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ABSTRACT

Users often can see from overview-level statistics that some re-
sults look łoffž, but are rarely able to characterize even the type
of error. Reptile is an iterative human-in-the-loop explanation
and cleaning system for errors in hierarchical data. Users spec-
ify an anomalous distributive aggregation result (a complaint), and
Reptile recommends drill-down operations to help the user łzoom-
inž on the underlying errors. Unlike prior explanation systems that
intervene on raw records, Reptile intervenes by learning a group’s
expected statistics, and ranks drill-down sub-groups by how much
the intervention fixes the complaint. This group-level formulation
supports a wide range of error types (missing, duplicates, value
errors) and uniquely leverages the distributive properties of the
user complaint. Further, the learning-based intervention lets users
provide domain expertise that Reptile learns from.

In each drill-down iteration, Reptile must train a large number
of predictive models.We thus extend factorised learning from count-
join queries to aggregation-join queries, and develop a suite of
optimizations that leverage the data’s hierarchical structure. These
optimizations reduce runtimes by >6× compared to a Lapack-based
implementation. When applied to real-world Covid-19 and African
farmer survey data, Reptile correctly identifies 21/30 (vs 2 using
existing explanation approaches) and 20/22 errors. Reptile has
been deployed in Ethiopia and Zambia, and used to clean nation-
wide farmer survey data; the clean data has been used to design na
tional drought insurance policies.
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1 INTRODUCTION

Data exploration tools follow the łoverview, zoom, then detailsž
analysis pattern [53] to help users analyze their datasets at a high
level before diving into the individual records. However, modern
datasets are often hierarchical and multi-dimensional. Thus, when
users identify an anomalous aggregate value that is too high or too
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low (complaints in an overview), it can be difficult to knowwhich at-
tributes to drill-down (zoom in) and which of the drill-down results
to focus on. This is particularly relevant when anomalous results
are due to systematic data errors (e.g., missing or duplicate records,
measurement errors) that the user wants to find and address. To
help user drill-down, query explanation systems recommend predi-
cates over the input database (explanations) that, if intervened upon,
would most resolve the complaint.

Previous query explanation systems are designed for specific
types of interventions, such as deletion interventions [15, 59, 72]
or cell-value updates [42, 49]. But as we show in our evaluations
(Section 5.2), these approaches are not applicable to errors that
the interventions are not designed for. These types of bottom-up
approaches seek to directly intervene on the input database records
(the bottom), and then assess their effects on the complaint (the
up). Unfortunately, real-world errors are unpredictable and varied
(missing or duplicate records, systematic biases), and often require
custom interventions. In these settings, the user must both identify
the erroneous subpopulation and infer the appropriate interven-
tion. This underspecified problem requires a human-in-the-loop
approach that guides the user towards the data errors and empow-
ers the user to provide a range of external evidence based on their
domain expertise. To illustrate, we start with an example based on
our collaborators at Columbia University’s Financial Instruments
Sector Team (FIST):

Example 1. FIST surveys and collects drought severity data from

farmers in villages throughout African countries (e.g., Ethiopia) to

develop sustainable drought insurance plans for the countries. As a

toy example, Figure 1a shows drought severity (from 1 (not severe)

to 10 (severe)) statistics between 1984 to 1988 collected from the Ofla

District in Ethiopia. The FIST researcher complains that the standard

deviation in 1986 is higher than expected and suspects bias in the

reporting. There are too many raw records to read manually, so the

researcher wants to incrementally drill-down and narrow the scope.

How should the researcher drill-down? Although most villages in

Ofla reported high severity, Darube and Zata have low means that

may contribute to the complaint (Figure 1b). The FIST researcher

expects Darube’s low severity because of the high rainfall in the

auxiliary sensing data (Figure 1c). In contrast, Zata’s low serverity is

uncorroborated and thus surprising.

This example illustrates unique challenges for the FIST researcher,
who wants to find a subgroup (e.g., village) along some dimension
to focus attention on, and the limitations of bottom-up approaches,
which attempt to repair raw data in a given village (Figure 1d)
and rank repairs by their effects on the complaint (how much
Ofla’s Std in 1986 will reduce). These approaches fail for multiple
reasons. First, record-level error detection [19, 35, 43, 58] is fun-
damentally ambiguous. For instance, Zata in 1986 contains many
low drought severity records, however those caused by reporting
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(c) Auxiliary

sensing dataset.
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Figure 1: Example FIST use case. (a) The researcher thinks that Ofla’s 1986 standard deviation of severity is suspiciously high

(the complaint). (b) After drilling down to villages, Darube and Zata have lowmeans and are potential explanations. (c) Darube

is explained away by the high rainfall in the sensing data. (d) Raw data of drought severity for Zata in 1986 that causes the

complaint.

bias (errors) are indistinguishable from those due to normal vari-
ation (clean). Second, the FIST researcher doesn’t know the error
type up-front, so cannot pick from the plethora of potential repair
methods [19, 20, 46, 57, 71]. The real error was that farmers con-
fused flood with drought in that year (data drift), however if the
researcher incorrectly assumed the error was due to outliers [48],
she might only repair raw data with the lowest severity, which
was biased towards Darube. Finally, bottom-up approaches cannot
detect population errors such as under-sampling [21, 67] since the
records are all correct.

Existing top-down explanation and cleaning techniques are also
ill-suited to this problem. Provenance summarization methods [6,
9, 36, 60] define łinterestingnessž measures that summarize query
provenance but may be irrelevant to the complaint. For instance,
Smart Drill Down’s coveragemeasure is a special case of complaintsÐ
it translates to a complaint that a COUNT aggregation result is too
high, which is not the same as the researcher’s complaint. Most
query explanation systems use sensitivity-based methods [59, 72]
and support complaints over general aggregation functions. How-
ever, they are limited to deletion interventions, which are not al-
ways desirableÐdeleting Darube’s data most reduces the Std but
is inappropriate. Other explanation systems like Macrobase [5, 11]
are based on risk-ratio measures that distinguish user-provided
inliers and outliers. For instance, FIST may specify the 1986 re-
sult as the outlier and other results as inliers, however Macrobase
would simply report rainfall shared by the inliers but not outliers,
which does not explain the high variance in drought severity. Fi-
nally, counterbalancing [51] looks for sibling aggregates that offset
(counterbalance) the deviation specified in the user’s complaint.
However, a village’s drought is typically not offset by higher rainfall
elsewhere.

Reptile tackles the above limitations. Given a hierarchical dataset
and a complaint over a distributive aggregation result1 (e.g., the
std of Olfa is too high), Reptile recommends the next drill-down
dimension and highlights the top sub-groups that affected the com-
plaint. Reptile operates in a top-down fashion by learning and
applying interventions to sub-group statistics (e.g., repair mean,
count and std of Zata) rather than individual records. The distribu-
tive nature of the complaint enables Reptile to efficiently compute

1Such as mean, count, standard deviation.

the intervention’s effects on the complaint (e.g. how much Std in
Ofla will be reduced). With this top-down approach, FIST researcher
can iteratively make complaints, drill-down, and assess sub-groups.
She can also verify or provide domain expertise at every step. Unlike
bottom-up approaches, this top-down approach is more declarative,
in that it suggests how a group’s statistics should change, and users
don’t have to make low-level decisions (error detection and repair)
at the raw data level. These group-level statistics also naturally
express a wide range of error types (missing, duplicates, value er-
rors) and give the FIST researcher flexibility in how they wish to
intervene on the raw data. Further, this approach leverages natural
hierarchies present in real-world data.

To predict appropriate aggregation-level intervention, Reptile
relies on domain expertise from users in the form of auxiliary data
(such as the sensing data) to fit a machine learning model. These
types of auxiliary data have already been commonly utilized to
predict statistics by data scientists across fields such as social and
policital science [26], public health [68], and education [27]. For in-
stance, public health uses county-level restaurant, population, and
income statistics to estimate obesity [50]; sociology uses country-
level GDP, motor vehicle density, temperature, and literacy rates to
estimate physical activity [13]; and economics uses country-level
infrastructure, manufacturing, and regulatory statistics to to es-
timate innovation [40]. Further, data augmentation tools [16] are
increasingly used specifically to search and identify promising aux-
iliary data. We note that auxiliary datasets differ from joined tables
in traditional query explanation. Joined tables are used to expand
the set of attribute used to compose query explanations [59], while
auxiliary datasets are used to infer the appropriate intervention.

Reptile makes two primary contributions based on the major
challenges. The first is the scarcity of training examples when rank-
ing the immediate groups in a candidate drill-down operation. For
example, Olfa only contains a handful of villages, and its 1986 data
are insufficient to train an accurate model. Reptile expands the
training set by using parallel groups (e.g., in other years, districts,
regions). However, variation across the parallel groups can severely
degrade its accuracy. For instance, the villages in each district may
follow a linear trend, but the slope and intercept vary from district
to district, and fitting a single model across districts will be inac-
curate. To address this, Reptile uses multi-level models [23, 28]



that account for systematic variation between groups. Multi-level
models are well-established in the social sciences for modeling hi-
erarchical data, and our experiments also show that they are more
accurate than global approaches such as linear regression models.

The second challenge is scalable model training. Reptile needs
to train a model for every candidate drill-down, and the exponential
number of drill-down paths are too large to precompute. Further,
the number of training records increases exponentially as the user
drill-down into the dataset. To address this, Reptile avoids fully
materializing the feature matrix that is exponential in the num-
ber of hierarchies, and constructs a succinct factorised matrix [54]
that is orders of magnitude smaller. Prior factorised learning tech-
niques [64, 65] assume that the predicted (Y) variable is an attribute
in the join inputs to exploit the redundancy across the features and
predicted variables. In contrast, the predicted variables in Reptile

are aggregation results and do not exhibit these redundancies. We
thus extend factorised learning to this setting, and also develop a
suite of novel work-sharing and caching optimizations.

As of 2021, Reptile has been deployed by the FIST team

in Zambia and Ethiopia, and used by local and government

partners to clean data collected from villages throughout

the countries, and the clean data has been used to design na-

tional drought insurance policies. In a smaller-scale user study,
FIST researchers submitted 22 complaints over their drought data,
and Reptile correctly identified data errors for 20; one was am-
biguous while Reptile partially explained the other. In addition:

• We show that using factorised learning improves end-to-end
performance by 6× as compared to a traditional Lapack-based
implementation, and that our set of reptile-specific optimiza-
tions reduces runtimes by 4× as compared to the prior factorised
learning system LMFAO [64].

• Across missing, duplicate, and systematic value errors, we show
that Reptile can accurately identify the top-3 groups with 70%-
100% accuracy, as compared to baseline explanation and cleaning
approaches that have <60% accuracy. Further, auxiliary data im-
proves accuracy by >20% .

• Using the John Hopkins Covid-19 data, Reptile correctly identi-
fied 70% of the Github-reported errors, as compared to 3 ś 6.6%
from popular explanation (DIFF [5], and Scorpion [59, 72]) and
cleaning (HoloClean [57] and Raha [46]) techniques.

Scope: Reptile focuses on existential errors (i.e. missing or du-
plicated records), and cell value errors localized to aggregated at-
tributes. For instance, from abnormally low SUM, Reptile can detect
missing records, data drift, disguised missing values (e.g. zero), etc.
However, Reptile assumes dimensional (categorical) attributes
to be correct and uses them to cluster groups. This assumption is
sensible because dimensions are typically machine-generated as is
the case with the FIST data. Human-generated data may contain
errors or inconsistencies in the dimension (categorical) attributes.
Many existing systems (e.g., HoloClean [57], Raha [46]) leverage
constraints and patterns to fix dimension errors, andwe recommend
these be run before Reptile.

Note: The paper strives to be self-contained. References to appen-
dices can be skipped, and are in the technical report [4].

2 APPROACH OVERVIEW

This section presents our problem definition, and describes model-
based repair and the role of auxiliary datasets.We thenwalk through
the components in Reptile.

2.1 Problem Definition

Given relationRwith attributesA, we assume that all the attributes
in R are partitioned into hierarchical dimensions. A dimension’s
hierarchy H = [A1, . . . , Ak] is an ordered list of attributes where
there is a functional dependency An → Am∀m < n. We say that
An is more specific than Am if m < n in the same hierarchy. The
last attribute Ak is the most specific attribute in H. Note that a
dimension’s hierarchy may contain a single attribute.

User explores R through initial view V = γAgb ,f (Aagg)(R), where
Agb ⊂ A, Aagg ⊂ A, Agb ∩ Aagg = ∅, f(·) is a distributive [32] ag-
gregation function such that, given the partition of R into J subsets
P1, · · · ,PJ, there exists function G: f(R) = G (f(P1), . . . , f(PJ)). Let
ti ∈ V be an output tuple and ti[agg] be ti’s aggregation result.

Example 2 (Distributive aggregation function). Count is

a distributive aggregation function. Given the partition of R into J
subsets P1, · · · ,PJ, we can find Gcount such that count(R) = Gcount ({

count(P1), · · · , count(PJ)}) =
∑J

i=1(count(Pi))

User can make complaint about tuple tc ∈ V. Define user com-
plaint as a function fcomp : t → R 2 which takes tuple as input and
outputs a value that user aims to minimize. This formulation cap-
tures common complaints [11, 51, 59, 72], such as t[agg] is too high
or too low, or that t[agg] should be a specific value. For instance,
fcomp(t) = |t[count]śv| states that the output attribute count should
have been v.

We exploit the hierarchical structure to drill-down from the
complaint tuple along different dimensions (e.g., district to village,
or from year to month). Given a tuple t in the current view V =
γAgb ,f (Aagg)(R), drilldown(V, t, H) adds the next strict attribute in
hierarchy H to Agb in V and replaces R by the provenance of t.

Example 3 (Drill-down). Figure 1 is grouped along geographic

and temporal dimensions, with hierarchiesHgeo=[District, Village]

andHtime = [Year, Month]. Figure 1a shows the viewV that filters and

aggregates by (District=Ofla, Year). Let t be the tuple for year
1986. drilldown(V, t, Hgeo) would further aggregate the provenance
of t by village (Figure 1b).

Next, we apply repair-based intervention to the statistics of each
tuple in drill-down result and check its effect on the complained
tuple t′c. Let frepair : t → t be a repair function that, given a tuple,
returns a tuple with its expected (repaired) aggregate statistics.
We use frepair to repair tuple in drill-down result, and efficiently
compute its repair effect on t′c through distributive property: given
complaint tuple tc, drill-down results V′ = drilldown(V, tc, H) and
subgroup t′ ∈ V′, repairing t′ → frepair(t′) updates the complaint
to t′c = G(V′ ś {t′} ∪ {frepair(t

′)}).
Finally, we search for one hierarchy H ∈ H to drill-down, and

one tuple t ∈ drilldown(V, tc, H) such that łfixingž the t’s group
statistics would minimize user complaint fcomp(t

′
c).

2In general, fcomp may be an expression composed of distributive aggregates in the

query. For instance, SUM can be decomposed into an expression over MEAN and COUNT



Problem 1 (Complaint-based Drill-down). Given tc, fcomp,

frepair, return the next drill-down hierarchy and tuple (H∗, t∗) where:

H∗, t∗ = argmin
H,t

fcomp(t
′
c) (1)

s.t. V′ = drilldown(V, tc, H), (2)

t′c = G(V′/{t} ∪ {frepair(t)}) (3)

H ∈ H (4)

t ∈ V′ (5)

Example 4 (Complaint-based Drill-down). Given the com-

plaint tc = (Year : 1986, District : Ofla, count : 62) in Figure 1, the

complaint function is fcomp(count) = |count ś 70| (that is, the count
of tuples in Ofla in year 1986 should have been 70) and consider the

Darube and Zata records after drilling down along Hgeo (Figure 1b).

If the repair function fixes Darube’s count to 15, tc’s count will update
to 67, and the complaint function returns fcomp(67) = 3. In contrast,

if Zata is repaired to 16, then its complaint function would return

1, which is preferable. After searching all hierarchies, the top ranked

(hierarchy, tuple) pair is returned.

Although the user can easily provide tc and fcomp, the repair func-
tion frepair is hard for users to express (since they only see the
aggregated effects of the errors), yet is critical to the problem. We
describe how we address this issue with model-based repair next.

2.2 Model-based Repair

Reptile identifies erroneous groups by comparing their statistics
with expected statistics based on a model. Models are commonly
used to identify and repair numeric errors, and prior works have
used log-linear [63] and linear regression models [51]. Models pro-
vide the flexibility to combine features derived from the drill-down
groups, as well as from auxiliary datasets (e.g., satellite sensing
data in Example 1). However, sparsity is the major challenge, as
there may not be enough drill-down results (e.g., villages in Ofla in
1998) to fit an accurate model. We now describe how we address
this challenge, and how users can tune the repair function.

2.2.1 The Repair Model. ANaive Approach is to use the results of a
candidate drill-down as the training examples for a linear regression
model y = X · β + εεε. For instance, after drilling down from Ofla to
its villages, y is the result of the complaint’s aggregation function
f(·)3 for each village, and X is the feature matrix derived from
village-level information (e.g., population, crops, rainfalls). The
main problem is that Ofla alone may not contain enough villages
to train an accurate model.

Parallel Groups: Reptile uses the drill-down results of all parallel
groups (e.g., villages from other districts and years). In the FIST
example, there are 34 years and 295 villages, and using parallel
groups increases the number of training examples to 10030.

Multi-level Models: The dataset’s hierarchical structure naturally
clusters the drill-down groups: villages in the arid Tigray region will
be dissimilar from villages in the tropical Harari region. This effect
is common in fields such as sociology [26], demography [61], public
health [23], and market sectors [70]. Unfortunately, linear models

3In general, the complaint’s aggregate can be composed of multiple distributive aggre-
gates. In this case, we fit separate models for the distributive aggregates.

do not take this hierarchical structure into account. As compared to
linear models, we show that multi-level models increase Reptile’s
top-3 accuracy by >15% (Section 5.2).

Reptile uses multi-level linear models by default. Multi-level
models fit a set of global parameters, as well as separate param-
eters for each parent group (e.g., year, district)Ðtermed łclustersž
for convenienceÐto account for their variations. Suppose we are
drilling down from clusters defined by Agb (e.g., year, district) to
A′
gb (e.g., year ,district, village), and there are G clusters. The model

for the ith cluster is defined as:

yi = Xi · β + Zi · bi + εεεi, i = 1, ...,G (6)

bi ∼ N (0,ΣΣΣ), εεεi ∼ N (0,σ2I)

where yi is the vector of distributive aggregation f(·) result, and Xi

is the feature matrix. The key difference from the linear model is
the additional term Zi · bi, which encodes random effects that vary
across clusters. It can be interpreted as modeling the residual after
fitting the global parameters in Xi · β. Zi is the random effects, set
to Xi by default; bi is the cluster-specific parameter drawn from
a gaussian. Since Xi contains e.g., village, district, and year level
attributes, Zi may be tuned to only keep attributes relevant within
clusters. εεεi is a cluster-specific error; I is the identity; βββ, ΣΣΣ and σ

are parameters. Finally, the full model is constructed by (logically)
concatenating each cluster’s matrices.

Multilevel models exploit effects β shared among clusters (e.g.
high rainfalls decrease drought across districts) that is common in
hierarchical data, and uses bi to fine-tune each cluster (e.g. how
rainfall uniquely affected a district). If the effects are random across
clusters (e.g. high rainfall affects districts randomly), the multilevel
model reduces to an independent linear model per cluster.

By default, Reptile adopts multi-level linear models because
linear models are simple and multi-level models are well-regarded
in many scientific domains that study hierarchical data. In princi-
ple, Reptile supports user-defined models, which will be used to
replace frepair in problem definition.

2.2.2 Tuning the Repair Function. Reptile provides many ways
to improve the accuracy of the repair function, such as provid-
ing auxiliary datasets, custom featurizations, and customizing the
random-effect matrix. For space constraints, we describe Reptile’s
default features and the role of auxiliary datasets, and defer the
others to the technical report [4].

Default Features: Reptile treats all non-aggregated attributes in
the drill-down results as categorical. However, naive hot-one featur-
ization exacerbates the sparsity problem. Inspired by multivariate
anomaly detection [39] and OLAP data cubes [63], we featurize at-
tributes based on their main effects [47] to capture the similarity of
statistics between clusters (e.g. the average drought severity should
be similar between neighbour districts). To featurize an un-cleaned
dataset, Reptile assumes that the majority of statistics are clean
and replaces each categorical attribute value with the median of
cluster statistics Y. This is robust when less than 50% of values
are corrupt [34]. For instance, if we drill-down to (district, village,
year) and compute the per-cluster average, then the feature for 1985
would be the median of the average severities across all villages in
1985.
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Note that the default features and the multi-level model exploit
different data properties. The default features capture statistical
similarities across dimensions, and the weights of these features are
reduced if the similarities are not significant. The multi-level model
captures similarity between the effects of featuresÐif a feature
is correlated with drought in one district, it should be correlated
in other districts as well. The multi-level model is data-efficient
by sharing weights between clusters, yet can fine-tune individual
clusters.

Auxiliary Datasets: When possible, Reptile automatically joins
auxiliary datasets with the drill-down results and includes their
measures in the feature matrix. For instance, the village rainfall data
in Example 1 is included once Reptile drills down to village. Users
simply specify the dataset, join conditions, and measures. Since the
user provides the auxiliary dataset, we assume it is clean. If auxiliary
dataset is noisy and not predictive, the model will simply lower its
feature weights, which can be a signal to check the auxiliary data.
Section 5.2 shows that Reptile can benefit from the auxiliary data
even when it’s slightly correlated with the underlying clean data.

2.3 Usage Walkthrough and Architecture

We illustrate how the Financial Instruments Sector Team (FIST) uses
Reptile to solve complaint-based drill-down problem (Example 1).
Reptile is initialized with the database and attribute hierarchies
(e.g, geo and temporal). A FIST researcher studies the annual sever-
ities in the Ofla district. She suspects that the standard deviation in
1986 is too high and submits it as a complaint. She also provides
village-level rainfall as an auxiliary joined dataset because she feels
it can help indicate droughts.

At this point, Reptile follows the architecture in Figure 2. It
first combines the queried tables with the auxiliary sensing dataset,
and uses them to extract model features. The Factoriser stores the
features in an efficient factorised representation (described below),
and the Model Trainer fits a predictive model to estimate the statis-
tics for each group in the next candidate drill-down. For instance, if
Reptile drills down along geography, the model estimates village
level statistics in Ofla 1986. Reptile uses multi-level models to
account for hierarchical relationships, and introduces optimized
matrix operations over factorised representations.

The Ranker first evaluates each group (e.g., village) based on
the extent that repairing the group’s statistics to its expected value

would address the complaint; it returns the top across every drill-
down hierarchy. The researcher can examine the recommended
groups, and optionally submit a new complaint at the village level
to continue łzooming-inž.

2.4 Extensions

We discuss simple extensions that further improve usability.

Set of Distributive Aggregations: The problem assumes that f(·)
is a distributive aggregation function like COUNT for simplicity. How-
ever, f(·) can be extended to a general distributive set of functions
like {MEAN, COUNT, STD} as discussed in Appendix A. Distributive set
of functions is highly expressive and covers most of the aggregates
studied in data science. For example, the percentage of obesity and
population in public health [50], the frequency of physical activity
in sociology [13]; and product innovation statitics in economics [40]
can all be expressed as distributive set of functions.

Multi-attribute and multi-dimension drill down: The formal
problem focuses on drill-down along a single dimension and at-
tribute in each iteration. However, the user can also specify a set
of łcoupledž attributes (potentially from different hierarchies) that
they want to drill-down all at once. To do so, Reptile constructs a
special hierarchy H∗ where the next attribute to drill down is a com-
posite of the coupled attributes. All other steps and optimizations
apply. Naturally, Reptile relies on the user to supply the coupled
attributes, since the set is combinatorial.

Early Stopping: For dataset with too many hierarchies, drilling
down all of them will be slow and the final group after many itera-
tions may be too sparse to interpret. In practice, we find that FIST
researchers naturally stop drilling down when satisfied, or when
the group is small enough to inspect the raw data. Philosophically,
we don’t recommend a fully automated early stopping process, as
cleaning should still be user-guided.

3 FACTORISATION BACKGROUND

Given the generated features, directly joining them together will re-
sult in a large feature matrix that exhibits vast redundancy. Reptile
generates and trains over a factorised representation of the feature
matrix to remove the redundancy, which decreases space and train-
ing time. This section provides background on factorised represen-
tations of join-aggregation queries and feature matrices. Readers
familiar with these topics may jump to the next section.

3.1 Factorised Representations

Joins and hierarchical data exhibit redundancy when encoded in a
tabular format, and factorised representations [54] (f-representations)
remove this redundancy. Assuming a fully normalized database (e.g.,
in BCNF), f-representations encode query results as an algebraic ex-
pression composed of unions and cartesian products. In a join query,
for instance, the set of left and right records that have the same join
key will emit the logical cartesian product and f-representations
avoid materializing it. Matrix operations in model training reduce
to batches of aggregations [64], which can be efficiently executed
over f-representations by pushing them through joins.

Given a relational table with schema S, the following notations
are used for f-representations:



• {(v) : i}: a unary relation with tuple (v) whose count is i .
• (E1 ∪ ... ∪ En): union of relations E1, ..., En with the same schema.
• (E1 × ... × En): cartesian product of relations E1, ..., En, where the
schema of Ei is Si and S1 ∩ ... ∩ Sn = ∅.

F-representations remove redundancies due to functional depen-
dencies inside a hierarchy and independence between hierarchies:

Example 5 (Hierarchical Data). Consider the relation R = {(a1,
b1) : 1, (a1, b2) : 1, (a2, b3) : 1, (a2, b4) : 1} over schema S = [A, B],
with functional dependency B → A. Its f-representation is:

({(a1) : 1}× ({(b1) : 1}∪ {(b2) : 1}))∪ ({(a2) : 1}× ({(b3) : 1}∪ {(b4) : 1}))

Example 6 (Independent Schemas). Consider relation R1 =
{(a1) : 1, (a2) : 1, (a3) : 1} over schema S1 = [A] and relation R2 =
{(b1) : 1, (b2) : 1, (b3) : 1} over schema S2 = [B]. Their schemas do

not overlap, so the join result is quadratic in size (i.e., 9), whereas its
f-representation is linear:

({(a1) : 1} ∪ {(a2) : 1} ∪ {(a3) : 1}) × ({(b1) : 1} ∪ {(b2) : 1} ∪ {(b3) : 1})

Reptile develops matrix operations over f-representations, which
are decomposed into batches of aggregation queries (Section 4.2).
Here, we introduce the aggregation operator using a COUNT-query
example and describe when they can be logically pushed through
joins. For further background, please refer to [52].

Consider the aggregation γX1 ,...,Xf ,COUNT(R1 1 ... 1 Rn), where
the schema of the join result is X1, ..., Xf , Xf+1, ..., Xm. For tuple t in
relation R, the notation R[t] returns the COUNT for tuple t. Then, the
aggregation result is:

Q[(X1, ..., Xf )] =
⊕

Xf+1

. . .

⊕

Xm

⊗

i∈[n]

Ri[Si]

where
⊗

is the join subplan,
⊕

X is an aggregation that marginal-
izes over attribute X, and Si is the schema of relation Ri.

⊗

and
⊕

X are defined as:

(R
⊗

T)[t] = R[πS1 (t)] ∗ T[πS2 (t)] ∀t ∈ D1

(
⊕

X

R)[t] =
∑

{R[t1]| t1 ∈ Dom(S1), t = πS1\{X}(t1)} ∀t ∈ D2

where S1 and S2 are the schemas for R and T, X ∈ S1, D1 =
Dom(S1∪S2), and D2 = Dom(S1\{X}). Suppose t = ⟨Distinct = Ofla⟩.
The first statement says that Ofla’s COUNT after the join is equiva-
lent to multiplying the COUNT Ofla records in R and T. The second
statement states that marginalizing over X (say, the attribute Year)
is computed as the sum of Ofla counts over every year.

Example 7 (Join and Aggregation Operators). Let relations

R = {(a1, b1) : 1, (a2, b1) : 2} over schema [A, B], and relation T =
{(b1, c1) : 3, (b1, c2) : 4} over schema [B, C]. Consider the query:

Q[(A, B)] =
⊕

C

(R[(A, B)]
⊗

T[(B, C)])

The intermediate result R1 = R[(A, B)]
⊗

T[(B, C)] contains:

{(a1, b1, c1) : 3, (a1, b1, c2) : 4, (a2, b1, c1) : 6, (a2, b1, c2) : 8}
⊕

C partitions R1 by A,B and sums all the counts in each partition

to derive {(a1, b1) : 7, (a2, b1) : 14}.

Early marginalization pushes
⊕

C down when C is not used in the
outer query (such as joins):

Example 8 (Early Marginalization). Let relations R, T have

schemas [A, B] and [B, C]. Consider the query γA,COUNT(R 1 T),
where each attribute’s domain is O(n). Both relations are thus O(n2)
and the join result is O(n3). Notice that attribute C is not used for the

join and can be marginalized early:

Q[(A)] =
⊕

B

⊕

C

(R[(A, B)]
⊗

T[(B, C)])

Thus
⊕

C can be pushed through
⊗

to reduce the join result toO(n2):

Q[(A)] =
⊕

B

R[(A, B)]
⊗

(
⊕

C

T[(B, C)])

3.2 Factorised Feature Matrix

We now discuss how to construct the feature matrix using the exam-
ple in Figure 3. Rather than materialize the full matrix, we construct
a factorised matrix representation4 in the form of a tree, where each
node is either an attribute value, union (∪), or cartesian product
(×) (see Section 3.1). To do so, we must first assign an attribute
orderingÐmatrices expect a fixed column orderÐthat dictates the
attributes encoded at each level in the f-representation.

Attribute Ordering: We order the attributes by selecting an or-
dering of the hierarchies, and within each hierarchy, order the
attributes from least to most specific. The specific hierarchy order
has no impact on performance, since the f-representation of the
matrix can be efficiently translated into a different ordering during
matrix multiplications. The main restriction is that the hierarchy
that we are drilling down should be ordered last. Note that drilling
down along different hierarchies will necessitate different attribute
orderings; we describe work-sharing optimizations in Section 4.4.

Figure 3a shows data from two hierarchies: Time with attribute
T and Geo with attributes District (D) and Village (V). Suppose the
hierarchy ordering is [Time, Geo]. The fully materialized matrix
X (Figure 3b) is computed as the cross product between the two
hierarchy tables. Note the redundancy across the hierarchies (ti is
replicated), and within the Geo hierarchy (d1 is replicated).

Factorised Feature Matrix:We now outline the construction of
the factorised feature matrix using Figure 3c as the example. We
refer readers to Olteanu et al. [54] for a complete procedure5. Each
attribute corresponds to one level of the tree, and Ai’s level is di-
rectly above Aj’s if Ai directly precedes Aj in the attribute order.
Each node (e.g., t1) in a level corresponds to a distinct attribute
value, and levels are connected via operators × and ∪. The edge
structure between levels is dictated by whether the attributes are
within the same hierarchy or not. In Figure 3c, Time directly pre-
cedes District but is in a separate hierarchy, thus the District nodes
are unioned (∪) and connected to the Time level with (×). In con-
trast, attributes within the same hierarchy form a tree structure
because villages are strictly partitioned by their districtÐthe exam-
ple removes redundant instances of t1, t2, and d1.

Matrix operations iterate through the matrix row- or column-
wise. Row-wise iterations requires decomposed aggregates (Sec-
tion 4.2) to exploit redundancy, while column-wise iterations corre-
spond to efficient Depth-First traversals through the f-representation’s
tree structure. Appendix C describes the detailed implementation.

4For legibility, we use attribute and feature interchangeably. See Appendix B for details.
5In their parlance, our łf-treež does not contain branches.













have decreased measure values and missing records, and the false-
positive group has increased measure values and duplicates. The
complaint is łSUM is lowł.

Figure 11 shows that the complaint direction is critical to dis-
tinguishing between multiple error candidates. As expected, in-
creasing the correlation of the auxiliary dataset helps better predict
the true group statistics, however the accuracy of Outlier hov-
ers around 0.66 because, while Outlier is able to identify three
imputed groups, it cannot distinguish between them.

Takeaways: data errors manifest in a multitude of ways, however

existing techniques are biased to specific complaint and/or error types.

Reptile supports general complaints as well as errors at the popu-

lation level, and also benefits from auxiliary datasets if they provide

signal (and does not degrade if they do not).

5.3 Case Study: COVID-19

The COVID-19 data [24] maintained by the Johns Hopkins Uni-
versity Center for Systems Science and Engineering (JHU CSSE)
contains two datasets. The US data contains 1,175,680 rows, location
(state, county) and time (day) hierarchies, and count measures for
confirmed infections and deaths. The global data contains 96,096
rows, location (country, state) and time (day) hierarchies, and mea-
sures for confirmed infections, deaths, and recoveries. Most statis-
tics are reported at the country level (state is null), however large
countries excluding the U.S. (e.g., Australia, Canada, China) report
province/state-level statistics.

Setup: We use Github errors resolved between 12/2/2020 and
1/27/2021 as ground truth. We generate a corrupt dataset, submit
a complaint for each issue, and compare methods. Most issues are
due to missing data for a given day; others are due to backlogged
reports across days n ś m that are totaled and reported on day
m + 1, or changes in a location’s reporting methodology [1]. We
use 16 (14) issues from the US (global) datasets. For each, we filter
by the complaint’s day, aggregate the total statistics at the parent
geographical level (e.g, New York→USA), and specify whether the
result is too high or too low. For instance, Texas under-reported
infections on 1/21/2021, thus the complaint is that the total US
cases on that day is too low. We compare Reptile with two expla-
nation approaches [30]: Sensitivity used in Scorpion [72] and
Support (described in Section 5.2), and two SOTA cleaning systems:
Holoclean [57] and Raha [46].

Holoclean repairs measures using a probabilistic factor model.
We used its default settings, where for each cell, Holoclean used
the initial value, cell value frequency and co-occurence with other
attributes as features to identify the most likely cell values. We
attempted to provide functional dependencies between locations,
but they didn’t hold (e.g., multiple states have counties with the
same name).We found that Holoclean predicted the initial measures
as most likely and thus didn’t repair any measures, so we used
Holoclean to recommend groups with the least likely measures (on
average). Raha is supervised, and uses manual labels to estimate
measure likelihoods, so we used the ground truth data to generate
labels. By default, Raha asked for 20 labels for training, but failed
to identify any corrupted tuples because the model predicted 100%
likelihood for every measure. We thus provided 300 labels and
found that Raha mainly relies on its outlier, pattern violation, and

Figure 12: COVID-19 Case Study: Existing approaches either

ignore complaints or fail to utilize expected statistics

rule violation detectors. Similar to Holoclean, we used Raha to
recommend subgroups with the lowest average likelihood.

Results: Reptile took ≈0.5s to fit the model and recommend the
group, while Sensitivity and Support took a few milliseconds as
they only need to scan through the measures. Holoclean [57] took
>3 hours and Raha took >1 hour to extract features and train their
models. Figure 12 shows that Reptile is more accurate (70%) than
the baselines (0 ś 6.6%). Since the complaint was that the case count
is too high, Sensitivity and Support simply returned states with
the highest case counts, even though that was expected because
those states had high populations. Both Holoclean and Raha failed
because they ignore complaints and are designed for categorical
attributes. Holoclean discretized the measures and encoded each
domain value as a boolean random variable in the factor graph
model, which couldn’t support numeric signal. Each cell’s features
were also biased towards areas whose measures were stable over
time, and these features were irrelevant to errors in the COVID-
19 data. Raha attempted to generalize the labeled examples based
on detector-generated features. Although Raha also considered
column-wise Gaussian distributions, the true errors were caused
mostly by deviation from individual expected statistics not column-
wise averages.

Error Analysis: We conducted an error analysis of the 9 errors
that Reptile did not identify. 5 issues were due to minor data
drift across several weeks (e.g. a missing data source) that is later
fixed. For instance, Quebec’s death statistics between 3/17/2020 to
1/27/2021 were all increased by a small amount, however the date
range affect all Quebec data in the experiment. 4 issues were subtle
issues smaller than the natural variation in the data, and won’t
result in complaints. For example, on 12/18/2020, Washinton state
submitted 21,308 instead of 21,038. See Appendix L for details.

Takeaways: although current cleaning systems are effective for

categorical data, numerical data usually require custom, domain-

specific features [17, 49] that are hard to automatically learn/infer.

For instance, ERACER [49] repairs birth dates in genealogy databases

using the parents’ birth dates, which does not generalize to the COVID-

19 data. In contrast, Reptile is generic, simply exploits hierarchical

structure, and uses auxiliary data to encode domain expertiseÐthese

are readily available and widely utilized in many fields.

5.4 Case Study: FIST

The Columbia University Financial Instruments Sector Team (FIST)
group collects Ethiopian farmer-reported drought data to design
drought insurance [55]. The data contains geography (Region, Dis-
trict, Village) and time (Year) hierarchies, and a severity measure
from 1 (low severity) to 10 (high). The FIST group historically



performed manual data cleaning based on domain expertise and
by cross-referencing (noisy) external data sources (e.g., satellite
estimates). We recruited 3 FIST team members6 to use the sys-
tem to submit complaints based on their experience, help verify
the correctness of the results, and provide qualitative feedback
(see Appendix M for screenshots, protocol, and further details).
Overall, Reptile correctly identified errors for 20 out of 22

complaints.

Protocol and Complaints: Users are shown visualizations of an-
nual Region-level statistics (count, mean, standard deviation). They
click on suspicious statistics to create a complaint. Reptile rec-
ommends drill-downs and highlights the candidate group in the
drill-down results. They can continue this process until they exam-
ine individual records to conclude whether the recommendations
were correct. We ask users to follow a think-aloud protocol and
share their interpretation throughout the cleaning process. Exam-
ple complaints (and their rationale) include: łthe MEAN in Tigray
2009 should be much higher because I remember farmers argued
about this year (P1)ž, and łthe STD in Medebay Zana 2018 is too
high compared to other years (P2)ž.

Results and Failure Analysis: The users accepted 20 out of the 22
submitted complaints. These errors revealed issues such as: farmers
that confuse planting and harvesting years (e.g. plant in one year,
but harvest in the next year), misremember the events, report non-
drought years as highly severe, and more. One failed complaint
was due to inherent ambiguity and team members disagreed about
the causes. The second was because a unique combination of two
districts needed to be fixed together, but Reptile only return one
of the two. See more details in Appendix M.

QualitativeResults andDiscussion: FIST users said that Reptile
łis valuable to clean and make sense of this massive data (P3)ž, łis
helping to save the day for the project in Ethiopia during this year
of Covid and civil strife (P1).ž A major benefit is to automate group-
level inspection and cross-reference with external data sources. P3
stated that łpreviously, we only had 5 villages in the Amhara region
... and data is cleaned manually using excel spreadsheet ... Now the
project has scaled and we have 173 villages in Amhara. It is not
possible to visit all these villages (P3).ž Finally, users suggested that
łit would be great [to] understand why the model makes certain
prediction (P1),ž and łI hope there are more flexible visualizations
that display different satellite data in one geographic map (P2).ž

6 RELATED WORK

Error Detection: Error detection traditionally uses integrity con-
straints [19] to find violations, while quantitative error detection of-
ten relies on statistical methods (e.g., outlier detection [11, 35, 43, 58]
or explicit error-prediction models [33, 44, 46]). Reptile combines
a complaint-based approach [5, 15, 51, 59, 72] based on how de-
tected errors affect output complaints, with a model-based error
prediction approach to identify candidate repairs.

Data Repair: Data repair is an optimization problem that satisfies
a set of violated constraints over the database instance [19, 73], and
can leverage signals (e.g., past repairs [71], knowledge bases [20]).

6Novice users are ill-suited because good complaints rely on domain expertise.

Model-based repairs estimate the correct value of an error. ER-
ACER [49] uses graphical models to repair raw data tuples. Active
learning approaches [45, 69, 74] ask users to verify candidate repairs.
Daisy [29] uses categorical histograms to identify and repair errors
in join attributes. In Reptile, the user submits a single complaint
over an aggregate query result, and the system trains multi-level
models for aggregation-level repair. Finally, techniques such as
unknown unknows [21] can be viewed as repairing group-wise
missing record errors under species estimation assumptions.

Complaint-based Explanation: This class of problems follows
the framework where, given a complaint over query results, they
search for a good explanation from a candidate set (e.g., predi-
cates, tuples, etc). They primarily differ in the ranking metric (e.g.,
sensitivity-based [5, 15, 59, 72], density-based [36, 60, 62], counter-
balance [51]), and typically focus on deletion-based interventions.
Reptile ranks drill-down groups based on aggregation level in-
tervention which enables Reptile to uncover a broader range of
errors like missing records which previous metrics fail to detect.

The hierarchical density attribution problem [25, 60, 62] returns
a set of non-overlapping subgroups that account for the largest
mass of the total density. Reptile is designed for a single hierarchy
and supports more complex aggregation functions beyond density.

Factorised Representation: Factorised Representation [54] re-
duces redundancies due to functional dependencies, and has been
used to optimize model training (linear regression [65], decision
tree [38] and Rk-mean [22]) over factorised matrices derived from
join queries. Reptile extends prior work [64, 65] to matrices based
on join-aggregation queries that exhibit fewer redundancies, sup-
ports extra operations including right and left multiplication, and
further exploits the hierarchical structure for optimization.

7 CONCLUSIONS

Classic cleaning techinques focus on categorical data, or make
strong assumptions about error types. However real-world errors
are often numeric, and there are fewer tools that are simple and
fit a domain expert’s mental model. Reptile focuses on numeric
errors in the context of hierarchical data. Users encode expertise as
complaints, auxiliary datasets, and features, and Reptile helps it-
eratively identify and repair numeric errors. Reptile recommends
drill-downs by intervening on group statistics and finding the group
whose intervention most fixes the complaint. Reptile trains a
model to estimate each group’s expected statistics, intervenes by
setting a group’s statistic to the model’s estimate. Our implementa-
tion leverages a factorised matrix representation, and we developed
factorised matrix operations as well as optimizations that lever-
age the data’s hierarchical structure. Our optimizations reduce
end-to-end runtimes by over 6× as compared to a Matlab-based
implementation. Reptile identified 21 out of 30 data errors in John
Hopkin’s COVID-19 data, and identified 20 out of 22 complaints
in a user study with Columbia University’s Financial Instruments
Sector Team based on their data collected from Ethiopian farmers.
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when iterator should propagate the change. For attribute Ai, let itrAi

be the iterator of attribute value in ascending order. The intuition
behind the set end is that, when itrAi iterates over any value in set
end, itrAi+1 should also increment. For example, in Figure 3a, city 2
and city 3 are in end because when city iterator itrC iterates over
them, state iterator itrS should also increment.

Algorithm 1 implements the iterator of attribute rows. Notice
that, instead of returning the row values of attribute matrix, it
returns the difference between current row and previous row.

Algorithm 1: Row iterator next(Ai, &update) algorithm

Result: Update to the previous row for attributes from Ai

itrAi := current iterator for attribute Ai;
nextValue := itrAi .next();
update[Ai] := nextValue;
if current attribute value ∈ end and Ai , root then

next(parent(Ai), update);

if !itrAi .hasNext() then
itrAi := new itr();

return update;

D EXPECTATION MAXIMIZATION
ALGORITHM

We write the multilevel-model in matrix form where y,X,β,b, and ε
are vertical concatenations of their row-wise vectors/matrices, and
Z is a diagonal matrix with Xi along the diagonal:

y = X · β + Z · b + εεε (7)

EM iterates between two steps. The expectation step uses the esti-

mates β̂, Σ̂ΣΣ, σ̂2 to find the expected value of b̂i, and b̂i · b̂
T
i :

Vi = (
XT
i · Xi

σ̂2
+ Σ̂ΣΣ

ś1
)ś1 (8)

μμμi =
Vi · X

T
i · (yi ś Xi · β̂)

σ̂2
(9)

b̂i = μμμi (10)

b̂i · b̂
T
i = Vi + μμμi · μμμ

T
i (11)

The maximization step uses the current estimate of b̂ to estimate

the β̂, Σ̂ΣΣ, σ̂2 with maximum likelihood:

β̂ = (XT · X)ś1 · XT · (y ś Z · b̂) (12)

Σ̂ΣΣ =
1

G
·

G∑

i=1

b̂i · b̂
T
i (13)

σ̂2 =
1

n
((y ś X · β̂)T · (y ś X · β̂) +

G∑

i=1

Tr(XT
i · Xi · bi · b

T
i )

ś 2 · (y ś X · β̂)T · (Z · b̂)) (14)

where Tr(·) is the trace (sum of main diagonal elements) of a matrix.

Vertical Concatenation: Notice that Z has shape n×m · G where
G is the number of clusters (typically exponential in the depth of
the attribute in its hierarchy). Z is non-zero along the diagonal,
thus its sparsity can be exploited by computing Z · b̂ with vertical

concatenation without fully materializing Z:

Z · b̂ = vertcat(X1 · b̂1,X2 · b̂2, . . . ,XG · b̂G )

Multiplication Order: Associative law of matrix multiplication
can be exploited to avoid large intermediate result. For example, in
equation 12, if matrix chain multiplications are from left to right,
there will be an intermediate result with shape m × n:

β̂ = ((XT
m×n

· X
n×m

)ś1 · XT
m×n

︸                   ︷︷                   ︸

)

m×n

· ( y
n×1

ś Z
n×mG

· b̂
mG×1

)

︸                   ︷︷                   ︸

n×1

This could be avoided by reordering matrix multiplications:

β̂ = (XT
m×n

· X
n×m

)ś1

︸          ︷︷          ︸

m×m

· (XT

m×n
· ( y

n×1
ś Z
n×mG

· b̂
mG×1

))

︸                            ︷︷                            ︸

m×1

Bottleneck: The EM updates above are primarily bottlenecked
by six types of matrix multiplication operations: XT · X, X · A,
B · X, XT

i · Xi, Xi · Ci, Di · Xi for i = 1, ...,G, where A,B,Ci,Di are
intermediate matrices and G is the number of clusters. We can
precompute XT · X and XT

i · Xi. We need to perform each other
operation once during each iteration.

All of these operations involve X, which is the factorised feature
matrix. A naive approach is to materialize the full Xmatrix and use
existing matrix operator implementations, but the matrix can be
very large. Instead, we wish to directly perform matrix operations
on the f-representation.

E MATRIX OPERATIONS

In this section, we provide formal algorithms to compute matrix
operations through aggregation queries. We assume that the total
number of rows in the relations of each hierarchy is O(w), the num-
ber of attributes is d, the number of columns in feature matrix is
m and the number rows in feature matrix is n. For simplicity, we
assume that feature matrix is the same as attribute matrix. The ex-
tension to customized feature matrix is trivial by mapping attribute
value to feature value during operations.

GramMatrix: First consider gram matrix XT · X. The naive multi-
plication XT · X has time complexity O(n ·m2). In Figure 13c, the
columns in attribute matrix have a lot of redundancy, and, given
two columns, we can iterate all attribute values and leverage COF
to derive how many times two attribute values are duplicated. Note
that gram matrix is symmetrical, so we only need to calculate half



of the matrix. Let ci be the ith column and ri be the ith row of
attribute matrix.

Algorithm 2: Gram matrix algorithm

Result: ci · cj
Ap := attribute of ci;
Aq := attribute of cj;
if Ap == Aq then

return
TOTALAd
TOTALAp

·
∑

ap∈Dom(Ap) COUNTAp [ap] · ap · ap ;

else
return
TOTALAd
TOTALAp

·
∑

ap∈Dom(Ap),aq∈Dom(Aq) COFAp ,Aq [ap, aq] · ap · aq;

Algorithm 2 is used to compute each element of gram matrix
ci · cj where i ≤ j. The time complexity to compute each element is
O(w2) and the whole gram matrix is O(m2 · w2). Even if attribute
matrix has height n exponential in the number of attributes, we can
use algorithm 2 to compute gram matrix in time polynomial in m.

Left Multiplication:Next consider left multiplicationA ·X, where
the shape of A is q × n. The naive matrix multiplication A · X has
time complexity O(q · n ·m). Similar to gram matrix, we exploit the
fact that the columns in attribute matrix has a lot of redundancy. For
each column, we leverage COUNT to infer the times each attribute
value is duplicated. For ith row r′i in A, we precompute the prefix
sum of r′i in O(n) to get range sum of r′i in O(1).

Algorithm 3: Left multiplication algorithm

Result: r′i · cj
result := 0;
start := 0;
Ap := attribute of cj;

for k:= 0; k <
TOTALAd
TOTALAp

; k++: do

for ap ∈ Dom(Ap) in ascending order do
rangeSum := sum(r′i [start : start + COUNTAp [ap]]);
result+= rangeSum · ap;
start+= COUNTAp [ap];

return result;

Algorithm 3 is used to compute each element of left multipli-
cation ci · cj. Note that the input size is O(q · n) so that the lower
bound of the time complexity of algorithm 3 is O(q · n). For each
r′i , the first attribute only needs to iterate over attribute values and
compute multiplication result in O(w), while the last attribute can’t
utilize the prefix sum and have to iterate r′i in O(w

m). The total time

complexity of algorithm 3 is O(q · (n +w +w2 + ... +wm)) = O(q · n),
which is optimal.

Right Multiplication: Then consider right multiplication X · A,
where the shape of A is n × p. The naive matrix multiplication
X · A has time complexity O(p · n · m). Algorithm 4 uses the row
iterator in Factoriser to implement right multiplication by updating
multiplication result from previous row. Similar to left multipli-
cation, the output size is O(p · n) so that the lower bound of the
time complexity of algorithm 4 is O(p · n). For each row iterator,
the first attribute is updated O(w) times, while the last attribute is

updated O(wm) times. The total time complexity of algorithm 4 is
O(p · (n +w +w2 + ... +wm)) = O(p ·wm) = O(p · n), which is optimal.

Algorithm 4: Right multiplication algorithm

Result: r1 · c′j , r2 · c
′
j , · · · , rn · c

′
j

rprev := the first values for all attributes;
r1 · c′j = rprev · c′j ;

for k:= 2; k <= n ; k++: do
A := last attribute in attribute order;
update := new map();
update = RowItr.next(A, update);
rn · c′j = rnś1 · c′j ;

for attribute Ai, value v ∈ update do
rn · c′j ś= rprev[i] · c′j [i];

rn · c′j += v · c′j [i];

rprev[i] = v;

F MATRIX OPERATIONS OVER CLUSTERS

We study the matrix operations over each cluster of attribute matrix
(XT

i · Xi, Xi · Ci, Di · Xi where i = 1, ...,G) in this section. Given the
initial view V = γAgb ,Fagg(Aagg)(R), we call Agb inter cluster attributes.
After user drill-down to a hierarchy, the additional attribute S in
A′
gb is called intra cluster attribute. Because we previously require

that intra cluster attribute is placed last in the attribute order, the
rows in the same cluster are adjacent, so we can reuse the row
iterator to iterate through clusters. We exploit the fact that, for each
cluster, inter cluster attributes have the same value and reuse the
row iterator to only calculate the difference between clusters. We
update the previous matrix according to the difference. We also
assume that attribute matrix is the same as attribute matrix for
simplicity.

GramMatrices: First consider grammatrices for all clustersXT
i ·Xi

for i = 1, ...,G. The naive implementation takes O(m2 · w · G) =
O(n ·m2). Algorithm 5 computes the gram matrix for each cluster
by iterating over each cluster and updating the difference. Notice
that, the updates are in place and the outputs are read-only except
for the last output. Even if we reuse the same matrix, the matrix is
yielded G times and each time at least O(m) elements need to be
changed, so the lower bound of time complexity is O(m · G). The
first inter cluster attribute is updated O(w) and the last is updated
O(wmś1). Each update involve O(m) changes in the matrix. Change
for intra attributes takes O(m) for O(G) times. Therefore, the total



time complexity is O(m · (w + ... + wmś1 + G)) = O(m · G) which is
optimal.

Algorithm 5: Cluster gram matrix iterator algorithm

Result: Gram matrix for each cluster
rinter := values of inter cluster attributes in the first cluster;
rintra := value sums of intra cluster attributes in the first
cluster;
gram := compute gram matrix for the first cluster naively;
prevSize := number of tuples in the first cluster;
yield gram;
for k:= 2; k <= n ; k++: do

A := last attribute among inter cluster attributes;
update := new map();
update = RowItr.next(A, update);
curSize := number of tuples in kth cluster;
for attribute Ai, value v ∈ update do

for j:= 1; j <= number of inter cluster attributes; j++: do
gram[i, j] /= rinter[i];
gram[i, j] ∗= v;
gram[i, j] ∗= curSize/prevSize;

rinter[i] = v;
/* Cache given intra cluster attribute value */

for each pair of intra cluster attributes do
Update corresponding gram matrix elements naively;

for attribute ai ∈ intra cluster attributes do
sum := sums of values of attribute ai in kth cluster;
for j:= 1; j <= number of inter cluster attributes; j++: do

gram[i, j] /= rintra[i];
gram[i, j] ∗= sum;

rintra[i] = sum;
prevSize := curSize;
yield gram;

Left Multiplication: Next consider left multiplication for all clus-
ters Ai · Xi for i = 1, ...,G, where the shape of Ai is q × ni. The
naive implementation takes O(q · n · m). Algorithm 6 computes
the left multiplication for each cluster by iterating over each clus-
ter and updating the difference. The input size is O(q · n) so that
the lower bound of the time complexity is O(q · n). Each row in

each Ai takes O(m + w). Therefore, the total time complexity is
O(q · G · (m + w)) = O(q ·m · G + q · n).

Algorithm 6: Cluster left multiplication iterator algorithm

Result: Left multiplication with r′i,k for kth cluster
rinter := values of inter cluster attributes in the first cluster;
result := compute result for the first cluster naively;
yield result;
for k:= 2; k <= n ; k++: do

A := last attribute in inter cluster attributes;
update := new map();
update = RowItr.next(A, update);
rowSum := sum(r′i,k);

for attribute Ai, value v ∈ update do
rinter[i] = v;

for each inter cluster attribute Ai do
result[i] = rinter[i] ∗ rowSum;

for attribute A ∈ intra cluster attributes do
Update corresponding result matrix elements naively;

yield result;

Right Multiplication: Finally, consider right multiplication for
all clusters Xi · Ai for i = 1, ...,G, where the shape of Ai is m × p.
The naive implementation takes O(p · n ·m). Algorithm 7 computes
the right multiplication for each cluster. The output size is O(p · n)
and, for each cluster, we can always find Ai such that all elements
in the output have to change. Therefore the lower bound of the
time complexity is O(p · n). Each column in each Ai takes O(m +w).
Therefore, the total time complexity is O(p · G · (m +w)) = O(p ·m ·

G + p · n).

Algorithm 7: Cluster right multiplication iterator algorithm

Result: Right multiplication with c′i,k for kth cluster
rinter := values of inter cluster attributes in the first cluster;
result := compute result for the first cluster naively;
yield result;
for k:= 2; k <= n ; k++: do

A := last attribute in inter cluster attributes;
update := new map();
update = RowItr.next(A, update);
for attribute Ai, value v ∈ update do

rinter[i] = v;

base =
∑number of inter cluster attributes

j=0 rinter[j] × c′i,k[j]; for

j:= 1; j <= nk; j++: do
value := 0;
for attribute Ai ∈ intra cluster attributes do

value += jth value of Ai in kth cluster × c′i,k[i]

result[j] := base + value;
yield result;

Evaluation: We evaluate the performance of matrix operation
using synthetic datasets with d hierarchies. For each hierarchy,
there are three attributes. Each attribute contains w = 10 unqiue
values. Given d attributes, the total number of rows n = 10d. X
has the shape 10d × 3 · d and each cluster Xi has the shape 10 ×
3 · d for i = 1, ...,G. There are 10dś1 clusters in total. For right
Multiplications over clusters Xi · Ci, Ci has the shape 3 · d × 1. For





For feature matrix, all the multi-attribute features are appended
to end of columns. Hierarchy order, attribute order and attribute
matrix remain unchanged.

Algorithm 8: gram matrix algorithm for multi-attribute fea-
tures
Result: ci · cj
f i := feature for ci;
f j := feature for cj;
Ap := list of attribute of f i;
Aq := list of attribute of f j;
A := Aq ∪ Ap;
k := size of A ;
Afirst := first attribute in A;
Alast := last attribute in A;
Aall := all attributes before Alast ;
COF =

⊕

Aall/A
πAlast (Rlast)

⊗

i∈[lastś1]
Ri ;

return
TOTALAd
TOTALAfirst

·
∑

(a1 ,...,ak)∈Dom(A) COF [(a1, ..., ak)] ·

f i(σAp
(a1, ..., ak)) · f j(σAq

(a1, ..., ak)) ;

For matrix operations, first consider gram matrix. Algorithm 8
computes gram matrix element and Algorithm 9 computes left mul-
tiplication for multi-attribute features. We assume that attributes
in Ap, Aq and A are ordered by the attribute order. Right multipli-
cation is similar to algorithm 4, except that, for each update, the
change is f idx((a1, ..., ak)) · c

′
j [idx] instead of f idx(a) · c

′
j [idx].

Algorithm 9: Left multiplication algorithm for multi-attribute
features
Result: r′i · cj
result := 0;
start := 0;
f j := feature of cj;
Ap := list of attribute of f j;
k := size of Ap ;
Afirst := first attribute in Ap;
Alast := last attribute in Ap;
Aall := all attributes before Alast ;
COF =

⊕

Aall/Ap
πAlast (Rlast)

⊗

i∈[lastś1]
Ri ;

for k:= 0; k <
TOTALAd
TOTALAf irst

; k++: do

for (a1, ..., ak) ∈ Dom(Ap) in ascending order do
rangeSum := sum(r′i [start : start + COF [(a1, ..., ak)]]);
result+= rangeSum · f j((a1, ..., ak));
start+= COF [(a1, ..., ak)];

return result;

I MULTI-QUERY EXECUTION

Suppose there are d attributes in attribute order. For each model

training, there are 2d + d(dś1)
2 queries to execute. One naive way

to execute these queries is to join all relations together and apply
aggregation function.

We can rewrite the queries such that these quries can reuse
results from other queries:

COUNTA1 = πA1 (R1)

COUNTAk+1 =
⊕

Ak

COFAk+1 ,Ak for k = 2, ..., d ś 1

TOTALAk =
⊕

Ak

COUNTAk for k = 1, ..., d

COFAk ,Akś1 =πAk (Rk)
⊗

Rkś1
⊗

COUNTAk for k = 2, ..., d

COFAk ,Aj =
⊕

Akś1

πAk (Rk)
⊗

Rkś1
⊗

COFAkś1 ,Aj

for k = 1, ..., d, j = 1, ..., d, k > j + 1

Algorithm 10 leverages the dependency to compute query re-
sults. The naive solution materializes the join result and apply
aggregation functions with total time complexity O(d2 · wd). For
algorithm 10, attributes in join results are marginalized as soon
as possible when they are no longer used in the future queries.
The join results are also stored in factorised representations. For
COF between different hierarchies, we are computing the Cartesian
Products. Reptile exploits the independence by storing factorised
representation. For implementation, only pointers to two relations
are stored in O(1). Because we assume that the total number of rows
in the relations of each hierarchy is O(w), join operator between at-
tributes in the same hierarchy takes O(w). Suppose there are O(|H|)
hierarchies, each with O(t) attributes and O(|H| · t) = O(d). The total
time complexity for algorithm 10 is O(|H|2 · t2 + |H| · t2 · w). If w is
much larger than |H|, the time complexity is then O(|H| · t2 · w).

Algorithm 10: Mutiple query plan

Result: Query results
COUNTA1 := πA1 (R1);
TOTALA1 =

⊕

A1
COUNTA1 ;

COFA2 ,A1 = πA2 (R2)
⊗

R1
⊗

COUNTA1

for i := 3; i <= d; i++ do
COFAi ,A1 =

⊕

Aiś1
πAi (Ri)

⊗

Riś1
⊗

COFAiś1 ,A1 ;

for i := 2; i <= d; i++ do
COUNTAi =

⊕

Aiś1
COFAi ,Aiś1 ;

TOTALAi =
⊕

Ai
COUNTAi ;

if i < d then
COFAi+1 ,Ai = πAi+1 (Ri+1)

⊗

Ri
⊗

COUNTAi ;

for j := i+2; j <= d; j++ do
COFAj ,Ai =

⊕

Ajś1
πAj (Rj)

⊗

Rjś1
⊗

COFAjś1 ,Ai ;

J DRILL-DOWN

Drilling down an attribute involves two steps:
1. append the attribute to the corresponding hierarchy.
2. move the hierarchy to the end of hierarchy order.
After the drill-down operation, F-tree has an additional attribute,

and all attributes in one hierarchy is moved to the bottom of the tree.
One naive way to implement drill-down operation is to rebuilt the
F-tree and recompute all aggregation results from scratch. Assume
that w is much larger than |H|, the time complexity to drill-down
all hierarchies is then O(|H|2 · t2 · w).



We then introduce optimization to reuse the aggregation results
from the previous drill-down. The main property we exploit is the
independence between hierarchies. Given the aggregation query
over the Cartesian’s Product, we can marginalize each relation
before join:

⊕

A∈S

⊗

i∈[k]

Ri[Si] =
⊗

i∈[k]

(
⊕

A∈Si

Ri[Si])

where k is the number of relations, Si is the schema of Ri and
S =

⋃

i∈[k] Si is the schma of the join result. For i , j, Si ∩ Sj = ∅.
Notice that, between different hierarchies, we need to compute

cartesian product. Suppose that there are t hierarchies. For each
hierarchy Di for i = 1, ..., t, let [Di] be the set of indices of attributes
under this hierarchy. Given hierarchy order Dt, ..., D1, define:

TOTALDk
=

⊕

Ai :i∈[Dk]

⊗

i∈[Dk]

Ri

for k = 1, ..., t. TOTALDk
outputs the number of tuples in the hierar-

chy Dk.
Therefore, we can rewrite all the queries to exploit the indepen-

dence between hierarchies. Assume that attribute Ak is in hierarchy
Ds, attribute Aj is in Dv and k > j:

TOTALAk

=
⊕

A1

. . .

⊕

Ak

πAk (Rk)
⊗

i∈[kś1]

Ri

= (
⊕

Ai :i∈[Dd]

⊗

i∈[Dd]

Ri)
⊗

. . . (
⊕

Ai :i∈[Ds-1]

⊗

i∈[Ds-1]

Ri)
⊗

(
⊕

Ai :i∈[Ds]∧i≤k

πAk (Rk)
⊗

i∈[Ds]∧i<k

Ri)

=
⊗

i∈[sś1]

TOTALDi

⊗

(
⊕

Ai :i∈[Ds]∧i≤k

πAk (Rk)
⊗

i∈[Ds]∧i<k

Ri)

for k = 1, ..., d

COUNTAk

=
⊗

i∈[sś1]

TOTALDi

⊗

(
⊕

Ai :i∈[Ds]∧i<k

πAk (Rk)
⊗

i∈[Ds]∧i<k

Ri)

for k = 1, ..., d

COFAk ,Aj

=
⊗

i∈[vś1]

TOTALDi

⊗

(
⊕

Ai :i∈[Dv]∧i<j

πAj (Rj)
⊗

i∈[Dv]∧i<j

Ri)

⊗

i∈[v+1,sś1]

TOTALDi

⊗

(
⊕

Ai :i∈[Ds]∧i<k

πAk (Rk)
⊗

i∈[Ds]∧i<k

Ri)

for k = 1, ..., d, j = 1, ..., d, k > j

After rewriting the queries, we can exploit the fact that, when
drill-down attribute Ak is in hierarchy Ds, for TOTALAi , COUNTAi

andCOFAi ,Aj where Ai and Aj are not in hierarchy Ds, only the parts
⊗

TOTALD are affected, which are scalars. For join operator
⊗

,
when multiplied by scalar, we don’t need to apply the multiplication
to each tuple. We can maintain a scalar for each relation as the zoom
value so that multiplication by scalar is in O(1).

Algorithm 11 shows how to update the aggregation results after
drill-down. For aggregation results involved with only the attributes
in the hierarchy to drill-down, we have to recompute them in O(t2 ·
w). However, for other attributes, the updates can be done in O(1).
The total time complexity would be O(t2 · w).

In algorithm 11, we also cache TOTAL’, COUNT ’, COF ’, and
TOTAL′Dv

involved with only attributes in the hierarchy to drill-
down because, given the query in equation 2 and drill-down hi-
erarchy H, these aggregation results will always be the same in-
dependent of the current view. Consider a scenario when users
make complaint twice. For the first complaint, Reptile drills down
each hierarchy in H and selects one optimal hierarchy H∗ ∈ H

as in Equation (1). The time complexity for the first complaint is
O(|H| · t2 · w). For the second complaint, without cache, Reptile
needs to recompute each hierarchy in H and the total time is also
O(|H| · t2 · w). If all the attributes not selected in the first complaint
H/{H∗} are cached, each cached hierarchy can be updated in O(d2)
for the second complaint. So the total time for the second complaint
would be O(t2 · w).

Algorithm 11: drill-down hierarchy Dv

Result: Updated query results after drill-down
Anew:= Attribute in Dv to drill-down;
Au, · · · , Au+t := Attributes in Dv from lowest to highest level;
/* Cache TOTAL’, COUNT’, COF’, and TOTAL′Dv

*/

Compute updated TOTAL’, COUNT ’ and COF ’ involved with
only attributes Anew, Au, · · · , Au+t using Algorithm 10;
TOTAL′Dv

=
⊕

Ai :i∈[Dv]

⊗

i∈[Dv]
Ri;

for Attribute Ak < {Anew, Au, · · · , Au+t} do
if k < u then

COUNT′Ak
= COUNTAk

⊗

TOTAL′Dv
;

TOTAL′Ak
= TOTALAk

⊗

TOTAL′Dv
;

else
COUNT′Ak

= COUNTAk

⊗

(TOTAL′Dv
/TOTALDv );

TOTAL′Ak
= TOTALAk

⊗

(TOTAL′Dv
/TOTALDv );

for Attribute Aj ∈ {Anew, Au, · · · , Au+t} do
COFAk ,Aj = COUNT′Ak

⊗

COUNT′Aj
/TOTAL′Dv

for Attribute Aj < {Anew, Au, · · · , Au+t} ∧ k > j do
if u > k > j then

COF′Ak ,Aj
= COFAk ,Aj

⊗

TOTAL′Dv

else
COF′Ak ,Aj

= COFAk ,Aj

⊗

(TOTAL′Dv
/TOTALDv )

K QUALITY OF MULTI-LEVEL MODEL

We conduct model evaluation between linear regression model and
multi-level with default features only, and with external features.
The following two datasets are considered:

FIST: This dataset contains the farmer reported drough severity
at different villages in different years in Ethiopia. There are 2 hierar-
chies: year (one attribute with 36 values), location (three attributes:
region, district and village, with 161 village values). Sensing data
of rainfall are available each year for each village, which are used





ID Issue RP ST SP H Ra
3623 Germany recovered over reported ✓

3618 ⋆ Quebec death missing source
3578 US recovery nullified ✓ ✓

3567 India confirmed missing reports ✓

3546 ⋆ Thailand confirmedmissing source
3538a Mexico confirmed definition altered ✓
3538b Mexico confirmed missing reports ✓

3518 ⋆ Sweden death missing source
3498 ⋆ Alberta missing source ✓

3494 UK death missing reports ✓

3471 Turkey confirmed definition altered ✓ ✓ ✓

3423
Afghanistan confirmed wrongly re-
ported

3413 France missing reports ✓

3408 Kazakhstan confirmed over reported ✓

Table 2: List of global COVID-19 issues.

missing over the course of the pandemic in Utah, which affects data
all the time and makes result inconsistent with official report on
Dec 18 2020. The other non-prevalent common issues are missing
report (e.g. the reports of confirmed cases in Texas are missing
on Jan 15 2021), data backlog (e.g. confirmed cases are not fully
updated for North Dakota, and spike on Dec 9 2020), change of
definition (e.g., Arizona updated guidance for identifying deaths,
which causes abnormally high deaths on Jan 5 2021), etc.

Overall, Reptile outperforms Sensitivity and Support be-
cause Sensitivity and Support only recommend outliers. For
example, given complaint that the COUNT of confirmed cases is too
high, Sensitivity and Support always choose the location with
the highest COUNT of confirmed cases, disregarding the fact that
these locations have the highest population and the high COUNT is
normal.

Next, we discuss issues which Reptile fail to identify. Reptile
fail to detect all prevalent errors. Since prevalent errors repeat
across large number of clusters, Reptile is unable to tell if these
clusters are all normal or all problematic. Besides prevalent errors,
Reptile is unable to identify errors whose effects are not strong
enough and are masked by noises from other clusters. For issue
3424, there is a backlog of 680 confirmed cases in Massachusetts on
Dec 18 2020, which is relatively small given that there are 290578
total confirmed cases and 4853 new cases in Massachusetts on that
day. For issue 3423 there is a decrease of confirmed case from 46980
to 46718 on Dec 3 2020 which is relatively small. For issue 3402,
there is a typo for the number of confirmed cases in Washington
on Dec 18 2020, whose difference is relatively small.

M CASE STUDY DETAILS: FIST

In this section, we show the user interface and discuss two com-
plaints that our system fail to identify all causes.

Figure 16 shows the user interface for the study. Here, partici-
pant has made a complaint about Region Amhara. At the top, two
explanations are generated that highlights two Districts which,
if their aggregation results are repaired, can resolve complaint. The

first heatmap shows drought severity for Districts in Amhara.
The second heatmap shows the remote sensing. The scatterplot
and barchart visualize aggregations results (AVG, STD and COUNT).
Participant can further make complaint at District level.

For the first complaint, one team member recalls that one year
is a severe year and complains that the mean severity of one region
is too low. However, it turns out that all the districts in this region
have lowmean severity. For sensing data, some of them indicate that
this year is severe, but some of them don’t. Different team members
also hold different opinions about this year. More investigations
are needed to understand this complaint.

For the second complaint, one team member complains that the
standard deviation of one regions is too high. The error is caused
by two districts, but our system only identify one district. The
failure is because of the property of the standard deviation. When
the complaints are caused by multiple clusters, repair only one
cluster may not cause the standard deviation closer to the true
value. Consider the following minimum example:

Suppose there are three same values n initially. The initial mean
is n and variation is 0. Suppose we corrupt first two values by adding
Δ: n + Δ, n + Δ, and n. The mean becomes n + 2

3Δ and variation

becomes 2
3Δ

2. Suppose we fix the first corruption: n, n + Δ, and n.

The mean becomes n + 1
3Δ and variation becomes 2

3Δ
2. Notice that

variation is the same as that before fix. Suppose user complains
about the high standard deviation, fixing any of two corrupted
values wouldn’t resolve user’s complaint. Suppose we fix the first
corruption partly to Δ′: n + Δ′, n + Δ, and n. The mean becomes
n+ 1

3Δ+ 1
3Δ

′ and variation becomes 2
3 (Δ

2 śΔΔ′ +Δ′2). Let variation

be a function of Δ′: f(Δ′) = 2
3 (Δ

2śΔΔ′+Δ′2). This is a parabola with

turning point ( 12Δ,
1
2Δ

2). That is, the minimum standard deviation
is achieved by fixing half of the corruption.

One solution is that, for equation 5 in the optimization problem,
we search for a set tuples α ⊆ Q instead of one tuple. This makes the
optimization problem NP-hard because, given n tuples in Q, there
are 2n possible subsets of tuples. Joglekar et al. [36] exploits the
property of submodularity to greedily search the optimal solution,
while in our case, submodularity can’t be guaranteed. Another
solution is to relax the boolean constraint for the optimization
problem and allows the repaired aggregation values to be within
the range of [n+Δ′, n+Δ]. In future work, we plan to further study
this problem.
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