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Abstract— Thermal management of bio-implant and im-
plantable medical devices (IMDs) has gained growing attention
to prevent overheating in the surrounding tissue of IMDs
in certain applications, such as neural prostheses like deep
brain stimulators (DBS). This paper focuses on implementation
of nonlinear model predictive control (NMPC) methods for
adaptive thermal management of IMDs with multiple heat
sources. Thermal dynamics of the IMD is modelled using an
identification algorithm introduced in previous papers. Interior
point optimization method is implemented with the NMPC
to solve for the nonlinear optimization problem for adaptive
thermal management of IMDs with multiple heat sources.
The NMPC implementation is validated using the COMSOL
software simulations.

I. INTRODUCTION

Improved functionalities of implantable medical devices
(IMDs), such as monitoring, recording neural signals and
providing stimulation etc. lead to more power consumption
which may cause damage in the surrounding tissue due to
overheating of the electrodes. Cases of overheating and tissue
damage in various applications of IMDs have been discussed
in [1]-[3]. Thus, specifically for the neural IMDs, low power
consumption and real-time thermal management of these
devices are of great importance to maintain the long-term
operation of the device while ensuring patient’s health and
safety.

Various nonlinear model predictive control (NMPC) algo-
rithms have been explored in previous literature with very
few applications to thermal management problem. Diehl et
al. surveyed various Newton-type optimization methods and
algorithms used to solve real-time optimal control problems,
such as NMPC and moving horizon estimation (MHE) in [4].
In [5], authors design a position controller for quadrotors
using the NMPC algorithm with real-time iteration (RTI)
scheme to compensate for time-delay. Both in [6] and [7],
economic NMPC (ENMPC) scheme is investigated. In [6],
an ENMPC scheme with Moving Horizon Estimation (MHE)
algorithm for state estimation is implemented to achieve
real-time power maximization of wind turbine generators,
whereas in [7], authors implement an ENMPC scheme using
reinforcement learning tools for tuning. In both of these
works, authors provide simulation results for evaluation of
the NMPC performance.
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For adaptive thermal management applications, there have
been few studies focusing on model predictive control meth-
ods. In [8], an NMPC method is proposed for thermal man-
agement in plug-in hybrid electric vehicles which focuses
on minimizing thermal stress and electrical consumption.
Specifically for adaptive thermal management problem of
IMDs, in [9], an on-off control approach is adopted to
operate the device at maximum power levels until a set
temperature is reached. Once the set temperature is reached,
the adopted control loop puts the device in sleep mode.
In [10], a proportional-integral-derivative (PID) controller is
implemented for active charge balancing to ensure a safe
neural stimulation. A simplified electrode model is used to
evaluate the performance of the PID controller proposed.
Alternatively, in [11], authors integrate a model predictive
control scheme with a simplified single-input single-output
thermal model for the adaptive thermal management of
IMDs. However, for the IMDs with multiple heat sources, i.e.
multiple modules contributing to the temperature increase of
the device, a more complex system identification algorithm,
such as the modeling algorithm proposed in [12], is necessary
to accurately model the thermal dynamics of the IMD. To
the authors’ knowledge, there have not been any studies im-
plementing NMPC scheme for adaptive thermal management
problem of implantable medical devices with multiple heat
sources.

In this paper, nonlinear model predictive methods are
investigated for integration with the modeling algorithm
previously proposed in [12] and a nonlinear model predictive
control scheme with interior point optimization method is
implemented with this algorithm for the real-time thermal
management of IMDs to ensure safe operation while optimiz-
ing power consumption and device performance. The goal of
the nonlinear model is to accurately model the heat dissipa-
tion due to on-board and external modules, such as wireless
power transmission, energy storage device and power cir-
cuitry and so on. Thus, due to the spatially distributed nature
of these modules, the overall system becomes a multiple-
input multiple-output system with nonlinearities. The thermal
dynamics of the IMDs with multiple heat sources is modeled
with our online identification algorithm which considers the
spatial distribution of heat dissipation and its effect on the
temperature increase when solving for the model parameters.
Further explanation on our online prediction algorithm can be
found in [12]. The NMPC scheme with interior point method
implemented in this paper is validated via simulation studies
using the COMSOL software.

This paper is organized as follows. Section II presents



the IMD system model and the prediction algorithm used in
this paper. In Section III, formulation of the NMPC scheme
with interior-point method is explained. Simulation results
and comparison results to the dual control scheme in [9] are
presented in Section IV. Lastly, conclusion and future works
are discussed in Section V.

II. SYSTEM DESCRIPTION & MODEL

In order to evaluate the performance of the nonlinear
control scheme with the identification algorithms, Utah
Electrode Array (UEA) is chosen since its thermal effect
has been studied in previous works [13], [14]. The UEA
consists of multiple modules, such as radio module for
wireless communication, motherboard module consisting of
the microcontroller (MCU), and power circuitry. The thermal
management test vehicle (TMTV) developed based on the
UEA consists of multiple heat sources and multiple heat
sensors which are spatially distributed on the board. Systems
inputs are the power inputs to the heat sources and outputs
are temperature readings at sensor locations, thus the overall
system is a multiple-input multiple-output system. A diagram
of the system and a breakdown of the prediction algorithm
are shown in Figure 1.

Fig. 1: System diagram.

Using the identification algorithm introduced in [12], the
nonlinear system model can be denoted as

x̂k+1 = f (xk,uk) (1)

where uk is a l × 1 vector of model inputs, xk is a r × 1
vector of the model outputs, x̂k+1 is a r × 1 vector of
the prediction of model outputs at time instant k+ 1. f (.)
stands for the nonlinear prediction algorithm from [12]. The
prediction algorithm adopted in [12] uses spatial filtering,
kernel recursive least squares filters, and recursive subspace
identification methods for predicting the one-step-ahead tem-
perature readings. Due to the nonlinearities introduced by the
identification algorithm, a nonlinear model predictive control
algorithm is chosen to be implemented for the adaptive
thermal management problem.

A. Online Identification Algorithm

The identification algorithm introduced in [12] applies
a novel spatial filtering to to separate the data into its
spatially dependent and independent components and pre-
dicts the one-step-ahead value of the non-spatial and spatial
data components using recursive predictor-based subspace
identification (RPBSID) methods and kernel recursive least
squares (KRLS) methods, respectively.

At any time instant, the data could be filtered into its non-
spatial and spatial components as follows:

xns =
1

r(r−1) ∑
i

∑
j

wi jxi

Gi(d)

xs = x− xns
(2)

where Gi(d) is the local Getis-Ord statistic, wi j is the element
of the r × r spatial weights matrix. The spatial weights
matrix is constructed to represent the correlation between
the different sensor locations and the spatial heat dissipation
of the heat sources at these sensor locations [12].

For the non-spatial data component, the one-step-ahead
predictor can be written using a vector autoregressive model
with exogenous inputs (VARX) predictor as:

x̂ns
k+1|k = Ξ̄kθk+1 + ek (3)

where θk+1 =
[
up

T , uk+1
T , xp

T ]T , up and xp are the
vectors of past p data points at time instant k + 1. There
exists three matrices, Ξ̄k, error covariance matrix Pk, and the
selection matrix Sk, which are updated iteratively with a re-
cursive least squares (RLS) filter. System matrices A,B,C,D,
and the Kalman gain K are then computed by updating the
corresponding RLS filters [12], [15]. These system matrices
can then be used to predict the non-spatial component at
k+1 as follows:

x̂ns
k+1|k =Ckx̄

ns
k +Dkuk (4)

where x̄ns
k is the state vector which is updated by x̄ns

k+1 =
Akx̄

ns
k +Bkuk +(xns

k − x̂ns
k ).

Prior to recursive prediction of x̂ns
k+1|k, initial values for

system matrices and the Kalman gain is calculated using
a training data set via regularized batch processing (batch
PBSID) as described in [12].

For the spatial data component, the one-step-ahead pre-
dictor can be written as a nonlinear pure spatially lagged
autoregressive (SAR) model using a kernel recursive least
squares (KRLS) filter with a Gaussian kernel as follows:

x̂s
k+1|k =

mk

∑
i=1

ρi exp
(
−

∥ψ̂k,i −ψk∥2

2σ2

)
(5)

where ψk = Wkxs
k with r × 1 stacked vector of spatial data

components of each sensor location i= 1, . . . ,r, (ρ1, . . . ,ρmk)
are the kernel weights, and εk is the r× 1 prediction error
vector. Additionally, ψ̂k,i for i,1 . . . ,mk are the vectors in the
dictionary Dk = {(ψ̂i, x̂i)}mk

i=1 , and mk denotes the number of
data points admitted to the dictionary. The dictionary Dk is
admits new data if and only if the surprise measure Sk+1



[16] lies in a pre-determined [T1,T2] interval. Depending
on whether the dictionary remains changed or new data is
added, different KRLS update equations are used to update
the kernel matrix Kk+1, the covariance matrix Pk+1 and the
weight vector ρk+1 [12], [16]. With the updated matrices and
weights, the spatial data component at time instant k+1 can
be computed.

Combining the prediction results of both components, we
can obtain the overall prediction x̂k+1|k = x̂ns

k+1|k + x̂s
k+1|k. A

more in-depth explanation on the algorithm steps and the
validation results of this identification algorithm can be found
in [12].

III. NONLINEAR MPC IMPLEMENTATION

The goal of the nonlinear model predictive (NMPC) im-
plementation in this project is to obtain the best trade-off
between power consumption, and temperature increase while
satisfying the system constraints. NMPC implementation in
this paper solves for model outputs and control inputs for the
future horizon of length N at time instant k. Stacked model
outputs and control inputs for the future horizon of length N
are shown below:

X =
[
xT

k xT
k+1 . . . xT

k+N

]
,

U =
[
uT

k uT
k+1 . . . uT

k+N

] (6)

The first step in NMPC implementation is to construct the
nonlinear optimization program for the NMPC implementa-
tion.

A. Formulation of the Nonlinear Optimal Control Problem

The optimal control problem considered in this paper can
be written as a nonlinear program (NLP) with constraints to
be solved at each iteration as follows:

NLP(x̂k,xref,uref) = argminxk,uk
l(xk,uk)+ρk

s.t. x1 = x̂k,
xi+1 = f (xi,ui), i = 2, . . . ,N

0 ≤ ui ≤ umax
xi ≤ Tmax

(7)

where Tmax = 37.8°C and umax = 0.065W . l(xk,uk) is the
quadratic stage cost. At the time instant k, the cost l(x,u)
can be formulated as follows:

l(x,u) =
1
2

N

∑
i=1

[
xi − xref

ui −uref

]T

V
[

xi − xref

ui −uref

]
(8)

where i refers to the ith row in the control horizon, V is
a symmetric positive semi-definite matrix, xref consists of a
set-point reference value for model outputs, i.e. xref = 37°C,
and uref contains the set-point reference values for model
inputs, which is set to uref = 0.065W .

Nonlinear MPC then solves for

(x,u) = NLP(x̂,xref,uref) (9)

where uNMPC = u1 are the desired control inputs obtained by
the NMPC.

B. Interior Point Algorithm

The interior point algorithm described in [17], [18] com-
bines line search and safeguarding trust region steps to
handle non-convexity and to prevent convergence of the
solution to non-stationary points. Thus, this interior point
algorithm with safeguarding trust region steps is used to
approximate and solve the nonlinear problem (7).

This nonlinear model predictive control with interior-point
method is implemented in MATLAB using ”fmincon” solver,
a function for specifying and solving constrained nonlinear
optimization programs. The future horizon for prediction
and control is set to be of length N = 10 to extend the
horizon while ensuring that the solver returns a NMPC
solution within the time required for real-time control. Based
on multiple simulation studies and numerical analysis, the
weight matrix V in the objective function is constructed as

V =

[
5 · I 0
0 4.5 · I

]
so that the cost function becomes l(x,u)=

1
2 ∑

N
i=1 5(xi − xref)T (xi − xref)+4.6(ui −uref)T (ui −uref).

IV. SIMULATION STUDIES

A. Simulation Setup

Simulation studies are run using the multiphysics mod-
eling software COMSOL interfaced with MATLAB similar
to previous papers [12] and [19]. Thermal dynamics of
the UEA, presented in [13], with multiple heat sources are
modeled in the COMSOL software as shown in Fig. 2. The
simulation board of the UEA consists of two heat sources and
six probes placed surrounding the heat sources to measure
the temperature change as further explained in [12]. Power
consumption of the UEA falls within the range between 0.04
W and 0.065 W during active operation and 0 W in the sleep
mode. 65% of the consumed power is assumed to dissipate
into the surrounding tissue as heat and thus, the upper limit
for the temperature readings is set to be 0.8°C above the
body temperature, i.e. 37.8°C.

The COMSOL software is interfaced with MATLAB via
LiveLink to send control inputs to COMSOL and obtain real-
time temperature reading data from COMSOL.

Fig. 2: PCB layout in COMSOL software with sensors
locations in red (taken from [[12]]).



Prior to simulation studies, a preparation phase is con-
ducted, in which the open-loop system is run for t = 600
sec. The goal of this preparation phase is to achieve full
convergence of the adaptive filters in the identification al-
gorithms and thus, to minimize the prediction error. During
this preparation phase, the power inputs are set to 0.04 W
for 10 sec at t = {0,200,400} sec to excite the system three
times and set to 0 W for the rest of the time to prevent any
overheating. Results of this preparation phase are shown in
Figure 3.
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Fig. 3: Plot of temperature readings in the preparation phase.

B. Simulation Results

A simulation study is conducted to evaluate the perfor-
mance of the nonlinear model predictive control implemen-
tation with the identification algorithm using the COMSOL
model. A batch data with randomly generated inputs are
from a previous COMSOL simulation is used for data pre-
processing, which includes initialization of system matrices
and the Kalman gain, computation of threshold values for
the surprise criterion and calculation of trends for the spatial
and non-spatial data components. The study has been run
for 1000 data points to assess the closed-loop behavior of
the system under NMPC. Results of this simulation study
are shown in Figure 4. More specifically, the power inputs
are displayed in Figure 4(a), and the temperature readings
corresponding to sensor locations are shown in Figure 4(b).
Results shown in Figure 4 demonstrate that the temperature
readings are within the bounds of 37 − 37.8°C and the
power inputs solved via the NMPC scheme are also within
the bounds of 0− 0.065W. The performance of the NMPC
implementation with the interior-point method is measured
by calculating the mean square of difference between the
calculated power levels and the maximum power levels.
The mean square difference of the power levels from the
maximum levels is 0.062 and 0.060 for power inputs u1 and
u2, respectively. Additionally, the solver returns a solution in
0.492 sec per sampling iteration on average, which is below
the time required per iteration, since the sampling time for
each iteration is 1 sec. However, the maximum computation
time NMPC scheme requires is 1.631 sec which exceeds the
sampling time limit. According to the simulation results, for
75 data points out of 1000 data points total, the sampling
time limit has been exceeded. As a result of this, in order to

obtain an NMPC scheme suitable for real-time applications,
further modifications are necessary, such as increasing the
step size, obtaining a suboptimal NMPC solution via early
termination to reduce computational cost, implementing a
real-time iteration scheme, and so on.
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Fig. 4: (a) Closed-loop simulation results for control inputs,
(b) Closed-loop simulation results of temperature readings
under the NMPC scheme with interior point method.

In addition to the aforementioned COMSOL simulation
study, the NMPC implementation with the interior-point
method is compared with a slightly modified version of
the method adopted in [9] to evaluate its performance. This
method adopts a dual mode control scheme in which the
UEA starts at the maximum power level and it is turned
off fully when the temperature readings reach 37.8°C. After
the temperature readings drop back to 37.3°C at the sensor
locations where the temperature readings reached 37.8°C, the
power levels are set back to the maximum level. During its
operation, the UEA is either functioning at maximum power
levels or it is completely off. The comparison between the
NMPC implementation with the interior-point method and
the on-off control scheme is shown in Figure 5.

For the modified on-off control method which is imple-
mented for comparison, the mean square difference of the
power levels from the maximum levels is 0.059W for each
power inputs. Compared to the on-off control approach,
the NMPC scheme returns relatively similar mean square
difference values of the power levels from the maximum
level, which are 0.062 and 0.059 for power inputs u1 and u2,
respectively. Although the mean square difference values for
power levels from the reference power level is slightly higher
in the NMPC scheme, the simulation results of the NMPC
scheme shows that the boundary condition for temperature
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Fig. 5: (a) Comparison results for control input u1 and u2,
(b) Comparison results of temperature readings at sensor
locations S2 and S3.

readings, i.e. xi ≤ Tmax = 37.8°C is satisfied at all times, and
the temperature readings never exceed Tmax. However, the
modified on-off control method fails to satisfy this boundary
condition for 10 data points out of 1000 data points where
the temperature readings exceed Tmax. Thus, a safe operation
of the device is ensured with the NMPC scheme.

V. CONCLUSION

Thermal management of implantable medical devices re-
mains to be an important challenge. In this paper, we inves-
tigated utilizing nonlinear model predictive control scheme
with the interior-point algorithm to ensure safe operation of
IMDs with multiple heat sources. Different from the previous
work, which focuses mainly on the thermal management of
an IMD with a single heat source, our paper examines the
thermal management of an IMD with multiple heat sources.
To validate the prediction algorithm, a COMSOL model of
the implantable device is created. COMSOL simulation study
demonstrates that after the convergence of the adaptive filters
of the prediction algorithm, the NMPC scheme with the
interior-point method successfully maintains safe tempera-
ture levels while optimizing the power inputs. Performance
of the investigated control scheme is measured by calculating
the square difference of the power inputs from the maximum
power levels to determine the deviation from the maximum
levels. Although the preliminary results are promising, there
are limitations to the current naive NMPC implementation.
Mainly, performance of the real-time implementation is
restricted by the computational complexity of the NMPC
scheme which could be alleviated by increasing the step

size, integrating real-time iteration method to reduce the
computation time at each iteration, or via early termination
of the NMPC.

REFERENCES

[1] M. Seemann, N. Zech, M. Lange, J. Hansen, and E. Hansen. ”Anes-
thesiological aspects of deep brain stimulation : special features
of implementation and dealing with brain pacemaker carriers,” Der
Anaesthesist, vol. 62, issue 7, pp.549-556, 2013. [Article in German]

[2] H. Duffau. ”Contribution of cortical and subcortical electrostimulation
in brain glioma surgery: Methodological and functional considera-
tionsInterest of cortical and subcortical electrical stimuli in cerebral
glioma surgery: methodological and functional considerations,” Clin-
ical Neurophysiology, vol. 37, issue 6, pp.373 -382, 2007.

[3] N. L. Opie, A. N. Burkitt, H. Meffin, and D. B. Grayden, ”Heating of
the eye by a retinal prosthesis: modeling, cadaver and in vivo study,”
IEEE Transactions on Biomed. Eng., vol. 59, pp. 339-345, 2012.

[4] M. Diehl, H. J. Ferrau, N. Haverbeke. ”Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation,” in Nonlinear
Model Predictive Control, Berlin, Heidelberg: Springer, 2009, vol. 384,
pp.391-417.

[5] B. B. Carlos, T. Sartor, A. Zanelli, G. Frison, W. Burgard, M. Diehl,
and G. Oriolo, ”An Efficient Real-Time NMPC for Quadrotor Po-
sition Control under Communication Time-Delay,” Proc. of the 16th
International Conference on Control, Automation, Robotics and Vision
(ICARCV), 2020.

[6] S. Gros, M. Vukov, M. Diehl, ”A real-time MHE and NMPC scheme
for wind turbine control,” in Proc. of the 52nd IEEE Conference on
Decision and Control, 2013.

[7] S. Gros, M. Zanon, ”Data-Driven Economic NMPC Using Reinforce-
ment Learning,” IEEE Transactions on Automatic Control, vol. 65,
issue 2, pp. 636-648, 2020.

[8] J. Lopez-Sanz, C. Ocampo-Martinez, J. Alvarez-Florez; M. Moreno-
Eguilaz, R. Ruiz-Mansilla, J. Kalmus, M. Graeber, and G. Lux,
”Nonlinear Model Predictive Control for Thermal Management in
Plug-in Hybrid Electric Vehicles,” IEEE Transactions on Vehicular
Technology, vol. 66, issue 5, pp. 3632-3644, 2017.

[9] C. T. Wentz, J. G. Bernstein, P. Monahan, A. Guerra, A. Ro-
driguez, E. S. Boyden, ”A wirelessly powered and controlled device
for optical neural control of freely-behaving animals,” Journal of
Neural Engineering, vol. 8, issue 4, 2011.

[10] Y.-K. Lo, R. Hill, K. Chen, and W. Liu, ”Precision control of pulse
widths for charge balancing in functional electrical stimulation,” in
Proc. of 2013 6th International IEEE/EMBS Conference on Neural
Engineering (NER), 2013.

[11] R. Chai, Y. Zhang, ”Adaptive Thermal Management of Implantable
Device,” IEEE Sensors Journal, vol. 19, issue 3, pp.1176 - 1185 2018.

[12] A. Ermis, Y. Lai, Y. Zhang, ”Online Predictive Modeling of the Ther-
mal Effect of Bio-Implants With Spatially Distributed Parameters,”
IEEE Sensors Journal, vol. 21, issue 2, pp. 2013-2023, 2021.

[13] S. Kim, P. Tathireddy, R. A. Normann, and F. Solzbacher, ”Thermal
impact of an active 3-D microelectrode array implanted in the brain,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol.15, no.4, pp.493-501, 2007.

[14] S. C. DeMarco, G. Lazzi, W. Liu, J. D. Weiland, and M. S. Humayun,
”Computed SAR and thermal elevation in a 0.25-mm 2-D model of the
human eye and head in response to an implanted retinal stimulator-
Part I: Models and methods,” IEEE Transactions on Antennas and
Propagation, vol.51, no.9, pp.2274-2285, 2003.

[15] I. Houtzager, J. van Wingerden, and M. Verhaegen, ”Recursive
Predictor-Based Subspace Identification With Application to the Real-
Time Closed-Loop Tracking of Flutter,” IEEE Transactions on Control
Systems Technology, vol. 20, issue 4, pp.934 - 949, 2012.

[16] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering: A
Comprehensive Introduction, John Wiley & Sons, Inc., 2010.

[17] R. H. Byrd, J. C. Gilbert, and J. Nocedal, ”A trust region method
based on interior point techniques for nonlinear programming,” Math-
ematical Programming, vol. 89, pp. 149-185, 2000.

[18] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, ”An interior
algorithm for nonlinear optimization that combines line search and
trust region steps,” Mathematical Programming, vol. 107, pp. 391-
408, 2006.



[19] A. Ermis, Y. Lai, X. Pan, R. Chai, and Y. Zhang, ”Recursive Subspace
Identification for Online Thermal Management of Implantable De-
vices,” Proc. of 57th Allerton Conference on Communication, Control,
and Computing, 2019.


	INTRODUCTION
	SYSTEM DESCRIPTION & MODEL
	Online Identification Algorithm

	NONLINEAR MPC IMPLEMENTATION
	Formulation of the Nonlinear Optimal Control Problem
	Interior Point Algorithm

	SIMULATION STUDIES
	Simulation Setup
	Simulation Results

	CONCLUSION
	References

