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ABSTRACT

North Atlantic sea surface temperatures (SST) exhibit a lagged response to the North Atlantic Oscillation

(NAO) in both models and observations, which has previously been attributed to changes in ocean heat

transport. Here we examine the lagged relationship between the NAO and Atlantic multidecadal variability

(AMV) in the context of the two other major components of the AMV: atmospheric noise and external

forcing. In preindustrial control runs, we generally find that after accounting for spurious signals introduced

by filtering, the SST response to the NAO is only statistically significant in the subpolar gyre. Further, the

lagged SST response to the NAO is small in magnitude and offers a limited contribution to the AMV pattern,

statistics, or predictability. When climate models include variable external forcing, the relationship between

the NAO andAMV is obscured and becomes inconsistent. In these historically forced runs, knowledge of the

prior NAOoffers reduced predictability. The differences between the preindustrial and the historically forced

ensembles suggest that we do not yet have enough observational data to surmise the true NAO–AMV re-

lationship and add evidence that external forcing plays a substantial role in producing the AMV.

1. Introduction

There is an ongoing debate as to how active a role the

ocean plays in generating multidecadal climate vari-

ability in theAtlantic. Observational and proxy analyses

identify a low-frequency, basin-wide warming and

cooling of SST in the North Atlantic, which is generally

referred to as the AMV (Deser and Blackmon 1993;

Kushnir 1994; Schlesinger and Ramankutty 1994; Kerr

2000; Delworth and Mann 2000). Identifying a physical

mechanism for the AMV is difficult given the short ob-

servational record relative to the time scale of the vari-

ability; long runs of climatemodels are the best available

tools to better understand this oscillation (Latif and

Keenlyside 2011; Buckley and Marshall 2016 and ref-

erences therein). Research suggests that the three major

components of North Atlantic SST variability are nat-

ural variability in the Atlantic meridional overturning

circulation (AMOC) (e.g., Delworth et al. 2017), the

passive ocean response to atmospheric noise (e.g.,

Clement et al. 2015), and changes in external forcing

(e.g., Bellucci et al. 2017). There is disagreement as to

the relative contribution of each of these terms to

overall SST variability in the North Atlantic (Vecchi

et al. 2017; Buckley and Marshall 2016).

The first major component of the AMV is variable

ocean heat transport, potentially related to variability in

AMOC. Mechanisms that invoke changes in ocean heat

transport build on the hypothesis that the quickly mov-

ing, low heat capacity atmosphere drives SST variability

on short time scales, while the slowly moving, high heat

capacity ocean drives SST variability on long time scales

(Bjerknes 1964; Kushnir 1994). Recent studies of both

observational products and climate models show a

change of sign in the correlation of turbulent heat fluxes

with SST as a function of time scale; this is interpreted as

evidence in support of Bjerknes’ (1964) hypothesis

(Gulev et al. 2013; O’Reilly et al. 2016). There is an

ongoing debate about whether this metric can be used to
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identify a causal relationship between the ocean circu-

lation and SST (Cane et al. 2017; Zhang 2017). Many

modeling studies have noted coherence (including

lagged correlations) between the AMV and meridional

ocean heat transport, which includes metrics that

describe the AMOC (e.g., Delworth et al. 1993;

Timmermann et al. 1998; Delworth and Greatbatch

2000; Latif et al. 2004; Jungclaus et al. 2005; Knight et al.

2005; Danabasoglu et al. 2012; Ba et al. 2014; Delworth

et al. 2017; Zhang 2017; Wills et al. 2018). Generally,

these studies hypothesize that buoyancy fluxes associ-

ated with atmospheric variability, often characterized by

the North Atlantic Oscillation (NAO), drive changes in

the strength of the AMOC; variations in AMOC then

advect anomalous heat into the northern portion of the

Atlantic, which produces SST anomalies. These changes

in the AMOC are invoked as a source of predictability

for subpolar gyre heat anomalies (e.g., Yeager et al.

2012). Despite the apparent connection between the

AMV and ocean heat transport in some models, the

literature has not established a conclusive observational

link (Lozier 2010; Buckley and Marshall 2016).

The second major component of the AMV is the in-

fluence of atmospheric variability on a passive ocean.

The NAO index describes a plurality of atmospheric

noise over the North Atlantic; it is often calculated by

taking the first empirical orthogonal function (EOF) of

sea level pressure over the North Atlantic (Thompson

and Wallace 2001). This index exhibits variability at all

time scales in bothmodels and observations (Deser et al.

2010; Woollings et al. 2015). (Climate models typically

underestimate the level of low-frequency variance in the

NAO, relative to observations; Kim et al. 2018). In-

terannual and higher frequencies of this oscillation are

contemporaneously associated with an SST tripole,

which is primarily forced by air–sea flux anomalies

(Deser et al. 2010). The relationship between the NAO

and SST is succinctly described by simple stochastic

climatemodels, wherein SST anomalies are a function of

air–sea fluxes and upper-ocean memory (Hasselmann

1976; Frankignoul andHasselmann 1977;Wunsch 1999).

This serves as the null hypothesis for SST variability

(Deser et al. 2010). This relationship also holds true at

longer time scales except in those regions where ocean

heat transport variability is important such as the North

Atlantic subpolar gyre (Buckley et al. 2015; Karspeck

et al. 2015).

The third major component of the AMV is changes in

external forcing. Recent modeling studies show that the

AMV does respond to experimental changes in external

forcing (e.g., volcanoes, CO2, aerosols). For example,

Murphy et al. (2017) find that the variance of the AMV

is larger in runs of climate models with variable external

forcing, which is consistent with work showing that

models that include variable external forcing, particu-

larly volcanoes and anthropogenic aerosols, can explain

upward of 2/3 of AMV variability (Otterå et al. 2010;

Booth et al. 2012; Bellucci et al. 2017; Bellomo et al.

2018). Zhang et al. (2013) challenge this view; they note

that at least one model responds too strongly to external

forcing. Similarly, climate models may undersimulate

internal variability in both the atmosphere and ocean

(Kim et al. 2018).

All three mechanisms described above contribute to

overall climate variability in the North Atlantic; how-

ever, the relative contributions of each to the AMV and

how those contributions may vary with time and time

scale are uncertain. Clement et al. (2015) found that

climate models with and without variable ocean heat

transport can produce AMV indices with similar asso-

ciated patterns and spectral characteristics. They show

this using a climate model coupled to a mixed-layer

depth ocean, which would explicitly exclude the ocean

heat transport variability required by the first potential

driver (Clement et al. 2015). However, many fully cou-

pled climate models simulate a lagged relationship be-

tween the NAO and subpolar gyre SSTs at decadal time

scales, whereas mixed-layer ocean models do not

(Delworth et al. 2017; Peings et al. 2016; Zhang 2017).

This discrepancy across model configuration is inter-

preted to mean that ocean dynamics, including the

AMOC, exert influence on North Atlantic SST at mul-

tidecadal time scales.

This paper focuses on the lagged relationship between

the NAO and AMV, which we presume to be mediated

by some ocean dynamical mechanism (Delworth et al.

2017; Peings et al. 2016; Zhang 2017). We examine this

relationship in the context of the other two major

components of the AMV, atmospheric noise and

external forcing. The relative importance of the NAO–

AMV mechanism is evaluated statistically in pre-

industrial control runs of CMIP5 climate models. The

relative importance of external forcing is evaluated

experimentally by comparing historically forced runs to

preindustrial control runs. Unlike many previous stud-

ies, we evaluate this relationship against the null hy-

pothesis that accounts for the influence of filtering. We

find that North Atlantic subpolar gyre SSTs exhibit a

lagged response to the NAO in many fully coupled cli-

mate models with constant forcing, which is consistent

with previous findings. However, we find that the lagged

response to the NAO’s contribution to the AMV is

limited, offering only marginal explanatory power for

North Atlantic SSTs. Further, we find that the re-

lationship between the NAO and AMV is small enough

that it is easily overwhelmed or obscured by the signal
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associated with variable external forcing. In the pres-

ence of variable external forcing, knowledge of the prior

state of the NAOmay not be as useful a predictor of the

AMV as it is in PI runs.

2. Data and methods

a. Observations and observational products

Our analysis considers the relationship between at-

mospheric and SST variability in both models and ob-

servations. For SST, we consider two observational

products. The first is the National Oceanic and Atmo-

spheric Administration’s global monthly observational

product, Extended Reconstructed SST (ERSST) data-

set, version 3 (Smith et al. 2008). The second is the

Hadley Centre Sea Surface Temperature dataset

(HadSST), version 3.1.1.0 (Kennedy et al. 2011). For

ERSST, we linearly detrend each grid point before

conducting analysis. For HadSST, we consider their

median values of SST anomalies, which have also been

detrended.

In this work, we characterize atmospheric variability

using theNAO index. For our observational analysis, we

choose the instrumental, normalized, station-based

NAO index for December–March (DJFM) (see below

for more detail; Hurrell and National Center for

Atmospheric Research Staff 2018; Jones et al. 2003). For

both SST and the NAO index, we utilize 153 years of

observations from 1864 to 2016.

b. Model output

Model output is selected from publicly available pre-

industrial (PI) control runs and historically forced runs

of CMIP5 climate models. We choose both PI control

and historically forced runs from 27 individual models in

the CMIP5 archive; additionally, we include two PI

control runs from GFDL-CM2.1 and a configuration of

CESM-CAM5with a mixed-layer depth ocean to enable

comparison to the existing literature. We report results

from CMIP5 models where both PI and historically

forced runs are readily available. All PI control runs

have constant external forcing; the runs vary in length

and resolution. A full list of climate models utilized

appears in Table 1. Finally, we select historically forced

runs from the CESM-CAM5 large ensemble, which we

denote as CESM-LE. This 42-member ensemble covers

the time period 1920–2005 (Kay et al. 2015); we consider

the 41 of the 42 ensemble members that were branched

from the first model run. Each member starts at slightly

different initial conditions in air temperature (Kay et al.

2015). All model components are identical versions to

those selected for our CESM-CAM5 PI control run.

c. Definitions

We consider two indices of SST: the AMV index and

theAMVMID index. The former is defined as the low-

pass-filtered, linearly detrended time series of the cosine

weighted average surface temperature over the ocean

from 08–608N to 08–808W. The latter is defined as the

low-pass-filtered, linearly detrended time series of the

cosine weighted average surface temperature over

the ocean in the region 408–608N and 208–608W. To ex-

amine multidecadal variability, we use Matlab’s im-

plementation of a fourth-order Butterworth filter with a

half-power frequency of 1/10 yr. Other formulations of

the AMV index eschew linear detrending, so as to more

fully remove the forced signal (e.g., Trenberth and Shea

2006; Frankignoul et al. 2017). We believe nonlinear

detrending may be inappropriate for our particular

study; for example, removing global average SST from

the AMV index (Trenberth and Shea 2006) may also

remove any forcing that jointly affects the AMV and

global mean temperature (Murphy et al. 2017). Our

results are qualitatively similar whether the trend is re-

moved linearly or nonlinearly (not shown).

To characterize atmospheric variability, we consider

two forms of the NAO index. The first mimics the

station-based or two-point index referenced above. This

index is defined as the difference in normalized sea level

pressure anomalies between the grid cells containing

Stykkisholmur, Iceland, and the Azores. The second

index is defined by the first principal component of sea

level pressure in the region 208–808N, 908W–408E. The
images below have been calculated using the EOF-

based index; results are similar for both indices unless

otherwise noted. To examine multidecadal variability,

we again use Matlab’s implementation of a fourth-order

Butterworth filter with a half-power frequency of

1/10 yr.

d. Methods

To study relationships between variables, we use

lagged correlations and regressions between annual

average SST and the wintertime (DJFM) average NAO

index. Our choice of method only considers the linear

portion of the relationship between the NAO and SST,

which is consistent with the literature and allows for

direct comparison to Delworth et al. (2017).

We establish statistical confidence by testing against

the null hypothesis that low-pass-filtered SST variability

is primarily driven by low-pass-filtered atmospheric

noise. Filtering introduces spurious signals that are dis-

tinguishable from a random-walk process (Cane et al.

2017). Further, filtering complicates causal interpre-

tation of statistical relationships. Cane et al. (2017) find
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that the expected relationship between the low-pass-

filtered time series of atmospheric noise and SST is ap-

proximately equivalent to the autocorrelation function

of the filter, weighted by the portion of variance attrib-

uted to the atmosphere [see their Eq. (11e)]. Rather

than testing the null hypothesis that the true correlation

between the low-pass-filtered NAO index and low-pass-

filtered SST is zero [as in, e.g., Delworth et al. (2017)],

we test the null hypothesis that the true correlation be-

tween these two indices is equal to the autocorrelation

function of the filter itself. We accomplish this by first

calculating empirical 95% confidence intervals via a

moving-block bootstrap, where the block size is equal to

the length of the original time series. This choice of

block-size allows us preserve as much low-frequency

covariance as possible (Delworth et al. 2017). We then

recenter the confidence intervals around the auto-

correlation function of the filter, scaled by the lag 0

correlation. One can validate this method in the one-

dimensional noise forced model by comparing the

autocorrelation function of the filter to the cross corre-

lation of the low-pass-filtered atmospheric noise term

and the low-pass-filtered SST term (Cane et al. 2017;

Hasselmann 1976; Frankignoul and Hasselmann 1977).

Note that this statistical test only accounts for the

magnitude of the correlation at a given lag but does not

account for uncertainty in the timing of the lag of max-

imum correlation. This statistical test is illustrated in

Fig. 1 and applied in Fig. 2 (and Figs. S3 and S5–S7 in the

online supplemental material).

In Fig. 1, we consider lagged correlations and re-

gressions between the low-pass-filtered NAO and low-

pass-filtered, zonal mean SST from a PI control run of

CESM1. First, we simply report the correlations with no

additional processing; interpreted directly, this would

suggest that negative SST anomalies (;20.18C) precede

FIG. 1. We illustrate our approach to a hypothesis test that accounts for spurious signals introduced by filtering. (top) Zonal mean lagged

correlation (colors) and regression (contours; 8C per std dev NAO index) between the low-pass-filtered NAO index and low-pass-filtered annual

average SST for a preindustrial control run ofCESM1at lags220 through 20. TheNAO leads at positive lags; theAMV leads at negative lags. (left)

Zonal mean lagged correlations with no significance testing. (middle) Zonal mean lagged correlations tested against the null hypothesis that the

correlation coefficient is equal to zero at all lags; 95%confidence intervals are constructedwith amoving-block bootstrap. (right)Zonalmean lagged

correlations tested against the null hypothesis that the correlation at a given lagwill be equal to the autocorrelation of the filter at that lag; confidence

intervals are again constructed via moving-block bootstrap. (bottom) Examples of the statistical test applied to the cross-correlation function at 358
and 608N (black dashed lines in top plots). Green dashes represent the confidence intervals around zero (corresponding to top middle plot); blue

shading represents the confidence intervals around the autocorrelation function of the filter (corresponding to top right plot). Differences between

the blue-shadedandgreen-dashedareas primarily reflect the lag 0 correlation, as spread toother lags via filtering.Note that, without testing the filter-

based null hypothesis, we may be tempted to interpret the positive lagged correlations at 358N as an intergyre advective signal.
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FIG. 2. The zonal mean correlation (colors) and regression (contours; 8C per std dev NAO index) between the low-

pass-filtered NAO index and low-pass-filtered annual average SST for a selection of CMIP5 preindustrial model runs at

lags 220 through 20. The NAO leads at positive lags; the AMV leads at negative lags. Pixels that are not statistically

significantly different from the spurious signal associated with filtering at the 95% level are colored white. Note the

variability in the lag of maximum correlation across models as well as the discrepancy betweenmodels and observations.
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the positive phase of the NAO by about 10 years and

positive SST anomalies (;0.18C) follow the positive

phase of the NAO by about 10 years (Fig. 1, top left).

Next, we consider the same regressions and correlations,

but we test the null hypothesis that the correlation or

regression coefficient at each grid point is equal to zero

(Fig. 1, top center). This test is commonly used in the

literature, notably in figures recently presented in

Delworth et al. (2017). Even at the 95% confidence in-

terval, one may be tempted to interpret this result as an

advective signal, with warm subtropical SST anomalies

associated with the NAO moving northward over time

into the subpolar gyre. Finally, when we apply the null

hypothesis which accounts for the imprint of the filter at

the 95% confidence level, we isolate the lagged SST

response to the NAO1 (Fig. 1, top right). Interpreted

directly, this suggests that a positive SST anomaly

(;0.18C) follows the NAO1 by about 10 yr in CESM1

but it does not indicate meridional advection. In iso-

lation, this picture may lend support for a subpolar gyre-

based mechanism for the AMV (e.g., Häkkinen et al.

2011; Piecuch et al. 2017); our results below remain ag-

nostic as to the precise nature of the ocean dynamical

mechanism behind the NAO–AMV relationship. This is

in part because relaxing the confidence interval to the

80% may allow for a potential role for intergyre ad-

vection. Of course, these results are only for one model;

a more detailed and generalizable analysis is presented

below.

Temporal filtering may be a necessary evil in studying

low-frequency climate variability, but we must account

for its influence on our analyses. We believe the afore-

mentioned method is a transparent attempt to account

for the spurious signals associated with filtering; how-

ever, other researchers have proposed different meth-

odologies. For example, recent work by Wills et al.

(2018) attempts to deal with the issues associated

with analyzing filtered data through their use of low-

frequency component analysis. We establish no prefer-

ence between the two methods but note that we find

similar results to Wills et al. (2019) in PI control runs

(although we interpret them in the context of histori-

cally forced runs).

3. Results

a. The small, lagged SST response to the NAO adds
little predictive skill

We find that there is a statistically significant lagged

warm SST response to a prolonged positive phase of the

NAO in most fully coupled models (Fig. 2). This is

consistent with several other studies that employ dif-

ferent statistical tests (e.g., Visbeck et al. 1998; Delworth

et al. 2017; Peings et al. 2016). Of the PI control runs we

consider, we find that 17 out of 29 produce lagged pos-

itive SST anomalies that meet our threshold for statis-

tical significance. In models, the warm SST response to

the low-pass-filtered NAO index is generally limited to

the subpolar gyre though with variable spatial extent

and magnitude. For example, CCSM4, CESM1-CAM5,

GFDL-CM2.1, and GFDL-CM3 (among others) tend to

simulate a warm response that includes a signal confined

to the northern portion of the basin, whereas the

warming in HadGEM2-AO extends continuously into

the subtropics. 29% (8 of 29) of PI runs produce a lagged

warm signal in the subtropics so we cannot conclude that

the tropical signal is robust. The connection between the

tropical and extratropical portions of the AMV is con-

sidered an open research question both in models and

observations (Delworth et al. 2017).

Previous work has identified an ocean dynamical

mechanism as the lagged link between the NAO and

SST on decadal time scales. The spatial scales (gyre-

to basin-scale) and dominant forcing (e.g., wind- or

buoyancy-forcing) required for this mechanism remain

areas of active research (e.g., Delworth et al. 2017;

Peings et al. 2016; Piecuch et al. 2017; O’Reilly and

Zanna 2018). To evaluate the dynamical response of the

ocean to a prolonged phase of the NAO, we consider

volume transport and ocean heat transport (OHT) at

56.58N. Foukal and Lozier (2018) find that a majority of

interannual ocean heat content variability in the eastern

portion of the subpolar gyre can be explained by heat

advection that passes through the plane, S, 56.58N, 358–
98W, from the surface to the bottom of the ocean. When

we consider volume transport and OHT integrated

across this plane in a PI run of CESM, we find a lagged

circulation response to the NAO at near-decadal lags

(Figs. S1 and S2), which is consistent with increased

import of warm water from the south as in Foukal and

Lozier (2018).

Regression coefficients associated with the NAO–SST

signal are small, generally 0.18C per standard deviation of

the NAO index or less, in both models and observations

(Fig. 2). Similarly, correlation coefficients are small, typ-

ically less than 0.4. Significant correlations (at the 95%

level) are largely confined to the higher latitudes and

near-decadal lags. We cannot reject the null hypothesis

that subtropical warming at short lags (0–;4yr) is a

spurious signal introduced by the filter [cf. Fig. 2 herein to

Fig. 7 of Delworth et al. (2017)]. Our statistical test does

not allow us to conclude that heat anomalies are meridi-

onally advected from the subtropical gyre to the subpolar

gyre. Thus, accounting for the influence of the filter, we

agree with the literature (e.g., Delworth et al. 2017;

Piecuch et al. 2017) that the NAO is associated with a
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small, lagged, warm response in the subpolar gyre but

provides little help in understanding the subtropical or

tropical portions of the AMV.

While this lagged signal appears in some PI control

runs, there are large discrepancies between models and

observations (Table 1). Observed SSTs warm about 14–

15 yr after a NAO1, whereas simulated SSTs warm

about 7–10 yr after a NAO1. The zonal mean spatial

structure of the response in observations appears to be

very different from most CMIP5 models. Without sig-

nificance testing, observations are more similar to the

broad response in HadGEM2-AO than the more com-

mon SPG response, as in CESM1 or GFDL-CM2.1 [see

Fig. 1 in Delworth et al. (2017)]. However, when we

apply our significance test, the observed subpolar re-

sponse is no longer significant at the 95% level (Fig. 2).

The only statistically significant correlation we find in

observations is a lagged warming at about 358N (see

Fig. S6 for HadSST).

Small signals are valuable if they can explain a large

portion of variance or if they can be used to predict a

system. The lagged SST response to the NAO has a

limited impact on the AMV orAMVMID index and

pattern. We show this by linearly removing the lagged

SST response to the NAO from the overall SST field. In

each model, we first determine the lag of maximum

correlation from the cross-correlation function of the

AMV and NAO (i.e., those listed in Table 1). Then, at

each pixel, we regress the low-pass-filtered SST field on

the lagged, low-pass-filtered NAO index, where the lag

is the lag of maximum correlation. Next, we multiply the

map of regression coefficients by the NAO index, which

creates a time series that isolates the lagged, linear

temperature response to the NAO. Finally, we subtract

our constructed SST field from the original SST field.

This yields a temperature field that should include all

variability except for that associated with the lagged SST

response to the NAO. It will include the contempora-

neous SST response to NAO winds. We then consider

the AMV andAMVMID indices and patterns from this

adjusted SST dataset.

The linear lagged SST response to the NAO only ac-

counts for between 0% and 12% of the variance in the

AMV index in PI control runs of CMIP5 models (4% on

average) and 19% (27%) in ERSST (HadSST) (see

Table 1). Similarly, the lagged response to the NAO

explains less than 11% ofAMVMID variance in all

models, while it explains 31% (69%) in ERSST

(HadSST). For all models, the spatial pattern of the

AMV pattern remains virtually unchanged by linearly

removing the lagged response to the NAO (not shown).

Conversely, the spatial pattern of the lagged SST re-

sponse to the NAO varies across models (see Fig. S3).

Note that in observations this signal explains more

variance in the AMV andAMVMID indices; however,

this method does not account for the reduced degrees of

freedom available in observations or potential exoge-

nous regressors (e.g., external forcing, atmospheric

variability not captured by the NAO index). The re-

lationship between observations and historically forced

runs will be reported in the next section.

The decadal portion of the contemporaneous NAO

explains little variance in the AMV index. On average,

the unlagged, low-pass-filtered NAO index explains

only;5% and;7% (2%) of the variability in the AMV

index in control runs of CMIP5 models and ERSST

(HadSST), respectively (see Table 1). The spatial structure

of the low-frequency SST response to the low-frequency

NAO appears to be somewhat model dependent. Areas

near the Norwegian and Irminger Seas, where some of

the largest responses to the NAO are found, appear to

be particularly sensitive to model configuration (Fig. S4);

the sign of the response to the NAO is not uniform across

CMIP5 models.

In PI control runs, knowledge of the prior state of the

NAO offers statistically significant, but small, improve-

ments in predictability. We test the null hypothesis that

the positive phase of the AMV follows the positive

phase of the NAO by chance. For this null hypothesis,

the AMV is a random variable with two potential out-

comes: the AMV was warm (.1 standard deviation) or

it was not warm. The expected probability that the

AMV1will follow the NAO1 (.1 standard deviation) a

given number of times is defined by the binomial

distribution,

f (k, n,p)5

�
n

k

�
pk(12p)n2k ,

where k is the number of times the AMV1 follows the

NAO1 by the lag of maximum correlation, n is the

number of NAO1 years, and p is the climatological

probability of the AMV1. The probability that the

AMV1 will follow the NAO1 at least k times is defined

by the cumulative distribution function, F(k, n, p). These

statistics are calculated for each model individually. For

20 out of 27 CMIP5 PI control runs, we reject the null

hypothesis that the AMV1 followed the NAO1 as a

result of chance at the 90% level. On average, there is an

11.2% chance that the AMV1 followed the NAO1 by

chance in CMIP5 PI runs. For comparison to the CESM-

LE, we randomly subsection our run of CESM-CAM5

(PI) into 41 85-yr segments and find that in 26 out of 41

segments, we reject the null hypothesis that the AMV1
followed the NAO1 as a result of chance at the 90%

level. On average, there is a 13.3% chance that the

AMV1 followed the NAO1 by chance in this synthetic
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PI ensemble. (If we increase our segment length to

153 yr, to match observations, we will reject our null

hypothesis for all members of the synthetic ensemble.)

Overall, in 46 out of 68 CMIP5 (PI) ensemble and syn-

thetic ensemble members we can reject the null hy-

pothesis that the AMV1 followed the NAO1 by

chance. Thus in these idealized model runs with pre-

scribed constant forcing, knowledge of the prior state of

the NAO does improve our ability the predict the

AMV index.

b. NAO–AMV relationship is obscured inmodel runs
with variable external forcing

In historically forced runs, the lagged SST response to

the NAO is inconsistent and rarely statistically signifi-

cant. Only 5 of 27 CMIP5 historically forced runs

produce a statistically significant lagged warm response

to the NAO in the subpolar gyre (Fig. S5). Only 7 of 41

CESM-LE members produce positive lagged warm re-

sponses to the NAO in the subpolar gyre (Figs. S6 and

S7). Both the magnitude and latitude of the warm re-

sponse varies across both historically forced ensembles;

correlation coefficients are generally near zero but can

be as large as about 0.5. Further, the lag of maximum

correlation between the NAO and AMV are in-

consistent in historically forced runs; the largest corre-

lations can be found throughout the range of lags that we

consider (230 to 30; see Tables 1 and 2). Finally, there

is a wider distribution of variance explained by the lag-

ged response to theNAO in historically forced runs than

PI runs (Tables 1 and 2).

We find that in historically forced runs, knowledge of

the prior state of the NAO does not typically offer sta-

tistically significant improvements in predictability for

SST. Note that when discussing predictability, we only

include historically forced runs where we find a lagged

warm response to the NAO (i.e., the lag of maximum

correlation is positive in Table 1 or Table 2). Using the

same test as for the PI, for 9 out of 18 CMIP5 historically

forced runs we consider, we reject the null hypothesis at

the 90% level that the AMV1 followed the NAO1 as a

result of chance. On average, there is a 42.2% chance

that the AMV1 followed the NAO1 by luck in this

ensemble. Likewise, for 8 out of 29 CESM-LE runs we

consider, we can reject the null hypothesis that the

AMV1 followed the NAO1 as a result of chance. On

average, there is a 40.0% chance that the AMV1 fol-

lowed theNAO1 by luck in this ensemble. Compared to

section 3a, we find that the NAO offers more pre-

dictability in PI control runs than in historically forced

runs. The probabilities reported above are generous,

givenwe ignore the 23model runs (combined) where the

lag ofmaximum correlation is negative. Overall, for only

17 out of 68 historically forced model runs we can reject

the null hypothesis that the AMV1 followed the

NAO1 by chance. This is in contrast to the 46 out of 68

model runs for the PI where we can reject the hypoth-

esis, which demonstrates the role for external forcing in

this measure of predictability.

The inconsistency in the NAO–AMV relationship

from historically forced runs becomes more apparent

when compared to CMIP5 PI control runs. The PI

control runs discussed in earlier sections exhibit a rea-

sonably robust set of cross-correlation functions; most

models produce a small, statistically significant, lagged

warm response to the NAO that is attributed to variable

ocean heat transport or ocean noise (Fig. 3, top)

(Delworth et al. 2017; Zhang 2017). Conversely, there

does not appear to be any systematic lead/lag relation-

ship between the NAO and AMV in historically forced

CMIP5 models; both warm and cold events precede and

follow NAO1 events (Fig. 3, bottom). For example,

between lags of 6–13 yr, all CMIP5 PI control runs

show a warm or neutral response to the NAO (correla-

tion coefficients greater than zero), whereas in the

CMIP5 historical ensemble six models have a cold lag-

ged response to the NAO. While the NAO–AMV re-

lationship appears to be consistent within PI runs,

different model physics will simulate different relation-

ships so there is more spread in the CMIP5 PI ensemble

(Fig. 3, top) than in the CESM-CAM5 PI synthetic en-

semble (Fig. 4, top), created by randomly subsampling

the 899-yr PI control run of CESM-CAM5 into 85-yr

sections.

CESM-CAM5 is one of the models that produces a

lagged relationship between the NAO and AMV in PI

control runs (Fig. 4, top). This synthetic ensemble shows

that the relationship between the AMV and NAO is

consistent throughout the length of the run and is well-

defined in short time series. In contrast, members of the

historically forced CESM-LE produce a diverse set of

cross-correlation functions (Fig. 4, bottom). In both

CMIP5 and CESM-LE model runs that include variable

external forcing, the AMV-NAO relationship is inter-

rupted, obscured, or overwhelmed. Further, the ocean

circulation response to the NAO in CESM-LE is also

inconsistent with the PI, as shown by the cross-

correlation functions of the NAO with volume trans-

port and OHT (Figs. S1 and S2). The comparison of

CMIP5 PI runs to CMIP5 historical runs shows that this

result is independent of a specific model’s physics pa-

rameterizations (Fig. 3). Combinedwith the results from

CESM-LE, it appears that the large influence of variable

external forcing on internal variability sharply di-

minishes the AMV-NAO relationship seen in the

PI runs.
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We can demonstrate how a strong forced response can

interrupt a weak NAO–SST relationship with a simple

illustrative statistical model in the form:

AMV
LP

5b
1
NAO

LP,t50
1b

2
NAO

LP,t510
1b

3
cosvt ,

where the regression coefficients are derived empirically

from relationships in climate models, not theoretically

from first principals. In this model, b1 is the contempo-

raneous cool SST response to the positive phase of the

NAO. We calculate this term via a linear regression of

the low-pass-filtered AMV on the low-pass-filtered

standardized NAO in the PI control run of CESM-

CAM5 (yielding a value of 20.058C per standard de-

viation of the NAO index). The term b2 captures the

lagged warm SST response to the NAO. We calculate

this term via a separate linear regression of the low-pass-

filtered AMV on the low-pass-filtered NAO, lagged 10

years (yielding a value of 0.108C per standard deviation

of the NAO index). These regression coefficients are

TABLE 2. As in Table 1, but for 41 members of the CESM-LE.

CESM-LE

Lag of

maximum

correlation

%AMVMID variance

explained byNAOt50

% AMV variance

explained byNAOt50

%AMVMID variance

explained by lagged

response

% AMV variance

explained by lagged

response

002 19 8% 9% 1% 10%

003 25 0% 26% 0% 4%

004 30 17% 42% 21% 13%

005 6 16% 24% 56% 52%

006 11 3% 5% 22% 15%

007 30 35% 1% 2% 50%

008 30 0% 2% 31% 47%

009 12 9% 15% 23% 61%

010 3 40% 43% 0% 22%

011 225 15% 19% 15% 19%

012 25 1% 8% 39% 72%

013 30 1% 24% 56% 24%

014 28 6% 0% 15% 40%

015 230 19% 25% 0% 5%

016 14 6% 11% 57% 43%

017 30 0% 0% 62% 43%

018 13 7% 21% 16% 18%

019 223 0% 20% 1% 23%

020 30 1% 4% 26% 17%

021 212 0% 15% 23% 10%

022 23 10% 22% 19% 29%

023 30 16% 8% 20% 63%

024 12 4% 15% 70% 42%

025 10 0% 2% 8% 30%

026 19 9% 0% 30% 74%

027 21 1% 4% 64% 50%

028 19 0% 30% 1% 14%

029 8 11% 1% 20% 17%

030 210 16% 1% 22% 38%

031 2 0% 3% 12% 26%

032 14 1% 3% 50% 8%

033 230 20% 68% 0% 7%

034 211 2% 0% 36% 19%

035 28 21% 2% 7% 42%

101 16 5% 0% 67% 39%

102 4 39% 22% 14% 35%

103 216 1% 9% 1% 0%

104 228 77% 74% 46% 46%

105 29 25% 61% 42% 49%

106 12 17% 41% 12% 10%

107 19 6% 16% 63% 48%

CESM-LE average 9.29 11% 17% 26% 31%

CESM-LE std dev 18.76 0.15 0.19 0.22 0.19
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small, which mirrors the results presented earlier in this

paper. Finally, b3 reflects the role of forcing in producing

the AMV. This term is calculated by regressing the en-

semble mean low-pass-filtered AMV on the ensemble

mean low-pass-filtered NAO in CESM-LE (yielding a

value of 20.688C per standard deviation of the NAO

index). As noted above, this model is illustrative only

and not meant to imply that the relationship between

the NAO and AMV is strictly linear.

Given these coefficients, we use a series of low-pass-

filtered normally distributed random values in place of

the NAO. This is a reasonable approximation because

the slopes of NAO spectra in climate models are typi-

cally flat and are unaffected by ocean model configura-

tion (Peings et al. 2016; Kim et al. 2018). Additionally, as

mentioned above, external forcing has little influence on

the NAO in CESM-CAM5 (i.e., the ensemble mean

NAO is near zero at all times). Low-pass filtering the

random series is required to mimic both the memory

within the climate system and (more importantly) the

autocorrelation induced by filtering in the metrics used

above. In the third term of our model, we choose to

represent variable external forcing with a cosine func-

tion. Our qualitative results are not sensitive to the

functional form (e.g., cosine ‘‘forcing,’’ linear trend,

ensemble mean forcing) or periodicity of the forcing.

The amplitude of the forcing term is equal to the am-

plitude implied by our random ‘‘NAO’’ time series.

Although we set the forcing term to be equal in mag-

nitude to the forced response in the models, within the

context of the simple model, this term could represent

any (or a combination of) signals outside of the NAO–

AMV system, including ocean heat transport that is

unrelated to either the NAO or external forcing

(O’Reilly et al. 2016).

A 42-member ensemble of this simple model shows

that external forcing can obscure the linear portion of

the NAO–AMV relationship (Fig. 5). We exclude the

influence of external forcing by setting b3 to zero. In this

configuration, we are able to produce a caricature of the

cross-correlation function between the NAO and AMV

exhibited by PI control runs of climatemodel (cf. orange

lines to Fig. 4, top). If anything, the correlation co-

efficients produced within our simple model are too

large, with values of nearly 1 at the lag of maximum

correlation compared to a maximum of about 0.6 in

CESM-LE. Including the b3 term obscures the NAO–

AMV relationship just like in externally forced climate

models (cf. the blue lines in Fig. 5 to Figs. 3 and 4, bot-

tom). If external forcing is a large contributor to the

AMV, the small relationship between the AMV and

NAO can be overwhelmed.

FIG. 3. Cross-correlation functions between the low-pass-filtered NAO index and the low-

pass-filtered AMV index. The NAO leads at positive lags; the AMV leads at negative lags.

The dashed black line is observations fromERSST, the dotted black line is observations from

HadSST; both are the same in each panel. (top) CMIP5 preindustrial control runs. For each

run, the full available length of the index time series is used in order to utilize the maximum

amount of information. (bottom) CMIP5 historically forced experimental runs. For each run,

the full available length of the index time series is used.
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In this statistical model, the magnitude of expected

correlations between the NAO and AMV varies with

sample size. That is, the width of the envelope of cross-

correlation function is inversely proportional to the

length of the time series; shorter time series produce

larger correlations while longer time series produce

correlations closer to zero (cf. Fig. 5 top to Fig. 5

bottom).

The NAO–AMV relationship in observations appears

to be more like that found in historically forced runs

than in PI control runs. The range of potential lagged

SST responses to the NAO is larger in historically forced

runs than in PI runs in terms of standard deviations and

the range of spatial responses (see Tables 1 and 2, Fig. 2,

and Figs. S5–S7 in the supplemental material). As noted

in the literature, there are discrepancies between ob-

servations and PI control runs (e.g., Delworth et al.

2017). However, observations fit comfortably within the

range of expected relationships from historically forced

model runs. For example, both the lag of maximum

correlation and the variance explained by the lag re-

sponse fit this description (Fig. 6). Additionally, the

observed cross-correlation between the NAO andAMV

appears to be an outlier when compared to the PI

control runs but fit well within the range of expected

relationships produced by our historical ensembles.

Note that observations from the ERSST dataset yield a

very similar response to the observed NAO as those

from the HadSST dataset.

4. Discussion

In many PI control runs, a prolonged positive phase of

the NAO is associated with statistically significant warm

anomalies in the subpolar gyre at about a 10-yr lag.

These anomalies appear to rely on an import of warm

water from the south, a mechanism consistent with prior

work (O’Reilly et al. 2016; Delworth et al. 2017; Kim

et al. 2018; Foukal and Lozier 2018). Knowledge of the

prior state of the NAO can offer statistically significant

increases in predictability of the AMV relative to cli-

matology. However, the lagged correlation between the

NAO and AMV index is small; the amount of variance

explained by lagged low-pass-filtered NAO is reason-

ably consistent across PI control runs but is always

less than 12% (Table 1). This is because the lagged SST

response to the NAO is one of multiple significant

components of multidecadal North Atlantic climate

FIG. 4. Cross-correlation functions between the low-pass-filtered NAO index and the low-

pass-filtered AMO index. The NAO leads at positive lags; the AMV leads at negative lags.

The dashed black line is observations fromERSST, the dotted black line is observations from

HadSST; both are the same in each panel. (top) A synthetic, 41-member, preindustrial

‘‘ensemble’’ created by randomly subsampling 85-yr segments of the long CESM-CAM5 PI

run. (bottom) 41 members of the CESM-LE. Note that, each time series was linearly de-

trended; the ensemble average was not removed. Removing the ensemble average does not

restore the NAO–AMV relationship from PI control runs.
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variability. Our results are comparable to other studies

that examine this relationship in PI control runs (e.g.,

Delworth and Greatbatch 2000; Ba et al. 2014; Tandon

and Kushner 2015; Delworth et al. 2017). Our inter-

pretation differs when we compare to historically forced

runs.

The relationship between the NAO and AMV is

complicated by the inclusion of variable external forcing

in climate models. The spatial pattern, timing, and

magnitude of the lagged response become inconsistent

when we account for external forcing. Because of this

inconsistency, we generally find that in historically

forced runs, the lagged, low-pass-filtered NAO does not

offer predictability that is statistically significantly

greater than climatology. In a simple model, we show

how variable external forcing can obscure a prescribed

relationship between the NAO and AMV. Our results

can be compared to Tandon and Kushner (2015), who

find a consistent relationship between AMOC and the

AMV in PI control runs but an inconsistent relationship

between AMOC and AMV in historically forced runs.

There are some notable discrepancies between the

NAO–AMV relationship in PI control runs and obser-

vations. First, the warm SST response to the NAO ap-

pears to occur at a longer lag in observations (14 or

15 yr) than in CMIP5 PI control runs (96 5 yr), as is also

noted by Delworth et al. (2017). The observed lag of

maximum correlation is statistically significantly differ-

ent from that in our PI run of CESM1 at the 80% level

(10–13 yr) when accounting for difference in the length

of the two time series via a moving-block bootstrap.

Next, the lagged NAO appears to explain a much larger

amount of AMV variance in observations (19% or 27%)

than in CMIP5 PI control runs (0%–12%). The ob-

served percentage of AMV variance explained by the

lagged NAO is statistically significantly different from

that in our PI run of CESM1 at the 99% level (1.6%–

4.5%) when again accounting for the difference in the

length of the two time series via a moving-block

bootstrap. Finally, unlike PI control runs, in observa-

tions there appear to be a cool anomaly preceding

the NAO.

FIG. 5. Ensembles of a statistical model designed to illustrate the influence of external

forcing on the lagged relationship between the NAO and AMV. The forcing in this simple

model is a cosine function with a 30-yr period. (top) Ensemble of 1000-yr runs of the statistical

model with and without the b3 term. (bottom) Ensemble of 85-yr runs of the statistical model

with and without the b3 term.
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The NAO–AMV relationship in observations is more

difficult to statistically distinguish from that in our his-

torically forced ensembles. The observed lag of maxi-

mum correlation between the NAO and AMV fits

within the wide distribution calculated from CMIP5

historically forced runs (8 6 17 yr) or CESM-LE (9 6
19 yr). Similarly, the amount of AMV variance ex-

plained by the lagged NAO fits within the large range

calculated from CMIP5 historically forced runs (17%6
11%) and CESM-LE (31% 6 19%). The widening of

the distribution of the NAO–AMV relationship from PI

runs to historically forced runs is well illustrated by the

cross-correlation functions presented in Figs. 3 and 4.

The cross-correlation function of the observed NAO–

AMV relationship is outside of the range of the cross

correlations simulated by PI control runs but fits within

the wide envelope of NAO–AMV relationships simu-

lated by historically forced runs. If observations are

more like historically forced runs than PI runs, our in-

terpretation of the observed record may change. For

example, the aforementioned, observed cold anomalies

that precede the NAO1may not be the linear response

to a prior NAO2, but rather could have been the

result of other influences on the AMV (cf. Fig. 2 and

Figs. S5–S7).

There is mounting evidence to suggest that variable

external forcing is vital to understanding the AMV;

Bellomo et al. (2018) estimate external forcing to be

responsible for about 2/3 of total AMV variability in

CESM-CAM5. Our illustrative linear model suggests

that the prior state of the NAO will only offer pre-

dictability for the AMV when ,16% of AMV variance

is forced (b3, 0.4). A large influence of external forcing

on the AMV may suggest a pessimistic view of this

mechanism for predictability, but these results do not

rule out the possibility that the NAO can provide pre-

dictability on an episodic basis. For example, numerous

studies have shown that knowledge of the initial ocean

state improves the predictability of North Atlantic SSTs

and upper-ocean heat content, particularly for the mid-

1990s warming (Latif et al. 2004; Yeager et al. 2012;

Robson et al. 2012; Msadek et al. 2014; Karspeck et al.

2015). Our results, however, show from a statistical

point of view that the lagged response to the NAO does

not always cause changes in the AMV.

We note that this analysis relies primarily on climate

models. While these models are an excellent tool for

research, they remain imperfect. Individual models may

respond to external forcing with too much vigor (e.g.,

Zhang et al. 2013). On the other hand, most models

appear to undersimulate internal variability (e.g., the

NAO), as compared to external forcing (e.g., Kim et al.

2018). The ocean circulation may respond to different

modes of atmospheric forcing depending on each

model’s primary site of deep-water formation; for ex-

ample, the East Atlantic Pattern is found to be the pri-

mary driver of AMOC in IPSL-CM4 (Msadek and

Frankignoul 2009). Put generally, the NAO is a conve-

nient and useful index but other modes of atmospheric

variability may more efficiently produce lagged SST

anomalies (Branstator and Gritsun 2017). Finally, both

the strength and the variability of AMOC may not be

realistically simulated in all models (Zhang and Wang

2013; Buckley andMarshall 2016; Heuzé 2017; Yan et al.

2018). All of these caveats likely affect our comparison

between models and observations.

Real-world external forcing complicates our ability to

interpret the observed NAO–AMV relationship. The

statistical relationship between the NAO and AMV in a

historically forced ensemble appears to be different

from that found in PI control runs. When we account for

variable external forcing in climate models, there is no

consistent or obvious connection between the two cli-

mate indices. If we consider historically forced climate

models to provide plausible counterfactuals for our

observed climate, we can infer that many other NAO–

AMV relationships could have been possible given the

length of the observed time series. While there are large

discrepancies in the timing and structure of the lagged

SST response to the NAO between observations and PI

control runs, observations fall well within the wide dis-

tribution of relationships produced by the CMIP5

FIG. 6. Scatterplot of the lag of maximum correlation between

the low-pass-filtered NAO index and the low-pass-filtered AMV

index vs the percentage of AMV variance explained by the lagged

response to the NAO. Blue circles represent the responses from

historically forced models in both the CMIP5 ensemble (filled) and

the CESM-LE (unfilled). Orange points represent responses form

the CMIP5 PI ensemble described in text. Crosses represent the

two observational datasets considered.
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historical ensemble, CESM-LE, and a simple statistical

model that includes variable external forcing.
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