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ABSTRACT

North Atlantic sea surface temperatures (SST) exhibit a lagged response to the North Atlantic Oscillation
(NAO) in both models and observations, which has previously been attributed to changes in ocean heat
transport. Here we examine the lagged relationship between the NAO and Atlantic multidecadal variability
(AMV) in the context of the two other major components of the AMV: atmospheric noise and external
forcing. In preindustrial control runs, we generally find that after accounting for spurious signals introduced
by filtering, the SST response to the NAO is only statistically significant in the subpolar gyre. Further, the
lagged SST response to the NAO is small in magnitude and offers a limited contribution to the AMV pattern,
statistics, or predictability. When climate models include variable external forcing, the relationship between
the NAO and AMV is obscured and becomes inconsistent. In these historically forced runs, knowledge of the
prior NAO offers reduced predictability. The differences between the preindustrial and the historically forced
ensembles suggest that we do not yet have enough observational data to surmise the true NAO-AMYV re-
lationship and add evidence that external forcing plays a substantial role in producing the AMV.

1. Introduction

There is an ongoing debate as to how active a role the
ocean plays in generating multidecadal climate vari-
ability in the Atlantic. Observational and proxy analyses
identify a low-frequency, basin-wide warming and
cooling of SST in the North Atlantic, which is generally
referred to as the AMV (Deser and Blackmon 1993;
Kushnir 1994; Schlesinger and Ramankutty 1994; Kerr
2000; Delworth and Mann 2000). Identifying a physical
mechanism for the AMYV is difficult given the short ob-
servational record relative to the time scale of the vari-
ability; long runs of climate models are the best available
tools to better understand this oscillation (Latif and
Keenlyside 2011; Buckley and Marshall 2016 and ref-
erences therein). Research suggests that the three major
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components of North Atlantic SST variability are nat-
ural variability in the Atlantic meridional overturning
circulation (AMOC) (e.g., Delworth et al. 2017), the
passive ocean response to atmospheric noise (e.g.,
Clement et al. 2015), and changes in external forcing
(e.g., Bellucci et al. 2017). There is disagreement as to
the relative contribution of each of these terms to
overall SST variability in the North Atlantic (Vecchi
et al. 2017; Buckley and Marshall 2016).

The first major component of the AMV is variable
ocean heat transport, potentially related to variability in
AMOC. Mechanisms that invoke changes in ocean heat
transport build on the hypothesis that the quickly mov-
ing, low heat capacity atmosphere drives SST variability
on short time scales, while the slowly moving, high heat
capacity ocean drives SST variability on long time scales
(Bjerknes 1964; Kushnir 1994). Recent studies of both
observational products and climate models show a
change of sign in the correlation of turbulent heat fluxes
with SST as a function of time scale; this is interpreted as
evidence in support of Bjerknes’ (1964) hypothesis
(Gulev et al. 2013; O’Reilly et al. 2016). There is an
ongoing debate about whether this metric can be used to
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identify a causal relationship between the ocean circu-
lation and SST (Cane et al. 2017; Zhang 2017). Many
modeling studies have noted coherence (including
lagged correlations) between the AMV and meridional
ocean heat transport, which includes metrics that
describe the AMOC (e.g., Delworth et al. 1993;
Timmermann et al. 1998; Delworth and Greatbatch
2000; Latif et al. 2004; Jungclaus et al. 2005; Knight et al.
2005; Danabasoglu et al. 2012; Ba et al. 2014; Delworth
et al. 2017; Zhang 2017; Wills et al. 2018). Generally,
these studies hypothesize that buoyancy fluxes associ-
ated with atmospheric variability, often characterized by
the North Atlantic Oscillation (NAO), drive changes in
the strength of the AMOC; variations in AMOC then
advect anomalous heat into the northern portion of the
Atlantic, which produces SST anomalies. These changes
in the AMOC are invoked as a source of predictability
for subpolar gyre heat anomalies (e.g., Yeager et al.
2012). Despite the apparent connection between the
AMYV and ocean heat transport in some models, the
literature has not established a conclusive observational
link (Lozier 2010; Buckley and Marshall 2016).

The second major component of the AMV is the in-
fluence of atmospheric variability on a passive ocean.
The NAO index describes a plurality of atmospheric
noise over the North Atlantic; it is often calculated by
taking the first empirical orthogonal function (EOF) of
sea level pressure over the North Atlantic (Thompson
and Wallace 2001). This index exhibits variability at all
time scales in both models and observations (Deser et al.
2010; Woollings et al. 2015). (Climate models typically
underestimate the level of low-frequency variance in the
NAO, relative to observations; Kim et al. 2018). In-
terannual and higher frequencies of this oscillation are
contemporaneously associated with an SST tripole,
which is primarily forced by air-sea flux anomalies
(Deser et al. 2010). The relationship between the NAO
and SST is succinctly described by simple stochastic
climate models, wherein SST anomalies are a function of
air-sea fluxes and upper-ocean memory (Hasselmann
1976; Frankignoul and Hasselmann 1977; Wunsch 1999).
This serves as the null hypothesis for SST variability
(Deser et al. 2010). This relationship also holds true at
longer time scales except in those regions where ocean
heat transport variability is important such as the North
Atlantic subpolar gyre (Buckley et al. 2015; Karspeck
et al. 2015).

The third major component of the AMYV is changes in
external forcing. Recent modeling studies show that the
AMYV does respond to experimental changes in external
forcing (e.g., volcanoes, CO,, aerosols). For example,
Murphy et al. (2017) find that the variance of the AMV
is larger in runs of climate models with variable external
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forcing, which is consistent with work showing that
models that include variable external forcing, particu-
larly volcanoes and anthropogenic aerosols, can explain
upward of 2/3 of AMYV variability (Ottera et al. 2010;
Booth et al. 2012; Bellucci et al. 2017; Bellomo et al.
2018). Zhang et al. (2013) challenge this view; they note
that at least one model responds too strongly to external
forcing. Similarly, climate models may undersimulate
internal variability in both the atmosphere and ocean
(Kim et al. 2018).

All three mechanisms described above contribute to
overall climate variability in the North Atlantic; how-
ever, the relative contributions of each to the AMYV and
how those contributions may vary with time and time
scale are uncertain. Clement et al. (2015) found that
climate models with and without variable ocean heat
transport can produce AMYV indices with similar asso-
ciated patterns and spectral characteristics. They show
this using a climate model coupled to a mixed-layer
depth ocean, which would explicitly exclude the ocean
heat transport variability required by the first potential
driver (Clement et al. 2015). However, many fully cou-
pled climate models simulate a lagged relationship be-
tween the NAO and subpolar gyre SSTs at decadal time
scales, whereas mixed-layer ocean models do not
(Delworth et al. 2017; Peings et al. 2016; Zhang 2017).
This discrepancy across model configuration is inter-
preted to mean that ocean dynamics, including the
AMOC, exert influence on North Atlantic SST at mul-
tidecadal time scales.

This paper focuses on the lagged relationship between
the NAO and AMV, which we presume to be mediated
by some ocean dynamical mechanism (Delworth et al.
2017; Peings et al. 2016; Zhang 2017). We examine this
relationship in the context of the other two major
components of the AMYV, atmospheric noise and
external forcing. The relative importance of the NAO-
AMV mechanism is evaluated statistically in pre-
industrial control runs of CMIPS5 climate models. The
relative importance of external forcing is evaluated
experimentally by comparing historically forced runs to
preindustrial control runs. Unlike many previous stud-
ies, we evaluate this relationship against the null hy-
pothesis that accounts for the influence of filtering. We
find that North Atlantic subpolar gyre SSTs exhibit a
lagged response to the NAO in many fully coupled cli-
mate models with constant forcing, which is consistent
with previous findings. However, we find that the lagged
response to the NAO’s contribution to the AMV is
limited, offering only marginal explanatory power for
North Atlantic SSTs. Further, we find that the re-
lationship between the NAO and AMYV is small enough
that it is easily overwhelmed or obscured by the signal
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associated with variable external forcing. In the pres-
ence of variable external forcing, knowledge of the prior
state of the NAO may not be as useful a predictor of the
AMYV as it is in PI runs.

2. Data and methods
a. Observations and observational products

Our analysis considers the relationship between at-
mospheric and SST variability in both models and ob-
servations. For SST, we consider two observational
products. The first is the National Oceanic and Atmo-
spheric Administration’s global monthly observational
product, Extended Reconstructed SST (ERSST) data-
set, version 3 (Smith et al. 2008). The second is the
Hadley Centre Sea Surface Temperature dataset
(HadSST), version 3.1.1.0 (Kennedy et al. 2011). For
ERSST, we linearly detrend each grid point before
conducting analysis. For HadSST, we consider their
median values of SST anomalies, which have also been
detrended.

In this work, we characterize atmospheric variability
using the NAO index. For our observational analysis, we
choose the instrumental, normalized, station-based
NAO index for December-March (DJFM) (see below
for more detail; Hurrell and National Center for
Atmospheric Research Staff 2018; Jones et al. 2003). For
both SST and the NAO index, we utilize 153 years of
observations from 1864 to 2016.

b. Model output

Model output is selected from publicly available pre-
industrial (PI) control runs and historically forced runs
of CMIP5 climate models. We choose both PI control
and historically forced runs from 27 individual models in
the CMIPS archive; additionally, we include two PI
control runs from GFDL-CM2.1 and a configuration of
CESM-CAMS with a mixed-layer depth ocean to enable
comparison to the existing literature. We report results
from CMIP5 models where both PI and historically
forced runs are readily available. All PI control runs
have constant external forcing; the runs vary in length
and resolution. A full list of climate models utilized
appears in Table 1. Finally, we select historically forced
runs from the CESM-CAMS large ensemble, which we
denote as CESM-LE. This 42-member ensemble covers
the time period 1920-2005 (Kay et al. 2015); we consider
the 41 of the 42 ensemble members that were branched
from the first model run. Each member starts at slightly
different initial conditions in air temperature (Kay et al.
2015). All model components are identical versions to
those selected for our CESM-CAMS PI control run.
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c. Definitions

We consider two indices of SST: the AMV index and
the AMVyp index. The former is defined as the low-
pass-filtered, linearly detrended time series of the cosine
weighted average surface temperature over the ocean
from 0°-60°N to 0°-80°W. The latter is defined as the
low-pass-filtered, linearly detrended time series of the
cosine weighted average surface temperature over
the ocean in the region 40°-60°N and 20°-60°W. To ex-
amine multidecadal variability, we use Matlab’s im-
plementation of a fourth-order Butterworth filter with a
half-power frequency of 1/10yr. Other formulations of
the AMYV index eschew linear detrending, so as to more
fully remove the forced signal (e.g., Trenberth and Shea
2006; Frankignoul et al. 2017). We believe nonlinear
detrending may be inappropriate for our particular
study; for example, removing global average SST from
the AMYV index (Trenberth and Shea 2006) may also
remove any forcing that jointly affects the AMV and
global mean temperature (Murphy et al. 2017). Our
results are qualitatively similar whether the trend is re-
moved linearly or nonlinearly (not shown).

To characterize atmospheric variability, we consider
two forms of the NAO index. The first mimics the
station-based or two-point index referenced above. This
index is defined as the difference in normalized sea level
pressure anomalies between the grid cells containing
Stykkisholmur, Iceland, and the Azores. The second
index is defined by the first principal component of sea
level pressure in the region 20°-80°N, 90°W—40°E. The
images below have been calculated using the EOF-
based index; results are similar for both indices unless
otherwise noted. To examine multidecadal variability,
we again use Matlab’s implementation of a fourth-order
Butterworth filter with a half-power frequency of
1/10yr.

d. Methods

To study relationships between variables, we use
lagged correlations and regressions between annual
average SST and the wintertime (DJFM) average NAO
index. Our choice of method only considers the linear
portion of the relationship between the NAO and SST,
which is consistent with the literature and allows for
direct comparison to Delworth et al. (2017).

We establish statistical confidence by testing against
the null hypothesis that low-pass-filtered SST variability
is primarily driven by low-pass-filtered atmospheric
noise. Filtering introduces spurious signals that are dis-
tinguishable from a random-walk process (Cane et al.
2017). Further, filtering complicates causal interpre-
tation of statistical relationships. Cane et al. (2017) find
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F1G. 1. We illustrate our approach to a hypothesis test that accounts for spurious signals introduced by filtering. (top) Zonal mean lagged
correlation (colors) and regression (contours; °C per std dev NAO index) between the low-pass-filtered NAO index and low-pass-filtered annual
average SST for a preindustrial control run of CESM1 at lags —20 through 20. The NAO leads at positive lags; the AMV leads at negative lags. (left)
Zonal mean lagged correlations with no significance testing. (middle) Zonal mean lagged correlations tested against the null hypothesis that the
correlation coefficient is equal to zero at all lags; 95% confidence intervals are constructed with a moving-block bootstrap. (right) Zonal mean lagged
correlations tested against the null hypothesis that the correlation at a given lag will be equal to the autocorrelation of the filter at that lag; confidence
intervals are again constructed via moving-block bootstrap. (bottom) Examples of the statistical test applied to the cross-correlation function at 35°
and 60°N (black dashed lines in top plots). Green dashes represent the confidence intervals around zero (corresponding to top middle plot); blue
shading represents the confidence intervals around the autocorrelation function of the filter (corresponding to top right plot). Differences between
the blue-shaded and green-dashed areas primarily reflect the lag 0 correlation, as spread to other lags via filtering. Note that, without testing the filter-
based null hypothesis, we may be tempted to interpret the positive lagged correlations at 35°N as an intergyre advective signal.

that the expected relationship between the low-pass-
filtered time series of atmospheric noise and SST is ap-
proximately equivalent to the autocorrelation function
of the filter, weighted by the portion of variance attrib-
uted to the atmosphere [see their Eq. (11e)]. Rather
than testing the null hypothesis that the true correlation
between the low-pass-filtered NAO index and low-pass-
filtered SST is zero [as in, e.g., Delworth et al. (2017)],
we test the null hypothesis that the true correlation be-
tween these two indices is equal to the autocorrelation
function of the filter itself. We accomplish this by first
calculating empirical 95% confidence intervals via a
moving-block bootstrap, where the block size is equal to
the length of the original time series. This choice of
block-size allows us preserve as much low-frequency
covariance as possible (Delworth et al. 2017). We then
recenter the confidence intervals around the auto-
correlation function of the filter, scaled by the lag 0
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correlation. One can validate this method in the one-
dimensional noise forced model by comparing the
autocorrelation function of the filter to the cross corre-
lation of the low-pass-filtered atmospheric noise term
and the low-pass-filtered SST term (Cane et al. 2017;
Hasselmann 1976; Frankignoul and Hasselmann 1977).
Note that this statistical test only accounts for the
magnitude of the correlation at a given lag but does not
account for uncertainty in the timing of the lag of max-
imum correlation. This statistical test is illustrated in
Fig. 1 and applied in Fig. 2 (and Figs. S3 and S5-S7 in the
online supplemental material).

In Fig. 1, we consider lagged correlations and re-
gressions between the low-pass-filtered NAO and low-
pass-filtered, zonal mean SST from a PI control run of
CESML. First, we simply report the correlations with no
additional processing; interpreted directly, this would
suggest that negative SST anomalies (~—0.1°C) precede
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FIG. 2. The zonal mean correlation (colors) and regression (contours; °C per std dev NAO index) between the low-
pass-filtered NAO index and low-pass-filtered annual average SST for a selection of CMIPS5 preindustrial model runs at
lags —20 through 20. The NAO leads at positive lags; the AMV leads at negative lags. Pixels that are not statistically
significantly different from the spurious signal associated with filtering at the 95% level are colored white. Note the
variability in the lag of maximum correlation across models as well as the discrepancy between models and observations.

Brought to you by UNIVERSITY OF MIAMI (RSMAS) | Unauthenticated | Downloaded 10/26/22 05:58 PM UTC



3854

the positive phase of the NAO by about 10 years and
positive SST anomalies (~0.1°C) follow the positive
phase of the NAO by about 10 years (Fig. 1, top left).
Next, we consider the same regressions and correlations,
but we test the null hypothesis that the correlation or
regression coefficient at each grid point is equal to zero
(Fig. 1, top center). This test is commonly used in the
literature, notably in figures recently presented in
Delworth et al. (2017). Even at the 95% confidence in-
terval, one may be tempted to interpret this result as an
advective signal, with warm subtropical SST anomalies
associated with the NAO moving northward over time
into the subpolar gyre. Finally, when we apply the null
hypothesis which accounts for the imprint of the filter at
the 95% confidence level, we isolate the lagged SST
response to the NAO+ (Fig. 1, top right). Interpreted
directly, this suggests that a positive SST anomaly
(~0.1°C) follows the NAO+ by about 10yr in CESM1
but it does not indicate meridional advection. In iso-
lation, this picture may lend support for a subpolar gyre-
based mechanism for the AMV (e.g., Hikkinen et al.
2011; Piecuch et al. 2017); our results below remain ag-
nostic as to the precise nature of the ocean dynamical
mechanism behind the NAO-AMYV relationship. This is
in part because relaxing the confidence interval to the
80% may allow for a potential role for intergyre ad-
vection. Of course, these results are only for one model;
a more detailed and generalizable analysis is presented
below.

Temporal filtering may be a necessary evil in studying
low-frequency climate variability, but we must account
for its influence on our analyses. We believe the afore-
mentioned method is a transparent attempt to account
for the spurious signals associated with filtering; how-
ever, other researchers have proposed different meth-
odologies. For example, recent work by Wills et al.
(2018) attempts to deal with the issues associated
with analyzing filtered data through their use of low-
frequency component analysis. We establish no prefer-
ence between the two methods but note that we find
similar results to Wills et al. (2019) in PI control runs
(although we interpret them in the context of histori-
cally forced runs).

3. Results

a. The small, lagged SST response to the NAO adds
little predictive skill

We find that there is a statistically significant lagged
warm SST response to a prolonged positive phase of the
NAO in most fully coupled models (Fig. 2). This is
consistent with several other studies that employ dif-
ferent statistical tests (e.g., Visbeck et al. 1998; Delworth
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et al. 2017; Peings et al. 2016). Of the PI control runs we
consider, we find that 17 out of 29 produce lagged pos-
itive SST anomalies that meet our threshold for statis-
tical significance. In models, the warm SST response to
the low-pass-filtered NAO index is generally limited to
the subpolar gyre though with variable spatial extent
and magnitude. For example, CCSM4, CESM1-CAMS,
GFDL-CM2.1, and GFDL-CM3 (among others) tend to
simulate a warm response that includes a signal confined
to the northern portion of the basin, whereas the
warming in HadGEM2-AO extends continuously into
the subtropics. 29% (8 of 29) of PI runs produce a lagged
warm signal in the subtropics so we cannot conclude that
the tropical signal is robust. The connection between the
tropical and extratropical portions of the AMYV is con-
sidered an open research question both in models and
observations (Delworth et al. 2017).

Previous work has identified an ocean dynamical
mechanism as the lagged link between the NAO and
SST on decadal time scales. The spatial scales (gyre-
to basin-scale) and dominant forcing (e.g., wind- or
buoyancy-forcing) required for this mechanism remain
areas of active research (e.g., Delworth et al. 2017,
Peings et al. 2016; Piecuch et al. 2017; O’Reilly and
Zanna 2018). To evaluate the dynamical response of the
ocean to a prolonged phase of the NAO, we consider
volume transport and ocean heat transport (OHT) at
56.5°N. Foukal and Lozier (2018) find that a majority of
interannual ocean heat content variability in the eastern
portion of the subpolar gyre can be explained by heat
advection that passes through the plane, S, 56.5°N, 35°-
9°W, from the surface to the bottom of the ocean. When
we consider volume transport and OHT integrated
across this plane in a PI run of CESM, we find a lagged
circulation response to the NAO at near-decadal lags
(Figs. S1 and S2), which is consistent with increased
import of warm water from the south as in Foukal and
Lozier (2018).

Regression coefficients associated with the NAO-SST
signal are small, generally 0.1°C per standard deviation of
the NAO index or less, in both models and observations
(Fig. 2). Similarly, correlation coefficients are small, typ-
ically less than 0.4. Significant correlations (at the 95%
level) are largely confined to the higher latitudes and
near-decadal lags. We cannot reject the null hypothesis
that subtropical warming at short lags (0—~4yr) is a
spurious signal introduced by the filter [cf. Fig. 2 herein to
Fig. 7 of Delworth et al. (2017)]. Our statistical test does
not allow us to conclude that heat anomalies are meridi-
onally advected from the subtropical gyre to the subpolar
gyre. Thus, accounting for the influence of the filter, we
agree with the literature (e.g., Delworth et al. 2017,
Piecuch et al. 2017) that the NAO is associated with a
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small, lagged, warm response in the subpolar gyre but
provides little help in understanding the subtropical or
tropical portions of the AMV.

While this lagged signal appears in some PI control
runs, there are large discrepancies between models and
observations (Table 1). Observed SSTs warm about 14—
15yr after a NAO+, whereas simulated SSTs warm
about 7-10yr after a NAO+. The zonal mean spatial
structure of the response in observations appears to be
very different from most CMIP5 models. Without sig-
nificance testing, observations are more similar to the
broad response in HadGEM2-AO than the more com-
mon SPG response, as in CESM1 or GFDL-CM2.1 [see
Fig. 1 in Delworth et al. (2017)]. However, when we
apply our significance test, the observed subpolar re-
sponse is no longer significant at the 95% level (Fig. 2).
The only statistically significant correlation we find in
observations is a lagged warming at about 35°N (see
Fig. S6 for HadSST).

Small signals are valuable if they can explain a large
portion of variance or if they can be used to predict a
system. The lagged SST response to the NAO has a
limited impact on the AMV or AMV)p index and
pattern. We show this by linearly removing the lagged
SST response to the NAO from the overall SST field. In
each model, we first determine the lag of maximum
correlation from the cross-correlation function of the
AMYV and NAO (i.e., those listed in Table 1). Then, at
each pixel, we regress the low-pass-filtered SST field on
the lagged, low-pass-filtered NAO index, where the lag
is the lag of maximum correlation. Next, we multiply the
map of regression coefficients by the NAO index, which
creates a time series that isolates the lagged, linear
temperature response to the NAO. Finally, we subtract
our constructed SST field from the original SST field.
This yields a temperature field that should include all
variability except for that associated with the lagged SST
response to the NAO. It will include the contempora-
neous SST response to NAO winds. We then consider
the AMV and AMV\p indices and patterns from this
adjusted SST dataset.

The linear lagged SST response to the NAO only ac-
counts for between 0% and 12% of the variance in the
AMV index in PI control runs of CMIP5 models (4% on
average) and 19% (27%) in ERSST (HadSST) (see
Table 1). Similarly, the lagged response to the NAO
explains less than 11% of AMVyp variance in all
models, while it explains 31% (69%) in ERSST
(HadSST). For all models, the spatial pattern of the
AMV pattern remains virtually unchanged by linearly
removing the lagged response to the NAO (not shown).
Conversely, the spatial pattern of the lagged SST re-
sponse to the NAO varies across models (see Fig. S3).
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Note that in observations this signal explains more
variance in the AMV and AMVp indices; however,
this method does not account for the reduced degrees of
freedom available in observations or potential exoge-
nous regressors (e.g., external forcing, atmospheric
variability not captured by the NAO index). The re-
lationship between observations and historically forced
runs will be reported in the next section.

The decadal portion of the contemporaneous NAO
explains little variance in the AMYV index. On average,
the unlagged, low-pass-filtered NAO index explains
only ~5% and ~7% (2%) of the variability in the AMV
index in control runs of CMIP5 models and ERSST
(HadSST), respectively (see Table 1). The spatial structure
of the low-frequency SST response to the low-frequency
NAO appears to be somewhat model dependent. Areas
near the Norwegian and Irminger Seas, where some of
the largest responses to the NAO are found, appear to
be particularly sensitive to model configuration (Fig. S4);
the sign of the response to the NAO is not uniform across
CMIPS5 models.

In PI control runs, knowledge of the prior state of the
NAO offers statistically significant, but small, improve-
ments in predictability. We test the null hypothesis that
the positive phase of the AMV follows the positive
phase of the NAO by chance. For this null hypothesis,
the AMYV is a random variable with two potential out-
comes: the AMV was warm (>1 standard deviation) or
it was not warm. The expected probability that the
AMV + will follow the NAO+ (>1 standard deviation) a
given number of times is defined by the binomial
distribution,

knp) = ()t -pr™,

where k is the number of times the AMV + follows the
NAO+ by the lag of maximum correlation, » is the
number of NAO+ years, and p is the climatological
probability of the AMV+. The probability that the
AMV + will follow the NAO+ at least k times is defined
by the cumulative distribution function, F(k, n, p). These
statistics are calculated for each model individually. For
20 out of 27 CMIPS5 PI control runs, we reject the null
hypothesis that the AMV+ followed the NAO+ as a
result of chance at the 90% level. On average, there is an
11.2% chance that the AMV+ followed the NAO+ by
chance in CMIPS5 PI runs. For comparison to the CESM-
LE, we randomly subsection our run of CESM-CAMS5
(PI) into 41 85-yr segments and find that in 26 out of 41
segments, we reject the null hypothesis that the AMV+
followed the NAO+ as a result of chance at the 90%
level. On average, there is a 13.3% chance that the
AMV + followed the NAO+ by chance in this synthetic
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PI ensemble. (If we increase our segment length to
153 yr, to match observations, we will reject our null
hypothesis for all members of the synthetic ensemble.)
Overall, in 46 out of 68 CMIP5 (PI) ensemble and syn-
thetic ensemble members we can reject the null hy-
pothesis that the AMV+ followed the NAO+ by
chance. Thus in these idealized model runs with pre-
scribed constant forcing, knowledge of the prior state of
the NAO does improve our ability the predict the
AMV index.

b. NAO-AMYV relationship is obscured in model runs
with variable external forcing

In historically forced runs, the lagged SST response to
the NAO is inconsistent and rarely statistically signifi-
cant. Only 5 of 27 CMIPS historically forced runs
produce a statistically significant lagged warm response
to the NAO in the subpolar gyre (Fig. S5). Only 7 of 41
CESM-LE members produce positive lagged warm re-
sponses to the NAO in the subpolar gyre (Figs. S6 and
S7). Both the magnitude and latitude of the warm re-
sponse varies across both historically forced ensembles;
correlation coefficients are generally near zero but can
be as large as about 0.5. Further, the lag of maximum
correlation between the NAO and AMV are in-
consistent in historically forced runs; the largest corre-
lations can be found throughout the range of lags that we
consider (—30 to 30; see Tables 1 and 2). Finally, there
is a wider distribution of variance explained by the lag-
ged response to the NAO in historically forced runs than
PI runs (Tables 1 and 2).

We find that in historically forced runs, knowledge of
the prior state of the NAO does not typically offer sta-
tistically significant improvements in predictability for
SST. Note that when discussing predictability, we only
include historically forced runs where we find a lagged
warm response to the NAO (i.e., the lag of maximum
correlation is positive in Table 1 or Table 2). Using the
same test as for the PI, for 9 out of 18 CMIPS5 historically
forced runs we consider, we reject the null hypothesis at
the 90% level that the AMV + followed the NAO+ as a
result of chance. On average, there is a 42.2% chance
that the AMV+ followed the NAO+ by luck in this
ensemble. Likewise, for 8 out of 29 CESM-LE runs we
consider, we can reject the null hypothesis that the
AMV + followed the NAO+ as a result of chance. On
average, there is a 40.0% chance that the AMV+ fol-
lowed the NAO+ by luck in this ensemble. Compared to
section 3a, we find that the NAO offers more pre-
dictability in PI control runs than in historically forced
runs. The probabilities reported above are generous,
given we ignore the 23 model runs (combined) where the
lag of maximum correlation is negative. Overall, for only
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17 out of 68 historically forced model runs we can reject
the null hypothesis that the AMV+ followed the
NAO+ by chance. This is in contrast to the 46 out of 68
model runs for the PI where we can reject the hypoth-
esis, which demonstrates the role for external forcing in
this measure of predictability.

The inconsistency in the NAO-AMYV relationship
from historically forced runs becomes more apparent
when compared to CMIP5 PI control runs. The PI
control runs discussed in earlier sections exhibit a rea-
sonably robust set of cross-correlation functions; most
models produce a small, statistically significant, lagged
warm response to the NAO that is attributed to variable
ocean heat transport or ocean noise (Fig. 3, top)
(Delworth et al. 2017; Zhang 2017). Conversely, there
does not appear to be any systematic lead/lag relation-
ship between the NAO and AMYV in historically forced
CMIPS5 models; both warm and cold events precede and
follow NAO+ events (Fig. 3, bottom). For example,
between lags of 6-13yr, all CMIP5 PI control runs
show a warm or neutral response to the NAO (correla-
tion coefficients greater than zero), whereas in the
CMIPS historical ensemble six models have a cold lag-
ged response to the NAO. While the NAO-AMYV re-
lationship appears to be consistent within PI runs,
different model physics will simulate different relation-
ships so there is more spread in the CMIPS5 PI ensemble
(Fig. 3, top) than in the CESM-CAMS PI synthetic en-
semble (Fig. 4, top), created by randomly subsampling
the 899-yr PI control run of CESM-CAMS into 85-yr
sections.

CESM-CAMS is one of the models that produces a
lagged relationship between the NAO and AMYV in PI
control runs (Fig. 4, top). This synthetic ensemble shows
that the relationship between the AMV and NAO is
consistent throughout the length of the run and is well-
defined in short time series. In contrast, members of the
historically forced CESM-LE produce a diverse set of
cross-correlation functions (Fig. 4, bottom). In both
CMIPS5 and CESM-LE model runs that include variable
external forcing, the AMV-NAO relationship is inter-
rupted, obscured, or overwhelmed. Further, the ocean
circulation response to the NAO in CESM-LE is also
inconsistent with the PI, as shown by the cross-
correlation functions of the NAO with volume trans-
port and OHT (Figs. S1 and S2). The comparison of
CMIP5 PI runs to CMIPS5 historical runs shows that this
result is independent of a specific model’s physics pa-
rameterizations (Fig. 3). Combined with the results from
CESM-LE, it appears that the large influence of variable
external forcing on internal variability sharply di-
minishes the AMV-NAO relationship seen in the
PI runs.
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TABLE 2. As in Table 1, but for 41 members of the CESM-LE.
Lag of % AMVyp variance % AMYV variance
maximum % AMVp variance % AMYV variance explained by lagged explained by lagged
CESM-LE correlation explained by NAO,_¢ explained by NAO,_g response response
002 19 8% 9% 1% 10%
003 25 0% 26% 0% 4%
004 30 17% 42% 21% 13%
005 6 16% 24% 56% 52%
006 11 3% 5% 22% 15%
007 30 35% 1% 2% 50%
008 30 0% 2% 31% 47%
009 12 9% 15% 23% 61%
010 3 40% 43% 0% 22%
011 =25 15% 19% 15% 19%
012 25 1% 8% 39% 72%
013 30 1% 24% 56% 24%
014 -8 6% 0% 15% 40%
015 =30 19% 25% 0% 5%
016 14 6% 11% 57% 43%
017 30 0% 0% 62% 43%
018 13 7% 21% 16% 18%
019 -23 0% 20% 1% 23%
020 30 1% 4% 26% 17%
021 —-12 0% 15% 23% 10%
022 23 10% 22% 19% 29%
023 30 16% 8% 20% 63%
024 12 4% 15% 70% 2%
025 10 0% 2% 8% 30%
026 19 9% 0% 30% 74%
027 21 1% 4% 64% 50%
028 19 0% 30% 1% 14%
029 8 11% 1% 20% 17%
030 -10 16% 1% 22% 38%
031 2 0% 3% 12% 26%
032 14 1% 3% 50% 8%
033 =30 20% 68% 0% 7%
034 -11 2% 0% 36% 19%
035 28 21% 2% 7% 2%
101 16 5% 0% 67% 39%
102 4 39% 22% 14% 35%
103 -16 1% 9% 1% 0%
104 —28 77% 74% 46% 46%
105 29 25% 61% 2% 49%
106 12 17% 41% 12% 10%
107 19 6% 16% 63% 48%
CESM-LE average 9.29 11% 17% 26% 31%
CESM-LE std dev 18.76 0.15 0.19 0.22 0.19

We can demonstrate how a strong forced response can
interrupt a weak NAO-SST relationship with a simple
illustrative statistical model in the form:

AMV, , =B,NAO

+ B,NAO + B, coswt,

LP=0 LP,=10

where the regression coefficients are derived empirically
from relationships in climate models, not theoretically
from first principals. In this model, 3; is the contempo-
raneous cool SST response to the positive phase of the
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NAO. We calculate this term via a linear regression of
the low-pass-filtered AMV on the low-pass-filtered
standardized NAO in the PI control run of CESM-
CAMS (yielding a value of —0.05°C per standard de-
viation of the NAO index). The term 3, captures the
lagged warm SST response to the NAO. We calculate
this term via a separate linear regression of the low-pass-
filtered AMV on the low-pass-filtered NAO, lagged 10
years (yielding a value of 0.10°C per standard deviation
of the NAO index). These regression coefficients are



3858

JOURNAL OF CLIMATE

VOLUME 32

1 .
CMIP5 (Pl)

———
—

Correlation coefficient
o

&

e
//‘;

= =ERSST
----- HadSST
——ACCESS1-0
b ——— ACCESS1-3
CanESM2
—— CCSM4
——— CMCC-CESM
——— CMCC-CM
—— CMCC-CMS
—— CSIRO-Mk3-6-0
——— GFDL-CM3
GFDL-ESM2G
L L —— GFDL-ESM2M

30 ——GISS-E2-H-CC
—— GISS-E2-H
—— GISS-E2-R-CC

HadGEM2-AO

HadGEM2-CC

Correlation coefficient

inmcm4
—— IPSL-CM5A-LR
—— IPSL-CM5A-MR
—— IPSL-CM5B-LR
——MIROC4h
——MIROC5
—— MIROC-ESM
MPI-ESM-MR
——MRI-CGCM3
NorESM1-ME
NorESM1-M

-1
-30 -20 -10 0
Lag (years)

10 20 30

FIG. 3. Cross-correlation functions between the low-pass-filtered NAO index and the low-
pass-filtered AMYV index. The NAO leads at positive lags; the AMYV leads at negative lags.
The dashed black line is observations from ERSST, the dotted black line is observations from
HadSST; both are the same in each panel. (top) CMIPS5 preindustrial control runs. For each
run, the full available length of the index time series is used in order to utilize the maximum
amount of information. (bottom) CMIP5 historically forced experimental runs. For each run,
the full available length of the index time series is used.

small, which mirrors the results presented earlier in this
paper. Finally, 35 reflects the role of forcing in producing
the AMV. This term is calculated by regressing the en-
semble mean low-pass-filtered AMV on the ensemble
mean low-pass-filtered NAO in CESM-LE (yielding a
value of —0.68°C per standard deviation of the NAO
index). As noted above, this model is illustrative only
and not meant to imply that the relationship between
the NAO and AMV is strictly linear.

Given these coefficients, we use a series of low-pass-
filtered normally distributed random values in place of
the NAO. This is a reasonable approximation because
the slopes of NAO spectra in climate models are typi-
cally flat and are unaffected by ocean model configura-
tion (Peings et al. 2016; Kim et al. 2018). Additionally, as
mentioned above, external forcing has little influence on
the NAO in CESM-CAMS (i.e., the ensemble mean
NAO is near zero at all times). Low-pass filtering the
random series is required to mimic both the memory
within the climate system and (more importantly) the
autocorrelation induced by filtering in the metrics used
above. In the third term of our model, we choose to
represent variable external forcing with a cosine func-
tion. Our qualitative results are not sensitive to the
functional form (e.g., cosine ‘“‘forcing,” linear trend,
ensemble mean forcing) or periodicity of the forcing.
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The amplitude of the forcing term is equal to the am-
plitude implied by our random “NAQO” time series.
Although we set the forcing term to be equal in mag-
nitude to the forced response in the models, within the
context of the simple model, this term could represent
any (or a combination of) signals outside of the NAO-
AMV system, including ocean heat transport that is
unrelated to either the NAO or external forcing
(O’Reilly et al. 2016).

A 42-member ensemble of this simple model shows
that external forcing can obscure the linear portion of
the NAO-AMV relationship (Fig. 5). We exclude the
influence of external forcing by setting 35 to zero. In this
configuration, we are able to produce a caricature of the
cross-correlation function between the NAO and AMV
exhibited by PI control runs of climate model (cf. orange
lines to Fig. 4, top). If anything, the correlation co-
efficients produced within our simple model are too
large, with values of nearly 1 at the lag of maximum
correlation compared to a maximum of about 0.6 in
CESM-LE. Including the 85 term obscures the NAO-
AMYV relationship just like in externally forced climate
models (cf. the blue lines in Fig. 5 to Figs. 3 and 4, bot-
tom). If external forcing is a large contributor to the
AMYV, the small relationship between the AMV and
NAO can be overwhelmed.
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FIG. 4. Cross-correlation functions between the low-pass-filtered NAO index and the low-
pass-filtered AMO index. The NAO leads at positive lags; the AMV leads at negative lags.
The dashed black line is observations from ERSST, the dotted black line is observations from
HadSST; both are the same in each panel. (top) A synthetic, 41-member, preindustrial
“ensemble” created by randomly subsampling 85-yr segments of the long CESM-CAMS PI
run. (bottom) 41 members of the CESM-LE. Note that, each time series was linearly de-
trended; the ensemble average was not removed. Removing the ensemble average does not
restore the NAO-AMYV relationship from PI control runs.

In this statistical model, the magnitude of expected
correlations between the NAO and AMV varies with
sample size. That is, the width of the envelope of cross-
correlation function is inversely proportional to the
length of the time series; shorter time series produce
larger correlations while longer time series produce
correlations closer to zero (cf. Fig. 5 top to Fig. 5
bottom).

The NAO-AMYV relationship in observations appears
to be more like that found in historically forced runs
than in PI control runs. The range of potential lagged
SST responses to the NAO is larger in historically forced
runs than in PI runs in terms of standard deviations and
the range of spatial responses (see Tables 1 and 2, Fig. 2,
and Figs. S5-S7 in the supplemental material). As noted
in the literature, there are discrepancies between ob-
servations and PI control runs (e.g., Delworth et al.
2017). However, observations fit comfortably within the
range of expected relationships from historically forced
model runs. For example, both the lag of maximum
correlation and the variance explained by the lag re-
sponse fit this description (Fig. 6). Additionally, the
observed cross-correlation between the NAO and AMV
appears to be an outlier when compared to the PI
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control runs but fit well within the range of expected
relationships produced by our historical ensembles.
Note that observations from the ERSST dataset yield a
very similar response to the observed NAO as those
from the HadSST dataset.

4. Discussion

In many PI control runs, a prolonged positive phase of
the NAO is associated with statistically significant warm
anomalies in the subpolar gyre at about a 10-yr lag.
These anomalies appear to rely on an import of warm
water from the south, a mechanism consistent with prior
work (O’Reilly et al. 2016; Delworth et al. 2017; Kim
et al. 2018; Foukal and Lozier 2018). Knowledge of the
prior state of the NAO can offer statistically significant
increases in predictability of the AMV relative to cli-
matology. However, the lagged correlation between the
NAO and AMYV index is small; the amount of variance
explained by lagged low-pass-filtered NAO is reason-
ably consistent across PI control runs but is always
less than 12% (Table 1). This is because the lagged SST
response to the NAO is one of multiple significant
components of multidecadal North Atlantic climate
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FIG. 5. Ensembles of a statistical model designed to illustrate the influence of external
forcing on the lagged relationship between the NAO and AMV. The forcing in this simple
model is a cosine function with a 30-yr period. (top) Ensemble of 1000-yr runs of the statistical
model with and without the B; term. (bottom) Ensemble of 85-yr runs of the statistical model

with and without the B85 term.

variability. Our results are comparable to other studies
that examine this relationship in PI control runs (e.g.,
Delworth and Greatbatch 2000; Ba et al. 2014; Tandon
and Kushner 2015; Delworth et al. 2017). Our inter-
pretation differs when we compare to historically forced
runs.

The relationship between the NAO and AMYV is
complicated by the inclusion of variable external forcing
in climate models. The spatial pattern, timing, and
magnitude of the lagged response become inconsistent
when we account for external forcing. Because of this
inconsistency, we generally find that in historically
forced runs, the lagged, low-pass-filtered NAO does not
offer predictability that is statistically significantly
greater than climatology. In a simple model, we show
how variable external forcing can obscure a prescribed
relationship between the NAO and AMV. Our results
can be compared to Tandon and Kushner (2015), who
find a consistent relationship between AMOC and the
AMYV in PI control runs but an inconsistent relationship
between AMOC and AMV in historically forced runs.
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There are some notable discrepancies between the
NAO-AMYV relationship in PI control runs and obser-
vations. First, the warm SST response to the NAO ap-
pears to occur at a longer lag in observations (14 or
15 yr) than in CMIP5 PI control runs (9 = 5yr), as is also
noted by Delworth et al. (2017). The observed lag of
maximum correlation is statistically significantly differ-
ent from that in our PI run of CESM1 at the 80% level
(10-13 yr) when accounting for difference in the length
of the two time series via a moving-block bootstrap.
Next, the lagged NAO appears to explain a much larger
amount of AMYV variance in observations (19% or 27%)
than in CMIP5 PI control runs (0%-12%). The ob-
served percentage of AMV variance explained by the
lagged NAO is statistically significantly different from
that in our PI run of CESM1 at the 99% level (1.6%-—
4.5%) when again accounting for the difference in the
length of the two time series via a moving-block
bootstrap. Finally, unlike PI control runs, in observa-
tions there appear to be a cool anomaly preceding
the NAO.
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FIG. 6. Scatterplot of the lag of maximum correlation between
the low-pass-filtered NAO index and the low-pass-filtered AMV
index vs the percentage of AMV variance explained by the lagged
response to the NAO. Blue circles represent the responses from
historically forced models in both the CMIP5 ensemble (filled) and
the CESM-LE (unfilled). Orange points represent responses form
the CMIP5 PI ensemble described in text. Crosses represent the
two observational datasets considered.

The NAO-AMV relationship in observations is more
difficult to statistically distinguish from that in our his-
torically forced ensembles. The observed lag of maxi-
mum correlation between the NAO and AMV fits
within the wide distribution calculated from CMIP5
historically forced runs (8 = 17yr) or CESM-LE (9 =
19yr). Similarly, the amount of AMV variance ex-
plained by the lagged NAO fits within the large range
calculated from CMIPS historically forced runs (17% =+
11%) and CESM-LE (31% = 19%). The widening of
the distribution of the NAO-AMYV relationship from PI
runs to historically forced runs is well illustrated by the
cross-correlation functions presented in Figs. 3 and 4.
The cross-correlation function of the observed NAO-
AMV relationship is outside of the range of the cross
correlations simulated by PI control runs but fits within
the wide envelope of NAO-AMV relationships simu-
lated by historically forced runs. If observations are
more like historically forced runs than PI runs, our in-
terpretation of the observed record may change. For
example, the aforementioned, observed cold anomalies
that precede the NAO+ may not be the linear response
to a prior NAO—, but rather could have been the
result of other influences on the AMV (cf. Fig. 2 and
Figs. S5-S7).

There is mounting evidence to suggest that variable
external forcing is vital to understanding the AMYV;
Bellomo et al. (2018) estimate external forcing to be
responsible for about 2/3 of total AMV variability in
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CESM-CAMS. Our illustrative linear model suggests
that the prior state of the NAO will only offer pre-
dictability for the AMV when <16% of AMYV variance
is forced (B3 < 0.4). A large influence of external forcing
on the AMV may suggest a pessimistic view of this
mechanism for predictability, but these results do not
rule out the possibility that the NAO can provide pre-
dictability on an episodic basis. For example, numerous
studies have shown that knowledge of the initial ocean
state improves the predictability of North Atlantic SSTs
and upper-ocean heat content, particularly for the mid-
1990s warming (Latif et al. 2004; Yeager et al. 2012;
Robson et al. 2012; Msadek et al. 2014; Karspeck et al.
2015). Our results, however, show from a statistical
point of view that the lagged response to the NAO does
not always cause changes in the AMV.

We note that this analysis relies primarily on climate
models. While these models are an excellent tool for
research, they remain imperfect. Individual models may
respond to external forcing with too much vigor (e.g.,
Zhang et al. 2013). On the other hand, most models
appear to undersimulate internal variability (e.g., the
NAO), as compared to external forcing (e.g., Kim et al.
2018). The ocean circulation may respond to different
modes of atmospheric forcing depending on each
model’s primary site of deep-water formation; for ex-
ample, the East Atlantic Pattern is found to be the pri-
mary driver of AMOC in IPSL-CM4 (Msadek and
Frankignoul 2009). Put generally, the NAO is a conve-
nient and useful index but other modes of atmospheric
variability may more efficiently produce lagged SST
anomalies (Branstator and Gritsun 2017). Finally, both
the strength and the variability of AMOC may not be
realistically simulated in all models (Zhang and Wang
2013; Buckley and Marshall 2016; Heuzé 2017; Yan et al.
2018). All of these caveats likely affect our comparison
between models and observations.

Real-world external forcing complicates our ability to
interpret the observed NAO-AMV relationship. The
statistical relationship between the NAO and AMV in a
historically forced ensemble appears to be different
from that found in PI control runs. When we account for
variable external forcing in climate models, there is no
consistent or obvious connection between the two cli-
mate indices. If we consider historically forced climate
models to provide plausible counterfactuals for our
observed climate, we can infer that many other NAO-
AMYV relationships could have been possible given the
length of the observed time series. While there are large
discrepancies in the timing and structure of the lagged
SST response to the NAO between observations and PI
control runs, observations fall well within the wide dis-
tribution of relationships produced by the CMIP5
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historical ensemble, CESM-LE, and a simple statistical
model that includes variable external forcing.
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