+⌫%⌫

(1)

where the generalized strains and velocities are related to stress resultants and moments by the structural constitutive

equations 8>>>><
>>>>:
W

^

9>>>>=
>>>>;
=

26666664
' (

() )

37777775

8>>>><
>>>>:
�⌫

"⌫

9>>>>=
>>>>;

(2)

and the inertial constitutive equations 8>>>><
>>>>:
%⌫

�⌫

9>>>>=
>>>>;
=

26666664
`� �`eb
`eb �

37777775

8>>>><
>>>>:
+⌫

⌦⌫

9>>>>=
>>>>;
. (3)

Finally, strain- and velocity-displacement equations are used to derive the intrinsic kinematical partial di�erential

equations [25], which are given as

+ 0
⌫ + e ⌫+⌫ + (e41 + eW)⌦⌫ = §W

⌦0
⌫ + e ⌫⌦⌫ = §̂

(4)

In this set of equations, �⌫ and "⌫ are column matrices of cross-sectional stress and moment resultant measures in the

⌫ frame, respectively; +⌫ and ⌦⌫ are column matrices of cross-sectional frame velocity and angular velocity measures

in the ⌫ frame, respectively; %⌫ and �⌫ are column matrices of cross-sectional linear and angular momentum measures

in the ⌫ frame, respectively; ', (, and ) are 3⇥3 partitions of the cross-sectional flexibility matrix; � is the 3⇥3 identity

matrix; � is the 3⇥3 cross-sectional inertia matrix; b is b0 b2 b3c) with b2 and b3 representing the position coordinates
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of the cross-sectional mass center with respect to the reference line; ` is the mass per unit length; f( ) denotes the

antisymmetric 3⇥3 matrix associated with the column matrix over which the tilde is placed; §( ) denotes the partial

derivative with respect to time; and ( ) 0 denotes the partial derivative with respect to the axial coordinate, G1. More

details about these equations can be found in Ref. [36]. This is a complete set of first-order, partial di�erential equations.

To solve the system of equations, one may eliminate W and ^ using Eq. (3) and %⌫ and �⌫ using Eq. (4). Then, 12

boundary conditions are needed in terms of force (�⌫), moment ("⌫), velocity (+⌫) and angular velocity (⌦⌫). The

maximum degree of nonlinearities is two, and because displacement and rotation variables do not appear, singularities

caused by finite rotations are avoided. If needed, the position and the orientation can be calculated as post-processing

operations by integrating

A 08 = ⇠
8141

A8 + D08 = ⇠8⌫ (41 + W)
(5)

and

(⇠18) 0 = �e:⇠18

(⇠⌫8) 0 = �(e: + ê)⇠⌫8
(6)

Here ⇠ defines the transformation matrix, A is column matrix of position vector measured in b8 basis, and D indicates

the column matrix of displacement vector measured in b8 basis [18].

B. Finite State Induced Model

The two-dimensional finite state aerodynamic model of Peters et al. [26]is a state-space, thin-airfoil, inviscid,

incompressible approximation of an infinite-state representation of the aerodynamic loads, which accounts for induced

flow in the wake and apparent mass e�ects, using known airfoil parameters. It accommodates large motion of the

airfoil as well as deflection of a small trailing-edge flap. Although the two-dimensional version of this model does not

account for three-dimensional e�ects associated with the wing tip, published data [26, 27, 30] show that this theory is

an excellent approximation of aerodynamic loads acting on high-aspect ratio wings. The lift, drag and pitching moment

at the quarter-chord are given by:

!04A> = d1
h⇣
2;0 + 2;V V

⌘
+)+02 � 2;U §+03 1/2 � 2;U+02

�
+03 + _0 �⌦011/2

�
� 23>+)+03

i
(7)

⇡04A> = d1
h
�

⇣
2;0 + 2;V V

⌘
+)+03 + 2;U

�
+03 + _0

�2 � 23>+)+02

i
(8)

"04A> = 2d1
h⇣
2<0 + 2<V V

⌘
+) � 2<U+)+03 � 12;U/8+02⌦01 � 122;U §⌦01 /32 + 12;U §+03 /8

i
(9)

+) = (+2
02

++2
03
)1/2. (10)
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sinU =
�+03

+)
(11)

UA>C =
⌦011/2
+)

(12)

and +02 , +03 are the measured values of +0, and V is the angle of flap deflection. The e�ect of unsteady wake (induced

flow) and apparent mass appear as _0 and acceleration terms in the force and moment equations. The induced flow

model of Peters et al. [26] is included to calculate _0 as,

[�induced flow] { §_} +
✓
+)
1

◆
{_} =

✓
� §+03 +

1

2
§⌦01

◆
{2induced flow} (13)

_0 =
1
2

�
18=3D243 5 ;>F

 ) {_} (14)

where _ is the column matrix of induced flow states, and
⇥
�8=3D243 5 ;>F

⇤
,
�
28=3D243 5 ;>F

 
,
�
18=3D243 5 ;>F

 
are constant matrices derived in Ref.[26] [18].

C. Aeroelastic System

The aeroelastic system is described by coupling the aerodynamic equations with the structural equations,

[�] { .G} + {⌫ (G)} = { 52>=C } (15)

where, {G} and 52>=C represent the vector of all the aeroelastic variables and the vector of the flight controls, respectively.

The resulting nonlinear ordinary di�erential equations are linearized about a static equilibrium state. The equilibrium

state is governed by nonlinear algebraic equations, which the code NATASHA solves in obtaining the steady-state trim

solution using the Newton-Raphson procedure [23]. This system of nonlinear aeroelastic equations, when linearized

about the resulting trim state, leads to a standard eigenvalue problem, which NATASHA uses to analyze the stability of

the structure. The linearized system can be represented as

[�]
⇢ .

ˆ
G

�
+ [⌫]

⇢
ˆ
G

�
=

⇢
ˆ
5 2>=C

�
(16)

where ˆ( ) indicates the perturbation about the steady-state values [18].
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D. Variational Asymptotic Beam Sectional Analysis (VABS)

VABS [37–39] is a commercial software that uses the variational method to simplify a 3D nonlinear analysis. It

projects 3D slender structures to a two-dimensional (2D) cross-sectional and one dimensional (1D) beam analysis.

VABS decreases the analysis time from hours to seconds while maintaining the accuracy of detailed 3D FEA. It uses a

finite element mesh of the cross-section and material properties as inputs to calculate the cross-sectional properties (e.g.,

structural properties and inertial properties). It also performs stress recovery using inputs such as axial and shear forces,

moments, distributed forces, and moments including applied and inertial [18].

III. Numerical Simulation

We employed three computer programs, Gmsh [40], VABS, NATASHA, and several functions and scripts are

developed in MATLAB to connect these software packages and perform the postprocessing of stresses [18]. In this study,

we used Gmsh software to mesh the cross-section of a flying aircraft. Then, we used VABS to find the cross-sectional

properties of the fuselage and wings of the aircraft. We utilized these properties as inputs in the computer program

NATASHA to evaluate the stability analysis and find the trim state results. Finally, the results are fed into the VABS

software, which calculates the stresses in the wings. Figure 2 shows the numerical simulation procedure in this paper.

Fig. 2 The simulation procedure.

In this study, the aircraft has two wings and a fuselage measuring 18 m and 4 m in length. We studied the airfoil

NACA0012 with a 1 m chord. The fuselage has four elements, and each wing has 18 elements. From the center to the

root of each wing, the fuselage is linearly tapered and considered as a rigid body. The aircraft includes two engines,

each with a mass of 10 kg, mounted on the fuselage. For each wing, nine flaps are considered, distributed between the

mid-span and the tip of the wings. The wings are swept with 15> backward. Fig. 3 depicts a schematic view of the

designed aircraft and Table 1 includes a list of aerodynamic properties.
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Fig. 3 3D view of the flying wing aircraft.

Property e [m] 2;U 2;V 230 2<0 2<U 2<V d [:6.<�3]

Value 0.25 2c 1 0.01 0.0 -0.08 -0.25 0.0889

Table 1 The aerodynamic properties and coe�cients of the wings.

Tables 2- 3 provide the mechanical properties of the proposed configurations in this study. Table 4 shows these six

cross-sectional configurations. Case I contains a thick strip in the b2 direction. The thickness of this strip decreases in

case II. The removed mass is added to the branches in the plunge direction (b3). In addition, the configuration of cases

V and VI is inspired by bird’s wing [41].

IV. Results and Discussion

First, we examine the flying wing aircraft’s stability in each of the six cases. Then, we investigate the flow of stresses

through the wing while keeping the overall mass in each cross-section the same.

In the configurations I to II, we study the flow of stresses as the stress pathways are morphed from the lead-lag (b2)

to the plunge direction (b3). Decreasing the pathway in the lead-lag direction and increasing the thickness in the plunge

direction could improve the aeroelastic stability of the aircraft. We focus on enhancing the flow of stresses in the b3

direction in configurations II to VI by morphing the stress paths toward smoother geometries. We discovered that f11,

f12, f13 are the most dominant stresses. These results are consistent with our earlier studies [18, 22, 42–44]. Therefore,

f11, f12, f13, and Von Mises stresses are presented in this paper.

The flutter speed and frequency are presented in Table 4. These findings show that changing the wing cross-section

configuration considerably improves the stability of a flying wing aircraft. Comparing cases I and II demonstrates that
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Property Case I Case II Case III

Span [<] 20 20 20

R [#�1]
2666664

3.80 ⇥ 10�9 0 0

0 1.20 ⇥ 10�8 3.54 ⇥ 10�12

0 3.54 ⇥ 10�12 1.20 ⇥ 10�7

3777775

2666664

3.90 ⇥ 10�9 0 0

0 1.65 ⇥ 10�8 �3.99 ⇥ 10�13

0 �3.99 ⇥ 10�13 9.16 ⇥ 10�8

3777775

2666664

3.91 ⇥ 10�9 0 0

0 1.65 ⇥ 10�8 2.42 ⇥ 10�12

0 2.42 ⇥ 10�12 1.04 ⇥ 10�7

3777775

S [#�1.<�1]
2666664

0 3.60 ⇥ 10�14 2.56 ⇥ 10�9

2.55 ⇥ 10�13 0 0

�4.13 ⇥ 10�7 0 0

3777775

2666664

0 �3.37 ⇥ 10�14 3.30 ⇥ 10�9

1.27 ⇥ 10�11 0 0

�4.11 ⇥ 10�7 0 0

3777775

2666664

0 5.06 ⇥ 10�14 3.32 ⇥ 10�9

�1.28 ⇥ 10�11 0 0

�4.50 ⇥ 10�7 0 0

3777775

T [#�1.<�2]
2666664

3.552 ⇥ 10�6 0 0

0 4.892 ⇥ 10�6 6.521 ⇥ 10�13

0 6.521 ⇥ 10�13 5.464 ⇥ 10�8

3777775

2666664

3.24 ⇥ 10�6 0 0

0 4.08 ⇥ 10�6 �1.42 ⇥ 10�13

0 �1.42 ⇥ 10�13 5.69 ⇥ 10�8

3777775

2666664

3.26 ⇥ 10�6 0 0

0 4.09 ⇥ 10�6 4.17 ⇥ 10�13

0 4.17 ⇥ 10�13 5.66 ⇥ 10�8

3777775

I [:6.<]
2666664

3.86 ⇥ 10�1 0 0

0 4.10 ⇥ 10�3 1.83 ⇥ 10�11

0 1.83 ⇥ 10�11 3.82 ⇥ 10�1

3777775

2666664

3.57 ⇥ 10�1 0 0

0 4.93 ⇥ 10�3 1.63 ⇥ 10�13

0 1.63 ⇥ 10�13 3.52 ⇥ 10�1

3777775

2666664

3.58 ⇥ 10�1 0 0

0 4.93 ⇥ 10�3 �5.12 ⇥ 10�13

0 �5.12 ⇥ 10�13 3.53 ⇥ 10�1

3777775

b [<]
2666664

0

5.26 ⇥ 10�2

�3.23 ⇥ 10�19

3777775

2666664

0

6.36 ⇥ 10�2

�6.51 ⇥ 10�20

3777775

2666664

0

6.41 ⇥ 10�2

�1.30 ⇥ 10�19

3777775
Mass [:6.<�1] 5.514 5.514 5.512

Chord [<] 1 1 1

Table 2 The cross sectional properties of the wings for cases I, II and III in SI unit system.

Property Case IV Case V Case VI

Span [<] 20 20 20

R [#�1]
2666664

4.33 ⇥ 10�9 0 0

0 1.31 ⇥ 10�8 1.79 ⇥ 10�9

0 1.79 ⇥ 10�8 2.55 ⇥ 10�7

3777775

2666664

4.17 ⇥ 10�9 0 0

0 1.57 ⇥ 10�8 �5.18 ⇥ 10�9

0 �5.18 ⇥ 10�9 1.11 ⇥ 10�7

3777775

2666664

4.33 ⇥ 10�9 0 0

0 1.30 ⇥ 10�8 1.79 ⇥ 10�9

0 1.79 ⇥ 10�9 2.55 ⇥ 10�7

3777775

S [#�1.<�1]
2666664

0 �1.10 ⇥ 10�8 6.09 ⇥ 10�9

1.41 ⇥ 10�8 0 0

�6.01 ⇥ 10�7 0 0

3777775

2666664

0 �4.77 ⇥ 10�9 5.09 ⇥ 10�9

3.01 ⇥ 10�8 0 0

�4.76 ⇥ 10�7 0 0

3777775

2666664

0 �1.10 ⇥ 10�8 6.09 ⇥ 10�9

1.41 ⇥ 10�8 0 0

�6.01 ⇥ 10�7 0 0

3777775

T [#�1.<�2]
2666664

3.09 ⇥ 10�6 0 0

0 3.98 ⇥ 10�6 �2.29 ⇥ 10�8

0 �2.29 ⇥ 10�8 6.03 ⇥ 10�8

3777775

2666664

3.22 ⇥ 10�6 0 0

0 4.05 ⇥ 10�6 �9.68 ⇥ 10�9

0 �9.68 ⇥ 10�9 6.05 ⇥ 10�8

3777775

2666664

3.09 ⇥ 10�6 0 0

0 3.98 ⇥ 10�6 �2.29 ⇥ 10�8

0 �2.29 ⇥ 10�8 6.03 ⇥ 10�8

3777775

I [:6.<]
2666664

3.36 ⇥ 10�1 0 0

0 5.07 ⇥ 10�3 1.96 ⇥ 10�3

0 1.96 ⇥ 10�3 3.31 ⇥ 10�1

3777775

2666664

3.34 ⇥ 10�1 0 0

0 4.98 ⇥ 10�3 8.21 ⇥ 10�4

0 8.21 ⇥ 10�4 3.29 ⇥ 10�1

3777775

2666664

3.36 ⇥ 10�1 0 0

0 5.07 ⇥ 10�3 1.96 ⇥ 10�3

0 1.96 ⇥ 10�3 3.31 ⇥ 10�1

3777775

b [<]
2666664

0

6.56 ⇥ 10�2

8.36 ⇥ 10�20

3777775

2666664

0

8.91 ⇥ 10�2

9.47 ⇥ 10�4

3777775

2666664

0

1.05 ⇥ 10�1

2.20 ⇥ 10�3

3777775
Mass [:6.<�1] 5.513 5.531 5.587

Chord [<] 1 1 1

Table 3 Properties of the wings for cases IV, V and VI in SI units system.
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changing the mass concentration from the b2 direction to the b3 direction increases the flutter speed. Although using

curve branches in b3 could increase the flutter speed in cases II to IV, this improvement is not significant. Finally, it is

shown that moving the mass center to the leading edge could enhance the flutter speed significantly from case V to VI.

Case Cross-Section Flutter Speed [m/s] Flutter Frequency [Hz]

I 43.28 0.732

II 47.34 0.816

III 47.34 0.816

IV 47.50 0.816

V 48.59 0.834

VI 49.84 0.847

Table 4 Description of Cases.

In the following, we present how the stresses flow through the configurations and discuss the analogy between

instability and stress distributions. We found the flow of stresses for all cases at a cruise speed of 40 m/s under the same

flight state. Figures 4-7 present the flow of stresses of the wing cross-section configurations.

It is found from Fig. 4 that all the configurations are under compression at the upper surface and under tension at

the lower surface of the wing. The magnitude of f11 decreases and the distribution of this stress component becomes

smoother from the case I to VI. f12 and f13 distributions are shown in Figs. 5-6. f13 flows mainly in the stress-carrying

pathways, in the b2 direction. By decreasing the thickness in the b2 direction, stress strangulation occurs. However, the

magnitude of these stresses has substantially smaller values than f11: f12 is one order of magnitude smaller, and f13 is

two orders of magnitude smaller than f11. These results demonstrate that f11 has a significant impact on the aircraft’s

stability.

Figure 7 presents the Von Mises stress distribution. Case I has considerable stress strangulation at the root of the

wing. This stress strangulation becomes smoother as we morph the configuration from case I to VI. Case VI reaches the

highest flutter speed, associated with a smoother flow of stresses. It is found that the path in the b2 direction does not

carry a significant amount of the flow of Von Mises stresses.
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Fig. 4 f11 (pa) distribution of wing cross-section at the cruise speed of 40 m/s.

Fig. 5 f12 (pa) distribution of wing cross-section at the cruise speed of 40 m/s.
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Fig. 6 f13 (pa) distribution of wing cross-section at the cruise speed of 40 m/s.

Fig. 7 Von Mises stress (pa) distribution of wing cross-section at the cruise speed of 40 m/s.
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V. Conclusion

To examine the aeroelastic stability of six configurations of the cross-sections of the wings of a flying wing aircraft,

we used the constructal law and the concept of the flow of stresses in this paper. The results indicate that the aeroelastic

stability of a flying wing aircraft is substantially influenced by the configuration of the wing’s cross-section. This paper

presents how the flow of stresses in the stress-carrying pathways in the lead-lag direction (b2) and the stress-carrying

pathways in the plunge direction (b3) a�ect the stability of a flying wing aircraft. While the total cross-sectional mass

remains constant, we reduce mass from the strip in the b2 direction and add them into branches in the b3 direction. We

designed cases V and VI by inspiring from brirds’ wing by focusing in the b3 direction.

According to the findings, f11 and Von Mises stresses are essential for the prediction of aircraft aeroelastic

instabilities. Stresses flow mainly in the plunge direction (b3) throughout the cross-section of the wing, which is the

principal stress-carrying pathway and plays a significant role in the flow of stresses a�ecting the aeroelastic stability of

the flying wing aircraft. The cases with higher flutter speed are associated with cross-sectional patterns that have the

smoothest distribution of stresses in the pathways orientated in the plunge direction of the airfoil. It is demonstrated that

sharp-edged shapes cause stress concentrates in the wing cross-section and reduce flutter speed. On the other hand, the

curved edges improve the flutter speed and make the flow of stresses smoother.
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