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ABSTRACT
The ever-increasing pace of scientific publication necessitates meth-
ods for quickly identifying relevant papers. While neural recom-
menders trained on user interests can help, they still result in long,
monotonous lists of suggested papers. To improve the discovery
experience we introduce multiple new methods for augmenting
recommendations with textual relevance messages that highlight
knowledge-graph connections between recommended papers and a
user’s publication and interaction history. We explore associations
mediated by author entities and those using citations alone. In a
large-scale, real-world study, we show how our approach signifi-
cantly increases engagement—and future engagement when me-
diated by authors—without introducing bias towards highly-cited
authors. To expandmessage coverage for users with less publication
or interaction history, we develop a novel method that highlights
connections with proxy authors of interest to users and evaluate it
in a controlled lab study. Finally, we synthesize design implications
for future graph-based messages.
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1 INTRODUCTION
Keeping on top of the literature while not being overwhelmed is
a fundamental yet aspirational goal for many scientists today [47,
88, 123, 125] due to the immense scale of archival knowledge and
its continued growth [18, 59, 85, 109]. While paper recommenda-
tion systems can help users identify useful papers from the larger
literature, users can have difficulty understanding why those pa-
pers might be relevant to them or match their interests. Exist-
ing approaches for addressing this challenge include providing
explanations of the recommender’s behavior, or providing rele-
vance messages that supplement recommendations, which may
increase the persuasiveness and informativeness of the recommen-
dations [16, 44, 49, 100, 102, 106, 108, 110–112, 117, 119, 126–128].

In this paper we compare the effectiveness of various types of
relevance messages for scientific paper recommendations in a large-
scale randomized study. Previous work has suggested the potential
effectiveness of citation [15]-, knowledge [22, 23, 87]-, and social-
[102] graphs for recommendations and relevance messages in vari-
ous domains of recommendations. However, what type of messages
is most impactful for scientific paper recommendations remains an
open question. To answer this, we compare two types of messages
that expose information about the interaction between the citation
graph and the user. The first type of messages finds the intersection
between reference papers in new paper recommendations—which
are recently published and often do not have any incoming citations
or rich metadata available—and papers the user previously pub-
lished or personally curated (e.g., ‘This paper cites 2 papers in your
library’). We refer to this approach as citation-based relevance mes-
saging that leverages relevance via what they read. Our second kind
infers the implicit social network of authors from the citation graph
to feature author-focused connections to recommended papers.
Specifically, this inferred author network consists of relations tar-
geted to our domain, such as which authors previously co-authored
together or who has cited whose work (e.g., ‘John Doe authored 3
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papers you cited’). We refer to this approach as direct author-based
relevance messaging that leverages relevance via who they know.
Unlike prior work that used citation [15]-, knowledge [22, 23, 87]-,
and social-graphs [102] to recommend or explain the recommenda-
tions, we use the citation and inferred author networks strictly to
generate useful relevance messages that supplement the recommen-
dations, in order to support a broad set of information needs that
goes beyond the maximal content relevance [13, 21]. Our relevance
messages are generated in a model-agnostic and post-hoc manner,
which may generalize to new application contexts independent of
the underlying recommender algorithms. To study users’ authen-
tic engagement patterns in a real-world scenario, we conducted a
field experiment on an existing alert system of a popular scholarly
search engine, which sends out emails with personalized paper
recommendations to users who have opted in to alerts.

Through an iterative design process, we developed robust mes-
sage designs for use in our two-month-long study with over 7,000
participants. Comparing the emails featuring direct author-based
relevance messages to emails featuring citation-based relevance
messages and Control, we saw the largest significant increases in
user engagement from the emails augmented with direct author-
based messages, which had user click-through rates that were 28%
higher than Control. Direct author-based relevance messages also
seemed to result in a higher level of future engagement, with 13%
overall increase over Control in the email open rates, and 30%
increase after the first two-week exposure to the messages. Fur-
thermore, through an analysis of the distribution of clicked paper
recommendations, we found that user engagement did not shift to
papers written by authors with higher academic status when direct
author-based messages were used compared to Control, suggesting
that the messages were unlikely to exacerbate the rich-get-richer
phenomenon [78].

However, the effectiveness of direct author-based relevance mes-
sages was limited by their scarcity; they boosted engagement more
than citation-based relevance messages despite occurring much
less frequently, on 4% of paper recommendations compared to 9%.
In follow-up analyses using generalized linear mixed models, we
show that substantially increasing the % of paper recommendations
featured with direct author-based relevance messages is indeed a
mechanism likely effective for further engaging users, even after
controlling for potential covariates. To increase the coverage, we de-
signed and implemented a newmethod for expanding the relevance
relations on the implicit social network using indirect author-based
relevance messages, which borrow from the networks of poten-
tially familiar and trusted middle authors via [author]-[trusted
author]-[user] triplet relations (e.g., assuming Dr. Anthony Fauci
is a user-trusted middle author, “Catherine Paules has authored 4
papers that Dr. Anthony Fauci cited.; You saved 5 of Dr. Anthony
Fauci’s papers in the library.”). In other words, the indirect author-
based relevance incorporates implicit ‘endorsement’ from a known
intermediate author, Dr. Fauci, whom the user may trust and from
whom they may appreciate paper recommendations.

In a controlled lab study with fourteen scientists, we show the
feasibility of indirect author-based messages for increasing message
coverage. In addition, we gained qualitative insights into different
types of benefits and challenges involved with different types of
relevance messages. At a high-level, the benefits can be classified

into two categories. The first category is benefits directly on rec-
ommendations, such as mobilizing the user’s mental models of
authors to gain a deeper understanding of recommended papers, or
judging the potential usefulness of them. The second category of
benefits is rather around the recommendations, such as developing
awareness of other scientists they care about, understanding con-
nections within academic communities, and understanding one’s
impact in the academic community. These findings confirm results
from prior studies that cast recommendation as a socially embed-
ded process that depends on both trust and the relationship of
individuals [70, 92], but also surface new factors and design impli-
cations specific to scientific recommendations situated in a broader
intellectual community.

In summary, this work makes five contributions. First, we de-
signed and implemented two types of graph-based (citation and
inferred author network) relevance messages for augmenting per-
sonalized paper recommendations, grounded in an iterative design
process and interviews with multiple stakeholders. Second, we
present evidence from a large-scale online deployment study show-
ing that our messaging approaches indeed increased user engage-
ment, and that direct author-based relevance messages performed
the best, although their full potential was likely not reached due to
low coverage. Third, we designed and implemented an additional,
indirect author-based message that models endorsement from in-
termediate authors who are likely known and trusted, in order
to further engage users by expanding the relations found on the
inferred author network to mitigate the scarcity of author-based
relevance messages. Fourth, through a controlled lab study with
fourteen scientists, we show the feasibility of indirect author-based
relevance messages and present qualitative insights into how differ-
ent types of relevance messages benefited users. Finally, we present
design implications for future augmentation approaches that aim
to incorporate graph-based relevance information.

2 RELATEDWORK
2.1 Exploratory Search Needs in Scholarly

Recommendations
The information environment for today’s scientists can be charac-
terized by the immense scale and dynamic changes [18, 54, 59, 77,
85, 98, 109, 122], which make effective allocation of attention [103]
an imperative for scientists. The issue of information overload [80]
is especially pronounced in the crucial task of staying up-to-date
with the relevant literature [65]. Compounded with domain-specific
knowledge barriers that make the scholarly reading experience
challenging [12, 51, 84], scientists’ experience with the literature is
often characterized as tedious, scattered, and relying upon chance
discovery [20].

Exploratory search and curatorial needs for scholarly recommen-
dations are high in this environment [65]. Additionally, what scien-
tists judge as relevant may not only be logical—such as topical or
narrowly defined as papers containing specific terms—but also situa-
tional, and depend on the scientist’s personal information needs that
go beyond the need for maximal content relatedness [13, 21]. To sup-
port the exploratory process of curating high-relevance papers, sci-
entists commonly adopt two kinds of often effortful strategies. The
first kind can be characterized by its use of citation networks which
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enable scientists to search forward or backward in time through ci-
tation or reference chaining [9, 11, 30, 58, 115, 120]. Chaining in this
manner requires scientists to maintain the relevance and coherence
between papers as their number grows exponentially. The second
kind leverages a different type of network, which is social in nature,
to support serendipitous sharing and finding of recommendations
on social media platforms such as Twitter [37, 55, 63, 81, 114] or
cold-emailing high-profile experts in an outside field to receive
valuable bibliography [30, 89, 90, 115].

To support these needs while reducing the burden of the labori-
ous process, prior work has explored ways to automatically explain
the recommended items’ relevance to the users. Such explanations
of relevance may be generated after the recommendations are de-
rived [100, 126], and may be focused on providing explanations of
the recommendation mechanisms themselves, which can better en-
gage users by enhancing their understanding of the inner workings
of the ‘black-box’ recommender algorithms [106, 108]. In contrast,
rather than focusing on providing faithful explanations of the inner
algorithm, our work seeks to increase the persuasiveness and infor-
mativeness [16, 102] of recommendations by incorporating external
relevance signals. Existing work in this space has explored ways to
incorporate relevant knowledge graph entities [22, 23, 87] or social
signals such as local (e.g., showing the user’s immediate friends’
preference) or global (e.g., overall popularity) relevance [102] to
increase persuasiveness. However, open questions remain as to how
and what kinds of relevance information may be incorporated into
scholarly recommendations to effect large-scale behavioral changes
in the scientist user population, and which approach works best.

2.2 Behavior Change and Motivation
To study the large-scale changes among the scientists engagingwith
scholarly recommendations, our work builds upon the literature
on behavior change and persuasion. These areas suggests several
techniques, such as principles of authority and social influence [4,
25, 26], which inspired our designs for increasing user engagement.
While these theories have been adapted in practice, our work is
different from all prior explorations in key aspects.

The vast majority of prior work tested their motivation strategies
only with crowd-sourced populations on platforms such as Amazon
Mechanical Turk [40, 56, 64, 72]. Furthermore, most message-based
behavior change designs have been applied in the context health
& well-being [57, 64, 83], civic engagement [40], UI testing [72], or
creative, brainstorming tasks [56]. Demographics and incentives of
users on crowd-sourcing platforms and in personal contexts can be
substantially different from our professional scholarly population
[113]. Finally, translating theory-informed or only lab-tested mo-
tivation designs into real-world systems has been shown to be a
non-trivial task due to feasibility limitations and ethical considera-
tions [29, 40]. Aside from these general limitations of prior work,
we further discuss in detail the specific differences in relation to
selected works closest to our designs.

Grau et al. [40] designed motivation-supportive messages in the
context of a crowd-civic platform, to engage volunteers, yet these
designs did not explore leveraging relevance or social graph, focus-
ing instead on aspects of controlled and autonomous motivation
tested only with a limited sample of the Korean population. Kociel-
nik and Hsieh [64] designed message triggers that are diversified

either by cognitively close concepts to the targeted action or the
recipient, and found that the close-to-recipient diversification was
more effective. This work offers insights about the importance of
closeness, yet it was tested in a limited deployment with 27 partici-
pants and in a substantially different domain of physical activity.
Unfortunately, factors affecting engagement can be substantially
different across different settings and populations [14, 36]. McInnis
et al. [72] focused on motivating one-time comments in an artifi-
cial task of “testing website interface” and hence is substantially
different from motivating long-term engagement. Hsieh et al. [56]
focused on exploring differences in user populations attracted by
different incentives (e.g., monetary reward vs lottery), but did not
explore the design of messaging or leveraging social graphs and
was limited to motivating single-time study participation.

2.3 Social Network-based Relevance
Information

Social recommendation has been a millenia-old mechanism for find-
ing personally relevant items, but the advent of social media enabled
its propagation at much greater scale. Social recommendations are
also common in the scholarly domain as described above; scientists
use platforms such as Twitter to share and access relevant papers
to read. Theoretically, important factors of social recommenda-
tion include homophily [74], diffusion and influence [67, 105], and
trust [69, 71], which originate from social network analysis. Prior
work in social network-centric recommendations developed de-
signs targeted at such factors to improve user engagement [42, 101].
However, open questions remain as to how the (social) network
information may be incorporated in scholarly recommendations.
No explicit network of scientists exists, and the interesting network
structure may not even be inherently social in the sense studied in
prior research. For example, while several works have studied the
notion of immediate friends in network-centric recommendations
and relevance explanations based on the theory of homophily (e.g.,
close friend groups may share similar tastes in music) and trust (e.g.,
‘if my friend likes this album, it must be good’) (e.g., [42, 101, 102]),
the importance of immediate relationships may fade away rather
quickly in the scholarly domain. The insight here is that similar
kinds of immediate closeness may not be as useful or even interest-
ing to scientist users, as they may already be familiar with the work
by their ‘friends’ (e.g., through co-authorship) and may instead
benefit more from relevant yet novel work mediated through more
distant connections. This implies characteristics of relevance diffu-
sion and trust relations within scholarly networks may differ from
those of the domains previously studied. Furthermore, important
questions arise from the perspective of system-wide fairness, for
example whether frequently featuring distant yet trusted authors
results in negative externalities such as skewed distribution of work
visibility and subsequent downstream reduction of impact from the
work made relatively less visible (e.g., the Matthew effect [78]).

In this work, we contribute to the literature of social network-
centric relevance messages in the domain of scholarly recommenda-
tions.We expand the design space by introducing a novel messaging
technique that leverages an intermediate, trusted author to expand
the coverage of relevance connections beyond the user’s own his-
tory, in order to highlight additional papers or authors that may be
of interest to the user. We contribute a large-scale deployment study
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Figure 1: An abbreviated email alert.

and a controlled lab study evaluating the effectiveness of messages
on inducing behavior and motivation changes. We further uncover
the distinctive usefulness and challenges of social network-centric
relevance messages. We end with a discussion of open questions
remaining for future work.

3 RELEVANCE MESSAGE DESIGN FOR
SCIENTIFIC RECOMMENDATIONS

Following an iterative design process, we designed two strategies
for engaging users with email alerts containing paper recommenda-
tions: citation- and author-based relevance messages, which augment
the recommendations. In this section, we describe our scientific
recommendation setting and message design iterations, and present
a detailed description of the designs themselves.

3.1 Email Alerts for Scientific Paper
Recommendations

We designed our engagement strategies to work within email alerts
sent from Semantic Scholar. The Semantic Scholar platform pro-
vided users the ability to search and curate interesting papers for
personalized research feeds. Users could explicitly assign a binary
positive (‘more like this’) or negative (‘less like this’) rating to each
paper in their curated research feeds. Users then could opt in to
receive alert emails when new relevant papers are found for each
feed on a regular basis, with a user-selected frequency (e.g., daily
or weekly). Typical alert emails started with the title of the feed,
and a list of new relevant papers (usually ranging from 1 to 50;
Fig. 1 shows a simplified version). Emails included basic paper
metadata and link-based affordances for navigating to and saving
papers, managing alert subscriptions, etc. Working within an ex-
isting production paper alert system lent ecological validity to our
experiments. Due to the email setting, our design space did not
include complex interactions such as hovers. The research feeds rec-
ommend papers using a neural recommender, trained on the user’s
individual paper ratings. Importantly, our relevance messages are
agnostic to the underlying recommendation model, which was held
constant across the conditions.

3.2 Iterative Design Process
Our designs went through four phases of iterations and prototyping.

Phase 1 - Theory & Expert driven brainstorming. Design brain-
storming took place among three authors (two with knowledge
of scholarly recommendation services and one with expertise in
behavior change and persuasion) informed by literature from be-
havior change & persuasion (e.g., principles of authority and social
influence) [4, 25, 26], recommendation systems (e.g., relevance and

discovery) [8], and information processing literature (summarizing,
balancing and diversifying the information) [60, 93]. Several strate-
gies were eliminated on the grounds of: 1) challenging execution in
deployment context, 2) data availability, and 3) ethics (e.g., scarcity,
which may present a false impression of limited availability).

Phase 2 - GUI prototyping, data availability & technical feasibility
evaluation. Selected strategies were prototyped in high visual and
data model fidelities [34]. The visual fidelity prototyping explored
text-based and visualization-based designs [38, 64]. The high data
model fidelity prototyping ensured: 1) the designs worked as in-
tended in the live system, 2) the complete record of interactions
was preserved, and 3) a sufficient number of users were impacted
on a daily basis.

Phase 3 - Graphical Design, Marketing & Engineering Feedback.
Additional graphic design review ensured the use of an icon, font,
and color scheme was consistent with the existing alert emails.
Further marketing team feedback resulted in rephrasing parts of
the messages to fit factual & information-centric tone (e.g., an early
phrase “Cites:” was replaced with “Also cites:” to more factually
reflect the presented numbers). Engineering team feedback led to
improved data pooling, freshness and completeness.

Phase 4 - Beta testing. The implemented designs were beta-tested
for two weeks with 100 internal users in actual live service to: 1)
eliminate any technical issues and 2) collect feedback from users in
more naturalistic setting. Interviews were carried out with seven
users over Slack and via a video call, which confirmed the general
understandability, visibility, and user interest in the presented rele-
vance messages. Several changes were introduced following user
feedback: 1) dropping a change in email title, as it was not noticed,
2) replacing the separator between message parts from ‘+’ sign to
comma, and 3) clarifying or removing unclear content.

3.3 Message Designs
We present the detailed description of the final designs.
Design 1: Citation-based Relevance Messages. Goal: Design 1
conveys potential relevance of an alert paper to the user via direct
citations (Fig 2.4). It aims to highlight citations from the alert paper
to papers the user has previously explicitly expressed interest in.
We do not consider citations of the alert paper, since most alert
papers are new and do not yet have many citations. Prior work in
scholarly contexts has emphasized the important of citations as a
simple measure of relevance [5, 43].

Design: We define user relevant sources to be the user’s personal
library and research feed, as well as papers the user has authored.
These sources contain papers in which the user has explicitly ex-
pressed interest at some point. We further define a relevant alert
paper to be a paper that cites one or more of the papers in the user
relevant sources. Our citation-based relevance condition adds one of
the relevance messages presented in Figs 2.2 and 2.3 to any relevant
alert paper. If an alert paper does not cite any of the papers in the
user relevant sources, no relevance message is added. Alert papers
that cite papers from only one user relevant source receive one
of the message variations presented in Fig. 2.2, while alert papers
citing papers from multiple user relevant sources receive message
variations presented in Fig. 2.3. Each message communicates in-
formation about the number of cited papers from a particular user
relevant source, as well as provenance information about the source
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Figure 2: Citation relevance message design. 1) An example of the relevance message rendered in paper context as shown to
the user. 2) Examples of messages featuring relevance relations to different user papers: papers a) user authored, b) placed in
the user’s library, c) added to the user’s feed. 3) Examples of messages featuring multiple relations. 4) Graph based depiction
of the citation-based relevance messages: an alert paper a) citing two papers from the user’s feed, b) with no relevance relation
- it will have no message, c) citing both a user authored paper and a paper the user added to their library.

(e.g., library or feed) being cited. In a particular case when a paper
cites papers from all the user relevant sources, a shorter variant of
the message, which combines the citation counts for library and
feed papers, is presented in order to reduce user cognitive load [107]
(see Fig. 2.3c).
Design 2: Direct Author-based Relevance Messages. Goal: De-
sign 2 conveys potential relevance of an alert paper to the user using
their implicit social network of authors (Fig. 3.4). In particular the
authors with papers that the user has explicitly expressed interest
in are emphasized. The strategy is motivated by several indications
from prior work that academics actively search for researchers with
similar interests [77], but existing services offer limited support for
such discovery [20]. Further motivation for emphasizing author
information comes from indications about the importance of au-
thor networks in academia [95] and the value of social networks of
trusted sources [7, 24] in broader recommendation contexts.

Design: We define a relevant alert paper to be a paper authored
by at least one user relevant author, defined as having authored one
or more papers in the user relevant sources. For this design, we
expanded the number of user relevant sources to four by adding
papers cited by the user. Early user feedback indicated that this
source was meaningful only in Design 2. Our direct author-based
relevance condition adds one of the relevance messages presented in
Figs. 3.2 and 3.3 to any relevant alert paper. If none of the authors
on an alert paper are user relevant authors, no message is added. If
a paper was authored by more than one user relevant author, only
the author with the highest number of papers in the user relevant
sources is shown, with ties broken randomly. Alert papers featuring
a user relevant author who has authored papers in one or more user
relevant sources are featured with one of the message variations
presented in Fig. 3.2 or Fig. 3.3, respectively. Each relevancemessage
communicates information about the number of papers the user
relevant author has authored in each user relevant source. If a
featured author has authored papers in all the user relevant sources,
the library and feeds sources are merged to create a shorter variant
of the message and reduce user cognitive load [107] (see Fig. 3.3d).

4 STUDY 1 - LARGE-SCALE ONLINE
DEPLOYMENT STUDY

4.1 Procedure
We randomly assigned over seven thousand email-alert users (see
Section 3.1 for a system overview) to one of the three conditions:

Condition # of Users # of Emails out of total
featuring at least 1 message (%)

Control 2,248 n/a out of 22,548
Citation 2,474 5,984 out of 23,658 (25%)

Direct Author 2,316 3,895 out of 22,657 (16%)
Table 1: Statistics of the users and emails in our analysis.

Control/No message (status quo experience with the research feed
and new paper alerts), Citation (citation-based relevance messages
are added), and Direct Author (author-based relevance messages
are added). Over a span of about two-months (April 7th – June
13th, 2021), participants received regular alert emails containing
new paper recommendations for personally curated research feeds.
Table 1 shows descriptive statistics of the dataset collected for
analysis. The system logged user engagement (e.g., opening an
email or clicking a paper title to view the paper detail page on
the search engine). Thus, our measure of user engagement is two-
fold, with the click-through rates grouped at the email level as a
measure of engagement—i.e., ctr: a binary measure of either 1: the
email was opened and at least one included paper recommendation
was clicked, or 0: otherwise (includes unopened emails)—and an
additional measure of future engagement via email open rates. If
participants found the emails useful, they would likely open more
of them in the future, resulting in higher overall email open rates.
In this sense, higher email open rates are indicative of increased
future engagement.

4.2 Results
We report results from our studies below. We compare the different
messaging strategies in our analyses rather than messages alone,
i.e., the effect of messages together with the recommendations they
augment, by comparing the full email dataset (unless otherwise
specified). In such analyses, we use messages interchangeably with
messaging strategies. To denote statistical significance we use the
following notations:α = .05(∗), .01(∗∗), .001(∗∗∗), .0001(∗∗∗∗). Alpha
levels were adjusted when appropriate in post-hoc analyses using
Bonferroni correction.

4.2.1 Both types of messaging strategies increased ctr, but only di-
rect author-based messaging increased future engagement. We found
that both types of relevance messages significantly increased the
ctr over Control, with Direct Author (µ = 0.058, σ̄ = 0.2330,
t(44622.22) = 6.20,p = 5.6 × 10−10) and Citation (µ = 0.056, σ̄ =
0.2292, t(46065.34) = 5.36,p = 8.3 × 10−8) resulting in higher ctrs
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Figure 3: Direct Author relevance message design. 1) An example of the message as shown in context to the user. 2) Examples
of messages featuring author relevance relations to different user papers: papers user a) authored, b) added to the library, c)
added to their feed, and d) cited. 3) Examples of messages featuring multiple relations. 4) Graph based depiction of the direct
author-based messages: an alert paper a) featuring an author of one paper from a user feed, b) with no direct author relevance
relation (thus, having no message), and c) featuring an author of both a user-authored paper and a paper in the user’s library.

(a) Both direct author (µ =

0.058) and citation (µ = 0.056)
messaging resulted in signifi-
cantly higher ctr than Con-
trol (µ = 0.045).

(b) Direct author messaging
(µ = 0.27) resulted in the
highest email open rates (µ =
0.24 for bothCitation andCon-
trol).

Figure 4: Analysis of the ctr and email open rates by type.

(a) Direct author messages
were significantly rarer
(µ = 0.5) than Citation
messages (µ = 1.3) in each
email.

(b) The rate of messages
showed a similar pattern
(µ = 8% for Citation vs. µ = 4%
for Direct Author messages).

Figure 5: Analysis of the message prevalence by type.

than Control (µ = 0.045, σ̄ = 0.2068) (Welch’s two-tailed t-test,
Fig. 4a). However, the difference was not significant between the Ci-
tation and Direct Author conditions (t(46149.07) = 0.92,p = 0.36).
We validated these results with analyses on potential biases of ran-
domization, such as the average email length (Fig. 13) and message
position (Fig. 14) (see Appendix A).

We further examined whether different message types resulted
in differences in how often users open the emails. The Direct Author
condition showed a significantly higher email open rate than the
rest (µ = 0.27, σ̄ = 0.442 vs. µ = 0.24, σ̄ = 0.428 in Citation and
µ = 0.24, σ̄ = 0.425 in Control, Fig. 4b, significant at α = 1.0×10−4).

Because the subjects, headers, and other metadata of emails did not
differ between conditions, it is likely that the difference in open
rates is attributable to the content of the emails and specifically the
type of relevance messages featured in them.

Furthermore, we analyzed the effects before and after the first
two-week exposure to messages. The result of the difference-in-
differences analysis (Appendix B) shows that users in both Citation
and Direct Author groups opened more emails, suggesting habit-
forming, but only Direct Author messages significantly boosted
the open rates after accounting for the baseline increase in open
rates with repeated exposure of alert emails over time (see Fig. 15
in Appendix B).

4.2.2 Importantly, direct author-based messages were significantly
rarer. While both citation- and direct author-based messages were
effective, their prevalence differed significantly. Specifically, direct
author-based messages were much less frequent (µ = 0.5 messages
per email, σ̄ = 1.85) than citation-based messages (µ = 1.3, σ̄ =
7.37, t(26739.0) = −16.6,p = 0, Welch’s two-tailed t-test) (Fig. 5a)
and the pattern remained similar when normalized by the length
of emails (µ = 0.09, σ̄ = 0.212 in Citation vs. µ = 0.04, σ̄ = 0.119 in
Direct Author, t(37428.4) = 31.9,p = 0) (Fig. 5b).

Yet the frequency of messages was suggested to be a significant
factor on ctr. Locally Weighted Scatterplot Smoothing (LOWESS)
suggested a significant inverted U-shaped relationship on ctr by
the % of paper recommendations featured in the email (Fig. 16b,
Appendix C.). Overall, empirically we found that emails with a
greater fraction of treated papers result in dramatically more en-
gagement, up to a point (approximately 25–50% treated) above
which engagement falls off. This pattern is conceptually consistent
with existing theories of engagement such as the Aristotle’s idea of
the mean [39], Csikszentmihalyi’s optimal difficulty [32], and the
relationship between workload and innovative work behavior [82].

4.2.3 Optimizing the frequency of direct author-based messages
showed a higher estimated marginal utility than for citation-based
messages. In addition to the % of paper recommendations featured
with relevance messages in the email (% Featured), we also found
multiple other covariates suggested to be correlated with user en-
gagement (i.e., ctr) through analysis of descriptive statistics using
LOWESS. For example, users with a higher h-index and a claimed
profile had more data available in the system that could be used to
feature relevance messages on papers—and these users also tended
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Receiver ID Mail ID
Dep. Variable Predictive Variables

CTR Claimed Receiver h-index % Featured # of Total
Profile Papers

1 100 1 1 3 0.38 14
2 101 1 0 11 0.60 20
1 102 0 1 3 0.30 10

Table 2: Sample format of the collected data used for generalized linearmixed-effectsmodelling. Each row represents a unique
user - alert email combination.CTR is the binary dependent variable representing the email-level user click-through outcome
(1: whether any paper recommendation included in an opened email was clicked, or 0: no paper recommendation was clicked),
Claimed Profile shows whether the user has a claimed profile on the search engine, whichmay indicate an overall high level of
engagement.Receiver h-index shows the h-index of the user andwas normalized by the avg. h-index of users. % Featured shows
the % of paper recommendations in the email featured with relevance messages. # of Total Papers shows the total number of
papers included in the email and was also normalized by the avg. email length in the data corpus before the analysis. Users
were randomly assigned to either Control, Citation, or Direct Author conditions, and included as random effects in the model.

to show higher baseline engagement (see Fig. 16c in Appendix C).
Therefore, we included these covariates as additional predictive
variables, and modeled the dependent variable, ctr, using a gen-
eralized linear mixed-effects model (GLMM) [68] with the lme4
package in R [10]. GLMMs are often used to analyze (potentially
correlated) repeated measures, which in our case corresponds to
each user engaging with multiple emails. GLMMs have been used to
analyze measurements across many disciplines including medicine,
behavioral sciences, and HCI [27, 33, 45, 46].

We developed increasingly sophisticated models for analysis. For
example, our first model (Model 1 in Table 8, Appendix. E) simply
included the % Featured with Direct Author relevant messages and
the number of total papers in each email as fixed effects1. The result
of Model 1 validated the empirical data that showed a curvilinear
relationship between ctr and the % Featured. Our full model (Model
2) added other empirically significant predictive variables described
earlier (i.e., Claimed Profile and Receiver h-index) as fixed effects
along with random effects for users to account for user response
level correlation (Table 2 shows the structure of our dataset).

The full regression result showed once again a significant curvi-
linear relationship between ctr and the % Featured with direct
author-based messages, even after controlling for other covariates
(Table 3). We further estimated the marginal effect of different %
Featured for each type of message and user segment representing a
high (i.e., user with a claimed profile) versus low level (i.e., with-
out a claimed profile) of engagement. The optimal % Featured was
around 50%, after which the likelihood of ctr dropped off (Fig. 6).
The optimal likelihood of click-through was predicted higher for
direct author messages (30%) compared to citation messages (24%).
The lift from 0-to-optimum % Featured was also predicted higher for
direct author messages (∆ = +20%) compared to citation messages
(∆ = +14%). Taken together, the analysis suggests that for users
with less interaction history and fewer featured papers, strategies
to increase the coverage of relevance messages to the 40–60% range
are a promising avenue to increase engagement, and specifically,
direct author-based messages may benefit more from increased
coverage compared to citation-based messages. We turn to these
strategies in Section 5.

1Note that though we only report the results from direct author-based relevance
messages here, results from the citation-based relevance messages are similar.

Coef. SE p

(Intercept) -7.77 0.282 ***
% Featured 4.56 0.823 ***

(% Featured)2 -4.95 1.063 ***
# of Total Papers 0.02 0.038 0.67
Claimed Profile 2.26 0.349 ***

Receiver h-index 9.53 3.476 **
% Featured × Claimed Profile -3.42 1.283 **

(% Featured)2 × Claimed Profile 4.30 1.499 **
% Featured × Receiver h-index -2.25 5.559 0.69

(% Featured)2 × Receiver h-index 2.00 7.829 0.80
Table 3: Regression analysis with our full model (Model 2)
predicted a significant curvilinear effect or % Featured on
ctr in the presence of other covariates (i.e., predictive vari-
ables) e.g., whether user has claimed a profile, h-index, and
their interactions. ***: p < 0.001, **: p < 0.01.

Figure 6: Direct author messages showed a significantly
higher ceiling of ctr than citation messages. The overall es-
timated (marginal) likelihood of ctr peaked when approx-
imately 50% of papers were featured with messages, for all
groups. However, increasing the % Featured had a more pro-
nounced effect on ctr for direct author messages (over 20-
absolute-percentage-points for both profile-claimed and un-
claimed users) than citation messages (15 points or less).
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(a) The ‘background’ distribution
of maximum author h-index from
all paper recommendations sent
out in alert emails. The average
maximum author h-index was 𝜇 =

18.0, 𝜎̄ = 23.29 (median=9.0).

(b) The distribution of maximum author h-index of clicked papers in each condition. The average
h-index increased to 𝜇 = 27.0, 𝜎̄ = 29.33 in Control (median=17.0); 𝜇 = 23.1, 𝜎̄ = 24.24 in Citation
(median=16.0); and 𝜇 = 26.4, 𝜎̄ = 26.67 in Direct Author (median=18.0). The increase of the average
h-index over the background distribution was significant, suggesting that users considered high status
authors as a signal for deciding whether to click on a paper by default. At the same time, citation
messages reduced the h-index relative to control, suggesting its effect of guiding user attention to lesser
known authors. Direct author messages and control did not differ significantly.

Figure 7: Analysis shows that users clicked on papers featuring high status authors, but does not provide any evidence that
messages further centered user attention to them.

4.2.4 Examining themessages’ system-wide impact on fairness. Though
effective, featuring paper recommendations with relevance mes-
sages may produce unanticipated negative externalities such as
boosting only the visibility of papers by authors who are already
often featured in the recommender, or being accessible only by
users with high data availability, thus further selectively enhancing
their engagement with the literature. Therefore, we examined the
fairness of our message designs in two respects: a) their effect on
work visibility and b) their coverage for different user groups.
Fairness of visibility. While the phenomenon of “rich-get-richer”
has been widely studied [17, 28, 31, 35, 62, 66, 76, 78, 94, 116, 118],
to our knowledge no study has examined the effect of interventions
designed to shift user attention to certain types of papers on visi-
bility via a randomized study on a large-scale, real-world, deployed
recommender system.

One way to examine relevance messages’ effect on visibility
is to take an outcome oriented approach, by measuring changes
on the papers users clicked before and after intervention. In our
alert emails when a user clicks on a paper link, it brings the user
to an interactive paper detail page, which includes full abstract,
the link to a full-text file, any figures, and the author information
among others. Therefore the click interaction serves as a strong
indicator of the user’s exposure to the paper’s content. Thus we
operationalized the visibility of each paper as a binary measure
of whether it was clicked; when a paper is clicked for the first
time, the paper webpage is made visible to the user. Using this
measure of visibility, we investigated whether its distribution over
the academic status of the authors of papers changed systematically
with the introduction of relevance messages.

To operationalize the academic status of each author, we used
the h-index measure. The index, since its introduction by Hirsch
in 2005 [52], has been popularized as a metric of academic suc-
cess. Though limitations of the index exist [91, 104], it is seen as
a robust measure [2, 48, 53, 96], and informs high stakes decisions
such as hiring, promotion, and funding [1, 50, 73]. It is also widely
featured in many scholarly search engines and citation databases.

We assigned an h-index to the paper recommendation by taking
the max h-index of authors on the paper. This is plausible because
the highest status author of the paper may appear salient and easily
recognizable to the user at first glance. This produced our base-
line h-index distribution of authors (Fig. ??). Next, we similarly
computed the h-index of each recommendation but using only the
clicked paper recommendations from each condition (Fig. ??). Fi-
nally, to examine whether relevance messages led to users clicking
papers with high status authors more often, we tested whether the
average h-index of clicked papers significantly differed from that
of the baseline.

The result shows that while the h-index of clicked papers was
significantly higher than the h-index of all papers, this increase
was no worse than the baseline, suggesting that users naturally
incorporate author identities and status represented as h-indices
when deciding whether to click on a paper recommendation (shown
in the jump from all authors’ h-index to clicked authors’ h-index 𝜇 =

18.0 → 𝜇 = 27.0; Fig. ?? and Fig. ?? left, 𝑡 (2255.13) = −14.55, 𝑝 = 0,
Welch’s two-tailed t-test), and featuring relevance messages did not
exacerbate this effect. There was evidence that citation messages
guided user attention towards lower status authors’ papers more
than Control (𝑡 (4371.48) = 5.06, 𝑝 = 4.36 × 10−7). For robustness
against any spurious effects from choosing the maximum h-index,
we repeated the analysis using the average h-index of authors and
found that the patterns remained the same (see Appendix F). Taken
together, we conclude that augmenting paper recommendations did
not adversely impact fairness of visibility with respect to h-index,
and may have shifted towards a fairer distribution of user attention
when citation-based messages were used.
Fairness of coverage.While Direct Author messages were rarer
than citation messages overall (Fig. 5b), was there any systematic
difference in the coverage of user groups with varying academic
status? We further divided the users into three groups of h-index
(Low, High, and Unknown) using the median (3) h-index from the
authors whose h-indices were available (h-index was known for
115/2,474 users in the Citation condition and 107/2,316 users in the

Figure 7: Analysis shows that users clicked on papers featuring high status authors, but does not provide any evidence that
messages further centered user attention to them.

4.2.4 Examining themessages’ system-wide impact on fairness. Though
effective, featuring paper recommendations with relevance mes-
sages may produce unanticipated negative externalities such as
boosting only the visibility of papers by authors who are already
often featured in the recommender, or being accessible only by
users with high data availability, thus further selectively enhancing
their engagement with the literature. Therefore, we examined the
fairness of our message designs in two respects: a) their effect on
work visibility and b) their coverage for different user groups.
Fairness of visibility.While the phenomenon of “rich-get-richer”
has been widely studied [17, 28, 31, 35, 62, 66, 76, 78, 94, 116, 118],
to our knowledge no study has examined the effect of interventions
designed to shift user attention to certain types of papers on visi-
bility via a randomized study on a large-scale, real-world, deployed
recommender system.

One way to examine relevance messages’ effect on visibility
is to take an outcome oriented approach, by measuring changes
on the papers users clicked before and after intervention. In our
alert emails when a user clicks on a paper link, it brings the user
to an interactive paper detail page, which includes full abstract,
the link to a full-text file, any figures, and the author information
among others. Therefore the click interaction serves as a strong
indicator of the user’s exposure to the paper’s content. Thus we
operationalized the visibility of each paper as a binary measure
of whether it was clicked; when a paper is clicked for the first
time, the paper webpage is made visible to the user. Using this
measure of visibility, we investigated whether its distribution over
the academic status of the authors of papers changed systematically
with the introduction of relevance messages.

To operationalize the academic status of each author, we used
the h-index measure. The index, since its introduction by Hirsch
in 2005 [52], has been popularized as a metric of academic suc-
cess. Though limitations of the index exist [91, 104], it is seen as
a robust measure [2, 48, 53, 96], and informs high stakes decisions
such as hiring, promotion, and funding [1, 50, 73]. It is also widely

featured in many scholarly search engines and citation databases.
We assigned an h-index to the paper recommendation by taking
the max h-index of authors on the paper. This is plausible because
the highest status author of the paper may appear salient and easily
recognizable to the user at first glance. This produced our base-
line h-index distribution of authors (Fig. 7(a)). Next, we similarly
computed the h-index of each recommendation but using only the
clicked paper recommendations from each condition (Fig. 7(b)). Fi-
nally, to examine whether relevance messages led to users clicking
papers with high status authors more often, we tested whether the
average h-index of clicked papers significantly differed from that
of the baseline.

The result shows that while the h-index of clicked papers was
significantly higher than the h-index of all papers, this increase
was no worse than the baseline, suggesting that users naturally
incorporate author identities and status represented as h-indices
when deciding whether to click on a paper recommendation (shown
in the jump from all authors’ h-index to clicked authors’ h-index µ =
18.0 → µ = 27.0; Fig. 7(a) and Fig. 7(b) left, t(2255.13) = −14.55,p =
0, Welch’s two-tailed t-test), and featuring relevance messages did
not exacerbate this effect. Therewas evidence that citationmessages
guided user attention towards lower status authors’ papers more
than Control (t(4371.48) = 5.06,p = 4.36 × 10−7). For robustness
against any spurious effects from choosing the maximum h-index,
we repeated the analysis using the average h-index of authors and
found that the patterns remained the same (see Appendix F). Taken
together, we conclude that augmenting paper recommendations did
not adversely impact fairness of visibility with respect to h-index,
and may have shifted towards a fairer distribution of user attention
when citation-based messages were used.
Fairness of coverage.While Direct Author messages were rarer
than citation messages overall (Fig. 5b), was there any systematic
difference in the coverage of user groups with varying academic
status? We further divided the users into three groups of h-index
(Low, High, and Unknown) using the median (3) h-index from the
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Figure 8: While the frequency of direct author messages de-
creased significantly, from 18% to 9%, as users’ h-index de-
creased from High to Low, it remained similar for Citation.

authors whose h-indices were available (h-index was known for
115/2,474 users in the Citation condition and 107/2,316 users in the
Direct Author condition). We found that groups received signifi-
cantly fewer Direct Author messages as the h-index got smaller:
µ = 18% in the high h-index group, µ = 9% in the low h-index
group, and µ = 3% for the group with unknown h-index (the pair-
wise decreases were significant, p < .0001, Fig. 8). This may not
be surprising given a user’s high h-index may be correlated with
an overall higher level of engagement with the search engine that
results in richer interaction data and also higher connectedness
within the academic network (e.g., a bigger collaborators’ network),
useful for message generation. However, the frequency of citation-
based relevance messages did not significantly differ between the
Low and High index groups, suggesting a relative abundance of
citation-based relations for users with fewer publications (e.g., our
citation message generator could find relevance through lower in-
dex users’ curated feeds alone); however, the same was not true
for author-based messages. This result suggests that increasing
coverage of messages may be particularly helpful for improving
the fairness of author-based relevance messages, and benefit users
who have fewer connections in the academic social network.

5 DESIGN OF INDIRECT AUTHOR-BASED
RELEVANCE MESSAGES

5.1 Key Motivations and Related Work
The key motivating results of Study 1 showed that 1) Direct author-
based messages were an effective mechanism for increasing future
engagement (the overall email open rates were significantly higher
in the direct author-based messages condition compared to Con-
trol and the citation-based messages condition (Fig. 4b), and the
effect was clear after controlling for the baseline effect from habit-
forming (the difference-in-differences analysis, Appendix B); 2)
This effectiveness was achieved despite the direct author-based
messages being significantly rarer than citation-based messages
(Section 4.2.2). This relationship may generalize, possibly enabling
higher ctr with fewer messages/email. For example, in our GLMM
analysis, when the likelihood estimate was held as constant, the es-
timated % Featured is lower for direct author-based messages than
citation-based messages (Fig. 6; 3) In addition, direct author-based
messages showed a higher ceiling of the (marginal) likelihood of

click-through compared to citation-based messages (Fig. 6). Thus,
in order to achieve the author-based relevance messages’ full poten-
tial, we designed a novel mechanism for expanding the coverage by
incorporating indirect relations mediated by trusted intermediate
authors between a user and the recommended papers.

Prior work in social network-centric relevance explanations fur-
ther provides support for expanding author messages via indirect
relations. For example, Sharma and Cosley investigated the value
of featuring direct friendship-based relevance messages on per-
suasiveness and informativeness in the music recommendation
domain [102]. They found relevance through good friends mattered
more than random friends, and as such showing the (good) friends’
names in messages led to higher informativeness than representing
them as aggregate friend popularity (e.g., ‘3 of your friends liked
this album’). Additionally, when messages featured the overall pop-
ularity (e.g., ‘12,211 of Facebook users like this’), the popularity
mattered only if the users identified with the crowd. Extrapolating
these findings to the design of indirect author messages, we expect
to find similarities such as the importance of relation strength and
specifying which author and why they were featured in the mes-
sages, but also new challenges as to deciding who should be the
intermediate authors and how to identify them. We expect the cita-
tion network of existing publications and their authors to contain
topical relevance and trust relations targeted specifically to our task
domain, and this informs our algorithm design for inferring an aca-
demic ‘social’ network from it. In this regard, our approach differs
from [101, 102] which used existing social networks (e.g., Facebook)
and [24] which relied on Twitter. Additionally, the SONAR system
combined social information for members within an organization
from co-authorships of organizational Wiki articles and user inter-
action traces such as bookmarking the same pages and usage of
same tags [41, 42]. However, this work also differs from our work
due to its dependence on an explicit social network and its limited
scope to direct relations. In the subsequent sections, we describe
the design of indirect author-based messages and its generation
algorithm.

5.2 Design Goals
We grounded the design of indirect author-based messages with
the following goals:

G1. Support relevant information needs. Scientists often turn to
trusted sources as a way to curate relevant papers. Yet, this process
is often tedious and existing tools provide piecemeal support at best.
Therefore, messages should provide benefits similar to receiving
personalized bibliography from an expert source.

G2. Support serendipitous discovery, which is an oft-mentioned
benefit [20, 77, 95]. To achieve this, the author featured in messages
should be likely subjects of serendipitous discovery.

G3. Support design continuity. New message designs should lever-
age the robust designs used in Study 1, to minimize unanticipated
negative consequences from design changes, and to prevent harm-
ing the user experience of the platform.

5.3 Message Implementation and Generation
We adopted the overall textual and visual design from earlier mes-
sage designs, with an additional line of text to accommodate the
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2) Indirect Author relevance relations graphs

Likang Yin* authored 6 papers Bogdan Vasilescu cited
(You annotated 3 of Bogdan Vasilescu’s papers with ‘More like this’)

1) Indirect Author relevance message in context

LibraryCitedAuthoredFeed
User

Indirect Authors
(e.g., Bogdan Vasilescu)CitedAuthored

Authors
(e.g., Likang Yin)

Figure 9: Indirect author relevance message design. 1) A sample message rendered in the recommendation context as shown
to the user. The message features two lines of text. The first line features the relation between the author of the paper (Likang
Yin, underlined) and the indirect author (Bogdan Vasilescu). In the second line, the user’s relation to the indirect author is
described. The author names are clikable and linked to profile pages on the search engine. 2) Indirect author candidates are
first identified from a set of user papers and interaction data then filtered based on their connection to the authors of the
paper.

relational information (Fig. 9, left). We placed an asterisk next to
the author’s name to differentiate it from the indirect author’s. We
also added underlines and click interaction to the names to support
a discovery experience. The second-line text was added to describe
the user’s relation to the indirect author for clarity.

To generate the messages, candidate intermediate (indirect) au-
thors were identified from the user’s publication and interaction
data. Then, each candidate’s publication data was used to extract
[author]-[indirect author]-[user] triplets for each author of a rec-
ommended paper. Finally the first ranked triplet was fed into the
message template (Fig. 9, left).

To rank the triplets, let us first define the strength of the [author]-
[indirect author] relation as ‘Relevance’ and the strength of the
[indirect author]-[user] relation as ‘Influence’. For a candidate
(author, indirect author, user) = (i, j,u) triplet, we computed these
strengths as

Relevancei, j := a × log(co-authoredi, j + 1) + b × log(citedi, j + 1)
Influencej,u := log(engagedj,u ) × (j’s h-index) ,

where co-authoredi, j is the number of papers that i and j co-authored,
citedi, j is the number of i’s papers j cited, engagedj,u is the number
of j’s papers u engaged with using one of the following actions: co-
authoring, citing, saving, and annotating with ‘more like this’ on a
personal research feed. The intuition here is that the higher the num-
ber of actions i took on j’s papers (e.g., citing, saving), the stronger
the tie strength. The constants a and b in Relevance control the
relative strength of relations, and we set a = 2,b = 1 to weight co-
authorship twice as strong as citation because the former is believed
to indicate stronger relevance. In addition, we take a logarithm of
the count of papers to account for the diminishing signal strength
(e.g., an extra citation means much less when it is already cited 20
times). For Influence, we multiply the logarithm of engagement
counts with the candidate indirect author’s h-index to prioritize in-
dividuals with higher academic status because they are more likely
to be known and trusted by the user. Finally, our ranking objective
for a given user u is: argmaxi, j

(
Relevancei, j × Influencej,u

)
. This

multiplicative objective was designed to prioritize triplets with co-
herent (rather than lopsided) tie strengths (e.g., a high score on
only one of Influence or Relevance but low score on the other may
result in an overall irrelevant relation to the user).

6 STUDY 2 - CONTROLLED LAB STUDY
We performed a formal usability study to gain insights into the fol-
lowing questions: How do different types of relevance messages aid
scientists’ ability to review the recommended research papers in an
email alert context? How do scientists make sense of the relevance
information conveyed in themessages?What are the challenges and
design implications for future author-based relevance messages?

Using a within-participants design, we compared the Indirect
Author-based relevance messages to Citation- and Direct Author-
based relevance messages and Control (no message). The quantita-
tive and qualitative results were in favor of the relevance messages,
and the value of different types of messages seemed complemen-
tary. Through open coding of interview transcripts, we discovered
different themes of the benefits complementing the results from
Study 1. We also uncovered challenges from which we synthesized
implications for design.

6.1 Study Design
Participants. 14 scientists were recruited via university and com-
pany mailing lists. 1 was an assistant professor, 5 were postdoctoral
researchers, 1 was a professional researcher, 1 was a Master’s stu-
dent, and 6 were doctoral students. 6 of the 14 participants identi-
fied their discipline as human-computer interaction. Participants
were compensated at a $30/hour (USD) rate. The study sessions
were between 1-hour- and 1.5-hours-long and held remotely on a
video conferencing platform. Participants opened an individualized
Google Doc prepared by the interviewer and were asked to share
their screen. After obtaining consent from each participant, the
interviewer proceeded to record the session.
Stimulus recommendation emails. Personalized paper recom-
mendations were generated for participants using their publication,
library, and research feed data. Each participant’s recommendations
were randomly subdivided into 4 sets (A, B, C, D) of equal length,
ranging from 12 to 30 papers per set. Then, relevance messages
were generated and added to the corresponding paper recommenda-
tions. Following the results from Study 1 (Section 4.2.3), we allowed
up to 50% of the papers in each email to be featured, which was the
approximate optimal fraction of papers to be featured. The gener-
ated emails looked exactly the same as in Study 1, except for the
messages and the headers, which were anonymized so as to not
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Figure 10: Subjective responses to test questions. Overall,
participants responded favorably on the general helpfulness
of messages, with indirect author messages being harder to
understand. The benefits of different message types seemed
complementary (see text).

include any identifying information when recording with screen
share. In Control (A), paper recommendations were shown without
messages. In the citation- (B), direct author-based (C), and indi-
rect author-based (D) conditions, messages of the corresponding
type were added underneath each paper recommendation, when
applicable.
Tasks and Assignment. Each session ran as follows: 1) Greet-
ing and obtaining consent for recording; 2) Background questions
around how the participant typically obtains research papers to
read. If the participant was a user of an alert system, the interviewer
also asked questions about their experience with typical new paper
alerts; 3) Complete four timed tasks (6 minutes each), each of which
was followed by a task-specific questionnaire. Using four 4×4 Latin
Square blocks, we assigned each participant to one of the randomly
drawn rows. The number of recruited participants (14) resulted in
a near but not fully factorial design (two presentation orders had
one more participant each).
Measures. For each task, we measured the following (all but the
last two measures are on a 7-point Likert scale between 1: Strongly
disagree and 7: Strongly agree). In 4 condition blocks (3 in B), par-
ticipants skipped measures related to relevance messages, as no
messages were shown to them. “Email helpfulness” is the partic-
ipant’s self-assessed agreement with the following statement: “I
found the email helpful.”; “Message helpfulness” (in B, C, D) indicates
the participant’s self-assessed agreement with the following state-
ment: “I found the orange text underneath paper recommendations
helpful.”; “Novel information” (in B, C, D) indicates the participant’s

Figure 11: On average, participants recognized indirect au-
thor names about 60% of the time, and author names 7% of
the time (8 times less than indirect authors).

self-assessed agreement with the following statement: “I found
the orange text underneath paper recommendations to contain
interesting new information.”; “Ease” (in B, C, D) indicates the par-
ticipant’s self-assessed agreement with the following statement:
“It was easy to understand what the orange text underneath paper
recommendations was trying to tell me.”; “Additional information
helpfulness” (in D) indicates the participant’s self-assessed agree-
ment with the following statement: “I found the second line of the
orange text helpful.”; “% Featured” (in B, C, D) is the percentage of
paper recommendations featured with relevance messages; “Num-
ber of familiar author/indirect author names” (in D) is the number
of author/indirect author names included in indirect author-based
relevance messages the user found familiar.

We distinguish between the overall email helpfulness question
and the message type-specific questions for two reasons: one, the
overall helpfulness measure allows us to compare the usefulness of
message-augmented emails with that of the baseline; two, message
type-specific measures allow us to see whether participants saw
complementary value from the different types of messages, in which
case we expect to see no significant difference between the message
conditions.
Analysis. For each of the quantitative measures, we ran post-hoc
analyses with Welch’s two-tailed t-test. For qualitative analysis,
the interviews were recorded, transcribed, and coded in four itera-
tions following an open coding approach. The goal of this process
was to identify common themes that captured rich qualitative in-
sights grounded in data [19]. Using the transcripts, audio, and video
recordings of the interviews, two coders first independently per-
formed open coding of the initial themes. Subsequently, they had
in-depth discussions over multiple sessions to merge similar codes
and form higher level themes, as well as a larger group discussion
with four of the authors on the themes. Finally, these consolidated
codes and themes were applied to the transcripts to arrive at the
qualitative findings of Study 2. We focused our analysis on uncov-
ering the benefits and challenges of relevance messages, and the
results converged on themes presented in Table 4. The detailed
descriptions of these themes are provided in Section 6.3.
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Figure 12: Indirect author messages significantly increased
the coverage to 47%, compared to direct author (13%) and ci-
tation messages (19%).

6.2 Quantitative Results
The result validated the feasibility of indirect author messages.
The % of papers featured with indirect author messages was close
to the estimated optimal, at 47% (σ̄ = 0.062, Fig. 12). In com-
parison, citation- (µ = 0.13) and direct author-based messages
(µ = 0.19) were significantly less frequent (at p < 0.00001, Welch’s
two-tailed t-test, Fig. 11). In addition, indirect authors were signifi-
cantly more recognizable than the authors (µ = 0.59, σ̄ = 0.290 vs.
(µ = 0.07, σ̄ = 0.111) (t(16.74) = −6.25,p = 9.4 × 10−6, Fig. 11).

Overall, participants perceived indirect author messages favor-
ably. The result of a post-hoc t-test showed that emails augmented
with indirect author messages (µ = 5.7, σ̄ = 1.27) were perceived
as significantly more helpful than the baseline (µ = 4.1, σ̄ = 1.46)
(t(25.49) = −3.04,p = 0.005), but for citation- (µ = 4.8, σ̄ = 1.66)
and direct author-based messages (µ = 4.9, σ̄ = 1.32) the difference
was not significant (Fig. 10, top). At the same time, participants
found indirect author messages the most difficult to understand
(Fig. 10, second from the bottom, avg. response was µ = 4.9, σ̄ =
1.21 for indirect author messages and µ = 6.5, σ̄ = 0.52 for direct
author messages, t(17.92) = 4.56,p = 0.0002). Six participants (42%)
also responded either in a negative (21%) or neutral (21%) manner
to the additional text designed to help with understanding (Fig. 10,
bottom). Thus, the message usefulness may have been reduced by
the difficulty of understanding. Furthermore, we hypothesized that
each message type may bring complementary value to the user
when they engage with paper recommendations. For both Message
helpfulness (p > 0.14) and Novel information (p > 0.18) questions,
we found no evidence of significance differences in user responses.
P14 commented that “each of these messages feels like it has a
different utility than the other two.” We further investigate this
hypothesis with qualitative analysis of the data below.

6.3 Qualitative Results
Now we present qualitative insights into participants’ experience
with messages. Using axial coding following our open coding, we
organized these insights into six types of benefits and four types of
challenges (Table 4) and provide detailed descriptions below. We
use a fraction (e.g., 3/14 participants) to represent multiple partici-
pants expressing similar thoughts. In participant quotes, we used

notations [A] and [IA] to denote Author and Indirect Author
names featured in the message, respectively.
Types of Benefits. B1: Noticing and being drawn into relevance
messages. Participants in the interviews commented that the overall
design of relevance messages stood out to draw their attention to
the recommended papers featured with messages: “It seems to be
all the orange text sticks out... So that’s why I would scroll through
the email and really look out for those” (P9). Participants mentioned
that they ‘liked’ the visual distinction of the message design (3/14
participants), they ‘missed’ the messages when there was none after
moving to the next task in the experiment (P2), they used them as
anchor points to structure their experience and attention around
relevant items (4/14 participants), and that they were drawn to the
personalized connections described in the messages (P1).

B2: Developing awareness of other scientists. Participants were
curious and wanted to see work by other scientists they cared
about to gain a general understanding of what their most recent
research areas were: “Oh, this is what [A] is doing... So now I can
be like, ‘Hey, I saw the UMAP paper you published’ when I meet
him in two weeks. So a conversation point” (P4). Author-based
relevance messages were appreciated because they surfaced author
connections that might otherwise have been unnoticed or easily
missed: “This paper is not something interesting to me but the
personal connection is. I’m also surprised that my PhD advisor
highly cited papers by him. So maybe I should have a look at it
more closely?” (P3). In such cases, even divergent topical areas did
not seem to deter participants’ curiosity: “Not directly relevant to
my research but I would probably look at this because I know the
author” (P9); “I don’t cite [A] anymore. It’s more like, just curious
what he’s up to” (P4). Messages were valuable as a vehicle for getting
updated information on how the research direction of an author
represented in them was evolving: “I know [A]. I would like to work
with her. So maybe I’m going to read this paper because just to
know what she’s up to” (P6); “interesting that [IA] is working on
voice interaction too” (P7).

B3: Discovery of Community-Related Insights.Messages also helped
participants recognize community-related connections that go be-
yond individual author connections in two ways: first, messages
helped them make sense of their connections with broader research
communities; second, messages helped them understand the impact
of their work.

B3-a. Connections in the Intellectual Community. Participants
found author-based relevance messages helpful for understanding
how they might be connected to larger research communities: “In-
teresting... because at least in my community it feels a bit like a
small world. So it’s interesting to know who’s cited by who” (P3);
“Okay so [IA] and [A] have a deep connection in the research space
and I have a weak connection with this space with them” (P6);
“It’s like, ‘Hey, you cited this person before’, although I’m not like
always trying to cite the same people, but when I did my knowl-
edge tracing work in my first few years, [A] did come up a lot. So
being able to see that is cool” (P4). In addition, the count of papers
was helpful for quantifying known connections: “[A] authored four
papers I cited. Wow, yeah, I knew that I cited him but I didn’t have,
like, any kind of quantification of it” (P4).
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Benefits and Challenges of Relevance Messages Augmenting Scientific Recommendations

Benefit B1: Drawing Attention Design and personalization of messages were sufficient to draw user
attention

Benefit B2: Social Developing awareness of other scientists
Benefit B3: Discovery of Community-Related Insights

B3-a: Connections in the Intellectual Community Seeing connections in the community
B3-b: Scientist’s Intellectual Impact Understanding & tracing their impact

Benefit B4: Mobilizing Mental Models
B4-a: Accessing Readily Available Mental Models Understanding the recommended research
B4-b: Applying Mental Models for Transfer Making sense of connections to new authors

Benefit B5: Serendipitous Discovery Discovering new and interesting authors
Benefit B6: Judging Potential Value Judging the usefulness and interestingness of recommended papers

Challenge C1: Interpretability Sources of misinterpretation: linguistic and semantic mismatches, incon-
gruence between recommendation and relevance messages

Challenge C2: Context vs. Efficiency Tension between wanting to see more contextual information and effi-
ciency of reading

Challenge C3: Scientist’s Evolving Identity Challenges from how scientists’ interests change over time and move
away from old topics

Challenge C4: Trust Challenges due to errors in relevance quantification and increased user
sensitivity

Table 4: Different types of benefits and challenges of relevance messages augmenting paper recommendations.

B3-b. Scientist’s Intellectual Impact. A specific category of con-
nections to research communities is impact, for example when a
scientist’s work is cited by others in the community to develop
the research area further. Participants found citation-based mes-
sages useful for understanding their impact: “When it says ‘cites
one paper by you’, I got excited. It also helped me contextualize
this work better” (P7); “It (the recommended paper) cites me... this
is something that I cannot immediately figure out (without this
message) unless I opened up the paper and, like, control-F’ed my
name” (P6); “The messages that talk about how it cites my papers
get me really curious. And I’ll almost always go look at it, to figure
out how my work is being discussed and how my work influenced
their work. And maybe think about future work.” (P14).

B4. Mobilizing mental models of scientists’ work and expertise
areas. Participants found author-based relevance messages espe-
cially useful when they had prior understanding of the featured
authors’ work. The mental model of scientists was broadly repre-
sented as a combination of their research topics, frequently used
epistemological approaches, and their seniority. Using mental mod-
els participants could better make sense of the recommended pa-
per’s contribution, its broader intellectual context, and inform their
filtering decisions as described in the following sections.

B4-a. Readily available mental models of topical areas and un-
derstanding broader research context. To many participants author
names could be readily mapped as ‘specific topical areas’ (P9) or
‘general research directions’ (P14) which can be useful for filter-
ing. Though less frequent than topical indexing, author names also
signalled the quality of work: “Papers from [A] are always pretty
good, so I probably will read it.” (P14). Mental models of authors

extended beyond topical associations or quality signals and some-
times even helped participants understand a priori in what concrete
context the user needs present in recommended papers might arise.
P6 described this phenomenon in the following quote: “I don’t do
ML work, but I can understand how there might be pain points in
team communications around the ML model quality... so the [A]’s
work I’m familiar with is in documentation and programmer sup-
port tools. So I can imagine how that goes for teams with multiple
stakeholders, not all of them are technical, especially in places like
[large technology corporation] that I believe [A] is at.”

B4-b. Mental models for transfer. For indirect author-based mes-
sages, participants could transfer their readily available mental
models of the known indirect author to make an educated guess
about the unfamiliar author. This was perceived as useful for map-
ping out ‘how ideas diffuse’ (P2), ‘who’s building off of the old but
important work in the field’ (P2, P6) or ‘working in an interesting
intersection of fields’ (P4, P9), which is currently ‘a nebulous and
difficult task’ (P2). Furthermore the unfamiliar author’s work may
be understood through the mental model of the known author, for
example as an indication of ‘an important link that is missed’ (P12).
P4 commented: “[IA] does some cognitive science stuff but he’s not
a huge cogsci guy... so maybe [A] does similar work to [IA] but like
a combination of [IA]’s work with a more of a cogsci spin to it?
Which is cool.” (P4). Similarly P12 said: “Okay this paper maybe is
from a machine learning community I don’t follow. But apparently
[IA] cited a bunch of [A]’s papers, so maybe I’mmissing something.”
(P12).

B5. Serendipitous author discovery. Author-based relevance mes-
sages also led participants to pay attention to author names they
otherwise may not have noticed, and serendipitously discover new
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and interesting authors ‘outside the radar’ (P12). P10 said: “A really
interesting concept, but I don’t recognize this author, let me check
his publications... (clicks on the author link to check his profile)
Okay wow, this is like a gold mine, I can easily spend an hour or
two reading his papers.” Discovery of authors also happened in a
more structured manner by transferring mental models from the
known indirect author to the unfamiliar author. Participants found
authors that they had not known before, but felt like they should
know, given the significant connection through the indirect author.
Participants described that they could ‘picture where the indirect
author is citing the unknown author’ (P6), and that a certain num-
ber of citations from the indirect author represented ‘a good body
of work by the unknown author’ (P4) and a strong signal of how
their research interests are aligned, which indicated the potential
value of discovering the new author.

B6. Judging potential value of a paper. Indirect author-based mes-
sages were useful for vetting the value of the recommended papers.
Participants described how knowing the scientist that they give
credit to cited the author of the recommended paper multiple times
gave them confidence that the recommended paper would also be
useful to them. P14 described that this form of relevance implied
a high chance of utility that he, too, could use the recommended
paper to support claims in his papers, given how often his advisor
(who was the featured indirect author in the message) cited the
author. For this reason, it mattered whether the indirect author
was someone whose work the scientist knows and gives credit to
(“the fact that this mathematician that I give credit to is citing this
paper, then that gives credit to the paper.” – P3), otherwise the rele-
vance may be ignored. However, one participant commented that
he would be interested in seeing a highly selective group of influ-
ential authors (“5–10 most cited researchers” – P8) in each subfield
to be featured in the messages, regardless of personal connections.
Sometimes indirect authors were useful for negative filtering, too
e.g., “[A] is in like a CS education-y, a different field than me... I care
about what she’s doing, but it’s a less cool factor for me” (P4); “[A]
works with computationally very heavy mechanisms. Not what I’m
interested” (P10).

These results uncover qualitative insights that complement the
effectiveness of messages in Study 1. In addition, they also show
how indirect author-based relevance messages complemented the
other two types of messages. Next, we describe the challenges
involved with current messages.
Types of Challenges. C1. Interpretability of indirect author-based
messages. Generating relevance messages in a post-hoc manner
could lead to incongruent information. While some participants
regarded messages as something that ‘doesn’t hurt to have’ (P4)
or ‘a weak signal’ (P3) even when they were not found to contain
particularly useful information, others indicated confusion when
encountering a relevance message for a paper that did not seem to
relate much to their topical interest (“It gives me more confidence
about the recommendation that there’s a high chance that I can
cite this paper too, but I don’t know how it’s related to me” – P14).
Compared to citation- and direct author-based messages, which
featured directly relevant information to users, indirect author-
based messages were associated with ‘a steep learning curve’ (P6)
and subject to frequent misinterpretation and re-reading, though

participants could get used to them after seeing a few messages of
the same type (“The first time was confusing but getting the hang
of it now” – P2). This perceived difficulty of interpretation was
consistent with participants’ subjective ratings on the Ease question,
in which indirect author-based messages scored significantly lower
(µ = 4.9, σ̄ = 1.21) than direct author-based messages (µ = 5.9, σ̄ =
1.04) (two-tailed Welch’s t-test, t(22.74) = 2.18,p = 0.04).

Part of the difficulty was anticipated by our research team given
the nature of the message that involved second-degree relations
between authors, and was proactively mitigated by the second line
text that described the scientists’ relation to indirect authors. This
was perceived as helpful by 8 out of 14 participants (e.g., “I can tell
right away that it’s my personal connection” – P1, Fig. 10, bottom),
but only when they had some mental model of the indirect author
(“I find the text marginally useful when I don’t recognize the name”
– P1). Participants also wished to see more contextual information
that could remind them of ‘forgotten connections’ (P2) or their
own previous interaction data such as which paper they found
interesting or had saved in the library, which led to the relevance
messages being surfaced.

C2. Tension between more context and efficiency. Unlike names
found on a social network where users have real-world relations
with each other, names extracted from the implicit ‘social’ net-
work of authors may not be grounded in real-world relations and
thus necessitate additional contextual information that helps users
understand who the authors are and how they might be related. Par-
ticipants frequently mentioned wanting to see specific contextual
information helpful for making sense of the relevance surfaced from
the messages. P7 said: “I think it could definitely use more detail.
Because I don’t know what I cited, from this context. I know she
cited our paper. So now I am more interested, like, oh, what did she
say?”. For P1, providing author names in the message alone was not
nearly enough, given how he needed contextual information even
for contacts with personal ties. P2 noted that while most names
were unmemorable, their papers might be, and contextualizing and
reminding users of their previous behaviors could help (“Is there
a way to tell why I thought an author interesting before?” – P2).
Other participants also wanted to see fine-grained citation context
such as its salience (“it matters more if it was more of a key citation”
– P11) or the section information.

Ultimately participants thought that additional context could
fulfill their filtering needs, as P6 put it: “I know enough about [IA] to
say that he has done some research I’m very interested in and then
some that I’m less interested in... I guess he kind of has two camps
of research, or two or more at least, and so I’m curious like, this
person has authored six papers that [IA] cited... what camp did this
(paper) fall into, or like what papers is [IA] citing? Are they gender
papers or otherwise, cuz that changes a lot how much I care.” When
participants had a deeper understanding of the expertise areas of
an author, they sometimes wanted to filter based on a subset of
areas they cared about the most, as relations based on less central
areas of interest were less useful or irrelevant. Indirect authors may
have done ‘a lot of great, but very diverse work’ (P7) which may
not be interesting to the user.

Taken together, these comments suggest that there is a rich sub-
space of citation and author information that can be used to further
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contextualize the relevance messages, and that it may be most ef-
fective when aligned with scientists’ task-specific filtering needs.
However, while additional context may help scientists reason about
the relevance between authors and themselves, it may also increase
the chance of information overload [124], creating a tension be-
tween desiring more information and also wanting to quickly scan
the recommendations in the email. Several participants, includ-
ing P2, aptly described this potential tension: “I usually want to
scan as quickly as possible the titles... I feel like having to parse
and switch back and forth between different kinds of relations to
indirect authors will tire me.”

C3. Evolving research topics and scientist’s identities. Another im-
portant identified issue involves how scientists’ interests change
over time, and that they may move away from old topics they them-
selves previously published in or move back to them with renewed
interest later on. Depending on the changes, relevance extracted
from citation graphs may become stale over time, and detect a ‘pio-
neering but universally cited’ (P11) body of work as highly relevant,
or relevance to ‘old research interests’ (3/14 participants). At the
same time, participants also expressed the need to see recommen-
dations related to their ‘past selves as scientists’ (P14) for specific
use cases like accepting review requests on those topics. Taken
together, there may be high activation research areas at any time
for scientists which constitute their current identities as scientists,
with several ‘past identities’ that consist of somewhat dormant, but
occasionally reactivated topical areas. Accurately detecting such
identities as scientists may be difficult or even impossible, yet an
important aspect for systems aimed at surfacing current relevance
to the users nonetheless.

C4. Trust. Participants were more sensitive to potential errors
in relevance between authors than in relevance based on citation.
Because an important ingredient of effective relevance messages
was participants’ prior mental models of other scientists, for author-
basedmessages this naturally invited conceptualization of relevance
based on people and their intellectual legacy. For example, a high
number of citations of an author represented ‘a good body of work’
for someone (P4) or a potential ‘advisor-advisee relationship’ (P6),
while a low number of citations could have meant ‘an up-and-
coming’ or a ‘junior’ scientist in the field (P5).

This also meant higher sensitivity to how the relevance between
authors was represented in messages, which could erode trust in
the system when they suspected the relevance was not accurately
quantified. P5 noted that using an exact quantification of howmany
papers authors have written or cited could be a ‘risky statement’
because they were falsifiable and the margin of errors was small,
especially for scientists that he knew well. Yet, systems that use
citation graphs are subject to inevitable sources of errors, given the
challenges from the scale and the speed of changes (e.g., papers may
be published at different platforms such as ArXiv.org or conference
proceedings at different times). One of the participants also noted
a case where the relevance message was featuring a very different
number of citations from what he expected, which he suspected
was due in part to the author’s deadname being incorrectly updated.
As such, a challenge for systems that aim at inferring implicit
social networks of authors from citation graphs is recognizing
the increased sensitivity to the accuracy of author-based relevance
and sufficiently fail-proofing or communicating the uncertainty of

data associated with the representations of relevance to prevent
erosion of trust.

7 IMPLICATIONS FOR DESIGN
We further propose three main design areas for future relevance
messages that combine citation graphs and implicit social networks
of authors to support scientists’ sensemaking, filtering, and discov-
ery (overview in Table 5).
Goal-Centric Interpretability. Our participants used relevance
messages for a host of diverse yet interrelated benefits. They saw
authors featured in the messages as topical representations of their
mental models of other scientists, and used them to contextualize
the recommended paper and the connections between authors.
Messages also helped the participants discover new and interesting
authors that they otherwise might not have paid enough attention
to notice. These specific use cases suggest that future strategies of
relevance messaging need to be tailored to different goals scientists
have in mind. In addition, scientists frequently engaged in multiple
use cases while reviewing a single email suggesting that support
for fluid switching between different goals while interacting with
the content in a single email, or throughout multiple emails over a
period of time may be important.

One issue with the template-based uniform messaging approach
adopted here is that although it may benefit efficient scanning, this
efficiency comes largely from the uniformity of the phrases used in
the messages. This results in generic, rather than specific descrip-
tions of relations. Participants in our study also alluded to this, by
suggesting alternative message designs focused on specific aspects
of their needs such as “convey the strength of topical similarity”
(3/14 participants), “directly say a new author is worth checking
out” (5/14 participants), and “describe the topical context of the
author-author connections” (9/14 participants). Furthermore, in
exploratory scenarios under time pressure where multiple sources
of information compete for user’s attention and judgement of rele-
vance, the amount of effort required for goal-specific interpretation
of messages may be prohibitively high. Addressing this in future de-
signs could greatly improve the effectiveness of relevance messages
by reducing the gap of interpretability.

One potential design space is to suggest possible goals to sci-
entists, and adaptively changing the message templates based on
their choice. Because this additional discovery step of available
options may add cost to the messaging strategies, recommender
systems may proactively present variations of the messages and
provide scientists a selection mechanism with minimal cognitive
load. In addition to message presentation and selection, alternative
measures of relevance may be computed and used to quantify the
strength of relevance, supporting scientists’ choice of the messaging
strategy. For example, the strength of relevance may be computed
as a normalized count of connections the recommended paper has
to a user-curated feed, and further augmented with topical similar-
ity to each paper on the feed by leveraging readily available NLP
techniques.

In sum, an important challenge here for designers is to provide
tailored support for a diverse set of goals that newly emerged with
relevance messages. Making an assumption about default user goals
and supporting only static messages corresponding to them, or
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Design Implication Areas Summary

Goal-Centric Interpretability C1, C2, B[2–6] Messages need to be tailored to scientists’ specific goals in order to work
as a useful source of signal.

Task-Centric Configurations C[2–4] Messages need to support task-specific configuration needs: here and now
vs. there and then.

Dynamic Scientist Identities C3, B4, B5 Author-based relevance needs to better capture and organize relevance
through multiple scientist identities and temporally changing communities.

Table 5: Overview of Design Implications. Using the benefits and challenges identified in Section 6.3, we synthesized design
implications for future relevancemessaging approaches that combine citation graphs and implicit social networks of authors.

generic messages that pose an interpretability gap may ultimately
lead to user frustration and abandonment.
Task-Centric Configurations. Scientists need better support for
their specific task context and ways to effectively manage their
limited attention. The fundamental challenge is that scientists fre-
quently experience information overload, and while personalized
neural recommenders can help they can still result in an overwhelm-
ing amount of information to comb through. The three high-level
tasks that scientists in our study commonly performed were fil-
tering, sensemaking with mental models of other scientists, and
discovery. Scientists expressed needs for additional support in con-
figuring the messages to filter based on blacklisted/whitelisted
authors, in prioritizing messages with specific citation context and
importance, and in dialing up the salience of important relations
between authors featured in the messages.

While participants appreciated existing modalities of longer-
term configurations such as tuning the frequency of alert emails
(mentioned by 5/14 participants) and the ability to receive new
paper recommendations based on a set of curated papers or certain
authors, relevance messages also introduced several user needs
for additional configurations that apply within an individual email.
For example, participants wanted to configure messages to feature
additional ‘academic status’ (3/14 participants) and ‘topic cards’
(4/14 participants) next to unfamiliar author names to quickly get
a sense of their work, and similarly ‘citation context’ (8/14 partic-
ipants) next to citation-based messages. We saw that sometimes
recommendations in an email acted as a launchpad for separate
discovery loops, for example by clicking author links to jump to
the author details pages of people they wanted to learn more about
(8/14 participants), though there were differences among the par-
ticipants in terms of when they intended to actively engage in the
discovery loops (e.g., as soon as they open the details page (3/14
participants) vs. storing them as open tabs for review at a later
time (5/14 participants)). The challenge for designers here is how
to notice when filtering-oriented tasks evolve into discovery and
vice versa, such that task-specific configurations can be effectively
and adaptively supported. The changing nature of the tasks noted
here also nods to the findings in information seeking behaviors
(e.g., [99, 121]) that involve alternating between broad foraging and
focused exploiting phases. From our observations, participants may
need two distinctive types of configuration support for tasks that
are ‘here and now,’ which are characteristic to scientists’ in situ
filtering and micro-discovery needs within an alert email, vs. ‘there
and then,’ which are more relevant to configurations expected to
last longer thus re-configured less frequently.

Dynamic Scientist Identities. Relevance messages that leverage
implicit social networks of authors should better reflect scientists’
evolving research interests. One potential design space is in boot-
strapping temporal shifts in topical interests by identifying sub-
groups of scientists from prior publications and interaction data
(e.g., curated research feeds and libraries around specific topics).
Inferring temporally changing community structures from citation-
graphs and implicit social networks of authors may also be useful
for better supporting user needs in understanding how scientists are
connected in a community and how within- and cross-community
impact occurs. Another potential design space is in supporting
multiple scientist identities for individual authors. While publica-
tion history can be a useful source of signal, it also consists of
a collection of related research areas that the scientist has previ-
ously embarked on, some of which may no longer be relevant to
other scientists’ interests. Bootstrapping the scientist-topic struc-
tures by segmenting time periods with high topical consistency
from the publication history may be helpful. In addition, increasing
the recency and topical relevance by simple discounting of older
publications may be effective.

Support for multiple scientist identities can also help mitigate
the message–recommendation incongruence. Featuring messages
on paper recommendations that are topically distant can confuse
users into thinking that the recommended paper is highly relevant.
Yet, due to post-hoc generation, messages that feature relevance
through an overall thread of research may augment papers that
belong to its topically distant segments. In some cases participants
were left wondering how to make sense of the conflicting signals
of ‘a high confidence of utility signal from the message’ (P14) but
low perceived topical relevance of the recommendation.

Therefore, designers who wish to use author-based relevance in-
formation to augment scientific recommendations need to consider
dynamic changes happening within an individual scientist’s career
trajectory as well as the community-level shifts over time. Captur-
ing and organizing author-based relevance using such structures
has the potential to better orient scientists in the multifaceted and
dynamic space of relevance.

8 DISCUSSION
Inferring targeted social networks formessages. Previouswork
on social explanations has shown that social explanations can be
persuasive, but they might be only a secondary effect to the peo-
ple’s inherent preferences and quality expectations about the rec-
ommended items [102]. This was consistent with our observations
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— the engagement benefit of messages for scientists was also in-
fluenced by other context such as topical alignment, freshness,
and quality cues from the content and metadata of the paper (title,
author names, publication venues, etc.).

A prominent difference between the social messages developed
in this work and those in prior work lies in how targeted the net-
work leveraged for message generation was for the recommenda-
tion task. On one end of the spectrum, explicit social networks
leveraged in [101, 102] (e.g., Facebook) may capture real-world
friendships among the users, but may also be less targeted for the
task of recommending music, as friendship relations between two
people encompass more than just similar tastes in music. On the
other end, our inferred network of authors may lack the real-world
relationships among the users, but may still capture task-specific
relations about what different scientists read and how they build
on each other’s work. Our study results confirmed that the rela-
tions featured in messages indeed were relevant in this regard, and
also useful because they activated existing mental models of the
familiar authors featured in messages to improve their understand-
ing of the recommended papers or the novel authors. There may
also be a hybrid of networks for generating social messages. For
example, [42] explored one approach to aggregating two types of
relations: those from an explicit, public social network and oth-
ers from a more targeted, within-organization intranet, in order
to find most relevant and trustworthy co-workers to support the
given recommendation task. The use of different types of social
networks raises interesting open questions as to how they differ
in terms of message persuasiveness (i.e., how much explanations
boost user engagement) and informativeness (i.e., user satisfaction
from consuming the recommended item). Answering these ques-
tions requires studies that directly measure user perceptions before
and after consuming the recommendations augmented with var-
ious types of messages pulled from different kinds of networked
relations, that go beyond the persuasiveness focus (operationalized
by click-through rates) of this work. Understanding these questions
may bring new insights as to how different types of social network
relations may be combined or used to facet one another to improve
the persuasiveness and informativeness of recommendations.
Revisiting the contrast between informativeness andpersua-
siveness. Prior work has also contrasted the informativeness and
persuasiveness of recommendations [16], and investigated how
applying social explanations often did not simultaneously increase
both [102]. This contrast is interesting to revisit in light of our
findings for a few reasons. First, the structure of trust may be more
targeted in the inferred scholarly network than in explicit social
networks. For example, [102] found that users trusted good friends
more and perceived social explanations featuring them as more
persuasive than when featuring random friends, but this persua-
siveness was not highly correlated with their ultimate liking of
the music after consumption. However, this finding may be due
to the specific tie strength used to categorize friends in the work
(e.g., good vs. random) that was less targeted to the music recom-
mendation task. In contrast, using an inferred scholarly network
of authors from publications and their citation network may have
a benefit of surfacing more targeted relations useful for judging

the ultimate utility of the recommendations, even though the rela-
tions may not be grounded in the real-world social relations. Future
work may test this hypothesis, and also further explore our find-
ings around the challenges related to interpreting and trusting the
inferred relations.

Second, the ultimate informativeness measure may be more nu-
anced in the domain of scholarly recommendations due to potential
differences in their utility curve. Unlike other domains such as
music or movie recommendations, scientists are both consumers
and producers of the recommendations, rather than consumers
alone. Therefore, the users are incentivized by and actively look
for recommendations with both immediate (e.g., a reference to cite
in the manuscript currently writing) and longer term utility goals
(e.g., papers in new domains for future research) in mind. This
suggests depending on the task context, each user may exhibit a
different informativeness utility curve of recommendations and
more or less openness to diverse recommendations that have dif-
ferent kinds of informativeness. Lastly, the scientific community
consists of both lateral (e.g., peers) and vertical relations (e.g., direct
advisory relations, or distant advisory relations through academic
lineage) that users may leverage to interpret messages. Therefore,
the notion of trust here is not limited to the immediate closeness
among the friends as leveraged in previous work, and supports the
use of intermediate author relations (e.g., ‘I want to know what
my peers or my advisor’s former collaborators are working on’, ‘I
trust B’s recommendations because he’s a well-known expert in the
field’). Our findings from indirect author-based messages mediated
by middle authors opened a new design space and also uncovered
challenges for identifying trusted and preferred middle authors
from whom users might appreciate recommendations. Important
questions remain open for future investigation, such as how the
systematic choice of middle authors shifts the system-wide visibil-
ity of work (e.g., ‘is the effect similar to crowning an author with a
prestigious, status-conferring prize?’ [97]), whether it concentrates,
reinforces, or creates new pathways to the power of persuasion by
specific authors (e.g., ‘how does the dynamic differ or align with
the megaphone effect [75]?’), and if so, how the goals of trust and
fairness may be balanced in the selection algorithm.
Limitations and broader impacts. The methods developed here
were evaluated on a particular search engine and within the email
alert context. However, given that our approaches are agnostic
to the underlying recommender algorithms, they may be applied
to other settings, for example, to supplement recommendations
found on social media such as Twitter. Future work investigating
whether our findings generalize to such settings may be important.
More investigation is also needed to understand the full impact
of interventions like ours to ensure fairness with respect to other
important attributes, including author gender and ethnicity, and
the full scope of the impact of the increased engagement, including
unintended consequences such as coming at the expense of other
important activities. In addition, whether our messages influence
diversity of consumption (e.g., [8]) remains an important open
question.

Our operationalization of author reputation is also limited in
several ways. While we looked at multiple ways of aggregating
h-index across authors of a paper (max and average), other aspects
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of authorship such as the reputation of the lead author or the last
author may be important to consider. We also considered only the
changes in papers clicked directly from the email, whereas our
intervention could potentially also influence downstream papers
clicked in the future.

Finally, the real-world nature of Study 1 introduced some un-
avoidable measurement error. For example, due to the wide range
of devices and event context, it was not possible to ensure that we
accurately detected all events such as email opens. It is also very
challenging to automatically extract knowledge graph elements
such as citations and disambiguate authors, particularly for newly
published papers whichmay not be accompanied by publisher meta-
data, and errors in this process introduced additional noise into the
deployment. While it is unlikely that significant biases were intro-
duced into experimental conditions in a systematic way because
participation was randomized, improving the data coverage and
accuracy from the deployment setting will be valuable for surfacing
the full scopes of effects.

9 CONCLUSION
Scientists today are faced with a daunting yet fundamental task of
staying on top of the large, rapidly growing literature. With little
support from existing tools to know why the recommended papers
might be worth their attention to read, scientists are forced to wran-
gle long, monotonous lists of recommendations—and perhaps quit
in the process. To better support scientists’ broad information needs
and mitigate the issue of scarce relevance signals, we designed and
empirically tested two kinds of graph-based relevance messages by
finding connections from who they know to what they read. Our
large-scale, real-world online deployment study revealed empir-
ical evidence that relevance messages are an effective means for
engaging scientists. To further increase their benefits, we designed
and implemented a third kind of messages via an inferred scholarly
network and featuring relations mediated by middle authors that
the user may trust. From a controlled lab study with 14 scientists
we gained qualitative insights into the utility of our relevance mes-
sages as well as their challenges. Finally, we synthesized a set of
future implications for design, which aim to use inferred social net-
work relevance to engage scientists. We envision a future in which
scientists are delighted to keep up with academic literature through
personalized paper recommendations that help them attend to au-
thors they know, discover new interesting authors found from what
they have read or interacted with in the past, and provide many
additional engaging and helpful signals that feed into a positive
loop of further improving the recommender systems.

ACKNOWLEDGMENTS
This project is supported in part by NSF Grant OIA-2033558, NSF
RAPID award 2040196, ONR grant N00014-21-1-2707, and the Allen
Institute for Artificial Intelligence (AI2). The authors thank Alex
Schokking, Alex Buraczynski, Paul Sayre, Cecile Nguyen, Sebas-
tian Kohlmeier, and Rodney Kinney for their advice on and help
with engineering and Kyle Lo for his advice on the analysis of ex-
perimental results. We also thank the anonymous reviewers for
their constructive feedback. Finally, this work would not have been
possible without our study participants.

REFERENCES
[1] Alison Abbott, David Cyranoski, Nicola Jones, Brendan Maher, Quirin Schier-

meier, and Richard Van Noorden. 2010. Metrics: Do metrics matter? Nature
News 465, 7300 (2010), 860–862.

[2] Daniel E Acuna, Stefano Allesina, and Konrad P Kording. 2012. Predicting
scientific success. Nature 489, 7415 (2012), 201–202.

[3] Chunrong Ai and Edward C Norton. 2003. Interaction terms in logit and probit
models. Economics letters 80, 1 (2003), 123–129.

[4] Icek Ajzen. 1991. The theory of planned behavior. Organizational behavior and
human decision processes 50, 2 (1991), 179–211.

[5] DagWAksnes andArie Rip. 2009. Researchers’ perceptions of citations. Research
Policy 38, 6 (2009), 895–905.

[6] Paul David Allison. 1999. Multiple Regression: A Primer (Pine Forge Press Series
in Research Methods and Statistics). Unspecified.

[7] Reid Andersen, Christian Borgs, Jennifer Chayes, Uriel Feige, Abraham Flax-
man, Adam Kalai, Vahab Mirrokni, and Moshe Tennenholtz. 2008. Trust-based
recommendation systems: an axiomatic approach. In Proceedings of the 17th
international conference on World Wide Web. 199–208.

[8] Ashton Anderson, Lucas Maystre, Ian Anderson, Rishabh Mehrotra, and Mounia
Lalmas. 2020. Algorithmic effects on the diversity of consumption on spotify.
In Proceedings of The Web Conference 2020. 2155–2165.

[9] Andy Barrett. 2005. The information-seeking habits of graduate student re-
searchers in the humanities. The Journal of Academic Librarianship 31, 4 (2005),
324–331.

[10] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2014. Fitting
linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823 (2014).

[11] Marcia J Bates. 2002. Speculations on browsing, directed searching, and linking
in relation to the Bradford distribution. In Emerging frameworks and methods:
Proceedings of the Fourth International Conference on Conceptions of Library
and Information Science (CoLIS 4). Libraries Unlimited Greenwood Village, CO,
137–150.

[12] Charles Bazerman. 1985. Physicists reading physics: Schema-laden purposes
and purpose-laden schema. Written communication 2, 1 (1985), 3–23.

[13] Nicholas J Belkin and Alina Vickery. 1985. Interaction in information systems: A
review of research from document retrieval to knowledge-based systems. Number
025.04 BEL. CIMMYT.

[14] Adar Ben-Eliyahu, Debra Moore, Rena Dorph, and Christian D Schunn. 2018.
Investigating the multidimensionality of engagement: Affective, behavioral, and
cognitive engagement across science activities and contexts. Contemporary
Educational Psychology 53 (2018), 87–105.

[15] Steven Bethard and Dan Jurafsky. 2010. Who should I cite: learning literature
search models from citation behavior. In Proceedings of the 19th ACM interna-
tional conference on Information and knowledge management. 609–618.

[16] Mustafa Bilgic and Raymond J Mooney. 2005. w. In Beyond personalization
workshop, IUI, Vol. 5. 153.

[17] Thijs Bol, Mathijs de Vaan, and Arnout van de Rijt. 2018. The Matthew effect in
science funding. Proceedings of the National Academy of Sciences 115, 19 (2018),
4887–4890.

[18] Lutz Bornmann and Rüdiger Mutz. 2015. Growth rates of modern science: A
bibliometric analysis based on the number of publications and cited references.
Journal of the Association for Information Science and Technology 66, 11 (2015),
2215–2222.

[19] Richard E Boyatzis. 1998. Transforming qualitative information: Thematic analy-
sis and code development. sage.

[20] Corinna Breitinger, Patrick Wortner, Bela Gipp, and Harald Reiterer. 2019. ‘Too
Late to Collaborate’: Challenges to the Discovery of in-Progress Research. In
2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL). IEEE, 134–137.

[21] Donald O Case and Lisa M Given. 2016. Looking for information: A survey of
research on information seeking, needs, and behavior. (2016).

[22] Rose Catherine and William Cohen. 2016. Personalized recommendations using
knowledge graphs: A probabilistic logic programming approach. In Proceedings
of the 10th ACM conference on recommender systems. 325–332.

[23] Sneha Chaudhari, Amos Azaria, and Tom Mitchell. 2017. An entity graph based
recommender system. AI Communications 30, 2 (2017), 141–149.

[24] Jilin Chen, Rowan Nairn, Les Nelson, Michael Bernstein, and Ed Chi. 2010. Short
and tweet: experiments on recommending content from information streams.
In Proceedings of the SIGCHI conference on human factors in computing systems.
1185–1194.

[25] Robert B Cialdini. 1987. Influence. Vol. 3. A. Michel Port Harcourt.
[26] Robert B Cialdini and Noah J Goldstein. 2004. Social influence: Compliance and

conformity. Annu. Rev. Psychol. 55 (2004), 591–621.
[27] Avital Cnaan, Nan M Laird, and Peter Slasor. 1997. Using the general linear

mixed model to analyse unbalanced repeated measures and longitudinal data.
Statistics in medicine 16, 20 (1997), 2349–2380.

[28] Stephen Cole and Jonathan R Cole. 1968. Visibility and the structural bases of
awareness of scientific research. American sociological review (1968), 397–413.



From Who You Know to What You Read CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[29] Lucas Colusso, Ridley Jones, Sean A Munson, and Gary Hsieh. 2019. A trans-
lational science model for HCI. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. 1–13.

[30] Lisa M Covi. 1999. Material mastery: situating digital library use in university
research practices. Information Processing & Management 35, 3 (1999), 293–316.

[31] Diana Crane. 1965. Scientists at major and minor universities: A study of
productivity and recognition. American sociological review (1965), 699–714.

[32] Mihaly Csikszentmihalyi andMihaly Csikzentmihaly. 1990. Flow: The psychology
of optimal experience. Vol. 1990. Harper & Row New York.

[33] Robert Cudeck. 1996. Mixed-effects models in the study of individual differences
with repeated measures data. Multivariate behavioral research 31, 3 (1996), 371–
403.

[34] Beant Dhillon, Peter Banach, Rafal Kocielnik, Jorge Peregrin Emparanza, Ioannis
Politis, A Rączewska, and Panos Markopoulos. 2011. Visual fidelity of video
prototypes and user feedback: a case study. In Proceedings of HCI 2011 The 25th
BCS Conference on Human Computer Interaction 25. 139–144.

[35] Thomas A DiPrete and Gregory M Eirich. 2006. Cumulative advantage as a
mechanism for inequality: A review of theoretical and empirical developments.
Annu. Rev. Sociol. 32 (2006), 271–297.

[36] Catherine A Durham and Diego Andrade. 2005. Health vs. environmental moti-
vation in organic preferences and purchases. Technical Report.

[37] Zhichao Fang, Rodrigo Costas, Wencan Tian, Xianwen Wang, and Paul Wouters.
2021. How is science clicked on Twitter? Click metrics for Bitly short links to
scientific publications. Journal of the Association for Information Science and
Technology 72, 7 (2021), 918–932.

[38] Michael Fernandes, Logan Walls, Sean Munson, Jessica Hullman, and Matthew
Kay. 2018. Uncertainty displays using quantile dotplots or cdfs improve transit
decision-making. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 1–12.

[39] Adam M Grant and Barry Schwartz. 2011. Too much of a good thing: The
challenge and opportunity of the inverted U. Perspectives on psychological
science 6, 1 (2011), 61–76.

[40] Paul Grau, Babak Naderi, and Juho Kim. 2018. Personalized Motivation-
supportive Messages for Increasing Participation in Crowd-civic Systems. Pro-
ceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 1–22.

[41] Ido Guy, Michal Jacovi, Elad Shahar, Noga Meshulam, Vladimir Soroka, and
Stephen Farrell. 2008. Harvesting with SONAR: the value of aggregating social
network information. In Proceedings of the SIGCHI conference on human factors
in computing systems. 1017–1026.

[42] Ido Guy, Naama Zwerdling, David Carmel, Inbal Ronen, Erel Uziel, Sivan Yogev,
and Shila Ofek-Koifman. 2009. Personalized recommendation of social software
items based on social relations. In Proceedings of the third ACM conference on
Recommender systems. 53–60.

[43] Saeed-Ul Hassan, AnamAkram, and Peter Haddawy. 2017. Identifying important
citations using contextual information from full text. In 2017 ACM/IEEE Joint
Conference on Digital Libraries (JCDL). IEEE, 1–8.

[44] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. Trirank: Review-
aware explainable recommendation by modeling aspects. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Manage-
ment. 1661–1670.

[45] AndrewHead, Kyle Lo, DongyeopKang, Raymond Fok, Sam Skjonsberg, Daniel S
Weld, and Marti A Hearst. 2021. Augmenting scientific papers with just-in-time,
position-sensitive definitions of terms and symbols. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–18.

[46] Marti A Hearst, Emily Pedersen, Lekha Patil, Elsie Lee, Paul Laskowski, and
Steven Franconeri. 2019. An evaluation of semantically grouped word cloud
designs. IEEE transactions on visualization and computer graphics 26, 9 (2019),
2748–2761.

[47] Paul Hemp. 2009. Death by information overload. Harvard business review 87, 9
(2009), 82–9.

[48] Monika Henzinger, Jacob Suñol, and Ingmar Weber. 2010. The stability of the
h-index. Scientometrics 84, 2 (2010), 465–479.

[49] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. 2000. Explaining col-
laborative filtering recommendations. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work. 241–250.

[50] Diana Hicks, Paul Wouters, Ludo Waltman, Sarah De Rijcke, and Ismael Rafols.
2015. Bibliometrics: the Leiden Manifesto for research metrics. Nature News
520, 7548 (2015), 429.

[51] Terje Hillesund. 2010. Digital reading spaces: How expert readers handle books,
the Web and electronic paper. (2010).

[52] Jorge E Hirsch. 2005. An index to quantify an individual’s scientific research
output. Proceedings of the National academy of Sciences 102, 46 (2005), 16569–
16572.

[53] Jorge E Hirsch. 2007. Does the h index have predictive power? Proceedings of
the National Academy of Sciences 104, 49 (2007), 19193–19198.

[54] Jeffrey D Hole. 2008. Email overload in academia. Rochester Institute of Tech-
nology.

[55] Kim Holmberg and Mike Thelwall. 2014. Disciplinary differences in Twitter
scholarly communication. Scientometrics 101, 2 (2014), 1027–1042.

[56] Gary Hsieh and Rafał Kocielnik. 2016. You get who you pay for: The impact of
incentives on participation bias. In Proceedings of the 19th ACM conference on
computer-supported cooperative work & social computing. 823–835.

[57] Jinkyu Jang and Jinwoo Kim. 2020. Healthier life with digital companions: Effects
of reflection-level and statement-type of messages on behavior change via a
perceived companion. International Journal of Human–Computer Interaction 36,
2 (2020), 172–189.

[58] Haofeng Jia and Erik Saule. 2017. An analysis of citation recommender sys-
tems: Beyond the obvious. In Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2017. 216–223.

[59] Arif E Jinha. 2010. Article 50 million: an estimate of the number of scholarly
articles in existence. Learned Publishing 23, 3 (2010), 258–263.

[60] Clay A Johnson. 2015. The information diet: A case for conscious comsumption. "
O’Reilly Media, Inc.".

[61] Ron Johnston, Kelvyn Jones, and David Manley. 2018. Confounding and
collinearity in regression analysis: a cautionary tale and an alternative pro-
cedure, illustrated by studies of British voting behaviour. Quality & quantity 52,
4 (2018), 1957–1976.

[62] Timothy A Judge, Daniel M Cable, Amy E Colbert, and Sara L Rynes. 2007. What
causes a management article to be cited—article, author, or journal? Academy
of management journal 50, 3 (2007), 491–506.

[63] Samara Klar, Yanna Krupnikov, John Barry Ryan, Kathleen Searles, and Yotam
Shmargad. 2020. Using social media to promote academic research: Identifying
the benefits of twitter for sharing academic work. PloS one 15, 4 (2020), e0229446.

[64] Rafal Kocielnik and Gary Hsieh. 2017. Send me a different message: utilizing
cognitive space to create engaging message triggers. In Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social Computing.
2193–2207.

[65] Esther Landhuis. 2016. Scientific literature: Information overload. Nature 535,
7612 (2016), 457–458.

[66] Vincent Larivière and Yves Gingras. 2010. The impact factor’s Matthew Effect:
A natural experiment in bibliometrics. Journal of the American Society for
Information Science and Technology 61, 2 (2010), 424–427.

[67] Jure Leskovec, Ajit Singh, and Jon Kleinberg. 2006. Patterns of influence in a
recommendation network. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 380–389.

[68] Mary J Lindstrom and Douglas M Bates. 1990. Nonlinear mixed effects models
for repeated measures data. Biometrics (1990), 673–687.

[69] Bin Liu and Zheng Yuan. 2010. Incorporating social networks and user opin-
ions for collaborative recommendation: local trust network based method. In
Proceedings of the workshop on context-aware movie recommendation. 53–56.

[70] Christopher Lueg. 1997. Social filtering and social reality. In Proceedings of
the 5th DELOS Workshop on Filtering and Collaborative Filtering. ERCIM Press,
77–81.

[71] Hao Ma, Irwin King, and Michael R Lyu. 2009. Learning to recommend with so-
cial trust ensemble. In Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval. 203–210.

[72] Brian James McInnis, Elizabeth Lindley Murnane, Dmitry Epstein, Dan Cosley,
and Gilly Leshed. 2016. One and Done: Factors affecting one-time contributors
to ad-hoc online communities. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing. 609–623.

[73] Marcia McNutt. 2014. The measure of research merit.
[74] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a

feather: Homophily in social networks. Annual review of sociology 27, 1 (2001),
415–444.

[75] Edward FMcQuarrie, JessicaMiller, and Barbara J Phillips. 2013. Themegaphone
effect: Taste and audience in fashion blogging. Journal of Consumer Research 40,
1 (2013), 136–158.

[76] Marshall H Medoff. 2006. Evidence of a Harvard and Chicago Matthew effect.
Journal of Economic Methodology 13, 4 (2006), 485–506.

[77] Anamika Megwalu. 2015. Academic social networking: a case study on users’
information behavior. In Current Issues in Libraries, Information Science and
Related Fields. Emerald Group Publishing Limited.

[78] Robert K Merton. 1968. The Matthew effect in science: The reward and commu-
nication systems of science are considered. Science 159, 3810 (1968), 56–63.

[79] Breed D Meyer. 1995. Natural and quasi-experiments in economics. Journal of
business & economic statistics 13, 2 (1995), 151–161.

[80] James G Miller. 1960. Information input overload and psychopathology. Ameri-
can journal of psychiatry 116, 8 (1960), 695–704.

[81] Ehsan Mohammadi, Mike Thelwall, Mary Kwasny, and Kristi L Holmes. 2018.
Academic information on Twitter: A user survey. PloS one 13, 5 (2018), e0197265.

[82] Francesco Montani, Christian Vandenberghe, Anis Khedhaouria, and François
Courcy. 2020. Examining the inverted U-shaped relationship between workload
and innovative work behavior: The role of work engagement and mindfulness.
Human Relations 73, 1 (2020), 59–93.



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA H. B. Kang, R. Kocielnik, A. Head, J. Yang, M. Latzke, A. Kittur, D. Weld, D. Downey, and J. Bragg

[83] Frederick Muench and Amit Baumel. 2017. More than a text message: dis-
mantling digital triggers to curate behavior change in patient-centered health
interventions. Journal of medical Internet research 19, 5 (2017), e147.

[84] David Nicholas, Peter Williams, Ian Rowlands, and Hamid R Jamali. 2010.
Researchers’e-journal use and information seeking behaviour. Journal of Infor-
mation Science 36, 4 (2010), 494–516.

[85] Richar Van Noorden. 2014. Global scientific output doubles every nine
years. http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-
every-nine-years.html

[86] Robert M O’Brien. 2017. Dropping highly collinear variables from a model: why
it typically is not a good idea. Social Science Quarterly 98, 1 (2017), 360–375.

[87] Vito Claudio Ostuni, Tommaso Di Noia, Eugenio Di Sciascio, and RobertoMirizzi.
2013. Top-n recommendations from implicit feedback leveraging linked open
data. In Proceedings of the 7th ACM conference on Recommender systems. 85–92.

[88] Elisabeth Pain. 2016. How to keep up with the scientific literature. Science
Careers 30 (2016).

[89] Carole L Palmer. 2005. Scholarly work and the shaping of digital access. Journal
of the American Society for Information Science and Technology 56, 11 (2005),
1140–1153.

[90] Carole L Palmer, Lauren C Teffeau, and Carrie M Pirmann. 2009. Scholarly
information practices in the online environment. Report commissioned by OCLC
Research. Published online at: www. oclc. org/programs/publications/reports/2009-
02. pdf (2009).

[91] John Panaretos and Chrisovaladis Malesios. 2009. Assessing scientific research
performance and impact with single indices. Scientometrics 81, 3 (2009), 635–670.

[92] Saverio Perugini, Marcos André Gonçalves, and Edward A Fox. 2004. Recom-
mender systems research: A connection-centric survey. Journal of Intelligent
Information Systems 23, 2 (2004), 107–143.

[93] Peter Pirolli and Stuart Card. 1999. Information foraging. Psychological review
106, 4 (1999), 643.

[94] Derek de Solla Price. 1976. A general theory of bibliometric and other cumulative
advantage processes. Journal of the American society for Information science 27,
5 (1976), 292–306.

[95] Marie L Radford, Vanessa Kitzie, Stephanie Mikitish, Diana Floegel, Gary P
Radford, and Lynn Silipigni Connaway. 2020. “People are reading your work,”
scholarly identity and social networking sites. Journal of Documentation (2020).

[96] Filippo Radicchi, Santo Fortunato, and Claudio Castellano. 2008. Universality
of citation distributions: Toward an objective measure of scientific impact.
Proceedings of the National Academy of Sciences 105, 45 (2008), 17268–17272.

[97] Brian P Reschke, Pierre Azoulay, and Toby E Stuart. 2018. Status spillovers: The
effect of status-conferring prizes on the allocation of attention. Administrative
Science Quarterly 63, 4 (2018), 819–847.

[98] Stephen Rowland. 2002. Overcoming fragmentation in professional life: The
challenge for academic development. Higher education quarterly 56, 1 (2002),
52–64.

[99] Daniel M Russell, Mark J Stefik, Peter Pirolli, and Stuart K Card. 1993. The
cost structure of sensemaking. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems. ACM, 269–276.

[100] Masahiro Sato, Shin Kawai, and Hajime Nobuhara. 2019. Action-triggering
recommenders: Uplift optimization and persuasive explanation. In 2019 Interna-
tional Conference on Data Mining Workshops (ICDMW). IEEE, 1060–1069.

[101] Amit Sharma and Dan Cosley. 2011. Network-centric recommendation: Person-
alization with and in social networks. In 2011 IEEE Third International Conference
on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference
on Social Computing. IEEE, 282–289.

[102] Amit Sharma and Dan Cosley. 2013. Do social explanations work? Studying
and modeling the effects of social explanations in recommender systems. In
Proceedings of the 22nd international conference on World Wide Web. 1133–1144.

[103] Herbert A Simon. 1996. Designing organizations for an information-rich world.
International Library of Critical Writings in Economics 70 (1996), 187–202.

[104] Roberta Sinatra, Dashun Wang, Pierre Deville, Chaoming Song, and Albert-
László Barabási. 2016. Quantifying the evolution of individual scientific impact.
Science 354, 6312 (2016).

[105] Parag Singla and Matthew Richardson. 2008. Yes, there is a correlation: -from
social networks to personal behavior on the web. In Proceedings of the 17th
international conference on World Wide Web. 655–664.

[106] Alison Smith-Renner, Ron Fan, Melissa Birchfield, TongshuangWu, Jordan Boyd-
Graber, Daniel S Weld, and Leah Findlater. 2020. No explainability without
accountability: An empirical study of explanations and feedback in interactive
ml. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

[107] John Sweller. 2011. Cognitive load theory. In Psychology of learning and motiva-
tion. Vol. 55. Elsevier, 37–76.

[108] Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos.
2008. Providing justifications in recommender systems. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans 38, 6 (2008),
1262–1272.

[109] Carol Tenopir, Donald W King, Sheri Edwards, and Lei Wu. 2009. Electronic
journals and changes in scholarly article seeking and reading patterns. In Aslib
proceedings. Emerald Group Publishing Limited.

[110] Nava Tintarev and Judith Masthoff. 2007. A survey of explanations in recom-
mender systems. In 2007 IEEE 23rd international conference on data engineering
workshop. IEEE, 801–810.

[111] Nava Tintarev and Judith Masthoff. 2008. The effectiveness of personalized
movie explanations: An experiment using commercial meta-data. In Interna-
tional Conference on Adaptive Hypermedia and Adaptive Web-Based Systems.
Springer, 204–213.

[112] George Toderici, Hrishikesh Aradhye, Marius Pasca, Luciano Sbaiz, and Jay
Yagnik. 2010. Finding meaning on youtube: Tag recommendation and category
discovery. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE, 3447–3454.

[113] Martin Traunmueller, Paul Marshall, and Licia Capra. 2015. Crowdsourcing
safety perceptions of people: Opportunities and limitations. In International
Conference on Social Informatics. Springer, 120–135.

[114] Julia Vainio and Kim Holmberg. 2017. Highly tweeted science articles: who
tweets them? An analysis of Twitter user profile descriptions. Scientometrics
112, 1 (2017), 345–366.

[115] Pertti Vakkari and Sanna Talja. 2006. Searching for Electronic Journal Articles
to Support Academic Tasks. A Case Study of the Use of the Finnish National
Electronic Library (FinELib). Information Research: An International Electronic
Journal 12, 1 (2006), n1.

[116] Arnout Van de Rijt, Soong Moon Kang, Michael Restivo, and Akshay Patil.
2014. Field experiments of success-breeds-success dynamics. Proceedings of the
National Academy of Sciences 111, 19 (2014), 6934–6939.

[117] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 417–426.

[118] Jian Wang. 2014. Unpacking the Matthew effect in citations. Journal of Infor-
metrics 8, 2 (2014), 329–339.

[119] Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. 2018. Explainable rec-
ommendation via multi-task learning in opinionated text data. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval. 165–174.

[120] Lynn Westbrook. 2003. Information needs and experiences of scholars in
women’s studies: Problems and solutions. College & Research Libraries 64,
3 (2003), 192–209.

[121] Ryen WWhite and Resa A Roth. 2009. Exploratory search: Beyond the query-
response paradigm. Synthesis lectures on information concepts, retrieval, and
services 1, 1 (2009), 1–98.

[122] Steve Whittaker and Candace Sidner. 1996. Email overload: exploring personal
information management of email. In Proceedings of the SIGCHI conference on
Human factors in computing systems. 276–283.

[123] Simon Williams. 2019. Postgraduate Research Experience Survey. London:
Advance HE (2019).

[124] Max L Wilson et al. 2008. Improving exploratory search interfaces: Adding
value or information overload? (2008).

[125] Chris Woolston. 2019. PhDs: the tortuous truth.
[126] Yongfeng Zhang and Xu Chen. 2018. Explainable recommendation: A survey

and new perspectives. arXiv preprint arXiv:1804.11192 (2018).
[127] Guoshuai Zhao, Hao Fu, Ruihua Song, Tetsuya Sakai, Zhongxia Chen, Xing

Xie, and Xueming Qian. 2019. Personalized reason generation for explainable
song recommendation. ACM Transactions on Intelligent Systems and Technology
(TIST) 10, 4 (2019), 1–21.

[128] Xin Wayne Zhao, Yanwei Guo, Yulan He, Han Jiang, Yuexin Wu, and Xiaoming
Li. 2014. We know what you want to buy: a demographic-based system for
product recommendation on microblogs. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1935–1944.

Appendix A. Post-hoc analyses on the potential
sources of biases of randomization
We further ran post-hoc analyses on two potential sources of biases
– the average length of emails and the average position of relevance
messages – to ensure the validity of random assignment. Systemic
differences in these biases between conditions may significantly
change user engagement, and have potential to invalidate the in-
terpretation of the results on engagement. For example, longer
emails may fatigue users and cause them to drop off more easily.
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Figure 13: The avg. length of emails were slightly shorter in
Control (µ = 12.1, σ̄ = 20.30) than the other two conditions
(µ = 12.9, σ̄ = 21.74 in Citation and µ = 12.8, σ̄ = 17.36 in
Direct Author), and the difference was less than one paper.

Figure 14: The mean of mean rank positions of messages in
emails was significantly higher in Direct Author than in Ci-
tation, suggesting receivers of direct authormessages had to
read more through the list in the email to see the messages.

At the same time, longer emails may also provide users more pa-
per recommendations to look at, and as a result an increased click
engagement. On the other hand, the average position of relevance
messages would positively impact user discovery and attention,
because messages placed higher (towards the top of the email) are
more easily discovered.

These potential sources of biases appear unlikely to have changed
the directions of the observed effects on engagement (Fig. 13 and 14).
Though the length of emails did significantly differ between condi-
tions and on average the emails in the Citation and Direct Author
conditions were longer than in Control, this difference was less than
a paper in both cases (∆Citation−Control = 0.78 and∆Direct Author−Control =
0.69). The average number of paper recommendations clicked per
email was µ = 0.10, σ̄ = 0.680; the expected number of clicked
emails from the difference is then 0.78 × 0.10 = 0.078 for the Ci-
tation condition and 0.69 × 0.10 = 0.069 for the Direct Author
condition. However, the average number of clicked emails in both
treatment conditions was still higher after accounting for the ex-
pected surpluses of clicked papers, µ = 0.24, σ̄ = 0.936 (Citation)
and µ = 0.36, σ̄ = 1.262 (Direct Author). Between the Citation and

Direct Author conditions, the average position of relevance mes-
sages indexed from the top of the email was smaller (i.e. closer to
the top of the email) in the Citation condition (µ = 10.1, σ̄ = 20.55)
than in the Direct Author condition (µ = 12.0, σ̄ = 17.72). This
suggests that if the discoverability of relevance messages were con-
trolled for, Direct Author messages may lead to an even greater
increase in user engagement.

Appendix B. Difference-in-Differences (DiD)
analysis on the email open rates
We further examined the effect of messaging strategies on future
engagement, while accounting for the effect of familiarity and habit-
forming with email alerts over time. Though Fig. 4b showed the
overall differences in email open rates between conditions, it is
possible that there was a significant time effect on users’ decision to
open an incoming alert email, given their previous experiences with
them, such as habitual opening. This would likely create a positive
trend-line for the baseline email open rates over time, thus making
the estimation of true effects of our messaging strategies harder
to obtain. We applied Difference in differences analysis to account
for such effect. DiD is a technique often used in econometrics and
social sciences to derive causal inferences from observational, panel
data [79]. We used efficient linear probability estimation method
based on linear regression models. This has an additional benefit
of producing directly interpretable coefficients [3].

We applied two symmetric linear regression models, each corre-
sponding to one messaging strategy (i.e. Citation or Direct Author).
The regression model’s dependent variable was the binary open
rates (1: Email was opened, 0: Otherwise), and the predictive vari-
ables included whether the email was sent within the first two
weeks of the experiment (Early Exposure), whether the email was
in the treatment condition (vs. Control), and the interaction of the
two. The number of emails in the Early Exposure vs. Late Exposure
groups was roughly equal, with the biggest difference occurring in

Coef. SE p

(Intercept) 0.256 0.004 ***
Early Exposure -0.037 0.006 ***

Message (Citation) 0.006 0.006 0.29
Interaction -0.004 0.008 0.64

Table 6: The result of linear regression with Citation mes-
sages and Control. Citation messages did not increase email
open rates after accounting for the baseline increase over
time (p = 0.64). ***: p < 0.001, **: p < 0.01.

Coef. SE p

(Intercept) 0.256 0.004 ***
Early Exposure -0.037 0.006 ***

Message (Direct Author) 0.045 0.006 ***
Interaction -0.031 0.008 ***

Table 7: The result of linear regression with Direct Author
messages and Control. Direct Author messages significantly
increased email open rates in addition to the baseline in-
crease over time (p < 0.001). ***: p < 0.001, **: p < 0.01.
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Figure 15: Mean email open rates by condition shows a sig-
nificantly steeper slope in Direct Author over Control, sug-
gesting its effectiveness in boosting the open rate after ac-
counting for the baseline increase over time.

the Citation condition (11,459 emails in the early exposure group
vs. 12,199 in the late exposure group).

The result of our analyses showed that indeed there was a signif-
icant time effect on the open rates in both conditions. Specifically,
Early Exposure was significantly negatively associated with the
open rates, suggesting that users became increasingly ‘habitual’
with opening new alert emails over time (Table 6 and 7). After
accounting for this time effect, the effect of messaging was sig-
nificant only in the Direct Author condition (p < 0.001), but not
in the Citation condition (p = 0.64), further lending support to
the effectiveness of the author-based messaging strategy (Fig. 15).
Specifically, later Direct Author messages induced a 30% increase
in email open rates relative to the first two-week exposure period.

Appendix C. Empirical relationship between the
predictive variables and click-through rates
(ctr)
The LocallyWeighted Scatterplot Smoothing (LOWESS) plot showed
a roughly inverted U-shaped curve between ctr the % of paper
recommendations featured with any type of relevance message,
with a greater fraction of treated papers resulting in dramatically
more engagement, up to a point (between 25-50% treated) above
which engagement falls off (Fig. 16(b)). Furthermore, it also showed
ctr was roughly positively correlated with the receiver’s h-index
(Fig. 16(a)), and whether they claimed a profile (Fig. 16(c)), showing
users with claimed profiles showing overall higher levels of ctr.

Appendix D. Variance Inflation Factor analysis
to determine factors that should be pruned due
to significant collinearity with others
We performed Variance Inflation Factor (VIF) analysis [6] on the
predictor variables (Claimed Profile,% Featured, and # of Total Papers)
because they are assumed to have parallel causal influences on
Email Clicked. The VIF value for each predictor variable is typically
obtained by first regressing it against all others in the set, then
computing the 1/(1 − R2

)
. For example a VIF of 1.5 tells us that the

variance of the predictor variable is 50% greater than would be the
case if no collinearity was present. Following [61], we used 2.5 as
a threshold for the existence of significant collinearity among the
predictor variables. The result showed that the highest VIF from the

Coef. SE p

(Intercept) -8.20 0.278 ***
% Featured 3.17 0.600 ***

(% Featured)2 -3.00 0.680 ***
# of Total Papers 0.01 0.038 0.81

Table 8: Regression analysis using Model 1 predicted signif-
icant curvilinear changes on ctr from the % of papers fea-
tured with author-based relevance messages while the total
number of recommendations in the email was not a signifi-
cant predictor. *** indicates significance at p < 0.001.

predictor variables was 1.14 (Claimed Profile) hence we proceeded
without pruning any variable from the model.

Appendix E. Likelihood Ratio Test for modeling
the relationship between ctr and % of
recommendations featured with messages
We hypothesized that an optimal % of papers within an email fea-
tured with author-based relevance messages (% Featured) for click-
through is neither too few (which may lead to under-utilization),
nor too many (may lead to overwhelming the users). Investing this
curvilinear relation requires inclusion of a quadratic variable in the
model. The descriptive pattern from the data also suggested this hy-
pothesis (Fig. 16(b)). Using locally weighted scatterplot smoothing
(LOWESS), we observed that the peak click-through happened
somewhere between 25% and 50% of the papers featured with
author-based relevance messages, and quickly decreased outside
this range. Along with the descriptive pattern, we also performed a
pairwise Likelihood Ratio Test (LRT) on two models, one with only
the linear % Featured term and the other with only the quadratic
(% Featured)2 term, in order to further test the soundness of intro-
ducing the quadratic term. The result showed that the reduction of
deviance from introducing the quadratic term is more than what we
would have expected to see if the beta coefficients for them were 0
(χ2(1) = 19.9,p = 8.1 × 10−6), thus we proceeded with introducing
the quadratic term and building Model 1:2.

д(E[y]) = β0 + γj + β1x1 + β2x2 + β3x3

д(E[y]) = β0 + γj + β4x1
2 + β5x2 + β6x3

where y=ctr, β1 representing the fixed effects from the % Fea-
tured (x1), β2 representing the fixed effects from the Claimed Pro-
file variable (x2), β3 representing the fixed effects from the # of
Total Papers (x3), β4 representing the fixed effects from the qua-
dratic (% Featured)2, and similarly for β5 and β6. Random intercepts
γj ∼ N(0,σ 2

γ )were introduced for participants j’s.We used the logit
link д(p) = log(p/(1 − p)) to model the engagement as a Bernoulli
variable.

The result of Model 1 is shown in Table 8. This regression tells us
whether the probability of ctr changes significantly if we increased
the % of papers featured with author-based relevance messages,
or changed the number of paper recommendations included in
each email. Consistent with our hypothesis, we found a significant
2We did not perform an additional check on the VIF when including the quadratic
term, despite its potentially significant collinearity with the linear term. See [86] for
more discussion on the relevant topic.
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Figure 16: (a) The LOWESS plot suggested an overall positive correlation between receiver h-index and ctr; (b) The LOWESS
plot suggested an inverted U-shaped curve relationship between % of paper recommendation featured and ctr, (c) with an
overall higher level of ctr for claimed profile users.From Who You Know to What You Read CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

(a) The ‘background’ distribution
of normalized author h-indices of
all paper recommendations sent
out in all alert emails in all con-
ditions. 𝜇 = 8.3, 𝜎̄ = 11.14
(median=5.0).

(b) The distribution of normalized author h-indices of clicked papers in each condition. The average
increased to 𝜇 = 12.5, 𝜎̄ = 14.25 (Control, median=8.7); 𝜇 = 10.7, 𝜎̄ = 10.87 (Citation, median=8.0); and
𝜇 = 12.1, 𝜎̄ = 12.11 (Direct Author, median=9.0). The increase of the average h-index over the background
distribution was significant, suggesting that users considered high status authors as a signal for deciding
whether to click on a paper by default. At the same time, citation messages reduced the h-index relative
to control, suggesting its effect of guiding user attention to lesser known authors. Direct authormessages
and control did not differ significantly.

Figure 21: Analysis showed users on average clicked on papers with authors with higher average h-index, and featuring
relevance messages did not shift user attention to only the papers with high-profile authors.

Coef. SE 𝑝

(Intercept) -8.20 0.278 ***
% Featured 3.17 0.600 ***

(% Featured)2 -3.00 0.680 ***
# of Total Papers 0.01 0.038 0.81

Table 8: Regression analysis using Model 1 predicted sig-
nificant curvilinear changes on ctr from the % of papers
featured with author-based relevance messages while the
total number of recommendations in the email was not a
significant predictor. *** indicates significance at 𝑝 < 0.001.

email and user engagement. The coefficients of both the linear
% Featured and its quadratic terms were significant (𝑝 < 0.001),
and the signs were in the opposite direction, with a negative beta
coefficient for the quadratic term. This validates the empirically

observed inverted U-shaped curve relationship on ctr. We also
found that the normalized length of email was not a significant
predictor of user engagement, which suggests the conflicting effects
of longer emails: overwhelming users (negative) vs. providing more
paper links to click (positive). We extend Model 1 with additional
predictive variables and account for them in our regression analysis
using Model 2 (Section 4.2.3).

Appendix F. Repeat analysis on the fairness of
visibility (Section 4.2.4) using normalized author
h-index
The repeat analyses of author h-index distributional shifts using
normalized author h-index per paper recommendation (Fig. ??; see
also Section. 4.2.4).

Figure 17: Analysis showed users on average clicked on papers with authors with higher average h-index, and featuring rele-
vance messages did not shift user attention to only the papers with high-profile authors.

curvilinear relationship between the % of papers featured in the
email and user engagement. The coefficients of both the linear
% Featured and its quadratic terms were significant (p < 0.001),
and the signs were in the opposite direction, with a negative beta
coefficient for the quadratic term. This validates the empirically
observed inverted U-shaped curve relationship on ctr. We also
found that the normalized length of email was not a significant
predictor of user engagement, which suggests the conflicting effects
of longer emails: overwhelming users (negative) vs. providing more
paper links to click (positive). We extend Model 1 with additional

predictive variables and account for them in our regression analysis
using Model 2 (Section 4.2.3).

Appendix F. Repeat analysis on the fairness of
visibility (Section 4.2.4) using normalized author
h-index
The repeat analyses of author h-index distributional shifts using
normalized author h-index per paper recommendation (Fig. 17(b);
see also Section. 4.2.4).
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