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ABSTRACT

Users often can see from overview-level statistics that some re-
sults look “off”, but are rarely able to characterize even the type
of error. Reptile is an iterative human-in-the-loop explanation
and cleaning system for errors in hierarchical data. Users spec-
ify an anomalous distributive aggregation result (a complaint), and
Reptile recommends drill-down operations to help the user “zoom-
in” on the underlying errors. Unlike prior explanation systems that
intervene on raw records, Reptile intervenes by learning a group’s
expected statistics, and ranks drill-down sub-groups by how much
the intervention fixes the complaint. This group-level formulation
supports a wide range of error types (missing, duplicates, value
errors) and uniquely leverages the distributive properties of the
user complaint. Further, the learning-based intervention lets users
provide domain expertise that Reptile learns from.

In each drill-down iteration, Reptile must train a large number
of predictive models. We thus extend factorised learning from count-
join queries to aggregation-join queries, and develop a suite of
optimizations that leverage the data’s hierarchical structure. These
optimizations reduce runtimes by >6X compared to a Lapack-based
implementation. When applied to real-world Covid-19 and African
farmer survey data, Reptile correctly identifies 21/30 (vs 2 using
existing explanation approaches) and 20/22 errors. Reptile has
been deployed in Ethiopia and Zambia, and used to clean nation-
wide farmer survey data; the clean data has been used to design na
tional drought insurance policies.
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1 INTRODUCTION

Data exploration tools follow the “overview, zoom, then details”
analysis pattern [53] to help users analyze their datasets at a high
level before diving into the individual records. However, modern
datasets are often hierarchical and multi-dimensional. Thus, when
users identify an anomalous aggregate value that is too high or too
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low (complaints in an overview), it can be difficult to know which at-
tributes to drill-down (zoom in) and which of the drill-down results
to focus on. This is particularly relevant when anomalous results
are due to systematic data errors (e.g., missing or duplicate records,
measurement errors) that the user wants to find and address. To
help user drill-down, query explanation systems recommend predi-
cates over the input database (explanations) that, if intervened upon,
would most resolve the complaint.

Previous query explanation systems are designed for specific
types of interventions, such as deletion interventions [15, 59, 72]
or cell-value updates [42, 49]. But as we show in our evaluations
(Section 5.2), these approaches are not applicable to errors that
the interventions are not designed for. These types of bottom-up
approaches seek to directly intervene on the input database records
(the bottom), and then assess their effects on the complaint (the
up). Unfortunately, real-world errors are unpredictable and varied
(missing or duplicate records, systematic biases), and often require
custom interventions. In these settings, the user must both identify
the erroneous subpopulation and infer the appropriate interven-
tion. This underspecified problem requires a human-in-the-loop
approach that guides the user towards the data errors and empow-
ers the user to provide a range of external evidence based on their
domain expertise. To illustrate, we start with an example based on
our collaborators at Columbia University’s Financial Instruments
Sector Team (FIST):

ExaMmpLE 1. FIST surveys and collects drought severity data from
farmers in villages throughout African countries (e.g., Ethiopia) to
develop sustainable drought insurance plans for the countries. As a
toy example, Figure 1a shows drought severity (from 1 (not severe)
to 10 (severe)) statistics between 1984 to 1988 collected from the Ofla
District in Ethiopia. The FIST researcher complains that the standard
deviation in 1986 is higher than expected and suspects bias in the
reporting. There are too many raw records to read manually, so the
researcher wants to incrementally drill-down and narrow the scope.

How should the researcher drill-down? Although most villages in
Ofla reported high severity, Darube and Zata have low means that
may contribute to the complaint (Figure 1b). The FIST researcher
expects Darube’s low severity because of the high rainfall in the
auxiliary sensing data (Figure Ic). In contrast, Zata’s low serverity is
uncorroborated and thus surprising.

This example illustrates unique challenges for the FIST researcher,
who wants to find a subgroup (e.g., village) along some dimension
to focus attention on, and the limitations of bottom-up approaches,
which attempt to repair raw data in a given village (Figure 1d)
and rank repairs by their effects on the complaint (how much
Ofla’s Std in 1986 will reduce). These approaches fail for multiple
reasons. First, record-level error detection [19, 35, 43, 58] is fun-
damentally ambiguous. For instance, Zata in 1986 contains many
low drought severity records, however those caused by reporting



District: Ofla District: Ofla, Year: 1986 Sensing Data

District: Ofla, Village: Zata Year: 1986
Year Mean Count Std Village Mean Count Std Village | Rainfall Survey id Severity
1984 7.5 60 1.5 Adishim | 8.1 5 1.8 Adishim | 1535 1
1985 72 62 1.3 Darube 1.8 10 1.5 Darube 603.2 2
1986 6.3 62 3.0 Dinka 7.7 6 1.5 Dinka 1943 4
1987 7.0 61 1.9 Fala 7.3 15 1.3 Fala 232.4 6
1988 6.9 59 1.4 Zata 2.8 9 1.7 Zata 213.5 1
(a) Drought statistics per year in (b) After drill-down by geography (c) Auxiliary (d) Raw data of drought

District Ofla. to village statistics. sensing dataset. severity for Zata in 1986.
Figure 1: Example FIST use case. (a) The researcher thinks that Ofla’s 1986 standard deviation of severity is suspiciously high
(the complaint). (b) After drilling down to villages, Darube and Zata have low means and are potential explanations. (c) Darube

is explained away by the high rainfall in the sensing data. (d) Raw data of drought severity for Zata in 1986 that causes the

complaint.

bias (errors) are indistinguishable from those due to normal vari-
ation (clean). Second, the FIST researcher doesn’t know the error
type up-front, so cannot pick from the plethora of potential repair
methods [19, 20, 46, 57, 71]. The real error was that farmers con-
fused flood with drought in that year (data drift), however if the
researcher incorrectly assumed the error was due to outliers [48],
she might only repair raw data with the lowest severity, which
was biased towards Darube. Finally, bottom-up approaches cannot
detect population errors such as under-sampling [21, 67] since the
records are all correct.

Existing top-down explanation and cleaning techniques are also
ill-suited to this problem. Provenance summarization methods [6,
9, 36, 60] define “interestingness” measures that summarize query
provenance but may be irrelevant to the complaint. For instance,
Smart Drill Down’s coverage measure is a special case of complaints—
it translates to a complaint that a COUNT aggregation result is too
high, which is not the same as the researcher’s complaint. Most
query explanation systems use sensitivity-based methods [59, 72]
and support complaints over general aggregation functions. How-
ever, they are limited to deletion interventions, which are not al-
ways desirable—deleting Darube’s data most reduces the Std but
is inappropriate. Other explanation systems like Macrobase [5, 11]
are based on risk-ratio measures that distinguish user-provided
inliers and outliers. For instance, FIST may specify the 1986 re-
sult as the outlier and other results as inliers, however Macrobase
would simply report rainfall shared by the inliers but not outliers,
which does not explain the high variance in drought severity. Fi-
nally, counterbalancing [51] looks for sibling aggregates that offset
(counterbalance) the deviation specified in the user’s complaint.
However, a village’s drought is typically not offset by higher rainfall
elsewhere.

Reptile tackles the above limitations. Given a hierarchical dataset
and a complaint over a distributive aggregation result! (e.g., the
std of Olfa is too high), Reptile recommends the next drill-down
dimension and highlights the top sub-groups that affected the com-
plaint. Reptile operates in a top-down fashion by learning and
applying interventions to sub-group statistics (e.g., repair mean,
count and std of Zata) rather than individual records. The distribu-
tive nature of the complaint enables Reptile to efficiently compute

Such as mean, count, standard deviation.

the intervention’s effects on the complaint (e.g. how much Std in
Ofla will be reduced). With this top-down approach, FIST researcher
can iteratively make complaints, drill-down, and assess sub-groups.
She can also verify or provide domain expertise at every step. Unlike
bottom-up approaches, this top-down approach is more declarative,
in that it suggests how a group’s statistics should change, and users
don’t have to make low-level decisions (error detection and repair)
at the raw data level. These group-level statistics also naturally
express a wide range of error types (missing, duplicates, value er-
rors) and give the FIST researcher flexibility in how they wish to
intervene on the raw data. Further, this approach leverages natural
hierarchies present in real-world data.

To predict appropriate aggregation-level intervention, Reptile
relies on domain expertise from users in the form of auxiliary data
(such as the sensing data) to fit a machine learning model. These
types of auxiliary data have already been commonly utilized to
predict statistics by data scientists across fields such as social and
policital science [26], public health [68], and education [27]. For in-
stance, public health uses county-level restaurant, population, and
income statistics to estimate obesity [50]; sociology uses country-
level GDP, motor vehicle density, temperature, and literacy rates to
estimate physical activity [13]; and economics uses country-level
infrastructure, manufacturing, and regulatory statistics to to es-
timate innovation [40]. Further, data augmentation tools [16] are
increasingly used specifically to search and identify promising aux-
iliary data. We note that auxiliary datasets differ from joined tables
in traditional query explanation. Joined tables are used to expand
the set of attribute used to compose query explanations [59], while
auxiliary datasets are used to infer the appropriate intervention.

Reptile makes two primary contributions based on the major
challenges. The first is the scarcity of training examples when rank-
ing the immediate groups in a candidate drill-down operation. For
example, Olfa only contains a handful of villages, and its 1986 data
are insufficient to train an accurate model. Reptile expands the
training set by using parallel groups (e.g., in other years, districts,
regions). However, variation across the parallel groups can severely
degrade its accuracy. For instance, the villages in each district may
follow a linear trend, but the slope and intercept vary from district
to district, and fitting a single model across districts will be inac-
curate. To address this, Reptile uses multi-level models [23, 28]



that account for systematic variation between groups. Multi-level
models are well-established in the social sciences for modeling hi-
erarchical data, and our experiments also show that they are more
accurate than global approaches such as linear regression models.

The second challenge is scalable model training. Reptile needs
to train a model for every candidate drill-down, and the exponential
number of drill-down paths are too large to precompute. Further,
the number of training records increases exponentially as the user
drill-down into the dataset. To address this, Reptile avoids fully
materializing the feature matrix that is exponential in the num-
ber of hierarchies, and constructs a succinct factorised matrix [54]
that is orders of magnitude smaller. Prior factorised learning tech-
niques [64, 65] assume that the predicted (Y) variable is an attribute
in the join inputs to exploit the redundancy across the features and
predicted variables. In contrast, the predicted variables in Reptile
are aggregation results and do not exhibit these redundancies. We
thus extend factorised learning to this setting, and also develop a
suite of novel work-sharing and caching optimizations.

As of 2021, Reptile has been deployed by the FIST team
in Zambia and Ethiopia, and used by local and government
partners to clean data collected from villages throughout
the countries, and the clean data has been used to design na-
tional drought insurance policies. In a smaller-scale user study,
FIST researchers submitted 22 complaints over their drought data,
and Reptile correctly identified data errors for 20; one was am-
biguous while Reptile partially explained the other. In addition:

o We show that using factorised learning improves end-to-end
performance by 6X as compared to a traditional Lapack-based
implementation, and that our set of reptile-specific optimiza-
tions reduces runtimes by 4X as compared to the prior factorised
learning system LMFAO [64].

o Across missing, duplicate, and systematic value errors, we show
that Reptile can accurately identify the top-3 groups with 70%-
100% accuracy, as compared to baseline explanation and cleaning
approaches that have <60% accuracy. Further, auxiliary data im-
proves accuracy by >20% .

e Using the John Hopkins Covid-19 data, Reptile correctly identi-
fied 70% of the Github-reported errors, as compared to 3 — 6.6%
from popular explanation (DIFF [5], and Scorpion [59, 72]) and
cleaning (HoloClean [57] and Raha [46]) techniques.

Scope: Reptile focuses on existential errors (i.e. missing or du-
plicated records), and cell value errors localized to aggregated at-
tributes. For instance, from abnormally low SUM, Reptile can detect
missing records, data drift, disguised missing values (e.g. zero), etc.
However, Reptile assumes dimensional (categorical) attributes
to be correct and uses them to cluster groups. This assumption is
sensible because dimensions are typically machine-generated as is
the case with the FIST data. Human-generated data may contain
errors or inconsistencies in the dimension (categorical) attributes.
Many existing systems (e.g., HoloClean [57], Raha [46]) leverage
constraints and patterns to fix dimension errors, and we recommend
these be run before Reptile.

Note: The paper strives to be self-contained. References to appen-
dices can be skipped, and are in the technical report [4].

2 APPROACH OVERVIEW

This section presents our problem definition, and describes model-
based repair and the role of auxiliary datasets. We then walk through
the components in Reptile.

2.1 Problem Definition

Given relation R with attributes A, we assume that all the attributes
in R are partitioned into hierarchical dimensions. A dimension’s
hierarchy H = [A4, ..., Ax] is an ordered list of attributes where
there is a functional dependency A, — ApVm < n. We say that
A, is more specific than Ap, if m < n in the same hierarchy. The
last attribute Ay is the most specific attribute in H. Note that a
dimension’s hierarchy may contain a single attribute.

User explores R through initial view V = y Agb’f(Aagg)(R), where
Agh C A, Aggg C A, Agp N Aggg = 0, £() is a distributive [32] ag-
gregation function such that, given the partition of R into J subsets
Py, - -, Py, there exists function G: f(R) = G (f(Py), ..., f(Py)). Let
ti € V be an output tuple and t;[agg] be t;’s aggregation result.

EXAMPLE 2 (DISTRIBUTIVE AGGREGATION FUNCTION). Count is
a distributive aggregation function. Given the partition of R into ]
subsets Py, - - - , Py, we can find Geount such that count(R) = Geount ({
count(Py),- - - , count(P))}) = Zgzl(count(Pi))

User can make complaint about tuple t. € V. Define user com-
plaint as a function f.o,, : t > R % which takes tuple as input and
outputs a value that user aims to minimize. This formulation cap-
tures common complaints [11, 51, 59, 72], such as t[agg] is too high
or too low, or that t[agg] should be a specific value. For instance,
fcomp(t) = |t[count] -v]| states that the output attribute count should
have been v.

We exploit the hierarchical structure to drill-down from the
complaint tuple along different dimensions (e.g., district to village,
or from year to month). Given a tuple t in the current view V =
YAgb’f(Aagg)(R), drilldown(V, t, H) adds the next strict attribute in
hierarchy H to Ag, in V and replaces R by the provenance of t.

ExampLE 3 (DRILL-DOWN). Figure 1 is grouped along geographic
and temporal dimensions, with hierarchies Hgeo=[District,Village]
andHiime = [Year,Month]. Figure 1a shows the viewV that filters and
aggregates by (District=0fla, Year). Lett be the tuple for year
1986. drilldown(V, t, Hgeo) would further aggregate the provenance
of t by village (Figure 1b).

Next, we apply repair-based intervention to the statistics of each
tuple in drill-down result and check its effect on the complained
tuple t. Let Jrepair 1 t — t be a repair function that, given a tuple,
returns a tuple with its expected (repaired) aggregate statistics.
We use fiopair to repair tuple in drill-down result, and efficiently
compute its repair effect on t, through distributive property: given
complaint tuple t., drill-down results V’ = drilldown(V, t., H) and
subgroup t’ € V', repairing t" — frepair(t’) updates the complaint
tot; = G(V' - {t'}u {f;epair(t’)})'

Finally, we search for one hierarchy H € H to drill-down, and
one tuple t € drilldown(V, t., H) such that “fixing” the t’'s group
statistics would minimize user complaint fcomp(té).

’In general, f.,..- may be an expression composed of distributive aggregates in the

omp
query. For instance, SUM can be decomposed into an expression over MEAN and COUNT



PROBLEM 1 (COMPLAINT-BASED DRILL-DOWN). Given tc, fcomp,
frepair, return the next drill-down hierarchy and tuple (H*,t*) where:

H*t" = argmin  feomp(te) (1)
Hit

s.t. V' = drilldown(V, t., H), 2)

te = G(V'H{t} U {frepair (t)}) ®3)

HeH (4)

teV’ (5)

ExXAMPLE 4 (COMPLAINT-BASED DRILL-DOWN). Given the com-
plaint t. = (Year : 1986, District : Ofla, count : 62) in Figure 1, the
complaint function is foomp(count) = |count — 70| (that is, the count
of tuples in Ofla in year 1986 should have been 70) and consider the
Darube and Zata records after drilling down along Hgeo (Figure 1b).
If the repair function fixes Darube’s count to 15, t.’s count will update
to 67, and the complaint function returns fcomp(67) = 3. In contrast,
if Zata is repaired to 16, then its complaint function would return
1, which is preferable. After searching all hierarchies, the top ranked
(hierarchy, tuple) pair is returned.

Although the user can easily provide tc and f,p,,, the repair func-
tion fion,ir is hard for users to express (since they only see the
aggregated effects of the errors), yet is critical to the problem. We
describe how we address this issue with model-based repair next.

2.2 Model-based Repair

Reptile identifies erroneous groups by comparing their statistics
with expected statistics based on a model. Models are commonly
used to identify and repair numeric errors, and prior works have
used log-linear [63] and linear regression models [51]. Models pro-
vide the flexibility to combine features derived from the drill-down
groups, as well as from auxiliary datasets (e.g., satellite sensing
data in Example 1). However, sparsity is the major challenge, as
there may not be enough drill-down results (e.g., villages in Ofla in
1998) to fit an accurate model. We now describe how we address
this challenge, and how users can tune the repair function.

2.2.1 The Repair Model. A Naive Approach is to use the results of a
candidate drill-down as the training examples for a linear regression
model y = X - B + & For instance, after drilling down from Ofla to
its villages, y is the result of the complaint’s aggregation function
f(-)® for each village, and X is the feature matrix derived from
village-level information (e.g., population, crops, rainfalls). The
main problem is that Ofla alone may not contain enough villages
to train an accurate model.

Parallel Groups: Reptile uses the drill-down results of all parallel
groups (e.g., villages from other districts and years). In the FIST
example, there are 34 years and 295 villages, and using parallel
groups increases the number of training examples to 10030.

Multi-level Models: The dataset’s hierarchical structure naturally
clusters the drill-down groups: villages in the arid Tigray region will
be dissimilar from villages in the tropical Harari region. This effect
is common in fields such as sociology [26], demography [61], public
health [23], and market sectors [70]. Unfortunately, linear models

3In general, the complaint’s aggregate can be composed of multiple distributive aggre-
gates. In this case, we fit separate models for the distributive aggregates.

do not take this hierarchical structure into account. As compared to
linear models, we show that multi-level models increase Reptile’s
top-3 accuracy by >15% (Section 5.2).

Reptile uses multi-level linear models by default. Multi-level
models fit a set of global parameters, as well as separate param-
eters for each parent group (e.g., year, district)—termed “clusters”
for convenience—to account for their variations. Suppose we are
drilling down from clusters defined by Agy, (e.g., year, district) to
Aé b (e.g., year ,district, village), and there are G clusters. The model

for the it? cluster is defined as:

yi=X,~~|5+Zi-bi+ei,i=1,...,g (6)
b; ~ N(0,%),&; ~ N(0,6%I)

where y; is the vector of distributive aggregation f(-) result, and X;
is the feature matrix. The key difference from the linear model is
the additional term Z; - b;, which encodes random effects that vary
across clusters. It can be interpreted as modeling the residual after
fitting the global parameters in X; - B. Z; is the random effects, set
to X; by default; b; is the cluster-specific parameter drawn from
a gaussian. Since X; contains e.g., village, district, and year level
attributes, Z; may be tuned to only keep attributes relevant within
clusters. €; is a cluster-specific error; I is the identity; p, ¥ and o
are parameters. Finally, the full model is constructed by (logically)
concatenating each cluster’s matrices.

Multilevel models exploit effects § shared among clusters (e.g.
high rainfalls decrease drought across districts) that is common in
hierarchical data, and uses b; to fine-tune each cluster (e.g. how
rainfall uniquely affected a district). If the effects are random across
clusters (e.g. high rainfall affects districts randomly), the multilevel
model reduces to an independent linear model per cluster.

By default, Reptile adopts multi-level linear models because
linear models are simple and multi-level models are well-regarded
in many scientific domains that study hierarchical data. In princi-
ple, Reptile supports user-defined models, which will be used to
replace f..,;r in problem definition.

2.2.2  Tuning the Repair Function. Reptile provides many ways
to improve the accuracy of the repair function, such as provid-
ing auxiliary datasets, custom featurizations, and customizing the
random-effect matrix. For space constraints, we describe Reptile’s
default features and the role of auxiliary datasets, and defer the
others to the technical report [4].

Default Features: Reptile treats all non-aggregated attributes in
the drill-down results as categorical. However, naive hot-one featur-
ization exacerbates the sparsity problem. Inspired by multivariate
anomaly detection [39] and OLAP data cubes [63], we featurize at-
tributes based on their main effects [47] to capture the similarity of
statistics between clusters (e.g. the average drought severity should
be similar between neighbour districts). To featurize an un-cleaned
dataset, Reptile assumes that the majority of statistics are clean
and replaces each categorical attribute value with the median of
cluster statistics Y. This is robust when less than 50% of values
are corrupt [34]. For instance, if we drill-down to (district, village,
year) and compute the per-cluster average, then the feature for 1985
would be the median of the average severities across all villages in
1985.
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Figure 2: Reptile architecture

Note that the default features and the multi-level model exploit
different data properties. The default features capture statistical
similarities across dimensions, and the weights of these features are
reduced if the similarities are not significant. The multi-level model
captures similarity between the effects of features—if a feature
is correlated with drought in one district, it should be correlated
in other districts as well. The multi-level model is data-efficient
by sharing weights between clusters, yet can fine-tune individual
clusters.

Auxiliary Datasets: When possible, Reptile automatically joins
auxiliary datasets with the drill-down results and includes their
measures in the feature matrix. For instance, the village rainfall data
in Example 1 is included once Reptile drills down to village. Users
simply specify the dataset, join conditions, and measures. Since the
user provides the auxiliary dataset, we assume it is clean. If auxiliary
dataset is noisy and not predictive, the model will simply lower its
feature weights, which can be a signal to check the auxiliary data.
Section 5.2 shows that Reptile can benefit from the auxiliary data
even when it’s slightly correlated with the underlying clean data.

2.3 Usage Walkthrough and Architecture

We illustrate how the Financial Instruments Sector Team (FIST) uses
Reptile to solve complaint-based drill-down problem (Example 1).
Reptile is initialized with the database and attribute hierarchies
(e.g, geo and temporal). A FIST researcher studies the annual sever-
ities in the Ofla district. She suspects that the standard deviation in
1986 is too high and submits it as a complaint. She also provides
village-level rainfall as an auxiliary joined dataset because she feels
it can help indicate droughts.

At this point, Reptile follows the architecture in Figure 2. It
first combines the queried tables with the auxiliary sensing dataset,
and uses them to extract model features. The Factoriser stores the
features in an efficient factorised representation (described below),
and the Model Trainer fits a predictive model to estimate the statis-
tics for each group in the next candidate drill-down. For instance, if
Reptile drills down along geography, the model estimates village
level statistics in Ofla 1986. Reptile uses multi-level models to
account for hierarchical relationships, and introduces optimized
matrix operations over factorised representations.

The Ranker first evaluates each group (e.g., village) based on
the extent that repairing the group’s statistics to its expected value

would address the complaint; it returns the top across every drill-
down hierarchy. The researcher can examine the recommended
groups, and optionally submit a new complaint at the village level
to continue “zooming-in”.

2.4 Extensions
We discuss simple extensions that further improve usability.

Set of Distributive Aggregations: The problem assumes that f(-)
is a distributive aggregation function like COUNT for simplicity. How-
ever, f(-) can be extended to a general distributive set of functions
like {MEAN, COUNT, STD} as discussed in Appendix A. Distributive set
of functions is highly expressive and covers most of the aggregates
studied in data science. For example, the percentage of obesity and
population in public health [50], the frequency of physical activity
in sociology [13]; and product innovation statitics in economics [40]
can all be expressed as distributive set of functions.

Multi-attribute and multi-dimension drill down: The formal
problem focuses on drill-down along a single dimension and at-
tribute in each iteration. However, the user can also specify a set
of “coupled” attributes (potentially from different hierarchies) that
they want to drill-down all at once. To do so, Reptile constructs a
special hierarchy H* where the next attribute to drill down is a com-
posite of the coupled attributes. All other steps and optimizations
apply. Naturally, Reptile relies on the user to supply the coupled
attributes, since the set is combinatorial.

Early Stopping: For dataset with too many hierarchies, drilling
down all of them will be slow and the final group after many itera-
tions may be too sparse to interpret. In practice, we find that FIST
researchers naturally stop drilling down when satisfied, or when
the group is small enough to inspect the raw data. Philosophically,
we don’t recommend a fully automated early stopping process, as
cleaning should still be user-guided.

3 FACTORISATION BACKGROUND

Given the generated features, directly joining them together will re-
sult in a large feature matrix that exhibits vast redundancy. Reptile
generates and trains over a factorised representation of the feature
matrix to remove the redundancy, which decreases space and train-
ing time. This section provides background on factorised represen-
tations of join-aggregation queries and feature matrices. Readers
familiar with these topics may jump to the next section.

3.1 Factorised Representations

Joins and hierarchical data exhibit redundancy when encoded in a
tabular format, and factorised representations [54] (f-representations)
remove this redundancy. Assuming a fully normalized database (e.g.,
in BCNF), f-representations encode query results as an algebraic ex-
pression composed of unions and cartesian products. In a join query,
for instance, the set of left and right records that have the same join
key will emit the logical cartesian product and f-representations
avoid materializing it. Matrix operations in model training reduce
to batches of aggregations [64], which can be efficiently executed
over f-representations by pushing them through joins.

Given a relational table with schema S, the following notations
are used for f-representations:



e {(v) : i}: a unary relation with tuple (v) whose countisi.

e (E; U..UE}): union of relations Eq, ..., E, with the same schema.

e (E; X...Xx Ep): cartesian product of relations Eq, ..., En, where the
schema of Ejis S;and Sy N..N S, = 0.

F-representations remove redundancies due to functional depen-

dencies inside a hierarchy and independence between hierarchies:

ExAMPLE 5 (HIERARCHICAL DATA). Consider the relation R = {(ay,
b1) : 1,(a1,b2) : 1,(az,bs) : 1,(ag,by) : 1} over schema S = [A,B],
with functional dependency B — A. Its f-representation is:

({(ar) : 1 ({(b1) : 1FU{(b2) : 1)U ({(az) : 1}x({(bs) : 1}U{(ba) : 1}))

ExXAMPLE 6 (INDEPENDENT SCHEMAS). Consider relation R; =
{(a1) : 1,(az) : 1,(a3) : 1} over schema S; = [A] and relation R; =
{(by) : 1,(by) : 1,(bs) : 1} over schema Sy = [B]. Their schemas do
not overlap, so the join result is quadratic in size (i.e., 9), whereas its
f-representation is linear:

(f(ar) : 11U {(az) : 1} U{(as) : 11) X ({(b1) : 1} U{(b2) : 1} U{(b3) : 1})

Reptile develops matrix operations over f-representations, which
are decomposed into batches of aggregation queries (Section 4.2).
Here, we introduce the aggregation operator using a COUNT-query
example and describe when they can be logically pushed through
joins. For further background, please refer to [52].

the schema of the join result is Xj, ..., X¢, Xf.1, ..., Xm. For tuple t in
relation R, the notation R[t] returns the COUNT for tuple t. Then, the

aggregation result is:
QA1 Xp)] = P ... P R rilsi]

X1 Xm i€[n]

where (X) is the join subplan, Py is an aggregation that marginal-
izes over attribute X, and S; is the schema of relation R;. ® and

Py, are defined as:
R () D] = Rims, (B)] * Tlrs, (0]
@R = Y R6] 1 € Dom(S)), t = ms ()} Vee D
X

Yt e Dy

where S; and S, are the schemas for Rand T, X € Sy, D; =
Dom(S; USz), and Dy = Dom(S; \{X}). Suppose t = (Distinct = Ofla).
The first statement says that Ofla’s COUNT after the join is equiva-
lent to multiplying the COUNT Ofla records in R and T. The second
statement states that marginalizing over X (say, the attribute Year)
is computed as the sum of Ofla counts over every year.

ExAMPLE 7 (JOIN AND AGGREGATION OPERATORS). Let relations
R = {(a1,by) : 1,(az,by) : 2} over schema [A,B], and relation T =
{(b1,c1) : 3,(b1, c2) : 4} over schema [B, C]. Consider the query:
QlA,B)] = FPRI(A, B)] (X) TI(B, O))
C
The intermediate result Rx = R[(A, B)] ) T[(B, C)] contains:

{(a1,b1,c1) : 3,(a1, b1, c2) : 4,(az, by, ¢q) : 6,(az, by, c2) : 8}

P partitions Ry by A,B and sums all the counts in each partition
to derive{(a;,by) : 7, (az,by) : 14}.

Early marginalization pushes (P down when C is not used in the
outer query (such as joins):

ExAMPLE 8 (EARLY MARGINALIZATION). Let relations R, T have
schemas [A,B] and [B,C]. Consider the query yacount(R X T),
where each attribute’s domain is O(n). Both relations are thus O(n?)
and the join result is O(n3). Notice that attribute C is not used for the
join and can be marginalized early:

QLA = D P rIA, B XR) TI®B, O))
B C

Thus P can be pushed through (X) to reduce the join result to O(n?):

QlA)] = D RIA, B (R)(EPD TI®, O))
B C

3.2 Factorised Feature Matrix

We now discuss how to construct the feature matrix using the exam-
ple in Figure 3. Rather than materialize the full matrix, we construct
a factorised matrix representation? in the form of a tree, where each
node is either an attribute value, union (U), or cartesian product
(X) (see Section 3.1). To do so, we must first assign an attribute
ordering—matrices expect a fixed column order—that dictates the
attributes encoded at each level in the f-representation.

Attribute Ordering: We order the attributes by selecting an or-
dering of the hierarchies, and within each hierarchy, order the
attributes from least to most specific. The specific hierarchy order
has no impact on performance, since the f-representation of the
matrix can be efficiently translated into a different ordering during
matrix multiplications. The main restriction is that the hierarchy
that we are drilling down should be ordered last. Note that drilling
down along different hierarchies will necessitate different attribute
orderings; we describe work-sharing optimizations in Section 4.4.
Figure 3a shows data from two hierarchies: Time with attribute
T and Geo with attributes District (D) and Village (V). Suppose the
hierarchy ordering is [Time, Geo]. The fully materialized matrix
X (Figure 3b) is computed as the cross product between the two
hierarchy tables. Note the redundancy across the hierarchies (t; is
replicated), and within the Geo hierarchy (d; is replicated).

Factorised Feature Matrix: We now outline the construction of
the factorised feature matrix using Figure 3c as the example. We
refer readers to Olteanu et al. [54] for a complete procedure’. Each
attribute corresponds to one level of the tree, and A;’s level is di-
rectly above A;’s if A; directly precedes A; in the attribute order.
Each node (e.g., t1) in a level corresponds to a distinct attribute
value, and levels are connected via operators X and U. The edge
structure between levels is dictated by whether the attributes are
within the same hierarchy or not. In Figure 3c, Time directly pre-
cedes District but is in a separate hierarchy, thus the District nodes
are unioned (U) and connected to the Time level with (x). In con-
trast, attributes within the same hierarchy form a tree structure
because villages are strictly partitioned by their district—the exam-
ple removes redundant instances of ty, tz, and d;.

Matrix operations iterate through the matrix row- or column-
wise. Row-wise iterations requires decomposed aggregates (Sec-
tion 4.2) to exploit redundancy, while column-wise iterations corre-
spond to efficient Depth-First traversals through the f-representation’s
tree structure. Appendix C describes the detailed implementation.

“For legibility, we use attribute and feature interchangeably. See Appendix B for details.
5In their parlance, our “f-tree” does not contain branches.
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Figure 3: Example dataset with (a) Attribute values orga-
nized by hierarchy in attribute order, (b) materialized fea-
ture matrix, (c) factorised feature matrix.

4 DETAILS AND OPTIMIZATIONS

In each iteration, Reptile recommends the next drill-down hi-
erarchy and returns the top ranked groups (output tuples of the
drill-down query). For each drill-down hierarchy, Reptile builds
the factorised feature matrix, fits the multi-level model, estimates
the expected statistics for each group using the model, and finally
ranks the groups by their repair’s effects on the user complaint. In
this process, model training over factorised matrix is the primary
bottleneck.

Prior works [64, 65] assume that the feature matrix is derived
from a join query (without aggregation), where Yis simply another
input attribute (e.g., Village in Figure 3b). This only requires gram
matrix computations over factorised matrices for training because
the concatenation between X and Y can be efficiently factorised.
In contrast, Reptile executes join-aggregation queries where the
Y values are aggregate statistics (e.g., average severity) potentially
unique for each of the exponential number of groups. In short,
factorisation does not reduce their redundancy. This motivates our
matrix operation extensions between factorised and non-factorised
matrices, as well as our optimizations.

Next, we decompose matrix operations into groups of aggre-
gation queries efficiently executable over f-representations. We
then develop work-sharing and caching optimizations to accelerate
individual and multi-model training.

4.1 EM-based Model Training

We fit the multi-level model’s parameters via maximum likelihood
estimation using expectation maximization (EM). EM is widely used
to train multi-level models and implemented in statistical packages
such as lme [56] in R and statsmodels [66] in Python. In addition,
our techniques apply to other algorithms (e.g., Fisher scoring [7],
iterative generalized least squares [31]).

The EM algorithm (listed in Appendix D) is composed of 3 types
of matrix multiplications—gram matrix (X" - X), right multiplication
(X - A), left multiplication (B - X)—along with their per-cluster
counterparts: X? - Xi, X; - Ci, D; - X; for the it cluster. Where
A, B, C;, D; are intermediate matrices, and X is the factorised matrix.

To compute these operations, one naive approach is to mate-
rialize the full X matrix and use existing matrix operator imple-
mentations, but the matrix can be very large. Instead, we wish to
directly perform matrix operations on the f-representation. Note
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Figure 4: Aggregation results and Multi-query execution.

that the outputs of Gram matrix, right and left multiplication are
materialized as matrices because there is no redundancy to exploit.

4.2 Factorised Matrix Operations

Prior work [22, 38, 65] decomposes factorised representation opera-
tions into a batch of aggregation queries that can be used to directly
compute cells in the output matrix. We first review the set of decom-
posed aggregations, and then describe our implementation of left
and right multiplication that leverages the data’s hierarchical struc-
ture. We describe work-sharing based on early marginalization, and
then describe our novel drill-down specific optimizations.

4.2.1 Decomposed Aggregates. Let us define three classes of count
aggregations, TOTAL;, COUNTy;, COF A;, that will be used to
define matrix operation outputs. Recall that the feature matrix
orders the attributes Ay, ..., A; by hierarchy, and from least to
most specific attribute within each hierarchy. Using the attribute
order Time (T), District (D), Village (V) in the running example,
Figure 4 illustrates the outputs of these aggregation queries and
their algebraic relationships to each other.

TOTAL,, marginalizes over all attributes to the right of A; (in
attribute order), inclusive; it returns a single count value. COUNTy,
marginalizes all attributes strictly to the right of Aj;; it returns the
count for every unique A; value. COFy, a; groups by A; and Aj and
computes the count for each group. Formally:

TOTALs, =P ... P ma®) X) R
Aj

Ay ie[i-1]
COUNTy, =P ... P ma®) X R
A Ay iefi-1]

COFA‘,AJ :@---@@N-@EA,(RD ® Ri
A4 ]

A Aj1 Ajn iefi-1
ie[l,n],je(1,i-1]
Rather than execute these queries by joining then aggregating, we

next describe a multi-query optimization to push down marginal-
ization and minimize intermediate join sizes.

4.2.2  Matrix Operations Using Decomposed Aggregates. We now
present the intuition for optimizing the most expensive three matrix
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Figure 5: Example matrix operations.

operations—gram matrix, left and right multiplication—using data
from the running example (Figure 3). The key idea is to use the
decomposed aggregates above to quantify the redundancy (i.e.,
duplication) in the vector dot product computations in each output
matrix cell. We also describe the main optimization for their per-
cluster variants, and defer details to Appendix E, and focus on the
principles. We note that the gram matrix implementation is the
same as in [65], but we introduce an optimization based on the data
hierarchies.

Gram Matrix: Figure 5a illustrates the dot product between columns
col, and colz in X. Since there are two times t; and ts, the district
and village data is duplicated twice. Instead of recomputing them,
we compute ;8%%; to infer the number of times col, - col3 is du-
plicated, and COFp v to account for the number of times each pair
of district, village values are duplicated. Our major optimization is

to observe that COFa g is simply a cartesian product that does not

duplicated twice

need to be materialized when A and B are independent. This is the
case when A and B are from different hierarchies.

Left Multiplication: Figure 5b shows this between a materialized
matrix and X; let row;, contain elements [ey, ..., ec]. To compute
rowy - coly, the outer summation iterates over the districts values
twice, once for each Times value tj, t;. Within each iteration (e.g.,
t1), each district value is multiplied by the sum of the corresponding
elements in row;. For instance, d; is multiplied by e; and ez, while
dy is multiplied by e3. Since row), will be referenced for every
column in X, we preprocess row, by computing the prefix sum, to
allow for fast range summations (e.g., rangeSum[0, 2] = e; + e). st
is used to keep track of the start position of row;, and is updated
for each range summation.

Right Multiplication: This uses rows in X so cannot benefit from
the techniques above. However, vertically adjacent rows in X have
considerable overlap (Figure 5¢). For instance, row; and row; only
differ in the last value (v — v3). Thus, row; - col; can be incre-
mentally computed from the preceeding row’s dot product result.

Per-cluster Optimizations: The per-cluster variants use the same
algorithms over the clusters’ sub-matrices. Since clusters corre-
spond to siblings in the f-representation (e.g., districts d; and dz in
Figure 3c), they are amenable to the same work sharing optimiza-
tion as for right multiplication. For instance, the first cluster (rows
1, 2) and second cluster (row 3) in Figure 3c share t;, and can cache
t1’s contributes to the matrix operation’s output.

4.3 Multi-Query Optimization

Early marginalization [65] pushes aggregation operators through
joins, and work sharing computes decomposed aggregates TOTAL,
COUNT, and COF. For instance, TOTALp, is simply the sum of counts
in COUNTp. Similarly, COFp v can be computed as COUNT ® Ry,
or as COUNTy (X) Rp. These relationships are depicted as edges in
Figure 4. Given the dependency graph, the aggregations are simply
computed in topological order. We use the same COFa g optimiza-
tion as described for gram matrix above, and avoid materializing
the cartesian product for attributes from different hierarchies.

4.4 Drill-down Optimization

Equations 2 and 4 in the problem statement require drilling down
each hierarchy, and each drill-down augments the factorised fea-
ture matrix with the additional columns corresponding to the next
attribute in the hierarchy. For instance in Figure 6a, the user fur-
ther drills down along the geography hierarchy from Village (V)
to Road (R), which expands the feature matrix (Figure 6b). Notice
that after drilling down to Road, the multiplicities of the preceding
attributes change—t; is duplicated 4 rather than 3 times, and v3
is duplicated twice for each rj value. Although the decomposed
aggregates for the attributes in the drill-down hierarchy (D, V, R)
need to be recomputed (using the multi-query optimizations in the
previous subsection), we can update each of the decomposed aggre-
gates for attributes in the other hierarchies in O(1). For instance,
the multiplicity for t; can be updated by dividing by the current
TOTALp (e.g., 3) and multiplying by the updated TOTAL, after the
drill-down (e.g., 4). This is based on the observation that attributes
between different hierarchies are independent. Figure 6c depicts
the updated aggregates in the example.
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Figure 6: Example Updates after Drill-Down.

The user will ultimately pick one drill-down hierarchy that
Reptile recommends (e.g., Time). However, the next call toReptile
would need to re-evaluate all hierarchies again, and we cache de-
composed aggregates to accelerate this case.

Drilldown optimization differs from incremental view mainte-
nance (IVM) for f-representations [52]. IVM updates query outputs
assuming that the input update size O(A) is smaller than the relation
size O(n). However, during drill-down, the decomposed aggregates
of the other attributes all change due to the new attribute. Thus,
A ~ n and does not benefit from IVM.

4.5 Putting It All Together

Reptile performs the following operations in each iteration to rec-
ommend the most promising drill-down results that will repair the
user’s complaint. For each candidate hierarchy H, it 1) constructs
the factorised feature matrix after drill-down, 2) recomputes the
decomposed aggregates for the attributes in H with multi-query
optimizations, 3) updates each of the remaining decomposed ag-
gregates in constant time, 4) translates EM into matrix operations
that are executed until parameter convergence, 5) repairs each
drill-down group based on the model prediction and incrementally
updates the complaint to check the extent it is resolved.

5 EXPERIMENTS

We now evaluate the effectiveness of our optimizations, and assess
Reptile’s ability to identify group-wise data errors such as missing
data or systematic corruptions. One challenge with proposing a

Materialize Gram Matrix Left Mult Right Mult
— 10s- 0.72s 0.51s 0.56s
[}
:°,100ms- 2 0.365
g 1 1.1ms
ms -
i: DO4I":
. . . . . . [
3 7 3 4 6 7 3 6 7

#H|erarch|es —— Lapack —— Reptile
Figure 7: Matrix operation runtimes compared to Lapack-
based implementation.

new interactive cleaning method is the lack of existing benchmarks.
Thus we evaluate runtimes using both synthetic data and com-
plaints, and real-world case studies. The first case study is based
on known and resolved errors in COVID-19 data, and the second is
based on an expert user study with FIST data and team members.

Reptile is implemented in C++. All experiments are run single-
threaded on a Macbook Pro with 1.4 GHz Quad-Core Intel Core
i5, 8 GB 2133 Mhz LPDDDR3 memory, and 256GB SSD. All the
experiments fit and run in memory.

5.1 Performance Evaluation

Given a complaint, Reptile enumerates and drills down on each
hierarchy, computes decomposed aggregates, builds the (factorised)
feature matrix, trains the multi-level model, and ranks the groups.
We first evaluate individual steps—the effectiveness of factorised
matrix operations (Section 5.1.1), the cost of computing decomposed
aggregates as compared to prior work (Section 5.1.2), and the drill-
down optimizations (Section 5.1.3)—and then evaluate end-to-end
run times on two real-world datasets (Section 5.1.4).

Default Setup: The attributes in the input relations are organized
into hierarchies. The synthetic datasets vary the number of hier-
archies (default: d = 3) and number of attributes in each hierarchy
(default: ¢ = 3). By default, each attribute contains w = 10° unique
values. The data is in BCNF and sorted. Since we only report run-
times, we run Reptile to completion and return a random group.

5.1.1 Factorised Matrix Operations. The number of hierarchies d
dictates the size of the feature matrix X: exponential in the number
of rows, and linear in the number of columns. Thus, the matrix
materialization cost and gram matrix cost are exponential in d. In
contrast,those of the factorised representation are linear in d.

We measure runtimes for matrix materialization, gram matrix,
and left and right multiplication. The former compares the full
and factorised matrix construction, while the latter three compare
the Lapack[10] implementations over the full feature matrix with
Reptile’s factorised implementation. Lapack is a heavily optimized
and widely used linear algebra library. To minimize the effects of
our multi-query optimizations, each hierarchy is configured with
only one attribute that has cardinality w = 10. Thus, the shape of X
iswixt-d=109%x3-d.

Figure 7 reports runtimes in log scale. Materialization and gram
matrix are exponential as a consequence of the matrix size, and
the factorised implementations reduce the costs to linear. For left
multiplication, we use a random 1 x 10¢ matrix as input; the size of
the random matrix dominates the cost, thus both methods increase
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exponentially. At 7 hierarchies, Reptile is 5X faster by exploit-
ing redundancies in the matrix and the range sum optimization.
For right multiplication, we use a random 3 - d X 1 matrix. The
runtime again grows exponentially due to the size of the output
matrix (which is fully materialized due to the lack of inherent re-
dundancy). At 7 hierarchies, Reptile is 1.6 faster by exploiting
overlaps between vertically adjacent rows.

5.1.2  Multi-query execution. We now evaluate the benefits of our
work-sharing multi-query optimizations for computing the decom-
posed aggregates COUNT, COF, and TOTAL. We compare against
LMFAO[64], which is the state-of-art factorised batch aggregation
engine implemented in C++ [64]. Its current implementation only
supports computing COUNT and COF (as a by-product of comput-
ing the gram matrix), thus we use COUNT and gram matrix in the
benchmark. In addition, LMFAO computes COUNT and the gram
matrix serially, while Reptile shares their work, however this is
simply an implementation detail that has minor benefits. TOTAL is
quickly computed by scanning COUNT so we disregard it.

Since join cost is the bottleneck, we vary the cardinality for
the attributes along the x-axis. Figure 8 shows that Reptile is
over 4x faster than LMFAO. The primary reduction is due to our
optimizations based on independence between hierarchies.

5.1.3  Drill-Down Optimization. We test the work-sharing of multi-
query optimizations between multiple invocations of Reptile.
Reptile uses hierarchy independence to update the non-drill-down
hierarchies in constant time. Thus, two hierarchies, A = [Aq,. .., A¢]
and B = [By,...,Bg] are sufficient to characterize the drill-down
costs and optimizations. In addition, the number of decomposed
aggregates to compute is quadratic in the number of attributes that
have already been drilled down upon.

For these reasons, we measure the cost of computing decomposed
aggregates for each hierarchy by invoking Reptile three times,
where we pick A to drill-down each time. We assume that for
hierarchy A, we have already drilled down to As, and for hierarchy
B, we have already drilled down n = 3, 4, 5 attributes. We compare
Static, which recomputes decomposed aggregates for each query,
Dynamic which exploits the independence between hierarchies,
and Cache + Dynamic, which further reuses cached results from
hierarchies not drilled down.

Figure 9 varies the number of attributes already drilled down
along hierarchy B in the x-axis. For the areas, 3rdB means the cost
of update hierarchy B’s decomposed aggregates during the third
invocation of Reptile. The gray area corresponds to the initial cost
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of computing the aggregates. The lines are stacked to show total
runtimes to run Reptile. Dynamic is > 1.2x faster than Static by
updating independent hierarchies more efficiently, while adding
caching eliminates the cost of 2ndB and 3rdB, since their aggregates
were computed and cached in the first Reptile invocation.

5.1.4 End-to-end Runtime Evaluation. Finally, we report end-to-
end runtime using two popular real-world analysis datasets.

Absentee [3]: there are 179K records of North Carolina absentee
voting data for 2020. We explore 4 hierarchies with one attribute
each: county (100 unique values), party (6), week (53), gender (3).
We invoke Reptile 4 times. Since we focus on runtime and not
accuracy, we arbitrarily pick a sequence of drill-down attributes:
county, party, week, gender.

COMPAS [2]: there are 60,843 records of defendant recidivism
risk scores. We explore 4 hierarchies. Time hierarchy has 3 attributes
(year, month and day; 704 unique days in total), and the remaining
have one attribute each: age (3 ranges), race (6), and charge degree
(3). We invoke Reptile 6 times, in the arbitrary drill-down attribute
order: year, month, day, age range, race, charge degree.

For both datasets, the initial complaint is that the overall COUNT
is too high, and the models are trained using 20 EM iterations. On
the Absentee (COMPAS) dataset, Reptile took 1.6s (1.4s) while
Lapack took 10.26s (8.8s); Reptile shows a 6x speedup over Lapack
by not materializing and computing over the full feature matrix.

5.2 Explanation Accuracy: Synthetic Data

Reptile is unique in that it leverages complaints, hierarchical data,
and multi-level models to identify group-wise data errors. We now
evaluate and show the value of each of these design decisions via an
ablation study, and also compare against two alternative approaches
based on prior worsk. We use synthetic data to tune the problem
difficulty and ensure a ground truth error.

5.2.1 Setup. In each Reptile invocation, the user picks the group
statistic and Reptile selects top groups from the set of potential
drill-downs. Thus, we designed the minimal experiment to evaluate
how accurately Reptile can pick from the set of candidate drill-
down groups. Since we evaluate each hierarchy independently, we
vary the properties of dataset R with one hierarchy of 2 attributes
H = [A4, A;] and one measure for aggregation. We create 10 unique
values for Ay, and 10 Ay values for each each A; (e.g. 10 districts
each with 10 villages). The count for each A; value (e.g. # reports per
village) is drawn from a normal distribution N(100, 20), and each
measure value is drawn from N(100 X kq, 20), where k; is a uniform



random number in [0.5, 1.5] unique to each A; (e.g. different districts
have different drought severity distributions). We impute errors to
rows of three Az groups, and report the mean of 1000 datasets. For
each approach, we return the top-3 A; values, and report accuracy.

Auxiliary Data: Reptile is able to combine auxiliary data (e.g.
rainfall sensing data) provided by domain experts which has a (po-
tentially weak) correlation to the correct aggregate statistics. We
simulate this by generating one auxiliary dataset Ry, for each ag-
gregate statistic (COUNT, MEAN, STD). The auxiliary table contains the
same dimension attribute in R, and one measure which is correlated
(p € [0.6 - 1.0]) with the aggregate statistic. To generate correlated
random variables, we use the procedure proposed by Kaiser and
Dickman [37], which applies linear transformation between orginal
random variable and uncorrelated random variables from the same
distribution. To reflect variance between A; groups (e.g., districts
have different drought resistances), we multiply the auxiliary data
by a uniform random number k; in [0.5, 1.5].

Error Generation: We introduce different classes of data errors:
missing/duplicate records to change the COUNT statistics, and data
drift [12] to change the MEAN statistic. To study the scenario where
errors are distributed across dataset, we randomly choose three
A; values and impute errors to their rows. For missing/duplicate,
half of rows are deleted (Missing) or duplicated (Dup). For data
drift, we either increase (T) or decrease (]) all measure values in the
group by 5 to simulate a subtle systematic value error. We consider
each error type individually, and in combination (Missing + | and
Dup + 7). We submit COUNT and MEAN complaints for the individual
COUNT and MEAN errors; we use SUM = MEAN X COUNT complaints for
the combination errors.

Approaches: Eight approaches are used to identify the erroneous
group: Reptile, Linear, NoAux, Outlier, Raw-multi, Raw-truth,
Sensitivity [72] and Support. Reptile uses the auxiliary data
and multi-level model. Linear uses a linear model. NoAux uses a
multi-level model but not the auxiliary data. Outlier ignores the
complaint and returns the group whose statistics most deviates
from the model’s prediction. Both Raw approaches use record-level
repairs based on Winsorization [41]: they predict the mean and stan-
dard deviation of the measure for each drill-down group, and clip
each row’s measure to MEAN+STD. Then, they recommend groups
that most resolve the complaint after clipping. Raw-multi uses the
same multi-level model and auxiliary data in Reptile to predict
MEAN and STD, while Raw-truth uses the ground truth’s MEAN and
STD (which is an upper-bound on this bottom-up approach).

Finally, we also compare with two prior explanation approaches:
Sensitivity represents deletion-based interventions [72] and re-
turns the group that best resolves the complaint if deleted. Support
is a pruning criterion in scalable explanation systems like DIFF [5],
and returns the group with highest COUNT (i.e., support) as there is
only one dimension attribute.

5.2.2 Baselines. We first evaluate Reptile against Linear, None-Aux,

Raw-multi, Raw-truth, and the two prior approaches (Outlier is
defered next). Figure 10 varies the correlation of the auxiliary data
(x-axis) for the different error types (columns). Both Raw-multi
and Raw-truth completely fail to detect missing/duplicated records.
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Figure 10: Accuracy comparison with naive approaches and
prior work. T is Increase, | is Decrease, and Dup is Duplica-
tion. The complained aggregation is in the parentheses.
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Figure 11: Accuracy comparison for multiple errors. Outlier
doesn’t take the complaint into account while Reptile does.

This is a limit of bottom-up approaches—they can’t capture pop-
ulation errors, even given the ground truth. Both Raw approaches
perform well for Duplication+Increase because they shift outlier
values to the mean, which most affects (or is biased towards) SUM ag-
gregations. The 1inear model fails to capture the variance between
districts, and suggests the importance of multi-level models. NoAux,
Sensitivity and Support are flat because they do not leverage
auxiliary data. Finally, Support only performs well under dupli-
cation because it is density-based and is designed for “COUNT is
high” complaints. Reptile is considerably and consistently more
accurate, and successfully leverages the auxiliary data even when
the correlation is weak.

5.2.3 Complaint Ablation. Real-world datasets often contain mul-
tiple errors in different subsets of the data [18]. We now show
that complaints are critical to localize relevant errors as compared
to traditional error detection approaches (we use Outlier) that
don’t use complaints. We generate three experimental conditions
with different aggregation and error types. In each, we corrupt 3
groups, where only 2 groups affect the complaint and one group is
a false positive. Missing + Duplication: two groups have missing
records, and the false positive group has duplicates. The complaint
is “COUNT is low™ | + T: two groups have data drift that decreases
their measures values, and the false positive group with increased
measure values. The complaint is “MEAN is low*“. All: two groups



have decreased measure values and missing records, and the false-
positive group has increased measure values and duplicates. The
complaint is “SUM is low*.

Figure 11 shows that the complaint direction is critical to dis-
tinguishing between multiple error candidates. As expected, in-
creasing the correlation of the auxiliary dataset helps better predict
the true group statistics, however the accuracy of Outlier hov-
ers around 0.66 because, while Outlier is able to identify three
imputed groups, it cannot distinguish between them.

Takeaways: data errors manifest in a multitude of ways, however
existing techniques are biased to specific complaint and/or error types.
Reptile supports general complaints as well as errors at the popu-
lation level, and also benefits from auxiliary datasets if they provide
signal (and does not degrade if they do not).

5.3 Case Study: COVID-19

The COVID-19 data [24] maintained by the Johns Hopkins Uni-
versity Center for Systems Science and Engineering (JHU CSSE)
contains two datasets. The US data contains 1,175,680 rows, location
(state, county) and time (day) hierarchies, and count measures for
confirmed infections and deaths. The global data contains 96,096
rows, location (country, state) and time (day) hierarchies, and mea-
sures for confirmed infections, deaths, and recoveries. Most statis-
tics are reported at the country level (state is null), however large
countries excluding the U.S. (e.g., Australia, Canada, China) report
province/state-level statistics.

Setup: We use Github errors resolved between 12/2/2020 and
1/27/2021 as ground truth. We generate a corrupt dataset, submit
a complaint for each issue, and compare methods. Most issues are
due to missing data for a given day; others are due to backlogged
reports across days n — m that are totaled and reported on day
m + 1, or changes in a location’s reporting methodology [1]. We
use 16 (14) issues from the US (global) datasets. For each, we filter
by the complaint’s day, aggregate the total statistics at the parent
geographical level (e.g, New York—USA), and specify whether the
result is too high or too low. For instance, Texas under-reported
infections on 1/21/2021, thus the complaint is that the total US
cases on that day is too low. We compare Reptile with two expla-
nation approaches [30]: Sensitivity used in Scorpion [72] and
Support (described in Section 5.2), and two SOTA cleaning systems:
Holoclean [57] and Raha [46].

Holoclean repairs measures using a probabilistic factor model.
We used its default settings, where for each cell, Holoclean used
the initial value, cell value frequency and co-occurence with other
attributes as features to identify the most likely cell values. We
attempted to provide functional dependencies between locations,
but they didn’t hold (e.g., multiple states have counties with the
same name). We found that Holoclean predicted the initial measures
as most likely and thus didn’t repair any measures, so we used
Holoclean to recommend groups with the least likely measures (on
average). Raha is supervised, and uses manual labels to estimate
measure likelihoods, so we used the ground truth data to generate
labels. By default, Raha asked for 20 labels for training, but failed
to identify any corrupted tuples because the model predicted 100%
likelihood for every measure. We thus provided 300 labels and
found that Raha mainly relies on its outlier, pattern violation, and
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Support—§ 0.033 Support- © 0.0031
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Figure 12: COVID-19 Case Study: Existing approaches either
ignore complaints or fail to utilize expected statistics

rule violation detectors. Similar to Holoclean, we used Raha to
recommend subgroups with the lowest average likelihood.

Results: Reptile took ~0.5s to fit the model and recommend the
group, while Sensitivity and Support took a few milliseconds as
they only need to scan through the measures. Holoclean [57] took
>3 hours and Raha took >1 hour to extract features and train their
models. Figure 12 shows that Reptile is more accurate (70%) than
the baselines (0 - 6.6%). Since the complaint was that the case count
is too high, Sensitivity and Support simply returned states with
the highest case counts, even though that was expected because
those states had high populations. Both Holoclean and Raha failed
because they ignore complaints and are designed for categorical
attributes. Holoclean discretized the measures and encoded each
domain value as a boolean random variable in the factor graph
model, which couldn’t support numeric signal. Each cell’s features
were also biased towards areas whose measures were stable over
time, and these features were irrelevant to errors in the COVID-
19 data. Raha attempted to generalize the labeled examples based
on detector-generated features. Although Raha also considered
column-wise Gaussian distributions, the true errors were caused
mostly by deviation from individual expected statistics not column-
wise averages.

Error Analysis: We conducted an error analysis of the 9 errors
that Reptile did not identify. 5 issues were due to minor data
drift across several weeks (e.g. a missing data source) that is later
fixed. For instance, Quebec’s death statistics between 3/17/2020 to
1/27/2021 were all increased by a small amount, however the date
range affect all Quebec data in the experiment. 4 issues were subtle
issues smaller than the natural variation in the data, and won’t
result in complaints. For example, on 12/18/2020, Washinton state
submitted 21,308 instead of 21,038. See Appendix L for details.

Takeaways: although current cleaning systems are effective for
categorical data, numerical data usually require custom, domain-
specific features [17, 49] that are hard to automatically learn/infer.
For instance, ERACER [49] repairs birth dates in genealogy databases
using the parents’ birth dates, which does not generalize to the COVID-
19 data. In contrast, Reptile is generic, simply exploits hierarchical
structure, and uses auxiliary data to encode domain expertise—these
are readily available and widely utilized in many fields.

5.4 Case Study: FIST

The Columbia University Financial Instruments Sector Team (FIST)
group collects Ethiopian farmer-reported drought data to design
drought insurance [55]. The data contains geography (Region, Dis-
trict, Village) and time (Year) hierarchies, and a severity measure
from 1 (low severity) to 10 (high). The FIST group historically



performed manual data cleaning based on domain expertise and
by cross-referencing (noisy) external data sources (e.g., satellite
estimates). We recruited 3 FIST team members® to use the sys-
tem to submit complaints based on their experience, help verify
the correctness of the results, and provide qualitative feedback
(see Appendix M for screenshots, protocol, and further details).
Overall, Reptile correctly identified errors for 20 out of 22
complaints.

Protocol and Complaints: Users are shown visualizations of an-
nual Region-level statistics (count, mean, standard deviation). They
click on suspicious statistics to create a complaint. Reptile rec-
ommends drill-downs and highlights the candidate group in the
drill-down results. They can continue this process until they exam-
ine individual records to conclude whether the recommendations
were correct. We ask users to follow a think-aloud protocol and
share their interpretation throughout the cleaning process. Exam-
ple complaints (and their rationale) include: “the MEAN in Tigray
2009 should be much higher because I remember farmers argued
about this year (P1)”, and “the STD in Medebay Zana 2018 is too
high compared to other years (P2)”.

Results and Failure Analysis: The users accepted 20 out of the 22
submitted complaints. These errors revealed issues such as: farmers
that confuse planting and harvesting years (e.g. plant in one year,
but harvest in the next year), misremember the events, report non-
drought years as highly severe, and more. One failed complaint
was due to inherent ambiguity and team members disagreed about
the causes. The second was because a unique combination of two
districts needed to be fixed together, but Reptile only return one
of the two. See more details in Appendix M.

Qualitative Results and Discussion: FIST users said that Reptile
“is valuable to clean and make sense of this massive data (P3)”, “is
helping to save the day for the project in Ethiopia during this year
of Covid and civil strife (P1).” A major benefit is to automate group-
level inspection and cross-reference with external data sources. P3
stated that “previously, we only had 5 villages in the Amhara region
... and data is cleaned manually using excel spreadsheet ... Now the
project has scaled and we have 173 villages in Amhara. It is not
possible to visit all these villages (P3).” Finally, users suggested that
“it would be great [to] understand why the model makes certain
prediction (P1),” and “I hope there are more flexible visualizations

that display different satellite data in one geographic map (P2)”

6 RELATED WORK

Error Detection: Error detection traditionally uses integrity con-
straints [19] to find violations, while quantitative error detection of-
ten relies on statistical methods (e.g., outlier detection [11, 35, 43, 58]
or explicit error-prediction models [33, 44, 46]). Reptile combines
a complaint-based approach [5, 15, 51, 59, 72] based on how de-
tected errors affect output complaints, with a model-based error
prediction approach to identify candidate repairs.

Data Repair: Data repair is an optimization problem that satisfies
a set of violated constraints over the database instance [19, 73], and
can leverage signals (e.g., past repairs [71], knowledge bases [20]).

SNovice users are ill-suited because good complaints rely on domain expertise.

Model-based repairs estimate the correct value of an error. ER-
ACER [49] uses graphical models to repair raw data tuples. Active
learning approaches [45, 69, 74] ask users to verify candidate repairs.
Daisy [29] uses categorical histograms to identify and repair errors
in join attributes. In Reptile, the user submits a single complaint
over an aggregate query result, and the system trains multi-level
models for aggregation-level repair. Finally, techniques such as
unknown unknows [21] can be viewed as repairing group-wise
missing record errors under species estimation assumptions.

Complaint-based Explanation: This class of problems follows
the framework where, given a complaint over query results, they
search for a good explanation from a candidate set (e.g., predi-
cates, tuples, etc). They primarily differ in the ranking metric (e.g.,
sensitivity-based [5, 15, 59, 72], density-based [36, 60, 62], counter-
balance [51]), and typically focus on deletion-based interventions.
Reptile ranks drill-down groups based on aggregation level in-
tervention which enables Reptile to uncover a broader range of
errors like missing records which previous metrics fail to detect.
The hierarchical density attribution problem [25, 60, 62] returns
a set of non-overlapping subgroups that account for the largest
mass of the total density. Reptile is designed for a single hierarchy
and supports more complex aggregation functions beyond density.

Factorised Representation: Factorised Representation [54] re-
duces redundancies due to functional dependencies, and has been
used to optimize model training (linear regression [65], decision
tree [38] and Rk-mean [22]) over factorised matrices derived from
join queries. Reptile extends prior work [64, 65] to matrices based
on join-aggregation queries that exhibit fewer redundancies, sup-
ports extra operations including right and left multiplication, and
further exploits the hierarchical structure for optimization.

7 CONCLUSIONS

Classic cleaning techinques focus on categorical data, or make
strong assumptions about error types. However real-world errors
are often numeric, and there are fewer tools that are simple and
fit a domain expert’s mental model. Reptile focuses on numeric
errors in the context of hierarchical data. Users encode expertise as
complaints, auxiliary datasets, and features, and Reptile helps it-
eratively identify and repair numeric errors. Reptile recommends
drill-downs by intervening on group statistics and finding the group
whose intervention most fixes the complaint. Reptile trains a
model to estimate each group’s expected statistics, intervenes by
setting a group’s statistic to the model’s estimate. Our implementa-
tion leverages a factorised matrix representation, and we developed
factorised matrix operations as well as optimizations that lever-
age the data’s hierarchical structure. Our optimizations reduce
end-to-end runtimes by over 6X as compared to a Matlab-based
implementation. Reptile identified 21 out of 30 data errors in John
Hopkin’s COVID-19 data, and identified 20 out of 22 complaints
in a user study with Columbia University’s Financial Instruments
Sector Team based on their data collected from Ethiopian farmers.
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A PROBLEM DEFINITION

Distributive Set of Functions Reptile supports complaint over
the results of a distributive set of aggregation functons. We extend
the definition of distributive function [32] to a set of functions. A set
of I aggregation functions Fagg = {Fagg, .+ + , Fagg,} is distributive if,
given the partition of R into J subsets, and the aggregation results
Fagg(R1), - - - , Fagg(Ry) after applying Fagg to J subsets, there exists
function G such that: Fage(R) = G (R1,- -+ ,Rg}))

For example, consider the following distributive set of aggrega-
tion functions: Mean, Count and Standard deviation. Given a set of
Jaggregation results Fagg(R1), - - - , Fagg(Ry), there exists function
G = {Gmean> Geount, Gstd} such that:

Zjll Fcount(Rj) : Fmean(Rj)

Gmean(Fagg(Rl)s T sFagg(R])) =
ij=1 Fcount(Rj)

J
Gcount(Fagg(Rl), to ,Fagg(R])) = Z Fcount(Rj)
=1

Gstd(Fagg(Rl ), e ,Fagg(R])) =

J ijzl(Fcount(Rj) -1)- thd(Rj) + ij:l Feount(Rj) - (Gmean — Fmean(Rj))2

Gcount -1

B FEATURE MATRIX

In this section, we discuss, given all registered features, how to
build feature matrix.

Attribute matrix: We first define attribute matrix, which helps us
build feature matrix. Attribute matrix is built from the query result
Q=y A Aagg)(R) projected out aggregation function f and ordered
by the attribute order (the same as feature matrix in Section 3.2).
In Figure 13, given hierarchies in Figure 13a with order: Time and

Location, attribute matrix is shown in Figure 13c.

Feature matrix: We then discuss how to derive feature matrix
from attribute matrix. For feature registered with attribute A, given
current view V/ =y Al( Aqg) (PTOV(tc)), this feature is applicable if
Ace Aé ,- Given all applicable features and attribute matrix, feature
matrix X is derived by replacing each attribute value in attribute
matrix with feature values. Continue with examples in Figure 13,
all applicable features are shown in Figure 13b and feature matrix
is shown in Figure 13d.

Optimization: As an optimization during model training, feature
matrix is not directly used. Instead, we isolate attribute matrix
from feature matrix in aggregation queries. Because the mapping
between attribute and feature is one-to-one, we can computate
aggregation queries over attribute matrix, and infer the aggregation
queries over feature matrix by mapping the value from attribute
to feature. For example, in Figure 13, suppose we want to compute
the sum of feature F? in feature matrix (whose result is ’g‘ff1 + 3f‘t‘2).
We can first compute the count of each value COUNTr for attribute
Time (T) (whose resultis {t; : 3, tz : 3}). Suppose f*(-) maps attribute
Time (T) to feature F?, then the sum of feature F* can be computed by
YaeDom(t) COUNTr(a) - £%(a) = 3f +3f} . The isolation of attribute
from feature can simplify the problem and improve performance
because attribute matrix is smaller than feature matrix.
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Figure 13: Example dataset with (a) hierarchies, (b) features,
(c) attribute matrix, and (d) feature matrix.

C FACTORISER

In this section, we discuss the implementation and interface of
Factoriser in Reptile. Given input relations, Factoriser in Reptile
stores the factorised feature matrix, and presents an interface.

C.1 Storage

We discuss how Factoriser stores factorised feature matrix. Fac-
toriser first exploits the one to one mapping between attribute
value and feature value to store the factorised attribute matrix and
the feature mapping separately. Then, to store factorised attribute
matrix, Reptile doesn’t materialize all unary relations and alge-
braic expressions in f-representation. Instead, Reptile exploits the
independence between different hierarchies and functional depen-
dencies inside each hierarchy, and stores factorised attribute matrix
with relations implemented as sorted map. Sorted map makes it
easy for Reptile to iterate through data. Given input relations,
Factoriser normalizes relations to BCNF, sort them according to
attribute order, and stores relations using sorted map. For example
data in Figure 13 with attribute order "Time (T), District (D), City
(V)", Factoriser stores normalized relations R[T] for Time hierar-
chy which enumerate attribute values, and R[D, V] for geography
hierarchy which maps attribute District to Village. (R[D, V] is imple-
mented as sorted map with key D and value V). Factoriser records
the dependency among relations. Now consider the marginalization
operation: P, R[D, V]. This marginalization is implemented by
iterate through each District (key) and sum the count of its Villages
(value).

C.2 Interface
Factoriser presents interface of relation and row iterator.

Relation: Given attribute, Factoriser returns relations, which are
used to compute decomposed aggregates discussed in Section 4.2 to
exploit redundancy in columns of attribute matrix. Given attribute
Aj, if it is the least strict attribute in its hierarchy, factoriser returns
Ri[Aj] which enumerates all attribute values in A;. Otherwise, fac-
toriser returns Ri[Aj.1, A;] which connects A; with the next less
strict attribute Aj,;. For example, for example data in Figure 13,
Factoriser returns R7[T], Rr[R], and Ry[D, V].

Row Iterator: For row iterator, Factoriser exploits the fact that the
rows in attribute matrix are sorted by the attribute order and the
difference between rows is relatively small. Factoriser iterates each
row and only returns the difference between rows. To build row
iterator, we first build the set end for each attribute to determine



when iterator should propagate the change. For attribute A;, let itra,
be the iterator of attribute value in ascending order. The intuition
behind the set end is that, when itry, iterates over any value in set
end, itra, , should also increment. For example, in Figure 3a, city 2
and city 3 are in end because when city iterator itrc iterates over
them, state iterator itrg should also increment.

Algorithm 1 implements the iterator of attribute rows. Notice
that, instead of returning the row values of attribute matrix, it
returns the difference between current row and previous row.

Algorithm 1: Row iterator next(A;, &update) algorithm

Result: Update to the previous row for attributes from A;
itra, := current iterator for attribute A;;
nextValue := itra, .next();
update[A;] := nextValue;
if current attribute value € end and A; # root then
| next(parent(A;), update);
if litra, hasNext() then
| itra; := new itr();
return update;

D EXPECTATION MAXIMIZATION
ALGORITHM

We write the multilevel-model in matrix form where y,X,8,b, and &
are vertical concatenations of their row-wise vectors/matrices, and
Z is a diagonal matrix with X; along the diagonal:

y=X-Bp+Z-b+e (7

EM iterates between two steps. The expectation step uses the esti-
PP ~ ~ AT
mates B, 2, 62 to find the expected value of b;, and b; - b; :

Vi=(—5—+2) (®)
(e}
VA.XT.(y,_XA.f})
pi= —1 Azl : ()]
(e}
b; = (10)
. AT
bi-b; = Vi+p -y (11)

The maximization step uses the current estimate of b to estimate
the [AS, 3., 62 with maximum likelihood:

B=x"-x71- X" (y-Z-b) (12)
G
2:é-ZB,~B? 13)

Il
_

I

G
~ 1 N N
o=~ (y-X-B)T (=X )+ ) THX] - Xi-b; - b))

i=1
~2:(y-X-P)T (b)) (14)
where Tr(-) is the trace (sum of main diagonal elements) of a matrix.
Vertical Concatenation: Notice that Z has shape nXx m- G where
G is the number of clusters (typically exponential in the depth of
the attribute in its hierarchy). Z is non-zero along the diagonal,
thus its sparsity can be exploited by computing Z - b with vertical

concatenation without fully materializing Z:

Z]; = vertcat(X1 'B],XZ '];2,. . .,Xg . Bg)

Multiplication Order: Associative law of matrix multiplication
can be exploited to avoid large intermediate result. For example, in
equation 12, if matrix chain multiplications are from left to right,
there will be an intermediate result with shape m X n:

8- (xF- x)!. x%). - Z - b
[3 ((mxn n><m) m><n) (nzl nxmG mgGxl1
— | S——
mxn

nx1

This could be avoided by reordering matrix multiplications:

p=(x' - x)»' X' (y- Z - b

ﬁ (mxn n><m) x(an (n;>’<)l nXxmG mGx1

[ —
mxm

mx1

Bottleneck: The EM updates above are primarily bottlenecked
by six types of matrix multiplication operations: X! - X, X - A,
B-X, X' - X;, X;- C;, D; X;for i = 1,..,G, where A, B, C;, D; are
intermediate matrices and G is the number of clusters. We can
precompute X! - X and XiT - X;. We need to perform each other
operation once during each iteration.

All of these operations involve X, which is the factorised feature
matrix. A naive approach is to materialize the full X matrix and use
existing matrix operator implementations, but the matrix can be
very large. Instead, we wish to directly perform matrix operations
on the f-representation.

E MATRIX OPERATIONS

In this section, we provide formal algorithms to compute matrix
operations through aggregation queries. We assume that the total
number of rows in the relations of each hierarchy is O(w), the num-
ber of attributes is d, the number of columns in feature matrix is
m and the number rows in feature matrix is n. For simplicity, we
assume that feature matrix is the same as attribute matrix. The ex-
tension to customized feature matrix is trivial by mapping attribute
value to feature value during operations.

Gram Matrix: First consider gram matrix X! - X. The naive multi-
plication XT - X has time complexity O(n - m?). In Figure 13c, the
columns in attribute matrix have a lot of redundancy, and, given
two columns, we can iterate all attribute values and leverage COF
to derive how many times two attribute values are duplicated. Note
that gram matrix is symmetrical, so we only need to calculate half



of the matrix. Let ¢; be the ith column and r; be the ith row of
attribute matrix.

Algorithm 2: Gram matrix algorithm

Result: ¢; - ¢;

A, := attribute of c;;

Aq := attribute of Gj;

if Ap == Aq then
TOTALy,

return TOT—ALAP .

Ya,eDom(a,) COUNTR [ap] - ap - ap ;
else
e
A
WALA: . Zap €Dom(A;),aq €Dom(A,) COFAp:Aq [aP’ aq] “ap - ag;

Algorithm 2 is used to compute each element of gram matrix
¢ - ¢j where i < j. The time complexity to compute each element is
O(w?) and the whole gram matrix is O(m? - w?). Even if attribute
matrix has height n exponential in the number of attributes, we can
use algorithm 2 to compute gram matrix in time polynomial in m.

Left Multiplication: Next consider left multiplication A- X, where
the shape of A is ¢ X n. The naive matrix multiplication A - X has
time complexity O(q - n - m). Similar to gram matrix, we exploit the
fact that the columns in attribute matrix has a lot of redundancy. For
each column, we leverage COUNT to infer the times each attribute
value is duplicated. For ith row 1] in A, we precompute the prefix
sum of r/ in O(n) to get range sum of r{ in O(1).

Algorithm 3: Left multiplication algorithm

. ’ .
Result: 1] - ¢

result := 0;
start := 0;
Ay := attribute of ¢j;

TOTAL/,\d
fOI' k.= 0, k < m, k++. dO

for a, € Dom(Ay) in ascending order do
rangeSum := sum(r{ [start : start + COUNTRy, [ap]]);
result+= rangeSum - ap;
start+= COUNT}, [ap];

return result;

Algorithm 3 is used to compute each element of left multipli-
cation ¢; - ¢j. Note that the input size is O(q - n) so that the lower
bound of the time complexity of algorithm 3 is O(q - n). For each
r{, the first attribute only needs to iterate over attribute values and
compute multiplication result in O(w), while the last attribute can’t
utilize the prefix sum and have to iterate r; in O(w™). The total time
complexity of algorithm 3 is O(q - (n+ w+ w? + ... + w™)) = O(q - n),
which is optimal.

Right Multiplication: Then consider right multiplication X - A,
where the shape of A is n X p. The naive matrix multiplication
X - A has time complexity O(p - n - m). Algorithm 4 uses the row
iterator in Factoriser to implement right multiplication by updating
multiplication result from previous row. Similar to left multipli-
cation, the output size is O(p - n) so that the lower bound of the
time complexity of algorithm 4 is O(p - n). For each row iterator,
the first attribute is updated O(w) times, while the last attribute is

updated O(w™) times. The total time complexity of algorithm 4 is
O(p- (n+w+w +...+ wh) = O(p- w™) = O(p- n), which is optimal.

Algorithm 4: Right multiplication algorithm

Result:r; -c/,rg-¢/,-++ ,ry-c/

I'prev := the first values for all attributes;
r1 ¢ = Tprev * s
for k:=2;k <=n;k++:do

A := last attribute in attribute order;
update := new map();

update = RowItr.next(A, update);

’ ’
In-C =In1-C ;
n Y n-1 j
for attribute A;, value v € update do
In - Cj/ -= I'plrev[i] . Cj’ [il;
In - cj’ +=v- cj’[i];
Iprev il=v;

F MATRIX OPERATIONS OVER CLUSTERS

We study the matrix operations over each cluster of attribute matrix
(X;.r - X;, X; - C, D; - X; where i = 1, ..., G) in this section. Given the
initial view V = y Ao Fags( Aagg)(R), we call Ay, inter cluster attributes.
After user drill-down to a hierarchy, the additional attribute Sin
A’y is called intra cluster attribute. Because we previously require
that intra cluster attribute is placed last in the attribute order, the
rows in the same cluster are adjacent, so we can reuse the row
iterator to iterate through clusters. We exploit the fact that, for each
cluster, inter cluster attributes have the same value and reuse the
row iterator to only calculate the difference between clusters. We
update the previous matrix according to the difference. We also
assume that attribute matrix is the same as attribute matrix for
simplicity.

Gram Matrices: First consider gram matrices for all clusters X;r -Xi
fori = 1,..,G. The naive implementation takes O(m? - w- G) =
O(n - m?). Algorithm 5 computes the gram matrix for each cluster
by iterating over each cluster and updating the difference. Notice
that, the updates are in place and the outputs are read-only except
for the last output. Even if we reuse the same matrix, the matrix is
yielded G times and each time at least O(m) elements need to be
changed, so the lower bound of time complexity is O(m - G). The
first inter cluster attribute is updated O(w) and the last is updated
O(w™™1). Each update involve O(m) changes in the matrix. Change
for intra attributes takes O(m) for O(G) times. Therefore, the total



time complexity is O(m - (w+ ... + w1 + G)) = O(m - G) which is

optimal.

each A; takes O(m + w). Therefore, the total time complexity is
O(qg-G-(m+w)=0(qg-m-G+q-n)

Algorithm 5: Cluster gram matrix iterator algorithm

Algorithm 6: Cluster left multiplication iterator algorithm

Result: Gram matrix for each cluster
Tinter := values of inter cluster attributes in the first cluster;
Tintra := value sums of intra cluster attributes in the first
cluster;
gram := compute gram matrix for the first cluster naively;
prevSize := number of tuples in the first cluster;
yield gram;
for k=2, k<=n;k++:do
A := last attribute among inter cluster attributes;
update := new map();
update = Rowltr.next(A, update);
curSize := number of tuples in kth cluster;
for attribute A;, value v € update do
for j:= 1; j <= number of inter cluster attributes; j++: do
gram[i’j] /= rinter[i];
graml[i, j] #= v;
gram(i, j] *= curSize/prevSize;
Tinter (1] = v;
/* Cache given intra cluster attribute value */
for each pair of intra cluster attributes do
| Update corresponding gram matrix elements naively;
for attribute a; € intra cluster attributes do
sum := sums of values of attribute a; in kth cluster;
for j:= I; j <= number of inter cluster attributes; j++: do
gram[LjJ /= Tintra [i]§
gram[i, j] *= sum;
Tintra[i] = sum;
prevSize := curSize;
| yield gram;

Left Multiplication: Next consider left multiplication for all clus-
ters A; - X; fori = 1,..., G, where the shape of A; is g X n;. The
naive implementation takes O(q - n - m). Algorithm 6 computes
the left multiplication for each cluster by iterating over each clus-
ter and updating the difference. The input size is O(q - n) so that
the lower bound of the time complexity is O(q - n). Each row in

Result: Left multiplication with ri’! « for kth cluster
Tinter := values of inter cluster attributes in the first cluster;
result := compute result for the first cluster naively;
yield result;
for k:=2;k<=n;k++:do
A := last attribute in inter cluster attributes;
update := new map();
update = Rowltr.next(A, update);
rowSum := sum(ri W
for attribute A;, value v € update do

L rinter[i] =V;
for each inter cluster attribute A; do

| result[i] = ripter[i] * rowSum;

for attribute A € intra cluster attributes do
| Update corresponding result matrix elements naively;

| yield result;

Right Multiplication: Finally, consider right multiplication for
all clusters X; - A, fori = 1,..., G, where the shape of A;is m X p.
The naive implementation takes O(p - n- m). Algorithm 7 computes
the right multiplication for each cluster. The output size is O(p - n)
and, for each cluster, we can always find A; such that all elements
in the output have to change. Therefore the lower bound of the
time complexity is O(p - n). Each column in each A; takes O(m + w).
Therefore, the total time complexity is O(p- G - (m+ w)) = O(p- m -
G+p-n).
Algorithm 7: Cluster right multiplication iterator algorithm

Result: Right multiplication with ci « for kth cluster
Tinter := values of inter cluster attributes in the first cluster;
result := compute result for the first cluster naively;
yield result;
for ki=2; k<=n; k++:do
A := last attribute in inter cluster attributes;
update := new map();
update = Rowltr.next(A, update);
for attribute A;, value v € update do
L rinter[i] =V;

base = Z}l::)mber of inter cluster attributes rinter[j] x Ci,’k[j]; for
Ji=1;j <=ng; j++: do

value := 0;

for attribute A; € intra cluster attributes do

L value += jth value of A; in kth cluster x ci e

result[j] := base + value;
| yield result;

Evaluation: We evaluate the performance of matrix operation
using synthetic datasets with d hierarchies. For each hierarchy,
there are three attributes. Each attribute contains w = 10 ungiue
values. Given d attributes, the total number of rows n = 104, X
has the shape 10¢ x 3 - d and each cluster X; has the shape 10 x
3-dfori = 1,..,G. There are 1041 clusters in total. For right
Multiplications over clusters X; - C;, C; has the shape 3 - d X 1. For
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Figure 14: Matrix operation over clusters runtimes com-
pared to Lapack-based implementation.

each Left Multiplications over clusters D; - X;, D; has the shape
1 X 10. We randomly generate matrix to be multiplied.

Figure 14 reports runtimes in log scale. At 7 hierarchies, Reptile
is 3X faster for gram matrix, 5.8 faster for left multiplication, and
6.9% faster for right multiplication. Overall, Reptile outperforms
Lapack.

G MATRIX OPERATION OVER GENERAL
FACTORISED REPRESENTATION

In this section, we briefly discuss how to extend Matrix operations
over general factorised representation.

Given general F-tree, we first need to determine attribute order.
We require that for any pair of attributes in attribute order, attribute
before doesn’t transitively depends on attribute after. This require-
ment is to ensure that row iterator can work properly. Iterator for
attribute after should increment first and propagate the change to
iterator for attribute before.

The first extension is, for relation without functional dependency,
the join operator and aggregation operator need to record the order
of tuples even if tuples have same value. Consider the following
example:

ExaMPLE 9 (ORDER IN OPERATOR). Given relation R = [(a1, by),
(a1,by), (ag, b1)] over schema S = [A, B], where there is no functional
dependency. After marginalize out attribute A, the result is an ordered
map @A R = {by : 2,by : 1}. However, the information that by is in
middle of two by is lost, which is necessary during multiplication as
we need to infer the positions. One solution would be that, aggregation
operator returns an ordered list: 9, R = [by : 1,by : 1,by : 1].

The second extension is to redefine the aggregation query. Given
a set of attributes S, let dep(S) be the dependency set of S. Depen-
dency set dep(S) is the set with minimum size that, for each attribute
in dep(S), its dependency is also in dep(S). Let rel(S) be the set of
relations whose schema contains any attribute in S. Let after(A) be
the set of attributes after A in attribute order including A.

Then aggregation queries are redefined as:

TOTALp, = EB ® R
dep(after(A)) rel(dep(after(A)))

COUNTx = P X r
dep(after(A))/{Ax} rel(dep(after(A)))

- B Q
dep(after(A)){Ax,Aj} rel(dep(after(A)))

In general, the dependency set dep(after(A))) may include all
attributes if all attributes have no-empty dependency. Because op-
erator needs to store the order of attribute value, in the worst case,
the join result may be as large as the fully joined relation even if
attributes are marginalized early.

H MULTI-ATTRIBUTE FEATURES

In this section, we discuss the extension to multi-attribute features.
If the number of attributes is a constant, previous time complexity
analyses still apply. In the worst case, if all the features are multi-
attribute features related to all the attributes, there would be no
redundancy in feature matrix, and our solution would be the same
as the naive solution.

For multi-attribute external feature, user may have dataset that
maps multiple attributes to feature values. Given a list of attribute A
with k attributes, tuple of attribute value (ay, ..., ax) € Dom(A) and
aggregation function F,g,, assume that there is an external dataset
Rexternal Which maps (a1, ..., ax) to its feature value, the external
feature is then:

featureexternal [(@1, --» @k)] = Rexternal[(a1, ..., ax)]

To register multi-attribute external feature, user needs to provide
external dataset Rexternal, @ list of attributes A and target aggrega-
tion function Fygg .

For multi-attribute custom feature, given a list of attribute A with
k, tuple of attribute value (ay, ..., ax) € Dom(A) and aggregation
function Fagg, the custom feature is then:

feature[(a1, ..., ak)] =0 pred(ya,r(Q)

where pred is the predicate of selection, and F’ is the aggregation
function which user can customize. User needs to provide the pred-
icate pred, aggregation function F', a list of attributes A and the
target aggregation function Fagg to register derived variable as
feature.

For multi-attribute feature registered with a list of attributes A
and target aggregation function F, given the view V/ = y Al Fage( Ange) R),
this feature is applicable if A C Aéb A Fagg = F.



For feature matrix, all the multi-attribute features are appended
to end of columns. Hierarchy order, attribute order and attribute
matrix remain unchanged.

Algorithm 8: gram matrix algorithm for multi-attribute fea-
tures

Result: ¢; - ¢;

f; := feature for ¢;j;

fj := feature for c;;

A, = list of attribute of fj;

Ag := list of attribute of fj;

A= Ag U Ay;

k := size of A ;

Afirgt := first attribute in A;

Al = last attribute in A;

A,y := all attributes before Ajyg; ;

COF = P4 /4 T Riast) Kief -1y Ri s

TOTALA
return W‘Aﬁit' Z(al ax)eDom(A) COF [(aq, ..., ak)] .

fi(oa, (a1, ... ap) - fj(on, (a1, ... ar)) 5

For matrix operations, first consider gram matrix. Algorithm 8
computes gram matrix element and Algorithm 9 computes left mul-
tiplication for multi-attribute features. We assume that attributes
in Ap, Aq and A are ordered by the attribute order. Right multipli-
cation is similar to algorithm 4, except that, for each update, the
change is figy((a1, ..., ag)) - Cj’ [idx] instead of fj4y(a) - cj’ [idx].

Algorithm 9: Left multiplication algorithm for multi-attribute
features

Result: r] - ¢

result := 0;

start := 0;

fj := feature of c;;

A, := list of attribute of fj;

k := size of A ;

Afirgt := first attribute in Ap;

Alqgt := last attribute in Ap;

A, := all attributes before Ajyg; ;

COF = @ Auwlh, TCA st (Riast) ®ie[k\st_1] R;;

'I'OTALAd
for k.= 0, k < m, k++. dO

for (ai,...,ax) € Dom(Ay) in ascending order do
rangeSum := sum(r{ [start : start + COF [(ay, ..., ap)]]);
result+= rangeSum - fj((ay, ..., ax));
start+= COF [(ay, ..., ar)];

return result;

I MULTI-QUERY EXECUTION

Suppose there are d attributes in attribute order. For each model
training, there are 2d + @ queries to execute. One naive way
to execute these queries is to join all relations together and apply

aggregation function.

We can rewrite the queries such that these quries can reuse
results from other queries:

COUNTy, = ma, (Ry)

COUNT, 1 = P) COFa,, a, fork =2,...d~1
Ax

TOTALx, =) COUNTy, fork =1,...d
Ak

COF, Ay, =ma, (Ri) (R) Rt (X) COUNT, fork =2,....d

COFay a; = EP) ma, (R Q) Ric-1 Q) COFa,

A1
fork=1,.,dj=1,..dk>j+1

Algorithm 10 leverages the dependency to compute query re-
sults. The naive solution materializes the join result and apply
aggregation functions with total time complexity O(d? - w¥). For
algorithm 10, attributes in join results are marginalized as soon
as possible when they are no longer used in the future queries.
The join results are also stored in factorised representations. For
COF between different hierarchies, we are computing the Cartesian
Products. Reptile exploits the independence by storing factorised
representation. For implementation, only pointers to two relations
are stored in O(1). Because we assume that the total number of rows
in the relations of each hierarchy is O(w), join operator between at-
tributes in the same hierarchy takes O(w). Suppose there are O(|H])
hierarchies, each with O(%) attributes and O(|H| - £) = O(d). The total
time complexity for algorithm 10 is O(JHJ? - £ + |H]| - £ - w). If wis
much larger than |H], the time complexity is then O(H] - £ - w).

Algorithm 10: Mutiple query plan

Result: Query results
COUNTy, = ma, (Ry);
TOTALa, = (P, COUNTy,;
COFp, A, = ma,(Rz) Q) Ry Q) COUNT,,
fori:=3;i<=d;i++do
| COFaa, = Da, ma®R) @ Rit & COFa, A
fori:=2;i<=d;i++do
COUNTy, = @AH COFa A, 5
TOTALy, = D, COUNTR;
if i <d then
| COFa,,a = T, (Ris1) @ Ri (D) COUNTR;
for j := i+2; j <= d; j++ do
L COFp ;= @AH 1A (R) @ Rj-1 X) COFa; , A,

J DRILL-DOWN

Drilling down an attribute involves two steps:

1. append the attribute to the corresponding hierarchy.

2. move the hierarchy to the end of hierarchy order.

After the drill-down operation, F-tree has an additional attribute,
and all attributes in one hierarchy is moved to the bottom of the tree.
One naive way to implement drill-down operation is to rebuilt the
F-tree and recompute all aggregation results from scratch. Assume
that w is much larger than |H]|, the time complexity to drill-down
all hierarchies is then O(/H|? - £ - w).



We then introduce optimization to reuse the aggregation results
from the previous drill-down. The main property we exploit is the
independence between hierarchies. Given the aggregation query
over the Cartesian’s Product, we can marginalize each relation

before join:

D CORs] - QP RIS

A€S ielk ] A€S;
where k is the number of relatlons S; is the schema of R; and
S = Ule[k Si is the schma of the join result. For i # j, $; N S; = 0.

Notice that between different hierarchies, we need to compute

cartesian product. Suppose that there are ¢ hierarchies. For each
hierarchy D; for i = 1, ..., t, let [D;] be the set of indices of attributes
under this hierarchy. Given hierarchy order Dy, ..., Dy, define:

D D

Aj:ie[Dy] i€[Dg]

TOTALp, =

fork=1,..,
chy Dy.

Therefore, we can rewrite all the queries to exploit the indepen-
dence between hierarchies. Assume that attribute Ay, is in hierarchy
D, attribute Aj is in Dy and k > j:

t. TOTALp, outputs the number of tuples in the hierar-

TOTALp,
~D- P O R
ie[k-1]
= EB ®Ri>®- @ ®R>®
Ai:ie[Dy] i€[Dy] A;:i€[Dy] i€
( P mr X R
Agie[Doni<k ie[D.]Ai<k
® 101l K P k) K R
iefs-1] Apie[Dy]Ai<k ie[D,]Ai<k
fork=1,...d
COUNTR,
Q@ o @ B ) @ ©
i€[s-1] Aj:ie[Ds]Ai<k ie[Ds]Ai<k
fork=1,..,d
COFp A
R D ) @ ®
ie[v-1] A:ie[Dy]Ai<j i€[Dy]Ai<j
@ 1ot QD ma®) K R
i€[v+1,s-1] Aie[Ds]Ai<k ie[Ds]Ai<k
fork=1,..dj=1,...,dk>j

After rewriting the queries, we can exploit the fact that, when
drill-down attribute Ay is in hierarchy Dg, for TOTALa,, COUNTy,
and COFy,, A where A; and Aj are not in hierarchy Ds, only the parts
(X TOTALp, are affected, which are scalars. For join operator (X),
when multiplied by scalar, we don’t need to apply the multiplication
to each tuple. We can maintain a scalar for each relation as the zoom
value so that multiplication by scalar is in O(1).

Algorithm 11 shows how to update the aggregation results after
drill-down. For aggregation results involved with only the attributes
in the hierarchy to drill-down, we have to recompute them in O(# -
w). However, for other attributes, the updates can be done in O(1).
The total time complexity would be O(#2 - w).

In algorithm 11, we also cache TOTAL’, COUNT’, COF’, and
TOTALY, involved with only attributes in the hierarchy to drill-
down because, given the query in equation 2 and drill-down hi-
erarchy H, these aggregation results will always be the same in-
dependent of the current view. Consider a scenario when users
make complaint twice. For the first complaint, Reptile drills down
each hierarchy in H and selects one optimal hierarchy H* € H
as in Equation (1). The time complexity for the first complaint is
O(|H] - # - w). For the second complaint, without cache, Reptile
needs to recompute each hierarchy in H and the total time is also
O(/H| - £ - w). If all the attributes not selected in the first complaint
H/{H*} are cached, each cached hierarchy can be updated in O(d?)
for the second complaint. So the total time for the second complaint
would be O(#2 - w).

Algorithm 11: drill-down hierarchy Dy,

Result: Updated query results after drill-down
Apew:= Attribute in Dy, to drill-down;
Ay, - -+, Ayt = Attributes in Dy from lowest to highest level;
/* Cache TOTAL’, COUNT’, COF’, and TOTAL{, #/
Compute updated TOTAL’, COUNT’ and COF’ involved with
only attributes Apew, Ay, - - - , Au+t using Algorithm 10;
TOTAL}, = Daien,) Qierp,) Ris
for Attribute Ax ¢ {Anew, Ay, Ay+t} do
if k < u then
COUNYXk = COUNTp, Q) TOTAL! ;
TOTALAk = TOTALp, (X) TOTAL/ s
else
L COUNTI'sxk = COUNTy, ®(TOTAL]’DV/ TOTALp,);

TOTAL;Ak = TOTALa, ®(TOTAL1’)V/TOTALDV);

for Attribute Aj € {Anew, Au," -+ , Aust} do
| COFa,a, = COUNT, (9 COUNT, /TOTAL,

for Attribute Aj ¢ {Anew, Ay
if u > k > j then

| COF}, , = COFa.a & TOTALY,

Au+t} Ak >j do

else
L COF,, , = COFa,; Q(TOTAL], /TOTALp,)

K QUALITY OF MULTI-LEVEL MODEL

We conduct model evaluation between linear regression model and
multi-level with default features only, and with external features.
The following two datasets are considered:

FIST: This dataset contains the farmer reported drough severity
at different villages in different years in Ethiopia. There are 2 hierar-
chies: year (one attribute with 36 values), location (three attributes:
region, district and village, with 161 village values). Sensing data
of rainfall are available each year for each village, which are used
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Figure 15: Model evaluation

as external feature. The mean drought severity has been estimated
using different models.

Vote: This dataset contains the 2020 presidential election vote
results at different counties in the United States. There are 1 hierar-
chies: location (two attributes: state, and county, with 3147 county
values). 2016 presidential election vote results at different counties
are available, which are used as external feature. The percentage of
votes for Donald Trump has been estimated using different models.

To evaluate model performance, we use Akaike information
criterion (AIC) [8], which estimates the qualities of a collections of
models. AIC makes the trade-off between both goodness of fit of the
model and the simplicity of the model. Given the same set of data,
model with low AIC scores are considered to be relatively better.
For each dataset, the difference of AIC: AAIC; = AIC; — AICy;, for
ith model is shown, where AICp;, is the lowest AIC among the
collection of models. As a rule of thumb, for the same dataset, one
model is considered to be substantially better than the other if the
difference of AIC is larger than 10 [14].

The result of model evaluation is shown in Figure 15. Linear
is the linear regression model with only default features. Linear-
f is the linear regression model with both default and auxiliary
features. Multi-level is the multi-level model with default features
only. Multi-level-f is the multi-level model with both default and
auxiliary features. For FIST dataset, multi-level models are sub-
stantially better than linear regression models. For Vote dataset,
multi-level model with auxiliary feature is substantially better than
linear regression model with auxiliary feature. Because the vote
results in 2016 are strong predictors of vote results in 2020, models
with auxiliary feature are substantially better than models without
auxiliary feature.

L CASE STUDY DETAILS: COVID-19

TODO: compare against state-of-art error detection. This also shows
the limitations of data cleaning: don’t work well for discrete data
type.

While they are good at categorical values, not good for numerical

While tehre are systems that repair numeric values ( Eracer and
Data Cleaning Using Belief Propagation) based on modeling, their
models are domain specific and are not applicable.

Reptile provides a default for datasets with hiearchy to capture
features in different dimensions, which is cmommon, and allows
domain-specific auxiliary dataset, which has already been com-
monly used for data science.

Domain knowledge about COVID that are easy for human to
provide but hard for system to infer.

Similar work (CleanML) has also shown that advanced data
cleaning method like holoclean is not significantly better than
naive methods.

In this section, we discuss the details of COVID-19 case study.

We first discuss the basic setting of Reptile. COVID-19 dataset
includes global data and United States data. For global data, because
of the large number of countries, we further cluster countries by
regions. Reptile use 1 day and 7 day lag features for trend and
seasonality. Given data cleaning issues, we create complaint at the
higher level of geographical hierarchy. For instance, given issue
that the total confirmed cases in Texas is under reported on Jan
21 2021, we complain that the total confirmed cases is too low in
the United States on that day. (It is also possible to make complaint
at the higher level of time hierarchy. In the experiment, we only
make complaint about one day because, for COVID-19 dataset,
people tend to focus on daily number across different locations.
For all issues we studied, people make complaint about different
locations on one specific day instead of the whole month/year.) We
then check if different approaches can successfully recommend the
cluster with data cleaning problems.

1D Issue RP|(ST|SP |H |Ra
3572 |Texas confirmed missing reports v
3521 |Arizona death methodology altered |V
3482 |Washington missing reports v

3476 |¥% Utah missing source

3468 |New York death missing reports
3466 |Montana missing reports

3456 |North Dakota confirmed backlog
3451 |Iowa death missing reports

3449 |Arizona test over reported

3448 |Washington death wrongly reported
3441 |% Albany confirmed day shift

3438 |Ohio confirmed backlog

3424 |Massachusetts confirmed backlog
3416 |Nevada death over reported v
3414 |Eureka death over reported v
3402 |Washington confirmed typo
Table 1: List of COVID-19 issues in the US. RP is Reptile, ST

Sensitivity, and SP is Support, H is Holoclean, Ra is Raha.
Prevalent errors are highlighted with .

<J <4<

\

The details of issues for US and global are in Table 1 and Ta-
ble 2 respectively. We highlight one type of errors: prevalent errors.
Prevalent errors are defined as errors widespread across all time or
locations. For example, some sources of confirmed and death are



ID Issue RP|ST|SP |H |Ra
3623 |Germany recovered over reported |V
3618 |% Quebec death missing source
3578 |US recovery nullified v |V
3567 |India confirmed missing reports v
3546 |¥% Thailand confirmed missing source
3538a | Mexico confirmed definition altered |v/
3538b | Mexico confirmed missing reports |V
3518 |% Sweden death missing source
3498 | % Alberta missing source v
3494 |UK death missing reports v
3471 |Turkey confirmed definition altered |V |V |V
Afghanistan confirmed wrongly re-|
ported

3413 |France missing reports v
3408 |Kazakhstan confirmed over reported | v/

Table 2: List of global COVID-19 issues.

3423

missing over the course of the pandemic in Utah, which affects data
all the time and makes result inconsistent with official report on
Dec 18 2020. The other non-prevalent common issues are missing
report (e.g. the reports of confirmed cases in Texas are missing
on Jan 15 2021), data backlog (e.g. confirmed cases are not fully
updated for North Dakota, and spike on Dec 9 2020), change of
definition (e.g., Arizona updated guidance for identifying deaths,
which causes abnormally high deaths on Jan 5 2021), etc.

Overall, Reptile outperforms Sensitivity and Support be-
cause Sensitivity and Support only recommend outliers. For
example, given complaint that the COUNT of confirmed cases is too
high, Sensitivity and Support always choose the location with
the highest COUNT of confirmed cases, disregarding the fact that
these locations have the highest population and the high COUNT is
normal.

Next, we discuss issues which Reptile fail to identify. Reptile
fail to detect all prevalent errors. Since prevalent errors repeat
across large number of clusters, Reptile is unable to tell if these
clusters are all normal or all problematic. Besides prevalent errors,
Reptile is unable to identify errors whose effects are not strong
enough and are masked by noises from other clusters. For issue
3424, there is a backlog of 680 confirmed cases in Massachusetts on
Dec 18 2020, which is relatively small given that there are 290578
total confirmed cases and 4853 new cases in Massachusetts on that
day. For issue 3423 there is a decrease of confirmed case from 46980
to 46718 on Dec 3 2020 which is relatively small. For issue 3402,
there is a typo for the number of confirmed cases in Washington
on Dec 18 2020, whose difference is relatively small.

M CASE STUDY DETAILS: FIST

In this section, we show the user interface and discuss two com-
plaints that our system fail to identify all causes.

Figure 16 shows the user interface for the study. Here, partici-
pant has made a complaint about Region Ambhara. At the top, two
explanations are generated that highlights two Districts which,
if their aggregation results are repaired, can resolve complaint. The

first heatmap shows drought severity for Districts in Amhara.
The second heatmap shows the remote sensing. The scatterplot
and barchart visualize aggregations results (AVG, STD and COUNT).
Participant can further make complaint at District level.

For the first complaint, one team member recalls that one year
is a severe year and complains that the mean severity of one region
is too low. However, it turns out that all the districts in this region
have low mean severity. For sensing data, some of them indicate that
this year is severe, but some of them don’t. Different team members
also hold different opinions about this year. More investigations
are needed to understand this complaint.

For the second complaint, one team member complains that the
standard deviation of one regions is too high. The error is caused
by two districts, but our system only identify one district. The
failure is because of the property of the standard deviation. When
the complaints are caused by multiple clusters, repair only one
cluster may not cause the standard deviation closer to the true
value. Consider the following minimum example:

Suppose there are three same values n initially. The initial mean
is nand variation is 0. Suppose we corrupt first two values by adding
A: n+ A, n+ A, and n. The mean becomes n + %A and variation
becomes %AZ. Suppose we fix the first corruption: n, n + A, and n.
The mean becomes n + %A and variation becomes %Az. Notice that
variation is the same as that before fix. Suppose user complains
about the high standard deviation, fixing any of two corrupted
values wouldn’t resolve user’s complaint. Suppose we fix the first
corruption partly to A’: n+ A’, n+ A, and n. The mean becomes
n+ %A + %A’ and variation becomes %(A2 —AA’ +A"?). Let variation
be a function of A”: filA’) = %(Az ~AA’ +A?). This is a parabola with
turning point (%A, %Az). That is, the minimum standard deviation
is achieved by fixing half of the corruption.

One solution is that, for equation 5 in the optimization problem,
we search for a set tuples a C Qinstead of one tuple. This makes the
optimization problem NP-hard because, given n tuples in Q, there
are 2" possible subsets of tuples. Joglekar et al. [36] exploits the
property of submodularity to greedily search the optimal solution,
while in our case, submodularity can’t be guaranteed. Another
solution is to relax the boolean constraint for the optimization
problem and allows the repaired aggregation values to be within
the range of [n+ A’, n+ A). In future work, we plan to further study
this problem.
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Figure 16: User interface of Reptile

N CASE STUDY: VOTE

We conduct case study of Vote dataset, which is introduced in
Appendix K. We consider a distributive set of two aggregation
functions: Percentage of Votes for Donald Trump and total votes.
We study Georgia state, which is one of the swing states and Joe
Biden wins by a margin about 0.25%. Given the complaint that the
Percentage of Votes in the whole state is too low, Reptile is used
to find which counties contribute to the loss.

Figure 17a, 17b, 17c and 17d show the Percentage of Votes and
total votes of different counties in Georgia in 2016 and 2020. We
run Reptile using two models with different features. Model 1
is trained by only default feature, and Model 2 is trained by both
default feature and external feature. Figure 17e and 17f show the
margin gain of Percentage of Votes after repair by model 1 and
model 2. Reptile will recommend counties with larger marginal
gain as they better resolve the complaint. For model 1, because it
only considers default feature, Reptile mainly detects outliers in
the counties of Georgia. Generally, those counties with low Percent-
age of Votes are deemed with outliers. Model 2 also considers the
Percentage of Votes in 2016, which helps explain counties with low
Percentage of Votes in 2020. With model 2, Reptile is looking for
counties which have abnormal Percentage of Votes or total votes
compared to 2016 which after repaired best resolve user complaint.
One interpretation of 17f is that it is calculating the change of Per-
centage of Vote from 2020 to 2016, which is plotted in Figure 17g.
While Figure 17f and Figure 17g are correlated, there are obvious
differences because Reptile also takes into account the total votes.

To illustrate the effect of total votes, we manually inject missing
records to counties highlighted in Figure 17h by setting total votes
to half of its original value. Figure 17i shows the margin gain of
data with missing records after repair by model 2. The margin gains
of counties with missing records changes depending on its original
Percentage of Votes. Reptile combines signals from all aggregation
functions and external dataset to make recommendations.
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Figure 17: Case study of 2020 US presidential election
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