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ABSTRACT. The Langlands functoriality conjecture, as reformulated in
the “beyond endoscopy” program, predicts comparisons between the
(stable) trace formulas of different groups G1, G2 for every morphism
LG1 Ñ

LG2 between their L-groups. This conjecture can be seen as a spe-
cial case of a more general conjecture, which replaces reductive groups by
spherical varieties and the trace formula by its generalization, the relative
trace formula.

The goal of this article and its continuation [Sakb] is to demonstrate,
by example, the existence of “transfer operators” betweeen relative trace
formulas, which generalize the scalar transfer factors of endoscopy. These
transfer operators have all properties that one could expect from a trace
formula comparison: matching, fundamental lemma for the Hecke alge-
bra, transfer of (relative) characters. Most importantly, and quite surpris-
ingly, they appear to be of abelian nature (at least, in the low-rank exam-
ples considered in this paper), even though they encompass functoriality
relations of non-abelian harmonic analysis. Thus, they are amenable to
application of the Poisson summation formula in order to perform the
global comparison. Moreover, we show that these abelian transforms
have some structure — which presently escapes our understanding in
its entirety — as deformations of well-understood operators when the
spaces under consideration are replaced by their “asymptotic cones”.

In this first paper we study (relative) characters for the Kuznetsov for-
mula and the stable trace formula for SL2 and their degenerations (as
well as for the relative trace formula for torus periods in PGL2), and we
show how they correspond to each other under explicit transfer opera-
tors.
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1. INTRODUCTION

1.1. Functoriality. The goal of this paper and its continuation,1 [Sakb], is
to demonstrate a local theory “beyond endoscopy”, which indicates that
functorial transfer between trace formulas is governed by “transfer opera-
tors” that have a certain structure: First, in the low-rank cases that we are
examining, these operators can be explicitly described in terms of Fourier
transforms and other relatively innocuous operators (such as multiplica-
tion by an automorphic character) which, in principle, are amenable to ap-
plication of the Poisson summation formula and, hence, to a global com-
parison. Secondly, these transfer operators are deformations of completely
understood transfer operators that one obtains when letting the spaces de-
generate to their asymptotic cones (or boundary degenerations). In the process,
we develop the local theory behind “non-standard” comparisons of trace
formulas that have appeared in the literature, namely in Rudnick’s and
Venkatesh’s theses [Rud90, Ven04], revealing a structure that is not evident
in the analytic number theory approach. Our results should also be re-
lated to Herman’s trace-formula-theoretic proof of the functional equation
of the standard L-function of GL2 [Her12] (which should correspond to the
local Godement–Jacquet theory on the Kuznetsov formula, developed by

1Any references to sections or equations numbered 6 or above refer to [Sakb].
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Jacquet in [Jac03]), and Altug’s theory of Poisson summation for the stable
trace formula of SL2 [Alt15, Alt17, Alt20]. Most of the results of this paper
were announced, without proofs, in [Sak19b].

“Functoriality”, here, is understood in the generalized sense, in the tra-
dition of Jacquet, that includes spherical varieties in addition to reductive
groups (which are a special case). Thus, the trace formulas compared are
relative trace formulas, which include the trace formula in the group case.
With the exception of Venkatesh’s thesis, that we revisit, the functorial lifts
that underlie our comparisons correspond to an isomorphism of L-groups. To
the reader eager to see non-trivial cases of functoriality between reductive
groups, this might seem, and is, a disappointment. However, the “relative”
generalization demonstrates that the problem of functoriality is highly non-
trivial already for the identity maps of L-groups. What hopes do we have
to tackle the general problem if we don’t understand this basic case? More-
over, the examples collected here demonstrate the central role played by
the Kuznetsov formula in any successful “beyond endoscopy” comparison
that I know. This fact is reinforced by [Sak21], which compares spaces of
test measures of any rank-one relative trace formula to test measures for
the Kuznetsov formula. Although it is too early to pass verdict on this, it
may just be that the idea of directly comparing stable Arthur–Selberg trace
formulas is infeasible, and one has to move to the “relative” setting of the
Kuznetsov formula in order to prove the functoriality conjecture; this idea
appeared early on in the short history of “beyond endoscopy”, in a letter of
Sarnak to Langlands [Sar].

Our methods of proof are quite classical, and rely heavily on Rankin–
Selberg theory. Not surprisingly, in retrospect, several different methods
to study the same problem converge to the same, when viewed as a com-
parison between the appropriate trace formulas. The hope is that this new
trace formula-theoretic approach will generalize to cases where Rankin–
Selberg theory and other techniques do not. Again, in rank one this will be
confirmed in [Sak21].

1.2. Overview. The relative trace formula is a distribution (with a geomet-
ric and a spectral expansion) on the adelic points of a stack. In this paper
we work over a local field F , and only with relative trace formulas attached
to quotients of the form rX ˆ X{Gdiags, where X is a homogeneous spher-
ical G-variety of low rank. We will allow the case X “ pN,ψqzG, that
is, the Whittaker case of the variety NzG, equipped with a generic char-
acter of the maximal unipotent subgroup N , except that in that case we
will take the character to be ψ´1 on the second copy of X . The Arthur–
Selberg trace formula corresponds to the case X “ H , a reductive group,
under the action of G “ H ˆ H by left and right multiplication; in that
case, rX ˆ X{Gdiags “ rHH s, by which we denote the quotient of H by H-
conjugacy. In the general case where X “ HzG, we have an isomorphism
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rX ˆ X{Gdiags “ rHzG{Hs, and we will use these two ways to represent
this quotient interchangeably.

In the entire paper we work over a local field F . The variety X is as-
sumed to be quasi-affine, and let us denote by CX the invariant-theoretic
quotient X ˆ X � G “ specF rX ˆ XsG (from now on, G will always be
understood to be acting diagonally on such a quotient). The space

SpX ˆX{Gq

of stable test measures for the associated relative trace formula is the push-
forward of the Schwartz space of measures on X ˆ X to CX . (In the Whit-
taker case, we need to define a “twisted push-forward”; see §2.2.1.)

There is a notion of stable relative character JXΠ attached to an (L-packet Π
of) irreducible representation(s) of G, generalizing the stable character of a
reductive group; it is a functional on SpX ˆ X{Gq. If there is a non-zero
such relative character, we say that Π is X-distinguished. A morphism of
L-groups

LX1 Ñ LX2

of two spherical varieties X1, X2 should, according to the relative (local)
functoriality conjecture, induce a map

tX1-distinguished L-packetsu ÝÑ tX2-distinguished L-packetsu,

at least for those L-packets that participate in the corresponding Plancherel
formulas (theXi-tempered ones). A basic proposition of “beyond endoscopy”
is that the resulting map of stable relative characters

JX1
Π1

ÞÑ JX2
Π2

should be realized as the adjoint of a “transfer operator” between test mea-
sures:

T : SpX2 ˆX2{G2q Ñ SpX1 ˆX1{G1q.

In the group case, this operator has been studied by Langlands [Lan13] and
Johnstone [Joh] when X1 is a torus and X2 is GLn. Ideally, this operator
should be used in a global comparison of trace formulas, to establish the
corresponding functorial transfer of automorphic representations, but it is
not clear at this moment how to do that in the context of the Arthur–Selberg
trace formula.

The goal of this paper and [Sakb] is to study such transfer operators T ,
and to prove that they have some structure. In our comparisons, X2 will
always be the Whittaker model for a group G˚ (so that LX2 “ LG

˚, and
SpX2 ˆ X2{G˚q “ SpN,ψzG˚{N,ψq is the space of test measures for the
Kuznetsov formula), and X1 will be a different spherical variety X for a
group G. In all cases but one (the study of Venkatesh’s thesis in Section 10),
we will have LX “ LG

˚. The transfer operator that we construct originates
from an enlargement S´

LX
pN,ψzG˚{N,ψq of the space of test measures for
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the Kuznetsov formula. This is to be expected, because in a global compar-
ison where the following diagram would commute:

S´
LX

pN,ψzG˚{N,ψq
T →→

RTF
→→

SpX ˆX{Gq

RTF
↙↙C

(1.1)

(where RTF denotes the relative trace formula functional), the spectral side
of the relative trace formula for X is, roughly (and conjecturally, cf. [SV17,
§17]), an integral over X-distinguished automorphic representations π of
certain quotients of L-values of the form LXpσπq

Lpσπ ,Ad,1q
, where σπ is an automor-

phic representation of G˚ of which π is a lift, and LX is a certain L-value of
σπ, while the corresponding term for the Kuznetsov formula with standard
test functions is just 1

Lpσπ ,Ad,1q
— thus, the factor LXpσπq has to be inserted.

The enlargement of the standard space of test measures should also be ex-
pected for representation-theoretic reasons (both global and local), because
the spectrum of the space X is typically larger, containing, for example,
the trivial representation, which is not present on the Kuznetsov side with
usual test functions, but is added in this larger space. (This feature already
appeared in [Sak13, Sak19a], where the first comparison of this type was
performed, both locally and globally.) This enlargement of the Schwartz
space (see §2.2.4) will be done in a somewhat ad-hoc way; I do not yet
know a good way to characterize the enlarged space S´

LX
pN,ψzG˚{N,ψq

for any L-value LX , but at least, in the non-Archimedean case, it should
contain the image of the “generating Whittaker measure of the local L-
value LX”, that measure (or function) whose Poincaré series, at the unram-
ified level, extracts the desired L-value from each automorphic representa-
tion (at least, formally). In approaches to “beyond endoscopy” expressed in
classical language, this non-standard Poincaré series corresponds to “a se-
ries of Kuznetsov formulas” with varying test functions, closely modelling
the Dirichlet series of the desired L-value LX .

We may also let our varieties degenerate to their asymptotic cones (or
boundary degenerations). For the space of Whittaker measures SpN,ψzG˚q

this means letting the character ψ become trivial. For the spherical variety
X , the asymptotic cone XH is obtained by considering a graded version of
its coordinate ring; for example, when X “ SL2, we have XH “ the variety
of 2 ˆ 2-matrices of rank one. We will explain that, in this case, there is a
very natural transfer operator

S˘
LX

pNzG˚{Nq
TH →→ S˘pXH ˆXH{Gq
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between suitable spaces of test measures that we denote by S˘, given as a
composition of multiplicative Fourier convolutions Fλ̌,s:

Fλ̌,sfpξq :“

ż

Gm

fpλ̌pxq´1ξqψpxq|x|sdˆx. (1.2)

Here, f is a measure on a “universal Cartan” AX “ AG˚ , and λ̌ is a cochar-
acter into that torus. Notice that we habitually denote the set of F -points
of a variety X simply by X , so an integral over Gm just means an integral
over Fˆ.

To summarize, we have a good understanding of “degenerate” transfer
operators TH, and we would like to study the transfer operators T of the
original problem. The findings of this paper can be summarized as follows:

Main Conclusions. (1) In a range of examples, the transfer operators T can
be calculated explicitly, and are linear isomorphisms

T : S´
LX

pN,ψzG˚{N,ψq
„ →→ SpX ˆX{Gq

satisfying the fundamental lemma (i.e., sending the “basic vector” of one
space to the “basic vector” of the other, and also the “fundamental lemma
for the Hecke algebra”).

(2) The transfer operators computed are indeed the “correct” ones for func-
toriality: the pullbacks of relative characters for X ˆ X{G are relative
characters for the Kuznetsov trace formula of G˚.

(3) They are deformations of the degenerate transfer operators TH, in the
sense that they are given by similar-looking formulas.

(4) They are amenable to a global Poisson summation formula, in the
sense that they are given by multiplicative Fourier convolutions and mul-
tiplication by factors that are trivial on global rational points, thus they
seem to fit in a commutative diagram like (1.1).

I do not perform such a global comparison here, but I expect that the
methods employed in [Sak19a] would apply to all cases discussed here.

The above conclusions are not restricted to the transfer operators that
should be responsible for the functoriality map corresponding to

LX2 Ñ LX1,

but also to the so-called Hankel transforms that are responsible for the func-
tional equation of certain L-functions. These are addressed in the contin-
uation to this paper, [Sakb]. While transfer operators have the property
that they pull back relative characters to relative characters normalized in
a distinguished way:

T ˚JX1
Π1

“ JX2
Π2
, (1.3)
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the Hankel transforms are transforms between enlarged spaces of test mea-
sures of the same relative trace formula (for us, always the Kuznetsov for-
mula), but with the enlargement corresponding to dual L-functions:

Hr : S´

Lprq
pN,ψzG{N,ψq

„ →→ S´

Lpr_q
pN,ψzG{N,ψq

and having the property that they act on relative characters by the gamma
factor of the local functional equation:

H˚
rJΠ “ γprqJΠ. (1.4)

For example, when G “ GLn and r “ Std, the standard representation
of the dual group, the space S´

Lprq
pN,ψzG{N,ψq is just the image of the

Schwartz space SpMatnq of the variety of n ˆ n-matrices, and the Hankel
transform HStd is the descent of Fourier transform, computed by Jacquet in
[Jac03]. In this paper, we will compute the Hankel operator HSym2 for r “

the symmetric square L-function of GL2, and verify that both HStd and HSym2

satisfy the Main Conclusions listed above.

1.3. Index of main results. References to chapters 6 and above refer to the
continuation of this paper, [Sakb]. The main results of this series of two
papers are:

‚ Theorem 4.2.1, on the comparison between the Kuznetsov formula
and the stable trace formula for SL2. It is complemented by Theo-
rem 4.3.1 which performs the same comparison for their asymptotic
cones.

‚ Similarly, Theorem 5.0.2 performs the asymptotic cone comparison
for the transfer between the Kuznetsov formula for PGL2 and the
relative trace formula for the quotient GmzPGL2 {Gm. The actual
transfer between these two quotients was performed earlier in [Sak13].

‚ Theorem 9.0.1, on the Hankel transform responsible for the func-
tional equation of the symmetric-squareL-function of GL2 (or, more
correctly, of GmˆPGL2). It is complemented by Theorems 9.6.1 and
9.6.2 that compare this Hankel transform (and the one for the stan-
dardL-function) to the corresponding transforms on the asymptotic
cone.

‚ Theorems 10.3.2 and 10.4.3, which describe the transfer from the
Kuznetsov formula to the endoscopic parts of the trace formula
for SL2, and Theorem 10.1.1, which describes the transfer from the
Kuznetsov formula of SL2 to the Schwartz space of a torus.

1.4. Example: Comparison between the Kuznetsov formula and the sta-
ble trace formula for SL2. In Section 4 (with some proofs to be postponed
until Section 9) I develop the local theory behind Rudnick’s thesis [Rud90]
(and its potential generalization to non-holomorphic automorphic forms).
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Here, the goal is to obtain a transfer operator

T : S´
LX

pN,ψzG{N,ψq
„
ÝÑ Sp

G

G
q

between the spaces of test measures for the Kuznetsov formula and the
stable trace formula for G “ SL2. The operator should have the property
that its adjoint takes the stable character ΘΠ of any tempered L-packet Π
to the relative character (Bessel distribution) JΠ of the Kuznetsov formula,
thus realizing the functoriality map corresponding to

LX1
„
ÝÑ LX2,

where X1 “ SL2 and X2 “the Whittaker model of SL2.
I show that such an operator exists, if we take an enlarged space of test

measures S´
LX

pN,ψzG{N,ψq corresponding to LX “the adjoint L-function
of SL2 evaluated at 1; what this means, at the very least, is that S´

LX
pN,ψzG{N,ψq

will contain the image of the unramified Whittaker measure which corre-
sponds to the coefficients of the local Dirichlet series for LpAd, 1q — see

§2.2.4. Explicitly, if we choose representatives
ˆ

´ζ´1

ζ

̇

for generic N ˆ

N -orbits on G, this is the usual space of test measures for the Kuznetsov
formula, except that, instead of being of rapid decay as ζ Ñ 8, the test
measures will be equal to Cpζ´1qdˆζ, where C is a smooth function at zero.

Moreover, I show that this operator has a very simple form: Notice that
the elements of S´

LX
pN,ψzG{N,ψq are measures on the one-dimensional

affine space NzG � N (where we use the coordinate ζ above). Similarly,
the elements of SpGGq will also be measures on an one-dimensional space,

namely the Chevalley quotient
G

G
, where we take the coordinate to be the

trace. It turns out that the transfer operator T is given by the multiplicative
Fourier convolution FId,1, discussed above, applied to measures on the
affine line (under the action of the multiplicative group on the coordinates
that we fixed).

The Fourier transform of Rudnick’s thesis also appears, in a slightly
different and certainly more general form, in the thesis of Altug [Alt15,
Alt17, Alt20]. It also appears in a theorem of Soundararajan and Young
[SY13, Theorem 1.3] that is very close to the result that I prove here (it
is a global version of the comparison, restricted to hyperbolic conjugacy
classes). On the other hand, the spectral side of the comparison between
the Kuznetsov formula and the trace formula appears, in the setting of com-
plex loop groups and D-modules, features in recent work of Ben-Zvi and
Gunningham in [BZG].

1.5. Scattering theory and asymptotics. Why should Fourier transforms

on the line be of any relevance? Are the spacesNzG�N or
G

G
vector spaces,
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in any sense? This is probably a misleading point of view, which does not
seem to lead to correct conclusions in higher rank. What I show here is
that there is another, conceptual way to understand these quotient spaces,
or at least their “limits” when we replace the spaces by their asymptotic
cones. Most of the present, first part of this series of two papers is de-
voted to developing the harmonic analysis necessary in order to produce
this conceptual explanation of the transfer operators.

That is, we will replace the non-trivial character ψ of N by the trivial
character, and we will replace the quotient G

G “ GdiagzpG ˆ Gq{Gdiag by
GdiagzpGH ˆ GHq{Gdiag, where GH, the asymptotic cone of SL2, is the va-
riety of 2 ˆ 2 matrices of determinant one. Notice that the general setting
of the relative trace formula is essential here, even when we are studying
the usual trace formula: to study its “asymptotics”, we need to replace the
group by a different space, and view the adjoint quotient of the trace for-
mula as a special case of a quotient space for the relative trace formula.

When we do that, the quotientsNzG{N andGdiagzpGH ˆGHq{Gdiag nat-
urally become embeddings of the same torus A » Gm (the universal Cartan
of SL2). Character theory on these degenerate spaces is particularly simple
(because they are essentially induced from a torus), and we use local har-
monic analysis (scattering theory, see Section 3) to explain that the correct
transfer operator (the one that behaves in a prescribed way with respect to
characters) between suitable spaces of test measures

TH : S˘
LX

pNzG{Nq
„
ÝÑ SpGdiagzpGH ˆGHq{Gdiagq

is given by the multiplicative Fourier convolution FId,1. Thus, geometri-
cally T is given by the same formula as TH, if we choose appropriate coor-
dinates. (I should mention that I do not have a conceptual reason for this
on-the-nose equality; in fact, it fails in other cases, as we will see, although
one operator is still a deformation of the other.)

I mention that exactly the same phenomenon is true for the comparison
between the Kuznetsov formula for PGL2 and the relative trace formula for
GmzPGL2 {Gm, which was developed in [Sak13]. I briefly revisit this case
in Section 5.

1.6. Open problems. I hope that the present paper will raise more ques-
tions than it settles. Let me list some of them:

(1) LetG be a quasi-split group, and ψ a generic character of a maximal
unipotent subgroup N . Let r : LG Ñ GLpV q be a representation of
its L-group, not necessarily irreducible. It does not harm to assume
that there is a character B of G whose dual, composed with r, is
the canonical (central) cocharacter Gm Ñ GLpV q. Attached to these
data there should be a canonical space D´

Lpr, 1
2

q
pN,ψzG{N,ψq of test

half-densities for the Kuznetsov formula, containing (in the non-
Archimedean case) the image of the generating series of the local
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unramified L-value Lpr, 12q, and such that the integrals
ż

fJπ|B|s

of elements f P D´

Lpr, 1
2

q
pN,ψzG{N,ψq against the relative characters

Jπ of irreducible representations admit a Godement–Jacquet the-
ory: for example, their quotients by the local L-function Lpr, 12 ` sq
should be entire in s, and there should be a “Hankel transform”

Hr : D´

Lpr, 1
2

q
pN,ψzG{N,ψq

„
ÝÑ D´

Lpr_, 1
2

q
pN,ψzG{N,ψq

satisfying a local functional equation involving the associated local
γ-factors.

None of these properties completely characterizes the space. It
would be desirable to have a spectral characterization (possibly by
means of a local relative trace formula), as well as a geometric one.
If r is irreducible, this would be the image of the Schwartz space
DpGrq or the L-monoid of Ngô [Ngô14], which also has not been
defined yet. It is interesting to ask whether it is easier to define this
space at the level of the Kuznetsov formula. Although the defini-
tions of such spaces that I give in this paper are somewhat ad-hoc,
one may observe that at least for r “ many copies of the standard
or the symmetric-square representation of GL2, the definition of
D´

Lpr, 1
2

q
pN,ψzG{N,ψq seems to be quite straightforward (see §2.2.4),

while monoids are not well-suited to handle multiplicity.
(2) Once local transfer operators or Hankel transforms are available,

and have a form that “in principle” satisfies a Poisson summation
formula, it would be desirable to develop such a summation for-
mula, which would amount to an identity of relative trace formu-
las. Such an application was developed in [Sak19a], and I do not see
serious obstacles to adapting the methods to the transforms of the
present paper; however, streamlining the arguments for the global
application would be important in light of future developments,
and would enhance our understanding of the nature of orbital in-
tegrals close to singularities (and the behavior of those under non-
standard transfer operators). For example, one could try to upgrade
the local Hankel transform of (6.3) to a trace formula-theoretic proof
of the functional equation of the symmetric-square L-function.

(3) Although the fundamental lemma for the Hecke algebra is proven
in this paper for all transfer operators and Hankel transforms con-
sidered, it would be desirable to have a geometric proof of the fun-
damental lemma, as in the endoscopic case [Ngô10]. Such a proof
would apply, in particular, to the more general transfer operators
considered in the paper [Sak21], where there is ongoing work of
Johnstone and Krishna on the fundamental lemma.
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(4) Most important of all, though, is to understand the nature of trans-
fer operators and Hankel transforms, and how they generalize to
higher rank. In this paper, I show that these operators are “de-
formations” of abelian Fourier convolutions of the corrresponding
transforms on the horospherical boundary degenerations, which are
completely understood. In examples of rank one, discussed in Sec-
tions 4 and 5, they are actually equal to those Fourier convolutions,
for a suitable choice of coordinates; this is generalized to all rank
one varieties in [Sak21]. The Hankel transforms, however, discussed
in Section 9, require intermediate “correction factors” that I do not
understand. This is also the case for transfer operators in higher
rank, which I have computed for some more examples jointly with
Chen Wan, generalizing the calculation of Section 4. Understanding
the nature of these deformations is, in my mind, the quintessential
issue in order to make progress towards “beyond endoscopy” in
higher rank.

Regarding Hankel transforms, Ngô has recently formulated a con-
jecture, stunning in its simplicity, about the kernel of the transform
giving rise to the functional equation of any L-function, as an in-
variant distribution on the group [Ngô18]. It would be desirable to
know what transformation it induces at the level of the Kuznetsov
formula.

1.7. Notation. We work over a local (locally compact) field F . Whenever
no confusion arises, I denote the set of F -points of a variety X simply by
X ; for example, an integral of the form

ş

Gm
denotes an integral over the

group Fˆ. When discussing (Langlands) dual groups, I will similarly de-
note them as algebraic groups, e.g.: Gm is the dual group of Gm; it will be
clear from the context if we are referring to a group or its dual.

The categorical quotient specF rXsG of an affine or quasi-affine variety
X by a G-action will be denoted by X � G. When X is a group and G a

subgroup acting on X by conjugacy, I will denote this quotient by
X

G
(and

will use X
G as a formal notation for what is denoted by X{G below).

The notation X ˆG Y will denote the quotient of a product X ˆ Y of
two G-varieties by the diagonal action of the group G. The notation will
be used when G acts freely, and the quotient exists as a variety; only when
explicitly discussing stacks will this notation be used for the quotient in the
stacky sense.

For a product of spacesXˆY , I will sometimes use the notation LXbLY
to indicate the tensor product of two vector bundles, one pulled back from
X and the other from Y . I will sometimes use similar notation for operators
(e.g., S b T ), to stress that each is applied to a different variable. “Vector
bundles” (and especially “line bundles”) will sometimes refer to complex
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vector bundles over the F -points of a variety; they correspond to the l-
sheaves of Bernstein and Zelevinsky, in the non-Archimedean case, and to
complex vector bundles for the smooth topology, in the Archimedean case;
in particular, in both cases the notion of smooth sections is defined. Typi-
cally, at least in the Archimedean case, there will also be a natural notion of
“polynomial growth” for sections of these bundles (i.e., they will be Nash
bundles on Nash manifolds, cf. [AG08]). When this structure is clear from
the setting, I will be using it without explanation.

The space of (C-valued) Schwartz measures on the F -points of a smooth
variety X will be denoted by SpXq. These are just smooth, compactly sup-
ported measures in the non-Archimedean case; in the Archimedean case,
they are smooth measures which decay rapidly, together with their poly-
nomial derivatives, cf. [AG08]. (For ease of language, we will often not
differentiate between the Archimedean and non-Archimedean cases, and
say “rapid decay” for both; the reader should interpret this as “compact
support” in the non-Archimedean case.) These are sections of a cosheaf
for the semi-algebraic topology on X (or, for the usual topology in the non-
Archimedean case); at a few points, I will talk about the stalks over a closed
subset Y , which are simply defined as the quotient SpXq{SpX ∖ Y q. More-
over, at a few points I will need to work in the more general context of
stacks, instead of varieties. The appropriate notion of a Schwartz space of
measures, in this context, was introduced in [Sak16], but I make an effort
to describe them explicitly in the examples at hand, so that the reader will
not require this background.

For smooth varieties, it also makes sense to talk about spaces of Schwartz
functions or half-densities; those will be denoted by FpXq, resp. DpXq.
Of course, if dx is a nowhere vanishing smooth positive measure of poly-
nomial growth (such as a Haar measure), we have SpXq “ FpXqdx “

DpXqpdxq
1
2 .

The image of the push-forward map from SpXq to measures on X � G
will be denoted by SpX{Gq. This is a slight departure from notation used in
[Sak16] for the Schwartz space of the quotient stack rX{Gs, so, whenever
I actually need a more stacky version of such a Schwartz space, I will be
using notation of the form SprX{Gsq (and will explain what I mean by it,
in each case). Notice that SpX{Gq is different from SpX � Gq — the latter
is simply the usual Schwartz space of the affine variety X � G (assumed
smooth), and it is typically, but not always, contained in SpX{Gq. One
can typically translate from measures to functions (by choosing appropriate
Haar measures), and then the space SpX{Gq corresponds to the space of
“stable orbital integrals” for the G-action on X .

We broaden these notions (and notations), to include spaces of the form
FppH,χqzGq, when χ is a complex character of a subgroup H of G; in
this case, this notation means pH,χq-equivariant functions on G, which are
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smooth and of compact support (in the non-Archimedean case) or rapid de-
cay (in the Archimedean case) modulo H . The character χ being of “poly-
nomial growth” means that the notion of rapid decay modulo H makes
sense, by choosing semi-algebraic local sections of the map G Ñ HzG. Ele-
ments of FppH,χqzGq can also be thought of as Schwartz sections of a com-
plex line bundle Lχ over HzG; we can, similarly, consider Schwartz mea-
sures or half-densities. For a characterψ of a maximal unipotent groupN of
G, we will be using the notation SpN,ψzG{N,ψq for the space of “Schwartz
test measures for the Kuznetsov quotient of G”, see §2.2.1. The appropriate
way to think of those is as measures valued in a complex line bundle over
the stack rNzG{N s, but here we just understand them as measures on the
affine quotient NzG � N , by some conventions that we explain in §2.2.1.
Sometimes, we will treat the symbol pN,ψzG{N,ψq as a “space”, e.g., we
will be talking about push-forward of measures to that “space”, meaning
the twisted push-forward to NzG �N that is described in that section.

All of these Schwartz spaces will be viewed as abstract vector spaces, in
the non-Archimedean case, and as (nuclear) Fréchet spaces, in the Archimedean
case. The Fréchet structure is the usual one (see [AG08]) for SpXq, while
SpX{Gq will inherit the quotient topology. By b̂ I denote the completed
tensor product of nuclear Fréchet spaces; the completion should be ig-
nored in the non-Archimedean case, as should any references to topology.
(For convenience of language, I do not always differentiate between the
Archimedean and the non-Archimedean case.) The space VG of coinvari-
ants of a Fréchet representation of a group G will, by definition, be the
completion of the algebraic coinvariant space, that is, the quotient of V by
the closure of the span of vectors of the form v ´ g ¨ v.

In the Archimedean case, the appropriate category of Fréchet G-repre-
sentations to consider is that of Fréchet representations of moderate growth,
or F -representations, in the language of [BK14]: these are countable inverse
limits of G-representations, i.e., they have a complete system of seminorms
for which the G-action is continuous. I point the reader to [BK14] for more
details, and for the corresponding “smooth” notion of SF -representations.

We fix throughout a non-trivial unitary character ψ of the additive group
F . If F is non-Archimedean, we will be assuming that its conductor is the
ring of integers o. We also fix a measure dx on F which is self-dual with
respect to ψ; this induces a measure |ω| on XpF q, for every volume form ω

on a smooth variety X over F . We will also use the measure dˆx :“ dx
|x|

on
the multiplicative group Fˆ. When F is non-Archimedean, dxpoq “ 1. The
absolute value of any local field is defined to be compatible with the one of
the base field under the norm map; in particular, the absolute value on C is
the square of the usual one.

We write f ! g for two positive functions on a space X to indicate that
there is an absolute constant C such that fpxq ď Cgpxq.
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For a representation V of a group G, and a measure h on G (or, more
general distributions in some settings, see §2.1.3), we write h ¨ v for the
integral of the G-action against h:

h ¨ v :“

ż

G
hpgqpg ¨ vq,

whenever this makes sense. When G acts on a space X (say, on the right),
the action on functions, half-densities or measures will be the regular one
(which is a left action); in particular,

h ¨ fpxq “

ż

G
hpgqfpxgq.

There is also another, right action in this case, the convolution action, cor-
responding to the push-forward under the action map X ˆ G Ñ X . The
two are related by

h ‹ fpxq “

ż

G
hpg´1qfpxgq “ h_ ¨ fpxq,

where h_pgq “ hpg´1q.
For a torus T , I denote by T̂ the group of its unitary (complex) characters

(that it, characters of T pF q), and by T̂C its complexification, the group of all
complex characters. The notion of “complexification” makes sense, here,
because T̂ is naturally a real algebraic variety (with infinitely many com-
ponents, in general), if F is non-Archimedean, and a real analytic subgroup
of a complex analytic group T̂C, when F is Archimedean. I point the reader
to §2.1.1 for more details.

When the torus T acts on a space X , at various points in the paper I de-
fine Mellin transforms T̂C Q χ ÞÑ f̌pχq of functions, half-densities or mea-
sures f on X . I note that my parametrization of Mellin transforms is such
that the map f Ñ f̌pχq is pT, χq-equivariant (sometimes, for a normalized
action); this is inverse to the classical definition of Mellin transform of a
function on Rˆ

` as f̌psq “
ş

fpxqxsdˆx. By this convention, if h is a measure
on T with Mellin transform ȟ, and f is a measure on the space X , we have

h ‹ f~pχq “ ȟpχqf̌pχq

for the convolution action, and

h ¨ f~pχq “ ȟpχ´1qf̌pχq

for the regular action. I caution that this convention for Mellin transforms
is also inverse to the conventions about Satake transforms of split tori over
non-Archimedean fields; if we identify the identity component of T̂C with
the (complex points of the) Langlands dual torus Ť , then the Satake trans-
form of a measure h on T pF q{T poq is equal to what we denote by ȟp‚´1q|Ť .

For a reductive group G, its universal Cartan, or simply its Cartan AG is
not a subgroup, but an abstract torus, defined as the quotient of any Borel
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subgroup B by its unipotent radical N . It is unique up to unique isomor-
phism, and defined over F even when B is not. It comes equipped with
a based root datum; in particular, the “positive” and “negative” roots of
AG are well-defined subsets of its character group, and similarly for co-
roots. We will typically use additive notation for weights and coweights
of a torus, so when we need to think of them as morphisms to or from the
multiplicative group Gm, we may use exponential notation, like eα.

The Cartan of G is the appropriate basis for the definition of the dual
group: the connected dual group Ǧ of G contains a canonical Cartan which
is dual to AG, and the L-group LG contains the L-group of AG. Given
a representation r of LG, the associated local Langlands L-function of an
irreducible representation π of G will be denoted by

Lpπ, r, sq.

For example, when G is a torus and λ̌ : Gm Ñ G a cocharacter (thought
of as a character of the dual torus), Lpχ, λ̌, sq stands for the local Dirichlet
L-function Lpχ ˝ eλ̌, sq. This notation for Dirichlet L-functions will also be
used in this paper, and we will denote the local Dedekind zeta function of F
simply by ζpsq. We will sometimes also use alternative, standard notation
for some L-functions, e.g., Lpπ1 ˆ π2, sq, LpSym2pπq, sq etc., for the Rankin–
Selberg, resp. the symmetric-square L-function of GLn. If χ is a multiplica-
tive character, we may also use expressions of the form Lpχ ˆ Sym2pπq, sq
for the L-function that arises from the stated (Sym2, in this example) rep-
resentation of the dual group of G, tensored by the scalar action of Gm “

the dual group of Gm. We denote by | ‚ | the absolute value character of
Gm (that is, of Fˆ), so, in this notation, Lp| ‚ |s ˆ Sym2pπq, 0q is the same as
LpSym2pπq, sq.

For a large part of the paper (from Section 8 on) we will consistenly be
using A to denote the Cartan of SL2, and Aad for the Cartan of PGL2. We
will consistently be identifying these groups with Gm, the former via the
positive half-root character, and the latter via the positive root character.
These identifications translate the natural map A Ñ Aad to the square map
Gm Ñ Gm. Sometimes, when it is clear which of these two groups we
are talking about, we will be using these identifications to write their L-
functions as Dirichlet L-functions, that is:

for a character χ of the group A, Lpχ, sq :“ Lpχ, α̌, sq;
for a character χ of the group Aad, Lpχ, sq :“ Lpχ, α̌2 , sq.

Since these notations are not compatible with the pullback map of charac-
ters, we will be careful not to use them when both groups are in play.

The notation γpπ, r, s, ψq will be used to denote the factors of the local
functional equation of an L-function, cf. §2.1.4 and §9.5. It is related to the
L- and epsilon-factors by

γpπ, r, s, ψqLpπ, r, sq “ ϵpπ, r, s, ψqLpπ, r_, 1 ´ sq, (1.5)
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where r_ is the dual representation of r, so Lpπ, r_, 1 ´ sq “ Lpπ̃, r, 1 ´ sq.
Here and throughout, π̃ denotes the admissible dual (contragredient) of a
smooth, admissible representation π.

The notion of “universal Cartan” generalizes from groups to spherical
varieties. If X is a spherical variety (i.e., a normal connected variety with
an open orbit X̊ for the Borel subgroup B) under the action of a reductive
group G, the quotient X̊ � N (where N is the unipotent radical of B) has
an action of AG “ B{N , that factors through a faithful action of a quotient
AX of AG — this is the Cartan of X . For example, for X “ H a reductive
group under the G “ H ˆ H-action (which we define to be a right action,
i.e., x ¨ ph1, h2q :“ h´1

1 xh2), by the Bruhat decomposition one sees thatAX is
the quotient of AG “ AH ˆAH by the subgroup of elements pwa, aq, where
a P AH and w is the longest element of the Weyl group.

This definition creates some inconvenience for a horospherical variety (=one
where stabilizers contain maximal unipotent subgroups), like X “ NzG,
because the natural action of A “ B{N by G-automorphisms on X is not
compatible with the above map A Ñ AX (which in this case is just an iso-
morphism), but is conjugate to it by the longest element of the Weyl group. To
resolve this notational problem, we consistenly define theA-action onNzG
to be the twist of the obvious one by the longest Weyl group element, that
is, if a P A then we define

a ¨Nx :“ Nbx, (1.6)

where b P B represents the element wa in A “ B{N . We extend this conven-
tion to all horospherical varieties. This is an unfortunate nuisance, but it
is more benign than having a different action of A on the variety X , and a
different one on its universal Cartan AX .

Finally, I mention that actions of groups on spaces of functions or mea-
sures on G-spaces will often be normalized, in order to be unitary. (Ac-
tions on half-densities need no such normalization, which makes them
particularly convenient.) However, in order for the reader not to have to
keep track of normalizations, I have made sure that they are not needed
in the statements of the main theorems (unless explicitly stated otherwise).
Similarly, the notation is adapted to unnormalized actions, even if we are
working with normalized ones. For example, in §9.2 we introduce cer-
tain spaces of test half-densities and measures, D´

LpSym2, 1
2

q
pN,ψzG{N,ψq

and S´

LpSym2,1q
pN,ψzG{N,ψq, for the Kuznetsov formula of the group G “

Gm ˆ SL2; the difference in notation, LpSym2, 12q vs. LpSym2, 1q, has to do
with their images under unnormalized push-forward (integration over Gm)
to the Kuznetsov formula of SL2, despite the fact that in §9.3, and else-
where, we work with a normalized version of this push-forward. The ana-
log of this in the more familiar setting of Tate’s thesis would be the spaces
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of Schwartz half-densities and measures onA1, where a Tate zeta integral
ż

fpaq|a|s

against a Schwartz measure f would be a holomorphic multiple of the local
zeta function ζps` 1q, while a Tate zeta integral

ż

φpaq|a|spdˆaq
1
2

against a Schwartz half-density φwould be a holomorphic multiple of ζps`
1
2q; hence, the analogous notation would be SLpId,1qpGmq for SpA1q, and
SLpId, 1

2
q for DpA1q.
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2. BASIC TOOLS: MULTIPLICATIVE FOURIER CONVOLUTIONS,
NON-STANDARD KUZNETSOV TEST MEASURES

The tools presented in this section were also introduced in [Sak19b]. I
summarize them briefly for the sake of completeness.

2.1. Mellin transforms and multiplicative Fourier convolutions.

2.1.1. Mellin transforms. Let T be a torus over F . The unitary dual of T “

T pF q will be denoted by Tp , and its entire character group by TpC. The char-
acter group has a natural structure of a complex manifold and, if F is non-
Archimedean, of a complex algebraic variety (with infinitely many compo-
nents). The structure is automatically determined by its restriction to the
identity component, which is the character group of ΛT :“ the image of the
map

logT : T pF q Ñ tR :“ HomZpHompT,Gmq,Rq

t ÞÑ pχ ÞÑ log |χptq|q. (2.1)
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This group is discrete, in the non-Archimedean case, so the identity com-
ponent of TpC is the complex torus with coordinate ring equal to the group
ring of ΛT .

In the Archimedean case, we have ΛT “ tR, and the identity component
of TpC can be identified with the dual t˚C “ HompT,Gmq b C, by sending an
element s in the latter to the character χsptq “ e⟨logT t,s⟩. The space t˚C is the
direct sum of R-vector subspaces:

t˚C “ t˚R ‘ it˚R,

with the imaginary summand corresponding to the identity component of
Tp . By a “bounded vertical strip” we will mean the preimage of a compact
subset of the real subspace under the projection map.

In the Archimedean case there is a canonical splitting of the sequence

1 Ñ T0 Ñ T pF q Ñ tR Ñ 1, (2.2)

where T0 is the compact group ker logT , whose image coincides with the
subgroup generated by the subgroups λ̌pRˆ

`q, where λ̌ ranges over the
cocharacters into T . This identifies the character group

TpC » T0x ˆ t˚C. (2.3)

Notice that the character group T0x is discrete.
The Mellin transform of a measure f P SpT q is the function

TpC Q χ ÞÑ

ż

T
fpaqχ´1paq. (2.4)

We recall the Paley–Wiener theorem:

2.1.2. Theorem. In the non-Archimedean case, Mellin transform defines an iso-
morphism between SpT q and the space of polynomial functions on TpC supported
on a finite number of components.

In the Archimedean case, under the isomorphism (2.3), it defines an isomor-
phism between SpT q and the completed tensor product of Fréchet spaces

HPWpTpCq :“ C pT0xq b̂ HPWpt˚Cq.

Here, C pT0xq denotes the dual of SpT0q, that is, the space of functions φ on the
discrete abelian group T0x such that, for any norm } ‚} on the vector space T0x bZR,
and any N ě 0, the function }n}Nφpnq is bounded; and HPWpt˚Cq is the Paley–
Wiener space of entire functions on t˚C which are of rapid decay on bounded vertical
strips, that is, on every bounded vertical strip V and for every N satisfy

sup
sPV

|fpsq|p1 ` |ℑpsq|qN ă 8, (2.5)

where | ‚ | denotes any norm on the imaginary subspace it˚R.
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This theorem is very classical, but since in most references the Paley–
Wiener theorem is stated for compactly supported smooth functions, the
reader can consult [Saka, §3.1] for a proof on Schwartz spaces.

Finally, I introduce the notion of average volume of a torus with respect to
the logarithmic map (2.1): The space tR has a canonical lattice, dual to the
character lattice of T , hence a canonical Haar measure, induced from the
standard measure on R. Given a Haar measure dt on T , we define

AvgVolpT q “ AvgVolpT, dtq “ lim
cÑ8

dtplog´1
T pcBqq

VolpcBq
, (2.6)

where B is any ball around zero in tR. If the character group is trivial, we
take VolpR0q “ 1, so AvgVolpT q “ VolpT q.

For example, if T “ Fˆ, with F an unramified extension of Qp with
ring of integers o and residual degree q, and we take dt “ dˆx “ dx

|x|
with

dxpoq “ 1, we have AvgVolpFˆq “
1´q´1

log q . In general, if dx is the self-dual
measure with respect to the additive character ψ on F , we have

AvgVolpFˆ, dˆxq “ Ress“0γp1 ´ s, ψq, (2.7)

see [Sak19a, (2.26)], where γ is the gamma factor of the local functional
equation of Tate integrals, to be recalled below in (2.8).

2.1.3. Multipliers. Let MpT q denote the following categories of modules for
T :

‚ in the non-Archimedean case, smooth representations;
‚ in the Archimedean case, smooth representations of moderate growth on

Fréchet spaces, or, equivalently, countable inverse limits of Banach
representations which coincide with their spaces of smooth vectors,
cf. [BK14].

The action of T on any V P MpT q extends to an action

a : SpT q b̂ V Ñ V.

Here, b̂ denotes completed tensor product in the Archimedean case (where
both spaces are Fréchet, and SpT q is nuclear), and should be identified with
b in the non-Archimedean case.

If V denotes a space of measures on T , and the Mellin transform (2.4)
can be extended by a convergent integral to V , for χ in some region in TpC,
then for such χ we have

pf ‹ φq­ pχq “ f̌pχqφ̌pχq,

for f P SpT q, φ P V , where ‹ denotes convolution.
In fact, the action of SpT q extends to a larger algebra SpT qz , consisting

of those (tempered) distributions D on T which, after convolution by el-
ements of SpT q, become elements of SpT q, in such a way that the map
D‹ : SpT q Ñ SpT q is continuous. Indeed, for every V P MpT q, the map
SpT q b̂ V Ñ V is a topological quotient map, whose kernel is given by the
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closure of the submodule generated by vectors of the form pf ‹hq b v´ f b

ph ¨ vq (where f, h P SpT q, v P V ). Convolution by D on the left defines a
continuous endomorphism of SpT q b̂ V which preserves this kernel, and
therefore descends to an endomorphism of V .

In the non-Archimedean case, SpT qz coincides with the completed Hecke
algebra (Bernstein center) of essentially compact distributions, i.e., those dis-
tributions which become compactly supported after smoothing; these are
the distributions whose Mellin transforms are polynomial on TpC, without
the assumption of support on a finite number of components.

In the Archimedean case, SpT qz includes the enveloping algebra of the
complexified Lie algebra of T , and in particular the enveloping algebra of
the image of tC under the splitting of (2.2), which via Mellin transform is
identified with the polynomial algebra on t˚C, pulled back to TpC via the
projection to the second factor of (2.3).

2.1.4. Tate zeta integrals. Recall that we have fixed a non-trivial unitary char-
acter ψ of the additive group F , and a measure dx which is self-dual with
respect to ψ. We set dˆx :“ dx

|x|
.

The Tate zeta integral of a Schwartz function on the line, Φ P FpF q, is the
integral

ZpΦ, χ, sq “

ż

Fˆ

Φpxqχpxq|x|sdˆx.

Thus, the Tate zeta integral is the Mellin transform of the measure Φdˆx,
evaluated at the character χ1 “ χ´1| ‚ |´s. It is convergent when ℜpsq " 0,

and extends to χ1 P Fˆ
C

x as a rational function, in the non-Archimedean
case, and a meromorphic one, in the Archimedean case. It is a holomorphic
multiple of the L-factor Lpχ, sq, and of rapid decay in bounded vertical
strips (away from the poles).

Defining the Fourier transform of the function as Φ̂ptq “
ş

Φpuqψputqdu,
the local functional equation of Tate [Tat79] defines a gamma factor by:

γpχ, s, ψqZpΦ, χ, sq “ ZpΦ̂, χ´1, 1 ´ sq. (2.8)

The gamma factor can be written as

γpχ, 1 ´ s, ψq “
ϵpχ, 1 ´ s, ψqLpχ´1, sq

Lpχ, 1 ´ sq
, (2.9)

where the epsilon factor is entire.
We recall that, in the Archimedean case, the L-factor is as follows:

‚ If F “ R and χ “ psgnqϵ| ‚ |s, where sgn is the sign character and
ϵ “ 0 or 1, we have

Lpχ, 0q “ π´ s`ϵ
2 Γp

s` ϵ

2
q.
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‚ If F “ C and χpzq “ ei¨m argpzq|z|s (the absolute value here is the
square of the usual one, i.e., the absolute value of the norm to Rˆ),
then

Lpχ, 0q “ 2 ¨ p2πq´sΓps`
|m|

2
q.

Notice that the poles of the L-function are contained in the poles of the
function

Gpsq :“

#

Γpsq, if F “ R;
Γp2sq, if F “ C.

We let HPW
G pCq denote the Fréchet space of holomorphic multiples of G,

which are of rapid decay in bounded vertical strips, away from the poles.
We have the following description of the image and residues of Tate zeta

integrals:

2.1.5. Proposition. The Tate zeta integral Φ ÞÑ ZpΦ, χ, 0q defines an isomor-
phism between the space FpF q and the space of polynomial multiples, in the non-
Archimedean case, and holomorphic multiples, in the Archimedean case, of the
function Lpχ, 0q on Fˆ

C
x , which have the following properties:

‚ in the non-Archimedean case, they are supported on a finite number of
connected components of Fx̂ ;

‚ in the Archimedean case, factoring the character group of Fˆ as in (2.3),
with T0 “the maximal compact subgroup of Fˆ, they belong to the com-
pleted tensor product

C pT0xq b̂ HPW
G pCq.

Moreover, the residue at the trivial character is given by the formula

Ress“0ZpΦ, 1, sq “ Φp0qAvgVolpFˆq, (2.10)

where AvgVol is the average volume defined in (2.6).

2.1.6. Remark. We will adopt the convention, both in the Archimedean and

non-Archimedean cases, that the above space of functions on Fˆ
C

x will be

denoted by HPW
Lp‚,0q

pFˆ
C

x

q. This notion of “Paley–Wiener functions” (or sec-
tions) will recur, in a more general context, in the second paper, see §7.2.

Proof. I only sketch the proof for the image of the Tate integral in the Archimedean
case; the rest of the results are found in any reference on Tate’s thesis. Con-
sider the multiplication map T0 ˆRě0 Ñ F . The Schwartz space of rapidly
decaying smooth functions on T0 ˆ Rě0 (where smooth at zero is defined
in terms of one-sided derivatives) can be written

FpT0 ˆ Rě0q “ C8pT0q b̂ FpRě0q,

and Mellin transform identifies the second factor on the right with the
Fréchet space HPW

G pCq. (The difference in the definition of G is due to the
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fact that in the complex case we are using the square of the usual norm.)
Thus,

FpT0 ˆ Rě0q “ C pT0xq b̂ HPW
G pCq.

The elements of this space which descend to elements of FpF q are those
belonging to the closed subspace of holomorphic multiples of Lpχ, 0q. □

2.1.7. Fourier convolutions. Let T be a torus, and V a space of measures,
functions or half-densities on T “ T pF q (with properties to be specified).
For any s P C, consider the distribution

Ds :“ |x|sψpxqdˆx (2.11)

on Fˆ. Any non-trivial cocharacter λ̌ : Gm Ñ T induces, by push-forward,
a distribution λ̌˚Ds on T . The equivariant Fourier transform Fλ̌,s is de-
fined as the operator of convolution by λ̌˚Ds, on the given space V . More
generally, for any character χ of Fˆ, we define Fλ̌,χ,s as the operator of
multiplicative convolution by the measure λ̌˚ pχpxq|x|sψpxqdˆxq; of course,
by definition, Fλ̌,χ,s “ Fλ̌,χ|‚|s,0.

If V “ SpT q, the convolution is convergent. In the general case, we will
typically need to regularize it. For example, if T “ Fˆ and V “ SpF q

(considered by restriction as measures on Fˆ Ă F ), with λ̌ the identity
cocharacter, we formally have:

Fλ̌,sfpξq “

ż

Fˆ

|x|sψpxqfpx´1ξqdˆx “ |ξ|s
ż

Fˆ

|x|s´1fpx´1qψpxξqdx.

As is well-known, the association x ÞÑ |x|s´1fpx´1q is a finite measure
when ℜpsq ą ´1, and makes sense by analytic continuation as a tempered
distribution for all but a countable set of values of s (corresponding to the
poles of a Tate zeta integral). Thus, the multiplicative Fourier convolution
above will be interpreted as the Fourier transform of this distribution (val-
ued, again, in distributions, since we have fixed the self-dual measure dx).
Whenever we say that a multiplicative Fourier convolution should be in-
terpreted “in a regularized sense”, we will mean as the Fourier transform
of a distribution.

As was explained in [Sak19b, Proposition 2.1], multiplicative Fourier
convolution acts on Mellin transforms as follows:

pFλ,sfq­ pχq “ γpχ, λ̌, 1 ´ s, ψqf̌pχq, (2.12)

where γpχ, λ̌, 1´s, ψq is the gamma factor (2.9) of the local functional equa-
tion for the character χ ˝ eλ̌.

The equation (2.12) is literally true for f P SpT q. For more general spaces
of functions, where Fλ̌,sf will be defined as the Fourier transform of a dis-
tribution, it will require some justification.

2.2. Non-standard test measures for the Kuznetsov formula.



TRANSFER OPERATORS AND HANKEL TRANSFORMS, I 23

2.2.1. Twisted push-forward. Let G be any of the groups in the sequence

SL2
ãÑ
Ð Gm ˆ SL2 ↠ GL2 ↠ PGL2,

where the map Gm Ñ GL2 is the canonical map into the center. Let N
denote the subgroup of upper triangular unipotent matrices, C the quotient
NzG �N , and C0 its open subset corresponding to the open Bruhat cell.

Let A be the universal Cartan of G, identified with the subgroup of diag-
onal matrices (or Gmˆ that subgroup, in the second case) by choosing the

upper triangular Borel subgroup B. Let w “

ˆ

´1
1

̇

. We identify A with

C0 via the map a ÞÑ rwas.
We identify N » Ga in the usual way, so that ψ becomes a character

of N . Let C8ppN,ψ´1qzBwB{pN,ψ´1qq the space of smooth functions on
the open Bruhat cell which vary by the character ψ´1 under left and right
multiplication by N . The section

C0 » A Q a ÞÑ wa P BwB

allows us to identify, by restriction,

C8ppN,ψ´1qzBwB{pN,ψ´1qq » C8pC0q. (2.13)

Dual to this restriction map, we have well-defined twisted push-forward
maps of measures,

SpGq ↠ SpN,ψzGq
p!
ÝÑ MeaspC0q. (2.14)

The image of the last map will be denoted by SpN,ψzG{N,ψq — it is the
space of standard test measures for the Kuznetsov formula. The last map
can also be identified with a Gdiag-invariant map (to be denoted by the
same symbol)

SpN,ψzGq b̂ SpN,ψ´1zGq
p!
ÝÑ SpN,ψzG{N,ψq, (2.15)

again dual to the pullback of pN,ψ´1q-equivariant functions, this time through
the map

pNzGq2 Q pg1, g2q ÞÑ rg1g
´1
2 s P C.

It is well-known that both the maps (2.14), (2.15) can be identified with the
corresponding coinvariant quotients:

SpN,ψzG{N,ψq “ SpGqpN,ψq2 “ SpN,ψzGqpN,ψq “
`

SpN,ψzGq b̂ SpN,ψ´1zGq
˘

Gdiag .
(2.16)

Indeed, the isomorphisms among the various coinvariant spaces follow
from the construction of Schwartz spaces on stacks in [Sak16, §3.4] (with
trivial modifications to incorporate the line bundle defined by the character
ψ), and the isomorphism with SpN,ψzG{N,ψq is equivalent to the density
of regular orbital integrals for the Kuznetsov formula, which is well-known
— see references in the proof of Theorem 3.6.4 in the next section.

Since the map NzG↠ NzG �N is smooth, the untwisted push-forward
map: SpNzGq Ñ MeaspNzG � Nq has image in Schwartz measures; in
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particular, elements of SpN,ψzG{N,ψq are bounded by Schwartz measures
on C, hence extend to finite measures on C. In reality, we will never use this
fact, but it is convenient to refer to elements of SpN,ψzG{N,ψq as measures
on C.

Let f belong to any of the spaces

SpGq, SpN,ψzGq, or SpN,ψzGq b̂ SpN,ψ´1zGq,

and write it in the form Φdx, where Φ is a (Whittaker, in the second and
third cases) Schwartz function and dx is an invariant measure on the cor-
responding space. For compatible choices of invariant measures, we have
the integration formula

p!fpaq “ δpaqOapΦqda, (2.17)

where δ is the modular character of the Borel subgroup, considered as a
function on A Ă C, Oa is the orbital integral

OapΦq “

ż

NˆN
Φpn1wan2qψ´1pn1n2qdn1dn2

in the first case, and similarly in the others, and da is a (multiplicative) Haar
measure on A.

For a Schwartz function Φ on G (or one of the other spaces), we define
its twisted push-forward by

p!Φpaq “ OapΦq,

and for a Schwartz half-density φ “ Φd
1
2x we define

p!φpaq “ δ
1
2 paqOapΦqd

1
2a. (2.18)

These push-forwards depend on the choice of a Haar measure onN , which
however we have fixed to be the self-dual measure with respect to our char-
acter ψ. The data d

1
2x, d

1
2a are then proportional to each other by the inte-

gration formula (2.17), hence these twisted push-forwards are determined
by the choice of Haar measure on N . The image of the space of Schwartz
Whittaker half-densities under the twisted push-forward will be denoted
by

DpN,ψzG{N,ψq.

Note that these are densely defined half-densities on C; more precisely, they
are defined on the open subset C0 » A.

Finally, I mention that for G “ PGL2 or SL2 we will be identifying the
space C with Ga by choosing the coordinate on A Ă C which for PGL2 is
the positive root character, and for SL2 is the positive half-root character.
Thus, explicitly, we have identified Gm as a subset of C, and moreover we
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have a section obtained from the embedding A ÞÑ wA, as follows:

For PGL2: ξ̃ “ we
α̌
2 pξq “

ˆ

´1
ξ

̇

, ξ P Gm;

For SL2: ζ̃ “ weα̌pζq “

ˆ

´ζ´1

ζ

̇

, ζ P Gm. (2.19)

2.2.2. An invariant formulation. It will be necessary to have a more invariant
description of the Whittaker model and its Kuznetsov quotient.

Let V be a two-dimensional vector space, and G “ SLpV q. We take the
action of G on V to be a right action.

Let V _ denote the dual vector space, and Ṽ “ tpv, v_q P VˆV _| ⟨v, v_⟩ “

1u. Then Ṽ is a torsor over V ˚ :“ V ∖ t0u for the group scheme S of stabi-
lizers, in G, of the points of V ˚ (and similarly over V _˚ :“ V _ ∖ t0u).

The action of G on this group scheme exhibits it as a constant group
scheme, and we can fix a G-equivariant isomorphism S » Ga ˆ V ˚. We
will call such an isomorphism a Whittaker structure for V . Equivalently, this
turns Ṽ into a G-equivariant Ga-torsor over V ˚.

One way to fix such a structure, is to endow V with a non-zero symplec-
tic form ω. This defines an isomorphism ιω : V

„
ÝÑ V _ by ⟨u, ιωpvq⟩ “

ωpu, vq, the space Ṽ becomes the space of pairs pv, wq P V ˚ ˆ V ˚ with
ωpv, wq “ 1, and the Ga-action on Ṽ is given by

x ¨ pv, wq “ pv, w ´ xvq. (2.20)

It is immediate to see that this is a bijection between the sets of
‚ Whittaker structures on V ˚, and
‚ non-zero alternating forms on V .

Any two choices of a Whittaker structure are conjugate by aG-automorphism
(i.e., scalar automorphism) of V that is unique up to the action of ˘1; in that
sense, the resulting Ga-bundle Ṽ Ñ V ˚ is rigid up to ˘1.

From this point on, we fix a Whittaker structure, and use it to view Ṽ as a

subvariety of V ˚ ˆV ˚, so we have two projection maps Ṽ
s

Ñ
t
V ˚. Note that

the above construction is symmetric in s and t; given a Whittaker structure
given by a symplectic form ω, we can view Ṽ as a torsor over the second
copy of V ˚ (that is, under the projection t), with action

x ¨ pv, wq “ pv ´ xw,wq.

The name “Whittaker structure” is due to the fact that, through the addi-
tive character ψ of F , a Ga-bundle induces a (Cˆ-bundle and hence a) com-
plex line bundle Lψ on the F -points of V ˚, whose sections are the Whittaker
functions for G. The Whittaker line bundle Lψ comes with a trivialization
of its pullback to Ṽ , arising from the canonical isomorphism (obtained from
the projection and action maps): Ga ˆ Ṽ » Ṽ ˆV Ṽ . Explicitly, Whittaker



26 YIANNIS SAKELLARIDIS

functions are functions on Ṽ which satisfy

Φpv, u´ xvq “ ψpxqΦpv, uq.

If we choose the symplectic form ω and coordinates px, yq on V so that the
symplectic form is ω “ dx^dy, the distinguishedG-orbit on V ˚ ˆV ˚ is that
of the ordered pair pp1, 0q, p0, 1qq. The stabilizer N´ of p1, 0q is identified
with Ga by

x ÞÑ

ˆ

1
x 1

̇

,

and this identifies its orbit through p0, 1q as a Ga-torsor by x ¨ py, 1q “ p´x`

y, 1q. If we identify an ordered pair ppa, bq, pc, dqq with the element
ˆ

a b
c d

̇

P

SL2, Whittaker functions are functions on SL2 which satisfy

Φ

ˆˆ

1
x 1

̇

g

̇

“ ψ´1pxqΦpgq.

The function Φ1pgq “ Φpw´1gq is then a Whittaker function which trans-
forms under the character ψ of the upper triangular subgroup N » Ga, as
before, and the translation from Φ1 back to the abstract description of the

function Φ is that Φ1

ˆ

a b
c d

̇

“ Φppc, dq, p´a,´bqq.

The section of the map G Ñ C (over the open C0), which allowed us to
define a twisted push-forward in the previous subsection, now admits the
following description; more precisely, let us describe the section giving rise
to (2.15), which now can be written as a map

SpV ˚,Lψq b SpV ˚,Lψ´1q Ñ SpN,ψzG{N,ψq. (2.21)

Since elements of SpV ˚,Lψ˘1q are scalar-valued functions on Ṽ , we con-
sider the maps

Ṽ ˆ Ṽ Ñ V ˚ ˆ V ˚ Ñ C

and will describe a distinguished G-orbit on Ṽ ˆ Ṽ that can be used to
trivialize push-forwards.

First of all, we have an isomorphism, which can be taken as the definition

C “ V ˆ V �Gdiag.

Moreover, the map pv1, v2q ÞÑ ωpv1, v2q identifies C » Ga. (This is compati-
ble with the map Gm Ñ C obtained from (2.19)).

Now, over C0 “ C∖t0u we have a distinguishedG-stable subset Vr Ă Ṽ ˆ

Ṽ , consisting of those pairs pv1, w1q and pv2, w2q such that w1 and v2 are co-
linear, and v1 and w2 are colinear. The map Vr Ñ V ˚ ˆV ˚, pv1, w1, v2, w2q ÞÑ

pv1, v2q, is an isomorphism over C0, and it allows us to pull back Lψ bLψ´1-
valued measures on V ˚ ˆ V ˚ to actual measures on Vr , and push them for-
ward to C. This gives rise to the twisted push-forward (2.21).
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2.2.3. Generating series for unramified L-values. Assume here that F is a non-
Archimedean field, with ring of integers o and residual degree q. Let K “

Gpoq, and HpG,Kq the Hecke algebra of K-biinvariant, compactly sup-
ported measures on G.

Unramified characters of the universal Cartan A of G are in canonical
bijection with points of the complex dual torus Ǎ; we will denote this bi-
jection as χ Ø χ̌. It is characterized by χpλ̌pϖqq “ λ̌pχ̌q for any coweight λ̌
into A, and ϖ a uniformizer in o. The Satake isomorphism

HpG,Kq Q h ÞÑ ȟ P CrǦsǦ “ CrǍsW

is characterized by the property that, for an unramified vector vK,χ in the
principal series representation πχ obtained by normalized induction from
the character χ of a Borel subgroup B (through the quotient B ↠ A), we
have πχphqvK,χ “ ȟpχ̌qvK,χ.

If X is a smooth, quasi-affine G-space over o, we call the characteristic
function 1Xpoq of Xpoq the basic function of X . We would like to focus on the
Whittaker model, so we will use X to denote the “space” X “ pN,ψqzG,
that is, the space NzG, but endowed with the complex line bundle defined
by the character ψ. In that case, the basic function (still to be denoted by
1Xpoq) will be the left-pN,ψq-equivariant function on G which is supported
on NK and equal to 1 on K.

Let r : Ǧ Ñ GLpV q be an algebraic representation, and s P C. The local
unramified L-value Lpr, sq is the element

Lpr, sq :“
1

detpI ´ q´srq
P CpǦqǦ.

It can be written as a formal Taylor series in q´s:

Lpr, sq “

8
ÿ

n“0

q´ns trpSymn rq.

If r is reducible, r “
Àm

i“1 ri, we can allow s to denote an m-tuple psiq
m
i“1

of complex numbers, and define Lpr, sq “
śm
i“1 Lpri, siq. I proceed with a

single s, and the adjustments for the general case are obvious.
The generating series of the local L-value Lpr, sq onX is the Whittaker func-

tion

ΦLpr,sq “

8
ÿ

n“0

q´nshSymn r ‹ 1Xpoq, (2.22)

whenever this series converges, where hSymn r P HpG,Kq is the element
with

ȟSymn r “ trpSymn rq.

It appears more appropriate to ensure that there is a character B : G Ñ

Gm, whose dual B˚ : Gm Ñ ZpǦq, followed by r, gives rise to the canoni-
cal cocharacter to the center of GLpV q. For example, when G “ PGL2, the
standard representation of Ǧ “ SL2 should be extended to the group GL2,
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which corresponds to replacing G by GL2. Similarly, for the symmetric-
square representation of SL2, which factors through the adjoint represen-
tation of PGL2, one should take Gm ˆ PGL2 to be the dual group, so that
G “ Gm ˆ SL2. In that case, the complex parameter s of the L-value be-
comes a red herring, and can be fixed to be 0 (or 1

2 ), since we have an equal-
ity of rational functions on Ǧ:

Lpr, sqpxq “ Lpr, 0qpxB˚pq´sqq.

For Langlands L-functions of representations, this is the statement that
Lpπ, r, sq “ Lpπ b |B|s, r, 0q.

Moreover, in that case, the series (2.22) makes sense for every s, since the
n-th summand is compactly supported on the subset with valpBq “ n.

For our present purposes, however, we would like to allow ourselves
to take (2.22) in SL2 or PGL2, which corresponds to integrating it over the
fibers of the map GmˆSL2 Ñ SL2 or GL2 Ñ PGL2. This integral converges
when ℜpsq " 0; in the examples of interest, it will follow from the results
that we prove that it admits meromorphic continuation to all s, rational in
the parameter q´s.

Finally, we would like to work with measures instead of functions. For
that purpose, we choose the invariant measure dx onNzG such that VolpNzGpoqq “

1. The product ΦLpr,sqdx will be called the “generating measure of Lpr, sq”.

2.2.4. Non-standard test measures. Now letG be one of the four groups above,
and consider the twisted push-forward p! : SpN,ψzGq Ñ SpN,ψzG{N,ψq

of §2.2.1. It is easy to see that, restricted to K-invariants, where K “ Gpoq,
it is locally finite, in the sense that for any c P C “ NzG � N there is only
a finite number of K-orbits on NzG such that the elements of SpN,ψzGqK

which are supported on those K-orbits have non-zero push-forward in a
neighborhood of c, cf. [Sak13, §6.3].2 Thus, we can extend the twisted push-
forward to any K-invariant Whittaker measure. In particular, the twisted
push-forward of ΦLpr,sqdx is well-defined whenever ΦLpr,sq is, and will be
denoted by

fLpr,sq P MeaspN,ψzG{N,ψq.

Explicitly, using the integration formula (2.17), we have

fLpr,sqpaq “ p1 ´ q´2q´1

ˆ
ż

N
ΦLpr,sqpwanqψ´1pnqdn

̇

¨ δpaqda,

when the measure on Npoq is taken to be 1, and dapApoqq “ p1 ´ q´1q;
indeed, the Haar measure on G which gives total mass 1 to Gpoq restricts
on the open Bruhat cellNwAN , in coordinates n1wan2, to the measure p1´

q´2q´1dn1δpaqdadn2, and da is the Haar measure with dapApoqq “ 1 ´ q´1.

2There is a typo on the last line of [Sak13, (6.2)]: m “ 1 should read m “ 0. The property
of local finiteness of the push-forward explained here is not special to K — it holds for
invariants of any compact open subgroup.
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Now we specialize to G “ PGL2 and r “sum of copies of the standard
representation of Ǧ “ SL2, or G “ SL2 and r “sum of copies of the adjoint
representation of Ǧ “ PGL2. So, we write r “

À

i ri with all ri’s equal
to the standard representation (for PGL2) or the adjoint representation (for
SL2), and correspondingly s “ psiqi denotes a collection of complex num-
bers, one for every ri. Then fLpr,sq lives in a natural space of test measures

S´

Lpr,sq
pN,ψzG{N,ψq “ Sś́

i Lpri,siq
pN,ψzG{N,ψq

for the Kuznetsov formula, described as follows; here, we allow again the
field F to be Archimedean:

We let S´

Lpr,sq
pN,ψzG{N,ψq be the space of measures on C which on any

compact set coincide with elements of SpN,ψzG{N,ψq, while in a neigh-
borhood of infinity, in the coordinates of (2.19), when all of the si’s are
distinct, are of the form

ÿ

i

Cipζ
´1q|ζ|1´sidˆζ, (2.23)

in the case of G “ SL2, and
ÿ

i

Cipξ
´1q|ξ|

1
2

´sidˆξ, (2.24)

in the case of G “ PGL2, where the Ci’s are smooth functions in a neigh-
borhood of zero. When two or more of the si’s coincide with some complex
number s0, the corresponding summands at infinity will be replaced by
pC1pζ´1q `C2pζ´1q log |ζ| `C3pζ´1q log2 |ζ| ` . . . q|ζ|1´s0dˆζ (as many sum-
mands as occurences of the exponent s0), and similarly for PGL2.

More generally, to accommodate possible push-forwards from the groups
GL2 and Gm ˆ SL2 to PGL2, resp. SL2, we can define, for any collection of
characters χ “ pχiqi of Gm, a space

S´

Lpr,χq
pN,ψzG{N,ψq

whose elements coincide with elements of SpN,ψzG{N,ψq away from in-
finity, and are of the form

ÿ

i

Cipζ
´1q|ζ| ¨ χ´1

i pζqdˆζ, (2.25)

in the case of G “ SL2, and
ÿ

i

Cipξ
´1q|ξ|

1
2 ¨ χ´1

i pξqdˆξ, (2.26)

with the analogous modifications when some of the χi’s coincide.
The following was stated as [Sak19b, Proposition 3.2], and can be proven

as in [Sak13, Lemma 5.3]:

2.2.5. Proposition. If F is non-Archimedean and ΦLpr,sqdx is well-defined (for
example, when ℜpsq " 0), its image fLpr,sq is contained in S´

Lpr,sq
pN,ψzG{N,ψq.
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We will call fLpr,sq the basic vector of S´

Lpr,sq
pN,ψzG{N,ψq.

2.2.6. Example. Let G “ SL2, considered as a reductive group over o, K “

Gpoq, dx the invariant measure on NzG with dxpNzGpoqq “ 1, and take
r “ Ad. Let Λ` “ ´Nα̌ be the set of anti-dominant elements in the
coweight lattice of the universal Cartan A, and, for every λ̌ P Λ`, let eλ̌

stand for the element in SpN,ψzGqK which is equal to the product of dx by
the Whittaker function which is zero off the coset Ne´λ̌pϖqK, and equal
to q⟨ρ,λ̌⟩ on e´λ̌pϖq. We use rational functions of the form 1

1´q´seλ̌
to de-

note the series
ř

iě0 q
´iseiλ̌, but caution that 1

1´q´seλ̌
and ´qse´λ̌

1´qse´λ̌
denote

different series.
Then, [Sak18, Theorem 7.7] states that, for ℜpsq " 0, the element ΦLpr,sqdx

coincides with the restriction to Λ` of the “series”
1 ´ eα̌

p1 ´ q´seα̌qp1 ´ q´sqp1 ´ q´se´α̌q
. (2.27)

Moreover, [Sak13, (6.2)] computes the orbital integrals of the Whittaker

function q´⟨ρ,λ̌⟩eλ̌
dx ; we multiply by

q⟨ρ,λ̌⟩ ¨ p1 ´ q´2q´1δpaqda “ q⟨ρ,λ̌⟩ ¨ p1 ´ q´2q´1|ζ|2dˆζ,

to deduce that the twisted push-forward of eλ̌, when λ̌ ‰ 0, is equal to the
measure

q⟨ρ,λ̌⟩ ¨ p1 ´ q´2q´1|ζ|2dˆζ ¨

´

1
|ζ|“q´⟨ρ,λ̌⟩ ´ 1

|ζ|“q´⟨ρ,λ̌⟩´1

¯

“

“ p1 ´ q´2q´1|ζ|dˆζ ¨

´

1
|ζ|“q´⟨ρ,λ̌⟩ ´ q´1 ¨ 1

|ζ|“q´⟨ρ,λ̌⟩´1

¯

.

We can let ϵλ̌ denote the restriction of the measure |ζ|dˆζ to the set |ζ| “

q´⟨ρ,λ̌⟩, then the twisted push-forward of eλ̌ reads

p1 ´ q´2q´1pϵλ̌ ´ q´1ϵλ̌`α̌q,

and the twisted push-forward of the series (2.27), restricted to the set |ζ| ą

1, will be equal to the “series”

p1 ´ q´2q´1 p1 ´ ϵα̌qp1 ´ q´1ϵα̌q

p1 ´ q´sϵα̌qp1 ´ q´sqp1 ´ q´sϵ´α̌q
(2.28)

restricted to negative multiples of α̌.
The series 1

1´q´sϵ´α̌ , just by itself, is equal to the restriction of the measure
|ζ|1´sdˆζ to the subset with |ζ| ě 1. I leave it to the reader to check that the
asymptotics of (2.28) are now obtained by setting ϵα̌ “ q´s in the remaining
factors; we find that fLpAd,sq is equal to

1 ´ q´1´s

p1 ´ q´2qp1 ´ q´2sq
|ζ|1´sdˆζ (2.29)

for large |ζ|.
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We will also work with half-densities, thus we similarly define a space
D´

Lpr,sq
pN,ψzG{N,ψq which contains DpN,ψzG{N,ψq. In this case, the anal-

ogous to (2.23), (2.24) expansions at infinity are:
ÿ

i

Cipζ
´1q|ζ|´sipdˆζq

1
2 , (2.30)

in the case of G “ SL2, and
ÿ

i

Cipξ
´1q|ξ|´sipdˆξq

1
2 , (2.31)

by comparing (2.17) and (2.18). The basic vector of these spaces, in the non-
Archimedean case, will be the quotient of the measure fLpr,sq by δ

1
2 paqd

1
2a,

that is, by |ζ|pdˆζq
1
2 in the case of SL2 and |ξ|

1
2 pdˆξq

1
2 in the case of PGL2.

It will again be denoted by fLpr,sq, when it is clear that we are referring to
half-densities, instead of measures.

Finally, we mention that the regular action of the unramified Hecke al-
gebra HpG,Kq on SpN,ψzGqK descends to its image in SpN,ψzG{N,ψq;
indeed, the action of HpG,Kq coincides with the action of the unramified
component of the Bernstein center, which descends to the coinvariant space
SpN,ψzGqpN,ψq “ SpN,ψzG{N,ψq. Thus, we will feel free to write h ¨ f for
h P HpG,Kq and f P SpN,ψzG{N,ψq in the image of SpN,ψzGqK (or a
series of such elements).

3. SCATTERING THEORY

A main theme of the present paper is the comparison between transfer
operators involving such a variety X , and transfer operators involving its
boundary degeneration or asymptotic coneXH, a horosphericalG-space which
is, roughly, responsible for the continuous spectrum of X . The goal of the
present section is to develop the “relative character theory” for the contin-
uous spectrum of the three cases (listed in Table 3.2 below) of interest in
this paper. The main result it Theorem 3.6.3, which relates certain relative
characters for the spaces under consideration by means of gamma factors.
These will then be used, in §4.3 and 5, to relate transfer operators for those
spaces to transfer operators for their degenerations.

3.1. Asymptotic cone. The asymptotic cone can be defined using coordi-
nate rings: Suppose that X is quasi-affine, and F rXs “

À

λ Vλ as a G-
module, a multiplicity-free direct sum of irreducible submodules Vλ, with
highest weight λ varying over some submonoid Λ``

X of the character group
of the universal CartanA ofG. Notice that, fixing a Borel subgroup, for two
highest-weight vectors vλ P Vλ, vµ P Vµ we have

vλ ¨ vµ “ vλ`µ (3.1)

for some highest weigt vector vλ`µ P Vλ`µ, but in general Vλ¨Vµ Ć Vλ`µ. We
define F rXa

Hs :“
À

λ Vλ as an algebra, where the algebra structure is defined
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by projecting the product of Vλ and Vµ to the direct summand Vλ`µ, and
take XH to be the open G-orbit in Xa

H. For the Whittaker case, we define
the boundary degeneration by retaining the same space NzG, but making
the character on N trivial.

Here is a list of the spaces X that we are using in this paper, and the
isomorphism classes of their asymptotic cones:

G X XH

PGL2,SL2,GL2 or Gm ˆ SL2 pN,ψqzG NzG
PGL2 GmzPGL2 NzPGL2

SL2
2 {t˘1udiag » SO4 SL2 T diagpN ˆN´qzSL2

2

(3.2)

In the last case, N and N´ are the unipotent radicals of two opposite
Borel subgroups of SL2, and T denotes their intersection. In that case, XH

can be identified with the variety of 2 ˆ 2-matrices of rank one.
In every case, the asymptotic cone XH has an action of the torus AX by

G-automorphisms; the character group of AX is generated by the monoid
Λ``
X of weights appearing in the highest weight decomposition above, and

the action is equivalent to the grading of the coordinate ring. Notice, how-
ever, that (3.1) translates to a canonical isomorphism

X �NG “ XH �NG, (3.3)

where NG is the unipotent radical of a Borel subgroup of G. This identifies
general NG-orbits on X and XH, and rigidifies XH, in the sense that the
action of a non-trivial element ofAX would not preserve this isomorphism.

In the examples above, for the Whittaker model and the variety GmzPGL2,
we have AX “ AG, the Cartan of G, while for X “ SL2 we have AX “ the
Cartan A of SL2. There is a canonical finite reflection group WX acting on
AX , the little Weyl group of X ; for the examples above, this Weyl group is
isomorphic to Z{2.

By definition, the action of AX on XH is compatible with its action on
XH �NG “ X �NG, and this coincides with the convention (1.6) of §1.7.

For a space of the form X “ SzG, where N´
G Ă S Ă kerpe2ρq Ă G, where

2ρ is the sum of positive roots, so that X admits a G-invariant measure dx,
and N´

G denotes the unipotent radical of a Borel BG opposite to the one of
which the torus AG is considered a quotient, we define a normalized action of
AX “ pBG{Sqw0 on functions and measures on G, as follows:

pa ¨ Φqpxq “ δ
1
2 paqΦpa ¨ xq (3.4)

on functions, and

pa ¨ µqpxq “ δ´ 1
2 paqµpa ¨ xq (3.5)

on measures, where δ “ |e2ρ| is the modular character of BG. This action
is unitary on the L2-spaces of functions or measures. On half-densities, no
normalization is needed.
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3.2. Scattering operators. From now on until the end of this section, let F
be non-Archimedean. I describe some of the results of [DHS21]. For each
of the varieties X of Table (3.2), there is a space S`pXHq of smooth mea-
sures on XH, with an AX -semilinear action of WX by G-automorphisms,
the scattering morphisms

Sw : S`pXHq
„
ÝÑ S`pXHq,

such that S`pXHq is generated by SpXHq under these scattering morphisms.
The support of elements of S`pXHq has compact closure in the affine va-
riety Xa

H that we saw above. Moreover, there is a canonical “asymptotics”
morphism

e˚
H : SpXq Ñ S`pXHq, (3.6)

defined in [SV17, Section 5] which, according to the Paley–Wiener theo-
rem [DHS21, Theorem 1.8] has image precisely in the subspace of WX -
invariants under the scattering morphisms.

I will not repeat here what makes the asymptotics morphism canonical;
roughly speaking, it is the only morphism such that a measure φ is “equal”
to e˚

Hφ “close to infinity”, see [SV17, Section 5] for details. The scattering
operators are characterized by the above properties, but we need a more
explicit description of them, in order to compute them. This description is
given by [DHS21, (9.4) and Proposition 10.18], and I repeat it here; unfor-
tunately, the theoretical description is quite involved; the reader may want
to skip directly to our computation of scattering operators in the three ex-
amples of Table (3.2), which is performed in the following subsections and
is quite straightforward, and return to the definitions as needed.

We assume, for simplicity, thatX admits aG-invariant measure; by [SV17,
§4.2], any such measure induces a G-invariant measure on XH. We can
work with functions instead of measures: any element of S`pXHq can be
written as the product of a G-invariant measure dx by a function in a space
F`pXHq, and once the scattering operators have been defined for func-
tions, they are defined for measures by multiplying by dx. The normaliza-
tions (3.4), (3.5) ensure that multiplication by dx is AX ˆG-equivariant.

An element Φ P F`pXHq can be reconstructed from its Mellin transform

Φ̌pχqpxq “

ż

AX

a ¨ Φpxqχ´1paqda P C8pAX , χzXHq (3.7)

Here, C8pAX , χzXHq means that the function is χ-equivariant with respect
to the normalized action of AX . If we choose a base point on XH, with stabi-
lizer contained in a Borel subgroup B, the space C8pAX , χzXHq becomes
equal to the normalized induced representation IBpw0χq, where w0 is the
longest element of the Weyl group. (Recall the conventions about the AX -
action on XH, described above.) This Mellin transform is convergent once
χ´1 vanishes fast enough on the complement of XH in Xa

H (that is, it van-
ishes fast enough on the boundary of an AX -orbit), extends rationally to
the variety of all complex characters of AX , and choosing such a character
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ω that vanishes fast enough on the boundary of an AX -orbit, the inverse
Mellin transform is:

Φpxq “

ż

ω´1AX
y

Φ̌pχqpxqdχ.

The Haar measure da on AX chosen to define the Mellin transform is not
important here, but one has to choose the dual Haar measure dχ on its
unitary dual AXy.

The scattering operator Sw can be accordingly decomposed:

SwΦ “

ż

ω´1AX
y

Sw,χΦ̌pw
´1
χqpxqdχ, (3.8)

where3

Sw,χ : C8pAX ,
w´1

χzXHq Ñ C8pAX , χzXHq (3.9)
are the fiberwise scattering operators, varying rationally in χ, that are charac-
terized by the commutativity of the following diagram:

C8pAX ,
w´1

χzXh
Hq

↓↓

M´1

w´1
χ →→ C8pAX ,

w´1
χzXHq

Sw,χ

↓↓

FpXq

Nw´1
χ

→→

Nχ →→
C8pAX , χzXh

Hq
M´1

χ →→ C8pAX , χzXHq.

(3.10)
The notation here is as follows: The space Xh

H is the space of generic
horocycles on X , or on XH. It classifies pairs pB, Y q, where B is a Borel
subgroup of G, with unipotent radical N , and Y is an N -orbit in the open
B-orbit of X , or of XH; by (3.3), X and XH give canonically isomorphic
spaces by this construction. If B and B´ are two opposite Borel subgroups
of G with B X B´ “ T , and we represent XH as SN´zG, where S Ă T ,
then Xh

H » SNzG. Although we will not stick with it, it is very useful here
to represent the unipotent radical of the stabilizer of a point on XH by N´,
and the unipotent radical of the stabilizer of a generic horocycle through
that point by N . The action of AX on Xh

H is induced by its action on X �N ,
as suggested by this notation: denoting by SN the stabilizer of a point on
Xh

H, the universal Cartan acts on that point via its defining identification
with B{N . (Recall from (1.6) that the action of AX on XH is through the

3There is a slight difference here from the notation of [DHS21]: scattering operators are
indexed by the character in their image, not in their source. This is to ensure compatibility
with other morphisms, like the Nχ’s below, which have only a character in appearing their
image, not in their source.
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identification of A with the quotient of a Borel B opposite to the stabilizer
N´ of the point; this does not mean that we break the convention (1.6) for
Xh

H, but rather that its “universal Cartan” is identified with AX only via
the action of the longest element of the Weyl group.) The action of AX on
functions and measures on this space is again defined to be unitary, i.e., as
in (3.4), (3.5) but with δ replaced by δ´1.

The operator Mχ, which can be thought of as the “standard intertwin-
ing operator”, is the operator which, in a region of convergence, takes a
function in C8pAX , χzXHq and integrates it over generic horocycles. Be-
cause there is no canonical measure on those horocycles, this operator depends on
a choice of such measures, and more canonically has image in the sections
of a certain line bundle over Xh

H (the line bundle dual to the line bundle
whose fiber over a horocycle is the set of invariant measures on it — see
[SV17, §15.2]). However, in the cases of Table (3.2) that we are interested
in this paper (and, more generally, whenever X , hence also XH, admits
a G-invariant measure), such a choice can be made G-equivariantly, and
it will not matter for the commutativity of the diagram — the important
point here being that horocycles in XH and X are identified by (3.3), and
the choices of Haar measures must be made compatibly.

The operator Nχ is, similarly, the integral over the horocycles on X , fol-
lowed by an averaging over horocycles in the same B-orbit, against the
character χ´1 of AX ; that is, for a horocycle Y , considered both as a point
in Xh

H and as a subspace of X ,

NχΦpY q “

ż

AX

ˆ
ż

aY
Φpyqdy

̇

χ´1δ´ 1
2 paqda.

The measure used on AX is here the same as in the definition of Mellin
transform on XH, so that Mχ composed with Mellin transform is equal to
Nχ when X “ XH, and the outer integral is convergent for χ in a certain
region, and understood via meromorphic continuation, otherwise.

3.2.1. What is done in the rest of this section? In the subsections that follow,
we will calculate the fiberwise scattering operators Sw of (3.9) for the non-
trivial element w of WX » Z{2, for the cases of Table (3.2).4 The final result
will have the form

Sw,χ “ γpχqRχ, (3.11)
where Rχ is a standard intertwining operator between principal series (es-
sentially, the same as Mχ after some non-canonical identifications of the
spaces involved), and γpχq a constant depending on χ (and expressed in
terms of abelian gamma factors of the local functional equation of Tate in-
tegrals).

4For the first line of Table (3.2), we assume that G is split of semisimple rank one; the
formula for the general split case, which we will not need, can be deduced from this, and
the fact that scattering operators compose as in WX , i.e., define an action of WX .
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The calculation is quite elementary, on one hand; on the other, it is quite
fine to normalize operators such as “the” standard intertwining operators
between principal series. The constructions needed to formulate a precise
result are essentially the constructions needed to prove it; therefore, break-
ing with the principles of good mathematical exposition, I will formulate
the result in the end; the reader can jump ahead to Theorem 3.5.1 to read it.

The calculations that follow hold both over non-Archimedean and over
Archimedean fields; thus, despite the fact that the results on asymptotics
do not hold as stated in the Archimedean case, we take diagram (3.10) as
the defining diagram for the fiberwise scattering operators, and work over
an arbitrary local field.

In each of the three cases of interest, we will calculate scattering opera-
tors as follows:

‚ First, we will describe a distinguished G-orbit X̃ Ă X ˆ XH, and a
distinguished G-orbit X̃H Ă XH ˆ XH; the fibers of both over the
second copy ofXH will be endowed with canonical Haar measures.

‚ We will define a Jacquet integral J : FpXq Ñ C8pXHq and a Radon
transform R : FpXHq Ñ C8pXHq, by pulling back a function to X̃
(resp. X̃H), and pushing forward (integrating against the canonical
fiber measure) to XH.

(In the group case, we just define R, while X̃ and J do not appear
explicitly, because we appeal to a result of [DHS21].)

‚ The fibers of X̃ , X̃H over X , resp. the first copy of XH, are (generic)
horocycles. Hence, after integrating against a character of AX , the
operators J, R can be identified with the operators Nχ, Mχ of di-
agram (3.10). Essentially, one can replace Xh

H by XH once these
orbits X̃ , X̃H have been defined.

‚ We will define a Fourier transform F on the space FpXa
Hq, the (suit-

ably defined) space of Schwartz functions on the affine closure of
XH.

‚ Finally, we will compute the composition with F of the adjoint of
J (or of its integral Jχ against a character of AX ). Once everything
has been set up correctly, this is an elementary calculation involv-
ing Tate integrals, which is where the aforementioned gamma factor
γpχq will come from. In view of the relation between Jχ and Nχ, this
provides the dotted arrow of (3.10).

‚ Fourier transform is explicitly related to Radon transform; this leads
to the final formula of the form (3.11), which is the content of Theo-
rem 3.5.1.

In the last subsection, scattering operators are used to calculate relations
between certain relative characters, and Theorem 3.5.1 translates to Theo-
rem 3.6.3.
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3.3. The Whittaker case. We adopt the abstract point of view on the Whit-
taker model that was introduced in §2.2.2. Hence, we take G “ SLpV q,
where V is a two-dimensional symplectic vector space. In particular, it is en-
dowed with a Whittaker structure, and Whittaker functions are functions
on the Ga-torsor Ṽ “ tpv, v_q P V ˆ V _| ⟨v, v_⟩ “ 1u over V ˚ “ V ∖ t0u,
which vary by the character ψ of Ga. (Because in this case X denotes not
just a space, but the space V ˚ together with this bundle, for clarity we stick
with the notation V ˚, Ṽ , rather than X , X̃ from the preceding summary.)

We identify the dual V _ with V through the isomorphism ιω : V
„
ÝÑ V _

by ⟨u, ιωpvq⟩ “ ωpu, vq. Notice that V _˚, the complement of zero in V _,
can be identified with the variety V h of “generic horocycles” on V , that is,
affine lines which do not contain the origin; the correspondence sends a
functional v_ to the affine line of those v P V with ⟨v, v_⟩ “ 1, that is, the
fiber of Ṽ over v_. Thus, we can identify Ṽ with the tautological G-orbit
on V ˚ ˆV h, consisting of pairs pv, Vuq, where Vu Ă V is a generic affine line
containing v.

Having fixed the symplectic form ω, we get isomorphisms V ˚ » V _˚ »

V h, and we can identify Ṽ as the subset of V ˚ ˆV ˚ consisting of pairs pv, uq

with ωpv, uq “ 1. This is a generic G-orbit in V ˚ ˆ V ˚, that is, one where
stabilizers of the two points do not belong to the same Borel subgroup.
On the other hand, the identification V ˚ „

ÝÑ V h corresponds to a special
G-orbit on V ˚ ˆ V h, i.e., the stabilizers of two points belong in the same
Borel subgroup. Let us write B for the flag variety of Borel subgroups of
G, then it is immediate that, by these associations, a Whittaker structure is
also equivalent to the following:

‚ a generic G-orbit on V ˚ ˆ V ˚;
‚ a G-orbit on V ˚ ˆB V

h.

Now we define Fourier transform, Radon transform and the Jacquet integral.
Fourier transform F will be defined as an SLpV q-equivariant endomor-

phism of the Schwartz space of functions FpV q by the formula

FΦpv˚q “

ż

V
Φpvqψpωpv, v˚qq|ω|pvq. (3.12)

Radon transform is the map

R : FpV q Ñ C8pV ˚q

given by the pull-push construction under the above maps, i.e.,

R “ t!s
˚,

where s and t are, respectively, the first and second projection Ṽ
s

Ñ
t
V ˚,

s˚ denotes pullback of functions, and t! is integration over the fibers of t,
which are Ga-torsors and hence are endowed with the fixed Haar measure of F .
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Explicitly, in coordinates px, yq with ω “ dx^ dy,

RΦp0, 1q “

ż

Φp1, xqdx. (3.13)

The Jacquet integral5 is the map

J : FpV ˚,Lψq Ñ C8pV ˚q

given by
J “ t!s

˚
ψ,

where s˚
ψ is the pullback of Whittaker sections to Ṽ (where, again, the pull-

back of Lψ is equipped with a trivialization). In coordinates, it is given
by the same formula (3.13) as the Radon transform above, as long as the
argument of Φ inside of the integral is replaced by the pair pp1, xq, p0, 1qq.

The measure |ω| on V gives rise to a duality pairing between functions, or
between sections of the line bundle Lψ and sections of the line bundle Lψ´1

defined by the inverse character, and the adjoint of the Jacquet integral (a
morphism J ˚ : FpV ˚q Ñ C8pV ˚,Lψ´1q) can be written

J˚ “ sψ,!t
˚,

where the twisted push-forward sψ,! is the dual map to s˚
ψ with respect to

the fixed Haar measure on the fibers of the Ga-torsor Ṽ s
ÝÑ V ˚.

We are interested in functional equations (scattering operators) for the Jacquet
integral.

Consider the L2-normalized action of Gm on C8pV ˚q:

a ¨ Φpvq “ |a|Φpavq.

The Radon transform is anti-equivariant with respect to this action:

Rpa ¨ Φq “ a´1 ¨ RΦ.

We have the following relation between Fourier and Radon transforms:

FΦpvq “

ż

Rpa ¨ Φqpvqψpaq|a|dˆa. (3.14)

Indeed, for v P V , choose a section a ÞÑ ua “ au1 of the quotient map
V Q u ÞÑ ωpu, vq P Ga; then, by definition, the value of Radon transform at
v is

RpΦqpvq “

ż

Φpu1 ´ zvqdz,

Hence
ż

Rpa¨Φqpvqψpaq|a|dˆa “

ż

|a|

ż

Φpau1`zavqdzψpaqda “

ż ż

Φpau1`z1vqdz1ψpaqda.

5Usually, this name is given to its adjoint J˚ that appears below.
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By definition, the measure |ω| on V is equal to dadz1 when pa, zq are the
coordinates in the basis pu1, vq, so the last integral can be written

ż

V
Φpuqψpωpu, vqq|ω|puq “ FΦpvq.

On the other hand, the adjoint of the Jacquet integral, evaluated on pv, uq P

Ṽ , can be written

J˚Φpv, uq “

ż

Φpu´ zvqψpzqdz.

It is clear from this expression that it extends continuously to the Schwartz
space FpV q. If F˚ denotes Fourier transform defined with the character
ψ´1, instead of ψ,

J˚F˚Φpv, uq “

ż ĳ

Φpav`buqψp´a´bz`zqdadbdz “

ż

Φpav`uqψp´aqda “ J˚Φpv, uq.

We have shown:
J˚ ˝ F˚ “ J˚,

or, taking adjoints and noticing that the adjoint of F˚ is F,

F ˝ J “ J. (3.15)

A priori, this is a Fourier transform of distributions, but one can easily
see that the image of any f P FpV ˚,Lψq under J is a smooth function of
rapid decay close to 0 P V (because of the rapid decay of f “at infinity”),
hence f is a(n additively) smooth, tempered function on V which is equal
to its Fourier transform, and therefore has to be of rapid decay (together
with its derivatives). In other words, Jpfq P FpV ˚q.

Now we project to coinvariants with respect to various characters of Gm,
with respect to our fixed multiplicative measure dˆa “ da

|a|
. The Mellin

transform:

Φ̌pχqpvq “

ż

a ¨ Φpvqχ´1paqdˆa

is a morphism
FpV ˚q Ñ C8pGm, χzV ˚q,

where the notationC8pGm, χzV ˚q means pGm, χq-equivariant functions with
respect to the normalized action. This morphism identifies C8pGm, χzV ˚q

as the pGm, χq-coinvariants of FpV ˚q. The Mellin transform extends, for
almost every χ, to the space SpV q, or to the images of Radon transform and
the Jacquet integral, first as a convergent transform for χ in some domain,
and then by meromorphic continuation. It is a simple consequence of Tate’s
thesis that, wherever it is defined, it identifies the pGm, χq-coinvariants of
FpV q with the same space. Because of their equivariance properties with
respect to the Gm-action, all the above transforms descend to meromorphic
families of transforms between the coinvariant spaces, that will be denoted
by the index χ:
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FpV q

↓↓

F →→ FpV q

↓↓
C8pGm, χ

´1zV ˚q
Fχ →→ C8pGm, χzV ˚q;

FpV q

↓↓

R →→ RpFpV qq

↓↓
C8pGm, χ

´1zV ˚q
Rχ →→ C8pGm, χzV ˚q;

FpV ˚,Lψq

Jχ →→

J →→ JpFpV ˚,Lψqq

↓↓
C8pGm, χzV ˚q.

3.3.1. Remark. Some caution with the notation is needed here when com-
paring with the operators Nχ,Mχ of (3.10), when XH “ V ˚: the iden-
tification V h » V ˚ that we have here is anti-equivariant with respect to
the action of Gm. Thus, the space C8pGm, χzV ˚q should be denoted by
C8pGm, χ

´1zV hq, if we replaced V ˚ by V h, and what is denoted here with
Rχ would be Mχ´1 in the notation of (3.10), and Jχ would be Nχ´1 .

The relation (3.14) translates to

Fχ “ γpχ, 0, ψqRχ. (3.16)

Indeed, we have

FχpΦ̌pχ´1qqpvq “ FΦ| pχqpvq “

ż

z ¨ FΦpvqχ´1pzqdˆz “

“

ż ż

z ¨ Rpa ¨ Φqpvqψpaq|a|dˆaχ´1pzqdˆz

“

ż

|z|

ż

x´1 ¨ RΦpvqψpxzqdxχ´1pzqdˆz,

which is the Tate integral

Zpφ̂, χ´1, 1q “

ż

φ̂pzq|z|χ´1pzqdˆz

of the function φ̂pzq “
ş

φpxqψpzxqdx, where φpxq “ x´1 ¨ RΦpvq. (In coor-
dinates, if v “ p0, 1q, φpxq “

ş

Φpx, yqdy, so it is a Schwartz function.)
By the functional equation [Tat79]:

γpχ, s, ψqZpφ, χ, sq “ Zpφ̂, χ´1, 1 ´ sq,

we get

FχpΦ̌pχ´1qqpvq “ γpχ, 0, ψq

ż

z´1 ¨ RΦpvqχpzqdˆz “ γpχ, 0, ψqRχΦpvq.
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Similarly, (3.15) translates to

Fχ´1 ˝ Jχ “ Jχ´1 . (3.17)

If we identify V ˚ with NzSL2, under our conventions the universal Car-
tan A of SL2 acts on V ˚ by the character e

α
2 . Thus, for a character χ̃ of

A, we set χ “ χ̃ ˝ eα̌. Then the operators Nχ̃, Mχ̃ of (3.10) correspond to
Jχ´1 , Rχ´1 , respectively (see Remark 3.3.1), and we have the corresponding
commutative diagram, with (3.17) added to it:

C8pGm, χzV ˚q

Fχ´1

↓↓

R´1
χ →→ C8pGm, χ

´1zV ˚q

Sw,χ̃

↓↓

FpV ˚,Lψq

Jχ
→→

Jχ´1 →→
C8pGm, χ

´1zV ˚q

R´1

χ´1
→→ C8pGm, χzV ˚q.

Thus, we get

Sw,χ̃ “ R´1
χ´1 ˝ Fχ´1 ˝ Rχ,

and, invoking (3.16), this is equal to

γpχ´1, 0, ψqRχ,

or, in other words (writing now χ̃ “ χ ˝ e
α
2 as χ):

Sw,χ “ γpχ,´α̌, 0, ψq ¨ Rχ. (3.18)

Although we have worked with SLpV q up to now, this formula remains
valid for the Whittaker model of any split group G of semisimple rank one;
indeed, given a non-trivial unipotent subgroup N of G with an identifica-
tion N » Ga, and compatible maps SLpV q Ñ G, V ˚ Ñ Y :“ NzG, this
induces a Whittaker structure on V , and hence a distinguished SL2pV q-
orbit in Ă V ˚ ˆB V

h, whose image determines a distinguished G-orbit on
Y ˆB Y

h, which, it is immediate to confirm, does not depend on choices.
Morover, generic horocycles on V ˚ map isomorphically to generic horo-
cycles on Y , so we can transfer the measures induced by the Whittaker
structure, and define the operator Rχ accordingly. The fiberwise scattering
maps Sw,χ should then be meromorphic multiples of Rχ, and the mero-
morphic scalar can be computed by pullback to V ˚; thus, equation (3.18)
remains valid for G.

I add the following corollary to (3.18), which will be used later:

3.3.2. Corollary. Let F be a non-Archimedean field, G a split group of semisimple
rank one, andX “ pN,ψqzG a symbol for the Whittaker model ofG. LetA “ AX
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be the universal Cartan of G, acting on measures on XH by the normalization
described in (3.5). Let h be the measure on A with Mellin transform

ȟpχq “ Lpχ, α̌, 1q´1.

(It belongs to the Bernstein center, i.e., the completed Hecke algebra of A.) Then,
for any φ P S`pXHq, the element

h ¨ φpxq “

ż

A
a ¨ φpxqhpaq

belongs to SpXHq.

Proof. Indeed, S`pXHq is generated by SpXHq under the action of the scat-
tering operator Sw, which is expressed in terms of the Mellin transform by
(3.8). By (3.18),

Sw,χph¨φq “ γpχ,´α̌, 0, ψq¨Rχph¨φqpwχq­ “ γpχ,´α̌, 0, ψqȟpwχ´1q¨Rχφ̌pwχq “

“ γpχ,´α̌, 0, ψqLpχ, α̌, 1q´1¨Rχφ̌pwχq “ ϵpχ,´α̌, 0, ψqLpχ,´α̌, 0q´1¨Rχφ̌pwχq

(see (2.9)).
The factor ϵpχ,´α̌, 0, ψqLpχ,´α̌, 0q´1 is polynomial in χ, hence corre-

sponds to another element h1 of the completed Hecke algebra of A. Thus,
applying inverse Mellin transform (3.8),

Swh ¨ φ “ h1_ ¨ Rφ, (3.19)

where h_paq “ hpa´1q.
The support of the measure Swph ¨ φq has compact closure in the affine

completion Xa
H “ specF rNzGs. On the other hand, Rφ is supported away

from the “cusp”Xa
H∖XH, as is very easy to see from the definition. (When

we identify the space XH with its horocycle space, a point approaching the
cusp corresponds to a horocycle approaching “infinity” in Xa

H.)
Thus, (3.19) implies that Swph ¨ φq P SpXHq.

□

3.4. The case of GmzPGL2. Now let G “ PGLpV q, where V is a two-
dimensional vector space. We assume that V is endowed with an alter-
nating form, and let X “ the G-variety of quadratic forms of discriminant
´1

4 (so that in some coordinates py, zq for a standard symplectic basis, such
a form is given by yz). Notice that we think of G as SLpV q{t˘1u in order to
define a G-action that fixes the discriminant. Thus, X » GmzPGL2.

The boundary degeneration XH » NzG can be identified with the space
of degenerate quadratic forms of rank one, which is canonically isomorphic
to pV _˚q{t˘1u, by sending a linear functional to its square. Having fixed
the symplectic form ω, and hence the isomorphism ιω : V

„
ÝÑ V _ as in the

previous subsection, we will identify XH with V ˚{t˘1u.
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The evaluation map gives rise to canonical isomorphisms

pX ˆ V q � SLpV q
„
ÝÑ Ga,

pXH ˆ V q � SLpV q
„
ÝÑ Ga, (3.20)

which are the ones inducing the canonical bijection of horocycles (3.3). The
preimage of 1, in each case, is a distinguished G-orbit, which projects to
distinguished G-orbits

X̃ Ă X ˆXH,

X̃H Ă XH ˆXH.

Notice that, in the case of X̃H, this is the projection of the canonical G-
orbit Ṽ Ă V ˆ V , induced by the symplectic form on V (as in the previous
subsection).

Fourier transform on V descends to Fourier transform on XH, but we
have to be careful, because the map V ˚ Ñ XH is not surjective at the level
of F -points; hence, a priori, it descends to a transform on FpV ˚qZ{2. How-
ever, there is a unique PGL2-equivariant extension of Fourier transform
(also to be denoted by F) to the Schwartz space FpXa

Hq generated by PGL2-
translates of FpV ˚qZ{2. (The notation Xa

H stands for the affine closure of
XH.) It can be explicitly described as follows: For any α P H1pF,Z{2q

(corresponding to a quadratic extension Eα of F , including the trivial one
F ‘F ), letRα be the corresponding Z{2-torsor over F (isomorphic to a pair
of distinct conjugate points of Eα), and let V α » V ˆZ{2 Rα. It is an F -
vector space which can be identified with V bF ℑpEαq, where ℑpEαq is the
“imaginary” line of elements of Eα which are conjugate to their opposite.
Then we have

XHpF q “
à

αPH1pF,Z{2q

V α˚pF q{t˘1u.

The symplectic form ω : V ˆ V Ñ Ga is invariant under the diagonal
Z{2-action, hence induces a symplectic form on V α. Explicitly, if we choose
an element e P ℑpEαq to write any element of V α as v b e, we have

ωpv1 b e, v2 b eq “ e2ωpv1, v2q.

This defines Fourier transform on the Schwartz space FpV αq, and in par-
ticular defines a Fourier transform F on

FpXa
Hq :“

à

α

FpV αpF qqZ{2

which, one can easily check, is the unique PGL2-equivariant extension of
Fourier transform on the copy corresponding to the trivial Z{2-torsor.

It is easy to see that F is a G-equivariant and AX -anti-equivariant, endo-
morphism

F : FpXa
Hq Ñ FpXa

Hq,
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where, here, AX “ the universal Cartan of G, and the action of AX is the
normalized one, as in (3.4).

Similarly, the correspondence X̃H

s
Ñ
t
XH, together with the Haar mea-

sure on horocycles (i.e., fibers of the map t) descending from that on V ˚,
gives rise to Radon transform

R : FpXa
Hq Ñ C8pXHq,

defined as before.
The analog of the Jacquet integral here is the morphism

I : FpXq Ñ C8pXHq

obtained by the correspondence

X̃ Ă X ˆXH.

again with the measure on generic horocycles on X obtained by their iden-
tification with generic horocycles of XH.

The adjoint of I (with respect to invariant measures, which we do not
necessarily need to fix)

I˚ : FpXHq Ñ C8pXq

given by the integral

I˚Φpxq “

ż

pXHqx

Φpvqµpvq, (3.21)

where pXHqx Ă XH is the fiber of X̃ over x, and µ is aGx-invariant measure
on it.

As before, the composition of I with Mellin transform will be denoted

Iχ : FpXq Ñ C8pAX , χzXHq.

Dualizing, we get a morphism

I˚
χ : C8pAX , χ

´1zXHq Ñ C8pXq,

which in some domain of convergence is given again by (3.21).
The composition of this with Mellin transform

Ĩ
˚

χ : FpXHq Ñ C8pAX , χ
´1zXHq

I˚
χ

ÝÑ C8pXq

can be written (for suitable choices of measures) as

Ĩ
˚

χΦpxq “

ż

XH

Φpvqχ̃ ˝ ppx, vqdv, (3.22)

where χ̃pzq “ |z|´
1
2χ ˝ e

α̌
2 pzq and

p : pX ˆXHq �G „
ÝÑ Ga

is the canonical isomorphism induced from the evaluation map (3.20).
Notice that, if we denote by A the universal Cartan of G1 “ SLpV q which

acts on V ˚, the map AzV ˚ Ñ AXzXH is an isomorphism. Thus, we can
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think of I˚
χ as a morphism from C8pA,χ1´1zV ˚q, where χ1 is the pullback

of χ toA. This morphism, though, will depend on χ itself, not just χ1, and if
we unfold the definitions and compose with Mellin transform, we will see
that the resulting functional

Ĩ
1˚

χ : FpV ˚q Ñ C8pA,χ1´1zV ˚q
I˚
χ

ÝÑ C8pXq

is given by the formula

Ĩ
1˚

χ Φpxq “

ż

V ˚

Φpv1qχ̃ ˝ ppx, v1qdv1,

where we are using the same letter (p) for the evaluation map on X ˆ V ˚.
We explicate this functional: Given x P X , choose a standard symplectic

basis pu, vq on V (i.e., ωpu, vq “ 1) such that the quadratic form associated
to x is

yu` zv ÞÑ yz.

In these coordinates, the above integral is equal to
ż

Φpy, zqχ̃pyzqdydz,

and adjoint Fourier transform on V is given by

F˚Φpy, zq “

ż

V
Φpa, bqψ´1paz ´ byqdadb.

We compute their composition. Assuming Φpy, zq “ Φ1pyqΦ2pzq for con-
venience of notation, we have

Ĩ
1˚

χ F
˚Φpxq “

ż ż

Φ1paqΦ2pbqψ´1paz ´ byqdadbχ̃pyzqdydz

“ ZpΦ̂
ψ´1

1 , χ̃, 1qZpΦ̂
ψ
2 , χ̃, 1q,

where the exponent of Fourier transforms denotes the character they are
defined by. Applying the local functional equation, we get that this is equal
to

γpχ̃´1, 0, ψqγpχ̃´1, 0, ψ´1q

ż

Φpz, yqχ̃´1pzyqdˆzdˆy

“ γpχ̃, 1, ψ´1q´1γpχ̃, 1, ψq´1Ĩ
1˚

χ´1Φpxq

“ γpχ,
α̌

2
,
1

2
, ψ´1q´1γpχ,

α̌

2
,
1

2
, ψq´1Ĩ

1˚

χ´1Φpxq.

Dualizing,

Fχ´1 ˝ Iχ “ γpχ,
α̌

2
,
1

2
, ψ´1q´1γpχ,

α̌

2
,
1

2
, ψq´1Iχ´1 ,

where we took into account that F extends uniquely to a PGL2-equivariant
operator on FpXa

Hq.
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Thus, the diagram (3.10) now reads

C8pAX , χzXHq

cχ¨Fχ´1

↓↓

R´1
χ →→ C8pAX , χ

´1zXHq

Sw,χ

↓↓

FpXq

Iχ
→→

Iχ´1 →→
C8pAX , χ

´1zXHq

R´1

χ´1
→→ C8pAX , χzXHq,

where cχ “ γpχ, α̌2 ,
1
2 , ψ

´1qγpχ, α̌2 ,
1
2 , ψq, and invoking (3.16) again, we get:

Sw,χ “ γpχ,
α̌

2
,
1

2
, ψ´1qγpχ,

α̌

2
,
1

2
, ψqγpχ,´α̌, 0, ψqRχ. (3.23)

3.5. The group case. Let us now study the group case, X “ H “ SLpV q,
where V is a two-dimensional vector space, andG “ HˆH . (Again,H acts
on the right on V .) The space EndpV q, fibered over Ga by the determinant
map, is a degeneration of H , and the G-orbit of the special fiber, i.e., the
subspace of EndpV q of elements of rank one, can be identified with the
asymptotic cone XH “ HH.

The identification (3.3) of generic horocycles, then, is as follows: a generic
horocycle, both in H and in HH, is equivalent to a pair pL,L1q of lines in V ,
together with a non-zero homomorphism τ : L Ñ V {L1; these data corre-
spond to the horocycle of the pair pB ˆ B1, Y q, where B,B1 are the stabi-
lizers of L,L1, and Y Ă H or Y Ă HH is the subvariety of endomorphisms
which induce τ . Notice that these data are also equivalent to an element of
Gdiag
m zpV ˚ˆV hq, namely the class of pv, τpvqq, where v is a non-zero element

of L. Thus, Hh
H “ GmzpV ˚ ˆ V hq, canonically.

For a pair pv, Y q P V ˚ ˆ V h, we will write rv : Y s P Ga for the scalar
λ such that v P λY (with the convention that 0Y denotes the vector sub-
space parallel to Y . We can also identify HH, canonically, with the space
Gdiag
m zpV h ˆV ˚q (notation as before), by mapping a pair pY, vq consisting of

a generic horocycle and a non-zero vector to the rank-one endomorphism
that sends Y to v, in other words the endomorphism u ÞÑ ru : Y s ¨ v.

For any pair

τ1 :V {L1 Ñ L1
1 Ă V

τ2 :V {L2 Ñ L1
2 Ă V

of elements of HH, as long as L1 ‰ L2 and L1
1 ‰ L1

2, the operator Mτ1,τ2 “

τ1 ` τ2 belongs to GLpV q. The pairs pτ1, τ2q with Mτ1,τ2 P SLpV q form a
distinguished Gdiag-orbit H̃H Ă HH ˆHH. Equivalently, the distinguished
Gdiag-orbit is characterized by the property that

v1 ^ v2 “ τ2pv1q ^ τ1pv2q (3.24)
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for all v1 P L1, v2 P L2.
The correspondence between genericGdiag-orbits onHHˆHH andGdiag-

orbits on HH ˆBHˆBH
Hh

H sends a pair pτ1, τ2q as above to the pair pτ1, τ
˝
2 q,

where τ˝
2 P Hh

H is the horocycle represented by the composition

L1
τ2|L1
ÝÝÝÑ L1

2 Ñ V {L1
1.

The distinguished Gdiag-orbit corresponds to the set of pairs

pV {L
τ1
ÝÑ L1 Ă V, V Ą L

τ˝
2

ÝÑ V {L1q P HH ˆBHˆBH
Hh

H

such that any lift of pτ1, τ
˝
2 q to an endomorphism of V has determinant 1.

Equivalently, representing

HH ˆBHˆBH
Hh

H “ Gdiag
m zpV h ˆ V ˚q ˆBHˆBH

Gdiag
m zpV ˚ ˆ V hq,

the distinguished Gdiag-orbit is obtained as follows: choose any H-orbit on
V ˚ ˆB V

h, say with a representative pv, Y q, and take the Gdiag-orbit repre-
sented by pY, v,´v, Y q. Indeed, for any y P Y , the endomorphism defined
by y ÞÑ v,´v ÞÑ y has determinant one.

This gives rise to a canonical Radon transform

R : FpHHq Ñ C8pHHq,

which is given by

RΦpV {L
τ
ÝÑ L1q “

ż

pPpV q∖tLuqˆpPpV q∖tL1uq

ΦpστpL1,L1
1qqdpL1, L

1
1q,

where στ
pL1,L1

1q
: V {L1 Ñ L1

1 Ă V is the unique such morphism with the
property that (3.24) is satisfied when τ1 “ σ and τ2 “ τ . The measure
on pPpV q ∖ tLuq ˆ pPpV q ∖ tL1uq is the following: choose any pair of non-
zero vectors pv P L, v1 P L1q, let Y “ τ´1pv1q Ă V and let Y 1 Ă V be the
horocycle of all vectors y1 with y ^ v “ v1 ^ y1 for all y P Y . Then Y ˆ Y 1

is a Ga ˆ Ga-torsor by px, x1q ¨ py, y1q “ py ´ xv, y1 ´ x1v1q, hence carries a
measure induced from our fixed measure on F 2, and under the projection
map it can be identified with pPpV q ∖ tLuq ˆ pPpV q ∖ tL1uq. It is immediate
that the resulting measure on pPpV q∖tLuqˆpPpV q∖tL1uq does not depend
on the choice of pv, v1q.

Another way to explicate this Radon transform is to choose any Whit-
taker structure (equivalently, a symplectic form ω) on V ˚. The Gm-anti-
equivariant identification V ˚ „

ÝÑ V h that it induces (which we have nor-
malized so that v corresponds to the horocycle tu P V |ωpu, vq “ 1u) allows
us to identify

HH “ Gdiag
m zpV h ˆ V ˚q » Gadiag

m zpV ˚ ˆ V ˚q,

and defines two correspondences Ṽ ˆ V ˚ Ñ V ˚ ˆ V ˚ and V ˚ ˆ Ṽ Ñ V ˚ ˆ

V ˚, where Ṽ “ tpu, vq|ωpu, vq “ 1u. The product of the resulting Radon
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transforms (where we denote by an index the variable that we apply the
transform to):

R “ R1 b R2 : FpV ˚ ˆ V ˚q Ñ C8pV ˚ ˆ V ˚q

descends to Gadiag
m zV ˚ ˆ V ˚, i.e., to a map

R : FpHHq Ñ C8pHHq.

This depends on the choice of a symplectic form, but its pullback to HH

does not, and coincides with the Radon transform described above, as a
simple calculation shows.

More explicitly, take a Borel subgroup of G of the form B ˆ B´, where
B,B´ are two opposite Borel subgroups ofH with unipotent radicalsN,N´

and intersectionBXB´ “ T , and identifyHH “ T ˆB´ˆBG in such a way
that the embeddings of T into H and HH are compatible with the isomor-
phism (3.3): NzH �N´ “ HH � pN ˆN´q. If we identify H with SL2, B “

the upper triangular subgroup and B´ “ the lower triangular subgroup,
then we have

RΦp1q “

ż

F 2

Φ

ˆˆ

´1
1

̇ ˆ

1 x
1

̇

,

ˆ

´1
1

̇ ˆ

1
y 1

̇̇

dxdy.

By [DHS21, Proposition 15.2], the scattering operator for the non-trivial
element w P WX “ WH is given by

Sw,χ “ R1,χ b R´1
2,χ´1 : C8pAH , χ

´1zHHq Ñ C8pAH , χzHHq.

The individual factors of this depend on the choice of a Whittaker structure,
but the product does not. Moreover, the expression is symmetric in the two
factors, i.e., we have R1,χ b R´1

2,χ´1 “ R´1
1,χ´1 b R2,χ.

We now compute this as a multiple of the operator Rχ “ R1,χ b R2,χ.
This is the calculation of the Plancherel measure, but it follows immediately
from (3.16): Invoking Fourier transform on V ˚, and the fact that F˚ ˝F “ 1,
where F˚ is Fourier transform defined with the character ψ´1, instead of ψ,
and setting χ̃ “ χ ˝ eα̌ (so that it corresponds to the character χ of (3.16)),
we have

1 “ Fχ´1 ˝ F˚
χ “ γpχ̃´1, 0, ψqR2,χ´1 ˝ γpχ̃, 0, ψ´1qR2,χ ñ

R´1
2,χ´1 “ γpχ̃´1, 0, ψqγpχ̃, 0, ψ´1qR2,χ,

and we get

Sw,χ “ γpχ, α̌, 0, ψ´1qγpχ,´α̌, 0, ψq ¨ R1,χ b R2,χ

“ γpχ, α̌, 0, ψ´1qγpχ,´α̌, 0, ψq ¨ Rχ. (3.25)
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We summarize the formulas (3.18), (3.23) and (3.25) for the scattering
operators.

3.5.1. Theorem. For the cases of Table (3.2), in terms of the canonical6 spectral
Radon transforms Rχ that were described in the previous subsections,

Rχ : C8pAX , χ
´1zXHq Ñ C8pAX , χzXHq,

the scattering operator Sw,χ for the non-trivial element w of WX is given by the
following formulas:

‚ For the Whittaker case, X “ pN,ψqzG,

Sw,χ “ γpχ,´α̌, 0, ψq ¨ Rχ; (3.26)

‚ for the variety X “ GmzPGL2,

Sw,χ “ γpχ,
α̌

2
,
1

2
, ψ´1qγpχ,

α̌

2
,
1

2
, ψqγpχ,´α̌, 0, ψq ¨ Rχ; (3.27)

‚ for the group case, X “ H “ SL2 under the G “ H ˆH-action,

Sw,χ “ γpχ, α̌, 0, ψ´1qγpχ,´α̌, 0, ψq ¨ Rχ. (3.28)

3.6. Relative characters. The quotient CH :“ pXH ˆ XHq � G has an AX -
action, which we normalize so that it descends from the action on the first
copy of XH, and the canonical generic G-orbit X̃H Ă XH ˆ XH, that was
also used to define Radon transform, defines in every case an isomorphism

pXH ˆXHq˝ �G „
ÝÑ AX Ă CH,

where pXH ˆXHq˝ is the open subspace of pairs of points whose stabilizers
belong to distinct Borel subgroups.

Characters of AX Ă CH pull back, generically, to G-invariant generalized
functions on XH ˆ XH, in fact, to functionals on the extended Schwartz
space S`pXH ˆ XHq obtained by applying scattering operators (on both
variables) to SpXH ˆ XHq, as the following proposition shows. To formu-
late it, let p : pXHˆXHq˝ Ñ AX be the quotient map; its fiber over 1 P AX is
the distinguished G-orbit X̃H. Fix a G-invariant measure on XH, and take
the Haar measure da on AX which disintegrates the Haar measure dxˆ dx

on XH ˆXH as the product of δpaqda with the G-invariant measure on X̃H

for which the following formula holds:
ż

X̃H

Φpu, vqdpu, vq “

ż

XH

R1Φpv, vqdv.

Here, as before, R1 denotes Radon transform in the first variable.

6To summarize: Radon transform depends on a choice of G-orbit on XH ˆB Xh
H, and

there is a canonical choice in any one of the three cases.
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3.6.1. Proposition. Given a measure φpu, vq “ Φpu, vqdudv P S`pXH ˆXHq,
the Mellin tranform of its push-forward f to CH (an element of the space of push-
forward measures that we should denote by S`pXH ˆXH{Gq)

f̌pχq “

ż

AX

fpξqχ´1pξq (3.29)

converges when χ´1 vanishes sufficiently fast on the complement of AX in CH,
and admits meromorphic continuation to the space of all characters.

The measure f P S`pXH ˆ XH{Gq can be reconstructed by inverse Mellin
transform:

fpaq “

ˆ
ż

ωAX
y

f̌pχqχpaqdχ

̇

da, (3.30)

where ω is a character such that ω´1 vanishes sufficiently fast on the complement
of AX in CH, and pda, dχq is a pair of dual Haar measures on AX and AXy.

Finally, the Mellin transform f̌pχq can be written

f̌pχq “

ż

XH

R
1,wχδ

1
2
Φpv, vqdv, (3.31)

where by R
1,wχδ

1
2

we denote, by abuse of notation, the composition of the spectral
Radon transform appearing in Theorem 3.5.1 and denoted by the same symbol,
with Mellin transform (3.7), both applied to the first variable.

When Φpu, vq “ Φ1puqΦ2pvq the integral (3.31) can also be written in
terms of the Mellin transforms of Φ1, Φ2 as

ż

AXzXH

R
wχδ

1
2

´

Φ̌1pχδ´ 1
2 q

¯

¨ Φ̌2pwχ´1δ´ 1
2 q. (3.32)

Proof. We compute:

f̌pχq “

ż

XHˆXH

Φpu, vqχ´1pppu, vqqdudv

“

ż

AX

˜

ż

X̃H

Φpa ¨ u, vqdpu, vq

¸

χ´1paqδpaqda

“

ż

AX

ż

XH

R1Φpa´1v, vqdvχ´1paqda

“

ż

XH

R
1,wχδ

1
2
Φpv, vqdv.

This converges when χ´1 vanishes sufficiently fast on the complement of
AX in CH and is meromorphic in χ, as the expression (3.32) shows: indeed,
the Mellin transforms (3.7) converge for such χ, and so does the spectral
Radon transform R

wχδ
1
2

, which is just a standard intertwining operator be-
tween principal series representations. Moreover, both admit meromorphic
continuation; for the Mellin transforms of elements of S`pXHq, recall that
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those can be written as φ1 ‘Swφ2, where both φ1 and φ2 belong to SpXHq,
and that the scattering map Sw is decomposed as in (3.8) in terms of the
fiberwise scattering maps Sw,χ, which are meromorphic in χ by Theorem
3.5.1.

The formula for the inverse Mellin transform (3.30) follows from the fact
that elements of S`pXH ˆXHq are of moderate growth, and up to a rapidly
decaying measure are supported on a compact subset of an affine embed-
ding Xa

H ˆ Xa
H; thus, their push-forwards will be of moderate growth on

AX and, up to rapid decay, supported on a compact subset of the affine em-
bedding CaH :“ Xa

H ˆXa
H �G.7 Thus, the measure ω´1f will be in L2pAXq,

for ω as in the statement of the proposition, and the result follows from
standard Fourier analysis.

□

We will be referring to the functional

Mχ : φ ÞÑ f ÞÑ f̌pχδ
1
2 q

on S`pXH ˆ XHq as the “open” G-invariant Mellin transform of φ. As is
clear from (3.32), it is a relative character for the representation

πχ :“ C8pAX , χzXHq » Ipχ´1q,

the principal series representation obtained by normalized induction from
the character χ´1 of AX , i.e., it factors through a morphism

S`pXH ˆXHq Ñ πχ b πχĂ

⟨ , ⟩
ÝÝÑ C.

Notice that, unlike the Mellin transform (3.7) on XH, in the definition of
Mellin transform for S`pXH ˆ XH{Gq, we do not normalize the action of
AX on measures or functions on CH, which is why we need this shift by δ

1
2

in order to make Mχ into a relative character for Ipχ´1q.
We denote byM cl

χ the functional (presented here when Φpu, vq “ Φ1puqΦ2pvq,
but its extension to the general case is clear)

M cl
χ : φ ÞÑ

ż

AXzXH

Φ̌1pχq ¨ Φ̌2pχ´1q,

and call it the “closed” G-invariant Mellin transform of φ. The reason for
the terminology “open” and “closed” is that they both functionals are inte-
grals over the corresponding “Bruhat cells” (=G-orbits) of XH ˆ XH. No-
tice that only the “open” Mellin transform is a functional on the space of
push-forward measures S`pXH ˆXH{Gq; the closed Bruhat cell lives over
a proper subvariety of CH, and information about it is lost when we take
push-forwards.

7In the examples of Table (3.2), this coincides with CH.
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Now we restrict to the case when F is non-Archimedean.8 We would
like to consider its further pullback to SpX ˆ Xq via the asymptotics map
e˚

H b e˚
H, and determine its role in the Plancherel formula of X .

Let Iχ, Iclχ be the pullbacks of Mχ, M cl
χ , respectively, to SpX ˆXq via the

asymptotics map e˚
H b e˚

H.
The following theorem states that the relative characters Iclχ decompose

the “most continuous summand” of the space L2pXq, in the sense of the
Plancherel decomposition. The most continuous summand is a canonical
subspaceL2pXqH Ă L2pXq, defined as the image ofL2pXHq under a canon-
ical “Bernstein map” ιH : L2pXHq Ñ L2pXq [SV17, §11]. Fix an invariant
measure dx on X and a compatible measure on XH [SV17, §4.2], and use
them to consider L2pXq, L2pXHq as spaces of measures. Then, Theorem
7.3.1 and Proposition 11.4.2 of [SV17] imply the following Plancherel de-
composition for the most continuous summand:

3.6.2. Theorem. Forφ1, φ2 P SpXq with orthogonal projectionsφ1
1, φ

1
2 P L2pXqH,

we have
ż

X

φ1
1 ¨ φ1

2

dx
“

1

|WX |

ż

AX
y

Iclχ pφ1 b φ2qdχ,

where the Haar measure dχ on the unitary dual AXy is the one dual to the Haar
measure da on AX .

Thus, the relative characters Iclχ are, in some sense, the canonical charac-
ters which decompose the most continuous spectrum of X against Haar–
Plancherel measure dχ. The whole point of the present section was to com-
pare the pullbacks Iχ of the “open” Mellin transforms Mχ to these relative
characters:

3.6.3. Theorem. For each of the cases of Table (3.2), define a rational function
µXpχq on AXyC, as follows:

‚ For the Whittaker case, X “ pN,ψqzG,

µXpχq “ γpχ, α̌, 0, ψq; (3.33)

‚ for the variety X “ GmzPGL2,

µXpχq “ γpχ,´
α̌

2
,
1

2
, ψ´1qγpχ,´

α̌

2
,
1

2
, ψqγpχ, α̌, 0, ψq; (3.34)

‚ for the group case, X “ H “ SL2 under the G “ H ˆH-action,

µXpχq “ γpχ,´α̌, 0, ψ´1qγpχ, α̌, 0, ψq. (3.35)

8Replacing the Schwartz space with the Harish-Chandra Schwartz space, and restricting
to χ unitary, the results that follow extend to the Archimedean case, using asymptotics of
admissible generalized matrix coefficients. We will not need them, so we avoid introducing
more material.
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Then the pullbacks of the “open” and “closed” Mellin transforms are related by
the formula

Iχpφ1 b φ2q “ µXpχq´1Iclwχpφ1 b φ2q. (3.36)

In particular, the relative characters Iχ decompose the space L2pXqH with
Plancherel measure µXpχqdχ:

ż

X

φ1
1 ¨ φ1

2

dx
“

1

|WX |

ż

AX
y

Iχpφ1 b φ2qµXpχqdχ.

Here, φ1, φ2 P SpXq with orthogonal projections φ1
1, φ

1
2 P L2pXqH.

Proof. Recall that the image of the asymptotics map is invariant under the
scattering operators. In particular, if Φi “ e˚

Hφi (i “ 1, 2) then Sw,χΦ̌ip
w´1

χq “

Φ̌ipχq.
On the other hand, by Theorem 3.5.1, Sw,χ “ µXpwχq ¨ Rχ. The G-

equivariant scattering operator, applied to the first variable:

Sw,1 : S`pXH ˆXHq Ñ S`pXH ˆXHq

descends to Gdiag-coinvariants, hence (3.31) reads

Mχ “ µXpχq´1M cl
wχ ˝ Sw,1.

By the invariance of Φ1 bΦ2 under Sw,1, we haveM cl
wχ ˝Sw,1pΦ1 bΦ2q “

M cl
wχpΦ1 b Φ2q, therefore the pullbacks to SpX ˆXq satisfy (3.36).
The final statement follows from the Plancherel formula of the previous

theorem. □

In our applications of this theorem, we will want to compare the transfer
operator or Hankel transform for two relative trace formulas attached to
spherical pairs pG,Xq and pG1, Y 1q:

T : SpX ˆX{Gq Ñ SpY ˆ Y {G1q

(typically with non-standard spaces of test measures, which do not appear
in our notation here), with an abelian transfer operator for the correspond-
ing degenerations

TH : S`pXH ˆXH{Gq Ñ S`pYH ˆ YH{G1q,

which is chosen so that the following diagram commutes:

SpX ˆX{Gq
e˚

H
be˚

H →→

T
↓↓

S`pXH ˆXH{Gq

TH

↓↓
SpY ˆ Y {G1q

e˚
H

be˚
H →→ S`pYH ˆ YH{G1q

. (3.37)

Here, by abuse of notation, we denote by e˚
H b e˚

H the descent of the
morphism

e˚
H b e˚

H : SpX ˆXq Ñ S`pXH ˆXHq
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to the spaces of push-forward measures. The fact that it descends follows
from the following fact, true for each of the spaces X of Table 3.2, but not
for their degenerations XH:

3.6.4. Theorem. For each of the spaces X of Table 3.2, the map

SpX ˆXqG Ñ SpX ˆX{Gq,

from coinvariants for the diagonalG-action to the space of push-forward measures,
is an isomorphism.

Proof. For the Kuznetsov case, this is proven in more generality by Jacquet,
Aizenbud and Gourevitch in [Jac98, Theorem 1.1], [AG13, Corollary 6.0.4].

The quotient stack rGmzPGL2 {Gms looks locally like rA2{Gms (with ac-
tion px, yq ¨ a “ pax, a´1yq) [Sak13, Lemma 3.2]. The density of regular or-
bital integrals is then [Sak13, Lemma 2.3], which we will revisit in Lemma
7.1.1 below to fill in some missing details in the proof.

The theorem on the group is a well-known theorem of Harish-Chandra.
Notice that rSL2 ˆSL2 {SOdiag

4 s » r SL2
PGL2

s, so we can invoke the density
of regular semisimple orbital integrals on the open subset SL2pF q{t˘1u of
PGL2pF q. □

The way to verify that diagram (3.37) commutes is to examine pullbacks
of Mellin transforms. Theorem (3.6.3) enables us to do that. For example,
if AX “ AY , WX “ WY and the map T is designed to respect Plancherel
measures, that is (for the most continuous spectrum), to pull back the rela-
tive character IY,clχ for Y to the relative character IX,clχ for X (see Theorem
3.6.2), then

the pullback of Mellin transform M
YH
χ on YH via TH should be

T ˚
HM

YH
χ “

µXpχq

µY pχq
¨M

XH
χ . (3.38)

By the explicit form of the scalars µXpχq, this corresponds to a compo-
sition of the multiplicative Fourier convolutions that we defined in §2.1.7 —
compare with (2.12). This is the conceptual explanation that I can presently
give for all the transfer operators T and Hankel transforms that will appear
in the rest of this paper: their geometric expressions are equal or, at least,
deformations of the geometric expressions for the transfer operators TH of
the boundary degenerations. These are given by Fourier convolutions de-
termined by the scattering operators which, in turn, are closely related to
the L-functions of the associated global period integrals, by [SV17, §17].
Hence, the examples discussed in this paper suggest that the L-functions at-
tached to spherical varieties inform the way that their relative trace formulas will
be geometrically compared.
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4. TRANSFER BETWEEN THE KUZNETSOV FORMULA AND THE STABLE
TRACE FORMULA FOR SL2

4.1. Relative characters. Here we discuss the local comparison behind Rud-
nick’s thesis [Rud90]. Let G “ SL2. Both G as a G ˆ G-variety and the
Whittaker space pN,ψqzG have the same dual group, namely, PGL2. We
will construct a local transfer map

T : S´

LpAd,1q
ppN,ψqzG{pN,ψqq

„
ÝÑ Sp

G

G
q,

which gives rise to stable functoriality between the Kuznetsov and the Sel-
berg trace formula. The non-standard space S´

LpAd,1q
ppN,ψqzG{pN,ψqq of

orbital integrals was defined in §2.2.4. In terms of the representatives

ζ̃ “

ˆ

´ζ´1

ζ

̇

of regular orbits for the Kuznetsov formula, it consists of measures which,
in a neighborhood of ζ “ 0, coincide with the usual test measures SppN,ψqzG{pN,ψqq

for the Kuznetsov formula, while in a neighborhood of ζ “ 8 they are of
the form

Cpζ´1qdˆζ,

where C is a smooth function in a neighborhood of zero.
We can think ofNzG as V ˚, the complement of zero in a two-dimensional

vector space, and the identification N » Ga as a Whittaker structure. Then
NzG � N » pV ˚ ˆ V ˚q � G was canonically identified in §2.2.2 with Ga

through the symplectic pairing. This identification is compatible with the
section ζ ÞÑ ζ̃ over Fˆ.

Let π denote an irreducible tempered representation of SL2, and Π its
L-packet (the restriction of an irreducible tempered representation of GL2).
We assume that π is the unique generic element of Π with respect to the
character ψ of N . Define a morphism

π̃ b̂ π Ñ C8ppN,ψ´1qzGˆ pN,ψqzGq

so that evaluation at the coset represented by p1, 1q is given by

ṽ b v ÞÑ

ż ˚

N
⟨πpnqv, ṽ⟩ψ´1pnqdn, (4.1)

with the measure on N induced by its identification with Ga. This regular-
ized integral is understood as the value at λ “ 1 of the Fourier transform
(defined as

ş

Φpxqψ´1pλxqdx) of the L2-function n ÞÑ ⟨πpnqv, ṽ⟩ (whereN is
identified again with Ga). I point the reader to [LM15, §2] and [SV17, §6.3]
for details.

The space C8
modppN,ψ´1qzG ˆ pN,ψqzGq of smooth Whittaker functions

of moderate growth is in canonical duality with SppN,ψqzGˆ pN,ψ´1qzGq.
The restriction “moderate growth” only applies to the Archimedean case,
and the image of the morphism defined by (4.1) automatically lands in it;
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however, from now on, for notational simplicity, we will be abusing nota-
tion and writing C8 for C8

mod.
The adjoint of the map above is a morphism

SppN,ψqzGˆ pN,ψ´1qzGq Ñ π b̂ π̃.

Its composition with the canonical pairing π b̂ π̃ Ñ C is a Gdiag-invariant
functional on SppN,ψqzG ˆ pN,ψ´1qzGq, which factors through the coin-
variant space SpN,ψzG{N,ψq (see (2.16)), will be denoted by Jπ or JΠ:

JΠ : SpN,ψzG{N,ψq Ñ C.
This is the relative character (or Bessel distribution) attached to the packet Π.

Explicitly,

JΠpΦ1 b Φ2q “
ÿ

pv,ṽq

ż

pNzGq2
Φ1px1qΦ2px2q

ż ˚

N
⟨πpnx2qv, π̃px1qṽ⟩ψ´1pnqdn,

(4.2)
where pv, ṽq runs over dual pairs in dual bases of π and π̃. Notice that it
does not make a difference whether we sum over a dual basis for π or for
the entire L-packet Π; since the other elements of the packet are not generic,
their contribution will be automatically zero.

4.1.1. Example. Let F be non-Archimedean, with ring of integers o, residual
degree q, and a uniformizer ϖ.

Suppose that π “ Ipχq is a K “ Gpoq-unramified principal series repre-
sentation, unitarily induced from an unramified character χ of the upper
triangular Borel subgroup (identified with a character of Fˆ). Let ϕK,χ P π,
ϕK,χ´1 P π̃ be K-invariant vectors satisfying

⟨︁
ϕK,χ, ϕK,χ´1

⟩︁
“ 1. It takes an

elementary calculation (or an application of Macdonald’s formula on zonal
spherical functions) to show that the unramified matrix coefficient

Φpyq “

⟨︃
π

ˆ

1 y
1

̇

ϕK,χ, ϕK,χ´1

⟩︃
depends only on the absolute value of y, and satisfies Φpyq “ 1 on o and
Φpyq “

q´1´q´2`q´1χpϖq`q´1χpϖq´1

1`q´1 when y P ϖ´1oˆ.
Thus, if f P SpN,ψzG{N,ψq is the image of the identity element of the

Hecke algebra, then

⟨f, Jπ⟩ “

ż

Φpyqψpyqdy “ 1 ´ Φpϖ´1q

“
p1 ´ q´1χpϖqqp1 ´ q´1χpϖq´1q

1 ` q´1
“

ζp2q

Lpπ,Ad, 1q
. (4.3)

On the other hand, consider the space of test measures SpGGq for the
stable trace formula of G. The stable character ΘΠ of the L-packet Π is a
functional on this space, descending from the sum of the characters of the
elements of Π, which are generalized functions on the group (that is, func-
tionals on SpGq).
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It was proven in [SV17, Theorem 6.3.4] that the characters JΠ and ΘΠ sat-
isfy the Plancherel formula for their respective spaces, for the same Plancherel
measure. More precisely, let Gp

temp

st denote the “stable tempered dual” of
G, i.e., the set of tempered representations modulo the equivalence of be-
longing to the same L-packet (or, equivalently, to the restriction of the same
tempered representation of GL2). Then, fixing a measures dg onG to define
L2pGq as a space of measures, there is a unique measure µGpΠq on Gp

temp

st

such that, for any φ1, φ2 P SpGq we have:
ż

G

φ1 ¨ φ2

dg
“

ż

Gp
temp
st

ΘΠpφ1 b φ2qµGpΠq. (4.4)

Let dx be the measure on NzG which factorizes the measure dg with
respect to the fixed Haar measure on N » Ga. Then, Theorem 6.3.4 of
[SV17] states that for any φ1 P SpN,ψzGq, φ2 P SpN,ψ´1zGq we have:

ż

NzG

φ1 ¨ φ2

dg
“

ż

Gp
temp
st

JΠpφ1 b φ2qµGpΠq (4.5)

for the same measure µG.

4.2. The main theorem. Fix the isomorphism
G

G
» Ga via the trace map —

hence, both SpGGq and the non-standard test measures S´

LpAd,1q
ppN,ψqzG{pN,ψqq

for the Kuznetsov formula are understood as measures on Ga. In this sec-
tion we will prove part (2) of the following theorem, assuming the other
statements, which will be proven in Section 9.

4.2.1. Theorem. Consider the equivariant Fourier transform T :“ FId,1 of mul-
tiplicative convolution with the measure D1 “ ψpζqdζ “ ψpζq|ζ|dˆζ on Gm.

Then:
(1) The convolution makes sense on SpN,ψzG{N,ψq as the Fourier trans-

form of a distribution, and maps it into SpGGq.
(2) For every tempered packet Π and JΠ as above,

T ˚ΘΠ “ JΠ. (4.6)

(3) The transform extends to an isomorphism, given by the same convolution
understood, again, as the Fourier transform of a(n L2-)distribution:

T : S´

LpAd,1q
pN,ψzG{N,ψq

„
ÝÑ Sp

G

G
q. (4.7)

(4) At non-Archimedean places, unramified over the base field Qp or Fppptqq,
it satisfies the fundamental lemma for the Hecke algebra up to a factor of
ζp2q “ p1 ´ q´2q´1, namely: for all h P HpG,Kq Ă SpGq, it takes the
element

h ¨ fLpAd,1q P S´

LpAd,1q
pN,ψzG{N,ψq

to the image of ζp2qh in SpGGq.
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4.2.2. Remarks. (1) The part of Statement (4) about non-trivial elements
of the Hecke algebra is quite redundant, since it can be deduced for
the fundamental lemma for the identity element of the Hecke alge-
bra, and Statement (2). In any case, in Section 9 we will obtain it “for
free”. In generalizations of this paper, one would expect to prove
an analog of Statement (4) locally, and then use it to deduce, by
a global-to-local argument involving comparisons of relative trace
formulas, an analog of Statement (2).

(2) The factor ζp2q in Statement (4) is compatible with the calculation
of the relative character applied to the standard basic function of
SpN,ψzG{N,ψq in (4.3).

(3) Theorem 1.3 in [SY13] can be seen as a global application of the
isomorphism (4.7), restricted to hyperbolic conjugacy classes.

(4) As Valentin Blomer pointed out to me, it seems that (4.6) can be
directly obtained, in the real case, from classical identities such as
[GR15, (6.611.1)], expressing the Fourier transform of Bessel func-
tions in terms of exponentials; I have not checked the details.

(5) In a different, but related, setting, David Ben-Zvi and Sam Gunning-
ham have recently established what can be seen as a comparison be-
tween the quotient spaces associated to the Kuznetsov formula and
the trace formula, in the setting of loop groups of arbitrary complex
reductive groups. Their theorem [BZG, Theorem 6.16] constructs,
by spectral arguments, what can be informally be described as a
map from “D-modules on the quotient space pN,ψqzG{pN,ψq” to
“D-modules on the adjoint quotient of G”. It would be interesting
to see an explicit geometric description of their comparison, similar
to the Fourier transform of the above theorem.

We will now prove Statement (2), assuming the rest (more precisely as-
suming Statement (1)). Statements (1) and (3) will be proven at the end of
§9.3, and Statement (4) will be proven at the end of §9.4.

Proof of Statement (2), assuming the rest. Let fpζq “ Φpζqdζ. Since the map
NzG↠ C :“ NzG �N is smooth, the untwisted push-forward map

SpNzGq Ñ MeaspCq

has image in locally bounded measures (in fact, Schwartz measures); a for-
tiori, the same is true for the twisted push-forward. Hence, Φpζq ! 1.

We write, formally,

D1 ‹ fpζq “ dˆζ ¨D1 ‹ p| ‚ |Φp‚qqpζq

“ dˆζ ¨

ż

Fˆ

|z´1ζ|Φpz´1ζqψpzq|z|dˆz

“ dζ ¨

ż

F
|z|´1Φpz´1qψpzζqdz,
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and hence interpret T f as the product of the measure dζ with the Fourier
transform of the L2-function ζ ÞÑ |ζ|´1Φpζ´1q.

The extension of this to an isomorphism

T : S´

LpAd,1q
pN,ψzG{N,ψq

„
ÝÑ Sp

G

G
q,

together with the fundamental lemma, will be postponed until §9, where
they will be obtained as special cases of a more general theorem.

We prove the statement on relative characters. It relies on the following
formal relation:

T pfq “ r!pf ˆ dnq, (4.8)

where r is the quotient map

r :
G

N
Ñ

G

G
,

and fˆdn denotes the “pullback” of f to theN -torsor G
N Ñ NzG{N defined

by the fixed Haar measure on N . Here we do not think of f as a scalar-valued
measure on NzG � N (by the trivialization described in §2.2.1), but as an

pN,ψq-equivariant measure on
G

N
, divided by the Haar measure of N , where n P

N acts by sending the class of g P G to the class of ng. If we fix coordinates
ˆ

a b
c d

̇

ÞÑ pζ “ c, t “ trq for
G

N
» A

2, the trivialization of f introduced

in §2.2.1 is the one obtained by restricting it to the line t “ 0. If f1 is the

push-forward to
G

N
of a Schwartz measure on G, and f its twisted push-

forward to SpN,ψzG{N,ψq. and if Rn denotes the translation action of N

on measures on
G

N
, we have

f ˆ dn “

ż

N
Rnf1 ¨ ψ´1pnqdn. (4.9)

In the coordinates pζ, tq above, the group N “ Ga acts as pζ, tq ¨ x “ pζ, t `

ζxq.
We will need to give a rigorous meaning to the formal relation (4.8), be-

cause the push-forward r! does not converge absolutely. But, before we
do that, let us justify this relation in a formal manner, pretending that all
integrals were convergent.
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First of all, let us show why (4.8) should imply (4.6): With f1 and f as
above we have, formally,

⟨T f,ΘΠ⟩
(4.8)

ùùùù ⟨f ˆ dn, r˚ΘΠ⟩

“

⟨︃
ż

N
Rxf1 ¨ ψ´1pxqdx,ΘΠ

⟩︃
“

ż

N
⟨Rxf1,ΘΠ⟩ψ´1pxqdx “

“

⟨︃
f1,

ż

N
RxΘΠψpxqdx

⟩︃
.

The explicit expression (4.2) for JΠ allows us to write the last pairing as

⟨f1, JΠ⟩ “ ⟨f, JΠ⟩ ,

the last equality because the generalized function JΠ is already pN,ψ´1q-
equivariant on both sides.

To formally justify (4.8), we claim that, for a measure f P SpN,ψzG{N,ψq

which, after trivialization, is written fpζq “ Φpζqdζ, the pullback measure
f ˆ dn on G

N is given by

f ˆ dnpζ, tq “ Φpζq|ζ|´1ψp
t

ζ
qdζdt. (4.10)

Indeed, this relies on the calculation that a matrix in SL2 with given pζ “

c, tq and c ‰ 0 can be written as
ˆ

1 x
1

̇ ˆ

´c´1

c

̇ ˆ

1 y
1

̇

with x` y “ t
c .

Thus, the push-forward r!pf ˆ dnq is

r!pf ˆ dnqptq “ dt ¨

ˆ
ż

F
Φpcq|c|´1ψp

t

c
qdc

̇

“

ż

fp
t

z
qψpzq|z|dˆz. (4.11)

Now let us rigorously prove (4.6): As before, consider a Schwartz mea-

sure on G, and let f1 be its push-forward to
G

N
, and f its twisted push-

forward to SpN,ψzG{N,ψq. The proof relies on the (rigorous) relation
ż ˚

⟨r!pRxf1q,ΘΠ⟩ψ´1pxqdx “ ⟨T f,ΘΠ⟩ , (4.12)

where the left hand side should be interpreted, as we have done for the
right hand side when defining T f , as the Fourier transform of a distribu-
tion; more precisely, as the value of the generalized function

u ÞÑ

ż

F
⟨r!pRxf1q,ΘΠ⟩ψ´1puxqdx
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at 1, after we show that this generalized function is a continuous function
in a neighborhood of 1.

Let us first show the corresponding identity for generalized functions,
so choose a Schwartz measure φpuqdu on F , supported in a small neigh-
borhood of 1. We denote Fourier transforms by φ ÞÑ φ̂, whether they are
defined with the character ψ or ψ´1, and leave it to the curious reader to
figure out where each character is being used. We also write Θ for ΘΠ. We
compute:

ż

φpuq

ż ˚

⟨r!pRxf1q,Θ⟩ψ´1puxqdxdu

by def.
ùùùùù

ż

φ̂pxq ⟨r!pRxf1q,Θ⟩ dx

“

¡

φ̂pxqf1pζ, t` ζxqΘptqdx,

where we have used the fact that the triple integral is absolutely conver-
gent. Indeed, writing f1 “ Φ1dζdt, the product

φ̂pxqΦ1pζ, t` ζxqΘptq

has local L1-seminorms (i.e., L1-seminorms over additive translates of any
fixed compact subset in the variables px, ζ, tq) of rapid decay in the variable
minp|x|, |ζ|, |t|q, because the function pζ, tq ÞÑ Θptq has local L1-seminorms
of polynomial growth, φ̂ is of rapid decay, and Φ1pζ, tq has rapidly decaying
local-L1 seminorms in both variables.

We can now write it as an iterated integral, with the variable x to the
interior. Consider the function x ÞÑ Φ1pζ, t ` ζxq. For fixed ζ ‰ 0 and
t, the function is rapidly decaying in x. Its Fourier transform against the
character ψ´1, evaluated at a point u, is uΦpζqψpu tζ q, where u ÞÑ uΦpζq is
the Fourier transform of x ÞÑ Φ1pζ, ζxq (so that, by (4.9) and (4.10), fpζq “
1Φpζq|ζ|dζ). Thus, the last integral can be written:

ż

t
Θptq

ż

ζ

ż

u
φpuquΦpζqψpu

t

ζ
qdudζdt.

We now want to switch the order of integration over ζ and u, interpreting
the integral over ζ as a Fourier transform in the sense of distributions:

ż

ζ

ż

u
φpuquΦpζqψpu

t

ζ
qdudζ “

ż

u
φpuq

ż ˚

ζ

uΦpζqψpu
t

ζ
qdudζ. (4.13)

To show this, let Fu be the Fourier transform of the function ζ ÞÑ uΦp1ζ q|ζ|´2

against the character x ÞÑ ψpuxq. Notice that for u “ 1 the measure F1pζqdζ
is precisely the image of 1Φpζq|ζ|dζ under the transfer operator T , hence
belongs to SpGGq. As will be clear from the proof of Statement (1) (in §9.3),
there is nothing special about u “ 1; more precisely, for u in a neighborhood
of 1, the map u ÞÑ Fudζ is a continuous section of SpGGq.
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The inverse map Fu ÞÑ uΦ is given by Fourier transform using the char-
acter ψ´1, instead of ψ, which converges absolutely. Indeed, it is straight-
forward to see that measures in SpGGq are bounded by Schwartz measures
(see [Sak21, Proposition 5.3.1] for a general argument, or by direct com-
putation of the — well-known — orbital integrals for SL2), hence Fu is
bounded (and of rapid decay). As u varies in a neighborhood of 1, the
Fourier transforms of the functionsFu converge uniformly, since u ÞÑ Fudζ P

SpGGq is continuous.
Thus, if κ is another Schwartz function, and we compute both sides of

the desired equality (4.13) as distributions in the variable t, we have
ż

t
κ̂ptq

ż

u
φpuq

ż ˚

c

uΦpcqψpu
t

c
qdudcdt “

ż

t
κ̂ptq

ż

u
φpuqFuptqdt

“

ż

u
φpuq

ż

t
κ̂ptqFuptqdtdu “

ż

u
φpuq

ż

z
κpzqFuxpzqdzdu,

where Fux is defined using the character ψ´1, so the last expression is
ż

u
φpuq

ż

z
κpzq

ż

t
Fuptqψ´1ptzqdtdzdu

But this converges absolutely as a triple integral, so we can write it as
ż

z
κpzq

ż

u
φpuq

ż

t
Fuptqψ´1ptzqdtdudz

“

ż

z
κpzq

ż

u
φpuq

ż

t
Fuptqψ´1put

z

u
qdtdudz

“

ż

z
κpzq

ż

u
φpuquΦp

u

z
q

ˇ

ˇ

ˇ

u

z

ˇ

ˇ

ˇ

2
dudz.

Applying Fourier transform in the variable z again, this is equal to

ż

t
κ̂ptq

ż

z

ż

u
φpuquΦp

u

z
qψpztq

ˇ

ˇ

ˇ

u

z

ˇ

ˇ

ˇ

2
dudzdt

“

ż

t
κ̂ptq

ż

ζ

ż

u
φpuquΦpζqψp

ut

ζ
qdudζdt,

completing the proof of (4.13).
Putting all together, we have shown that
ż

φpuq

ż ˚

⟨r!pRxf1q,Θ⟩ψ´1puxqdxdu “

ż

t
Θptq

ż

u
φpuqFuptqdudt

“

ż

u
φpuq

ż

ΘptqFuptqdtdu,

the last step because of the continuity of the section u ÞÑ Fu P SpGGq, and the
rapid decay of elements of SpGGq. Now, the inner integral on the right hand
side, as a generalized function of u, is represented by a continuous function,
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hence so is the inner integral on the left hand side, and the equality holds
for u “ 1.

□

4.3. Comparison with the degeneration. In this subsection, F is a non-
Archimedean field.

LetX be a symbol for the Whittaker model pN,ψqzG, and letXH “ NzG

be its asymptotic cone. Set Y “ G “ SL2, G1 “ G ˆ G{t˘1udiag, and
YH the asymptotic cone of Y . We recalled in §3.6 that there is a canonical
“asymptotics” morphism

e˚
H b e˚

H : SpX ˆXq Ñ S`pXH ˆXHq,

and saw that it descends to spaces of push-forward measures. Let S`pXHˆ

XH{Gq1 be the subspace of S`pXH ˆXH{Gq generated under the action of
AX by the image of SpX ˆX{Gq (and similarly for YH). 9

The descent of e˚
H b e˚

H to coinvariants, together with the transfer oper-
ator T , give rise to most of the diagram (3.37), which we repeat here:

SpX ˆX{Gq
e˚

H
be˚

H →→

T
↓↓

S`pXH ˆXH{Gq1

TH

↓↓
SpY ˆ Y {G1q

e˚
H

be˚
H →→ S`pYH ˆ YH{G1q1

.

What is missing is the transfer operator TH making the diagram com-
mute.

4.3.1. Theorem. Identify CH :“ YH ˆ YH � G1 “ XH ˆ XH � G “ Ga as
in §3.6, namely, sending the distinguished G1-orbit, resp. G-orbit, to 1 (and the
singular one to 0). There is a unique AX -equivariant operator TH making the
above diagram commute, given by the multiplicative Fourier convolution Fα̌,1 —
again, understood as the Fourier transform of a distribution.

4.3.2. Remark. The reader will notice that the only property of the transfer
operator T used in the proof is that it satisfies (4.6), in other words, that it
relates the relative characters that correspond to the same Plancherel mea-
sure, cf. (4.4) and (4.5). At no point will we use the explicit expression for
the transfer operator as FId,1. Thus, this theorem, with a simple compar-
ison of coordinates that follows, gives a conceptual reason why the transfer
operator T is given by this formula: it is “the same” as the operator TH! In
higher rank, in some examples computed together with Chen Wan, things
are similar, but not so simple: the operator T tends to be a deformation of

9If S`
pXHq

1 is the subspace of S`
pXHq generated under the AX -action by e˚

HpSpXqq,
one can show, using the Paley–Wiener Theorem 1.9 of [DHS21], that the quotient
S`

pXHq{S`
pXHq

1 is supported on the set of characters of AX fixed by the Weyl group.
Thus, the difference between the two is not very significant; for the purposes of the present
article, we could have redefined S`

pXHq to be equal to S`
pXHq

1.
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the boundary operator TH; we currently do not understand the nature of
this deformation.

Proof. Notice that for both X and Y the character δ on AX “ AY coincides
— in the coordinate ζ as above, δ

1
2 “ |ζ|.

For what follows, denote by JΠ, ΘΠ by Jχ, Θχ, respectively, when Π is the
principal series representation of SL2 obtained by unitary induction from
the character χ of AX . Let Mχ denote the Mellin transform f ÞÑ f̌pχδ

1
2 q “

f̌pχ| ‚ |q on either of the spaces S`pXH ˆXH{Gq1 or S`pYH ˆ YH{G1q1. Let
IXχ , resp. IYχ be its pullback via the asymptotics map to SpX ˆ X{Gq, resp.
SpY ˆ Y {G1q.

Comparing the Plancherel formulas (4.4), (4.5) and Theorem 3.6.3, we
deduce that

IYχ µY pχq “ ΘχµGpχq

and
IXχ µXpχq “ JχµGpχq,

where µGpχqdχ is the Plancherel measure for SL2. (It can be shown to be
equal to µY pχqdχ for a correct choice of Haar measures, hence IYχ “ Θχ,
but we don’t need this here.)

Since T ˚Θχ “ Jχ, for the diagram to commute we would need

T ˚
HMχ “

µXpχq

µY pχq
Mχ “ γpχ,´α̌, 0, ψ´1q´1Mχ,

or, in other words,

THf~pχq “ γpχ,´α̌, 1, ψ´1q´1f̌pχq “ γpχ, α̌, 0, ψqf̌pχq.

Now consider the multiplicative Fourier convolution Fα̌,1 of an element
f P S`pXH ˆ XH{Gq1. As in the beginning of the proof of Theorem 4.2.1,
if fpζq “ Φpζqdζ then Fα̌,1f will be understood as the Fourier transform of
the function Dpζq :“ |ζ|´1Φpζ´1q “

|ζ|fpζ´1q

dζ . Notice that Φ is smooth (i.e.,
has open stabilizer) as a Gm-vector, and its support has compact closure
in F , therefore the function D is smooth under the Ga-action; therefore, its
Fourier transform is a compactly supported, Gm-smooth distribution on F .
We will now argue its restriction to Fˆ is of polynomial growth, and that
the functional equation (2.12) holds for its Mellin transform:

Fα,1f­ pχq “ γpχ, α̌, 0, ψqf̌pχq.

Moreover, we will show that Fα̌,1f can be reconstructed from the formula
(3.30) for the inverse Mellin transform. This will imply, by (3.30), that TH “

Fα̌,1.
To see this, we apply Corollary 3.3.2: Suppose that f is the push-forward

of an element φ P S`pXH ˆ XHq. Acting on φ, in both variables, by the
element h P SpAXq{ (completed Hecke algebra) whose Mellin transform is
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ȟpχq “ Lpχ, α̌, 1q´1, we obtain an element φ1 P SpXH ˆ XHq, whose push-
forward we denote by f 1. Taking into account the normalization of the
action of AX on measures on XH, which we did not adopt on the quotient
space CH,

f 1 “ p| ‚ |´1hq ¨ p| ‚ |´1hq ¨ f,

where now AX is identified with Gm through the positive root character.
The morphism XH ˆXH Ñ CH is smooth, hence f 1 is a Schwartz measure
on the line. Acting on it once more by the measure h:

f2 :“ h ¨ p| ‚ |´1hq ¨ p| ‚ |´1hq ¨ f,

it becomes supported away from zero.
Hence, the function D2 :“ |ζ|f2pζ´1q

dζ is (smooth and) of compact support
on Fˆ. In particular, the theory of Tate zeta integrals applies to it: Fα̌,1f

2 “

the Fourier transform of D2 is a smooth, compactly supported measure on
the affine line, both D2 and Fα̌,1f

2 can be reconstructed from their Mellin
transforms, as in (3.30), and their Mellin transforms satisfy the functional
equation (2.8), which can be written as in (2.12):

Fα,1f
2­ pχq “ γpχ, α̌, 0, ψqf̌

2
pχq.

But, by construction,

f̌
2
pχq “ Lpχ,´α̌, 1q´1Lpχ,´α̌, 2q´2 ¨ f̌pχq,

and, by the equivariance of Fourier convolution,

Fα̌,1f
2 “ h ¨ p| ‚ |´1hq ¨ p| ‚ |´1hq ¨ Fα̌,1f. (4.14)

It is now easy to see that, since the factor Lpχ,´α̌, 1qLpχ,´α̌, 2q2 has no
pole at χ “ 1, the inverse Mellin transform (3.30), applied to

γpχ, α̌, 0, ψqLpχ,´α̌, 1qLpχ,´α̌, 2q2f̌
2
pχq “ γpχ, α̌, 0, ψqf̌pχq,

represents the unique compactly supported distribution Fα̌,1f on F (in
fact, in this case, a measure represented by an L1-function) which satisfies
(4.14).

This implies the claim.
Finally, we argue that Fα̌,1f P S`pYH ˆYH{G1q1. By the Mellin inversion

formula (3.30), again, it suffices to show that its Mellin transform is con-
tained in the space of Mellin transforms of elements of S`pYH ˆ YH{G1q1.
Since S`pXH ˆ XH{Gq1 is generated under the AX -action by the image of
SpX ˆ X{Gq, it suffices to assume that f obtained as the asymptotics of
some f̃ P SpX ˆX{Gq. In this case, we have already seen that

MχFα̌,1f “ γpχ,´α̌, 0, ψ´1q´1Mχf “ γpχ,´α̌, 0, ψ´1q´1IXχ f̃ “ Jχf̃ ,

but also
Jχf̃ “ ΘχpT f̃q “ Mχpe˚

H b e˚
HpT f̃qq.
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Therefore,

Fα̌,1f “ e˚
H b e˚

HpT f̃q P S`pYH ˆ YH{G1q.

□

Finally, let us notice that the coordinates that we have been using on the
spaces Y ˆY �G1 and YH ˆYH �G1 are compatible, in the following sense:
There is a family Y Ñ Ga, namely,

Y “ Mat2
det
ÝÝÑ Ga,

the space of 2 ˆ 2 matrices, with general fiber G1-equivariantly isomorphic
to Y , and special fiber (over 0 P Ga) equal to Y a

H. The identification of YH

with the open G1-orbit in the fiber over 0 was described in §3.5. In coordi-
nates, pick the Borel subgroup B´ ˆB Ă G1, where B´ “ lower triangular
matrices and B “ upper triangular; then N´zSL2 �N is identified with
YH � pN´ ˆNq via the top left entry of a matrix — this is the isomorphism
(3.3).

Now we will see that there is an isomorphism

pC,detq : Y ˆGa Y �G1 » Ga ˆ Ga,

such that the restriction of C to Y ˆ Y �G1 “ the fiber of 1 is the trace map:

pg1, g2q ÞÑ trpg1g
´1
2 q,

while its restriction to the fiber of 0 is our preferred coordinate for YH ˆ

YH �G1.

Indeed, let w “

ˆ

´1
1

̇

and take Cpg1, g2q “ trpg1wg
t
2w

´1q. For g2 P

SL2 we have g´1
2 “ wgt2w

´1. To check that this coincides with our distin-
guished coordinate for YH ˆ YH �G1 “ Y a

H ˆ Y a
H �G1, it suffices to observe

that the zero matrix is mapped to 0, and the pair pg1, g2q “ p

ˆ

1 0
0 0

̇

,

ˆ

0 0
0 1

̇

q,

which belongs to the distinguished G1-orbit on YH ˆ YH, is mapped to 1.
For X and XH the analogous statement is a tautology, since the underly-

ing spaces are the same (and we have been using the same coordinate both
for X and its degeneration).

5. TRANSFER BETWEEN THE KUZNETSOV FORMULA AND THE RELATIVE
TRACE FORMULA FOR TORUS PERIODS

Now consider the case of Y “ T zG, where G “ PGL2 and T » Gm is
a split torus. One could also consider a non-split torus, but would need
to slightly modify the equivariant Fourier transforms that we defined in
§2.1.7. We review the local transfer operator

T : S´

LpStd, 1
2

q2
ppN,ψqzG{pN,ψqq

„
ÝÑ SpT zG{T q,
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constructed in [Sak13, Sak19a]. As in §3.4, we will identifyX with the space
of quadratic forms of discriminant ´1

4 on a two-dimensional symplectic
space V .

Recall that the non-standard space S´

LpStd, 1
2

q2
ppN,ψqzG{pN,ψqq of orbital

integrals was defined in §2.2.4. In terms of the representatives

ξ̃ “

ˆ

´1
ξ

̇

of regular orbits for the Kuznetsov formula, it consists of measures which,
in a neighborhood of ξ “ 0, coincide with the usual test measures SppN,ψqzG{pN,ψqq

for the Kuznetsov formula, while in a neighborhood of ξ “ 8 they are of
the form

pC1pξ´1q ` C2pξ´1q log |ξ|qdˆξ,

where C1, C2 are smooth functions in a neighborhood of zero.
The role of the character ΘΠ, here, will be played by a relative charac-

ter Iπ for an irreducible tempered representation of PGL2, for the quotient
space GmzPGL2 {Gm. The definition of the relative character Iπ is com-
pletely analogous to that of the Kuznetsov relative character Jπ: It is given
as the composition

SpY ˆ Y q Ñ π b̂ π̃ Ñ C,
where the dual of the map to π b̂ π̃ is the morphism

π̃ b π Ñ C8pY ˆ Y q

that, composed with evaluation at T1 ˆ T1 is given by:

ṽ b v ÞÑ

ż

T
⟨πptqv, ṽ⟩ dt.

Here the integral is convergent (for tempered representations), and no nor-
malization is needed. Moreover, the L-packets for the group PGL2 are sin-
gletons (if we do not consider its inner forms, which we should have, in
the case of a non-split torus), therefore there is no need to distinguish, no-
tationally, between π and its L-packet Π. The measure on T is fixed to be
the multiplicative Haar measure dˆx on Fˆ, after identifying T » Gm —
there are two inverse ways to perform this identification, and they give rise
the same measure. Finally, we fix the isomorphism T zG � T » Ga which
sends the identity element to 1 and any representative for the non-trivial
element of the Weyl group of T to 0.

5.0.1. Theorem. Consider the equivariant Fourier transform T :“ FId,1 ˝ FId,1

of multiplicative convolution, twice, with D1 “ ψp‚q| ‚ |dˆ‚ on measures on Gm.
Then:

(1) The convolution makes sense on SpN,ψzG{N,ψq as the Fourier trans-
form of a distribution, and maps it into SpT zG{T q.

(2) For every tempered representation π,

T ˚Iπ “ Jπ. (5.1)
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(3) The transform extends to an isomorphism, given by the same convolution
understood, again, as the Fourier transform of a(n L2-)distribution:

T : S´

LpStd, 1
2

q2
pN,ψzG{N,ψq

„
ÝÑ SpT zG{T q. (5.2)

(4) At non-Archimedean places, it satisfies the fundamental lemma for the
Hecke algebra, up to a factor of ζp1q2 “ p1 ´ q´1q´2, namely: for all
h P HpG,Kq, it takes the element

h ¨ fLpStd, 1
2

q2 P S´

LpStd, 1
2

q2
pN,ψzG{N,ψq

to the image of ζp1q2 ¨ h in SpT zG{T q.

For precise references to [Sak13, Sak19a], and an explanation of how the
formulas there relate to the above transfer operator (given the different co-
ordinates that we are using), I point the reader to [Sak19b]. Here, I would
like to discuss the relation to transfer operators on the asymptotic cone.

First, let us fix compatible coordinates for Y ˆ Y �G and for YH ˆ YH �
G. Consider the family Y Ñ Ga whose fiber Yt over t P Ga is the space
of quadratic forms of discriminant ´ t2

4 on V (so that all non-zero fibers
correspond to split non-degenerate forms). The fiber over 0 contains the
boundary degeneration YH, i.e., the space of rank-one quadratic forms, as
was explained in §3.4. As we did there, we identify the quotient YtˆV �G »

Ga by the evaluation map.
We can fix an isomorphism

pC, tq : Y ˆGa Y �G „
ÝÑ Ga ˆ Ga,

where t is the defining morphism to Ga, and C is as follows: Consider a
quadratic form q on V ; it defines a morphism V Ñ V _, which combined
with the fixed isomorphism ι´1

ω : V _ Ñ V induced by the symplectic form,
gives rise to an endomorphism

ιq : V Ñ V.

Explicitly, ωpu, ιqpvqq “ qpu, vq for all u, v P V . We now define Cpq1, q2q “

trpιq1 ˝ ιq2q ` t
2 .

The reader can check that, on the fiber over t “ 1 (“ Y ˆ Y � G), the
coordinate C is the one that we fixed above, while on the fiber over t “ 0
(“ YH ˆ YH �G) the coordinate descends from the map

V ˆ V Q pu, vq ÞÑ ´ωpu, vq2 P Ga

under the isomorphism YH » V ˚{t˘1u. Therefore, this is opposite to the
“canonical” isomorphism YH ˆ YH � G Ñ Ga that was discussed in §3.4
— we will need to take this difference into account. Notice that the choice
of C seems quite arbitrary, and indeed, it is only justified because this turns
out to give, over t “ 1, the coordinate that works for comparison to the
Kuznetsov formula, for the representatives of NzG{N cosets that we have
chosen. However, we could not have preserved the coordinate at t “ 1 and
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multiplied the one at t “ 0 by p´1q, if we want to have a coordinate that
extends over the whole family.

We fix the coordinate ξpv, uq “ ωpv, uq for V ˆ V �G, as in §2.2.2. Again,
we S`pXH ˆXH{Gq1 be the subspace of S`pXH ˆXH{Gq generated under
the action of AX by the image of SpX ˆX{Gq (and similarly for YH). Then
we have the following:

5.0.2. Theorem. There is a unique AX “ AY -equivariant operator TH making
the following diagram commute:

SpX ˆX{Gq
e˚

H
be˚

H →→

T
↓↓

S`pXH ˆXH{Gq1

TH

↓↓
SpY ˆ Y {Gq

e˚
H

be˚
H →→ S`pYH ˆ YH{Gq1

.

The operator TH is given by the multiplicative Fourier convolutions F α̌
2
,1 ˝

F α̌
2
,1 — again, understood as the Fourier transform of a distribution.

Proof. The proof is the same as for Theorem 4.3.1. We only need to explain
why, for the above choices of coordinates onXH ˆXH�G and YH ˆYH�G,
the operator TH must act on Mellin transforms as follows:

pTHfq­ pχq “ γpχ,
α̌

2
, 0, ψq2f̌pχq.

If we were following the arguments of Theorem 4.3.1 using the coordi-
nates for XH ˆ XH �G and YH ˆ YH �G that we used in §3.4, we would,
instead, have the factor

γpχ,
α̌

2
, 0, ψqγpχ,

α̌

2
, 0, ψ´1q

(originating in Theorem 3.6.3). Now, however, that we are using the neg-
ative of this coordinate for YH ˆ YH � G (but not for XH ˆ XH � G!), we
have to mutiply this factor by χp´1q. This turns the factor γpχ, α̌2 , 0, ψ

´1q to
γpχ, α̌2 , 0, ψq.

□
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[Ngô18] Bao Châu Ngô. Hankel transform, Langlands functoriality and functional
equation of automorphic L-functions. Preprint., 2018. URL: https://math.
uchicago.edu/˜ngo/takagi.pdf.

[Rud90] Zeev Rudnick. Poincare series. PhD thesis, 1990. Yale University.
[Saka] Yiannis Sakellaridis. The Selberg trace formula revisited. Preprint. arXiv:1710.

01866.
[Sakb] Yiannis Sakellaridis. Transfer operators and Hankel transforms between relative

trace formulas, II: Rankin–Selberg theory. To appear in Advances in Mathematics.
arXiv:1805.04640.

[Sak13] Yiannis Sakellaridis. Beyond endoscopy for the relative trace formula I: local the-
ory. In Automorphic Representations and L-functions, pages 521–590. Amer. Math.
Soc., Providence, RI, 2013. Edited by: D. Prasad, C. S. Rajan, A. Sankara-
narayanan, and J. Sengupta, Tata Institute of Fundamental Research, Mumbai,
India, 2013. arXiv:1207.5761.

[Sak16] Yiannis Sakellaridis. The Schwartz space of a smooth semi-algebraic stack. Selecta
Math. (N.S.), 22(4):2401–2490, 2016. doi:10.1007/s00029-016-0285-3.

https://doi.org/10.1353/ajm.2017.0023
https://doi.org/10.1017/s1474748018000427
https://doi.org/10.1017/s1474748018000427
https://doi.org/10.1007/s11856-013-0056-1
https://doi.org/10.1007/s11856-013-0056-1
http://arxiv.org/abs/1712.01963
https://doi.org/10.1090/memo/1312
https://doi.org/10.2140/pjm.2012.260.497
https://doi.org/10.4310/AJM.1998.v2.n4.a7
https://doi.org/10.1215/S0012-7094-03-12015-3
http://arxiv.org/abs/1611.06291
https://doi.org/10.1007/s40316-013-0008-5
https://doi.org/10.1016/j.jnt.2013.10.003
https://doi.org/10.1016/j.jnt.2013.10.003
https://doi.org/10.1007/s10240-010-0026-7
https://doi.org/10.1090/conm/614/12270
https://doi.org/10.1090/conm/614/12270
https://math.uchicago.edu/~ngo/takagi.pdf
https://math.uchicago.edu/~ngo/takagi.pdf
http://arxiv.org/abs/1710.01866
http://arxiv.org/abs/1710.01866
http://arxiv.org/abs/1805.04640
http://arxiv.org/abs/1207.5761
https://doi.org/10.1007/s00029-016-0285-3


TRANSFER OPERATORS AND HANKEL TRANSFORMS, I 71

[Sak18] Yiannis Sakellaridis. Inverse Satake transforms. In Geometric aspects of the trace
formula, Simons Symp., pages 321–349. Springer, Cham, 2018.

[Sak19a] Yiannis Sakellaridis. Beyond endoscopy for the relative trace formula II:
global theory. J. Inst. Math. Jussieu, 18(2):347–447, 2019. doi:10.1017/
s1474748017000032.

[Sak19b] Yiannis Sakellaridis. Relative functoriality and functional equations via
trace formulas. Acta Math. Vietnam., 44(2):351–389, 2019. doi:10.1007/
s40306-018-0295-7.

[Sak21] Yiannis Sakellaridis. Functorial transfer between relative trace formulas in rank 1.
Duke Math. J., 170(2):279–364, 2021. doi:10.1215/00127094-2020-0046.

[Sar] Peter Sarnak. Comments on Robert Langlands’ lecture: “Endoscopy and be-
yond”. Letter to Robert Langlands. URL: http://web.math.princeton.
edu/sarnak/SarnakLectureNotes-1.pdf.

[SV17] Yiannis Sakellaridis and Akshay Venkatesh. Periods and harmonic analysis on
spherical varieties. Astérisque, (396):360, 2017.
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