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Abstract. Let X be an affine spherical variety, possibly singular, and L+X its arc space.

The intersection complex of L+X, or rather of its finite-dimensional formal models, is con-

jectured to be related to special values of local unramified L-functions. Such relationships
were previously established in [BFGM02] for the affine closure of the quotient of a reduc-

tive group by the unipotent radical of a parabolic, and in [BNS16] for toric varieties and

L-monoids. In this paper, we compute this intersection complex for the large class of those
spherical G-varieties whose dual group is equal to Ǧ, and the stalks of its nearby cycles on the

horospherical degeneration of X. We formulate the answer in terms of a Kashiwara crystal,

which conjecturally corresponds to a finite-dimensional Ǧ-representation determined by the
set of B-invariant valuations on X. We prove the latter conjecture in many cases. Under

the sheaf–function dictionary, our calculations give a formula for the Plancherel density of
the IC function of L+X as a ratio of local L-values for a large class of spherical varieties.
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1. Introduction

1.1. Arc spaces and their IC functions. Let F be a finite field, G a connected reductive
group over F, and X an affine spherical G-variety. The formal arc space L+X is the infinite-
dimensional scheme that represents the functor R ↦→ X(R[[t]]), and it is singular, if X is.
However, its singularities at “generic” F-points (namely, arcs SpecF[[t]]→ X which generically
lie in the smooth locus Xsm) are of finite type, according to the theorem of Grinberg–Kazhdan
and Drinfeld, and this allows one to define an IC function [BNS16], that is, the function that
should correspond under Frobenius trace to the “intersection complex” of L+X. This is a
function Φ0 on X(o) ∩ Xsm(F ) (where o = F[[t]] and F = F((t))), and it was conjectured in
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[Sak12] (before the rigorous definition of this function was available) that it is related to special
values of L-functions. Such a relation was established in [BNS16] for toric varieties and certain
group embeddings, termed L-monoids, generalizing the local unramified Godement–Jacquet
theory. One goal of the present paper is to prove such relations, for a different and broad class
of spherical varieties.

In order to compute the IC function, we need to work with finite-dimensional global models
of the arc space, or rather, the arc space over the algebraic closure k of F; from now on, we base
change to k, without changing notation. However, for motivational purposes, let us here pretend
that L+X were already finite-dimensional, and the intersection complex on it were defined as a
Qℓ-valued constructible (derived) sheaf, for some prime ℓ different from the characteristic of F.
We would normalize such a sheaf to be constant in degree zero over the arc space of the smooth
locus L+Xsm, and we would normalize the intersection complex of a substratum S ⊂ L+X of
codimension d to be Qℓ(d2 )[d] on its smooth locus, where Qℓ( 12 ) denotes a chosen square root
of the cyclotomic Tate twist.

The IC function is computed via some version of a “Satake transform” for the spherical
variety — we will recover the original function from its Satake transform in Corollary 1.2.1.
Let B ⊃ N be a Borel subgroup of G, and its unipotent radical, and consider the invariant-
theoretic quotient X//N = Spec k[X]N , which is an affine embedding of a quotient TX of the
Cartan T = B/N . In this paper, we restrict ourselves to varieties where B acts freely on an
open subset X◦ of X, so let us already make this assumption for notational simplicity. Then
TX = T , and we fix a base point to identify T as the open orbit in X//N . In fact, our assumption
on X is stronger, requiring that the (Gaitsgory–Nadler) dual group of X, ǦX , is equal to the
Langlands dual group of G — this condition is equivalent1 to the following:

(1.1)
B acts freely on X◦, and for every simple root α, if Pα is the parabolic
generated by B and the root space of −α, the stabilizer of a point in the
open Pα-orbit X

◦Pα is a torus (necessarily one-dimensional).

The pushforward map π : X → X//N induces a map between arc spaces. Under our assump-
tions, the “generic” L+T -orbits on the arc space of X//N , that is, those corresponding to arcs
whose generic fiber lands in the open T -orbit, are naturally parametrized by a strictly convex
(i.e., not containing non-trivial subgroups) submonoid cX ⊂ Λ̌ of the cocharacter group of T ,

with λ̌ ∈ cX corresponding to the image tλ̌ := λ̌(t) of a uniformizer (acting on a fixed base point
of X//N). The pushforward π!ICL+X of the IC sheaf is L+T -equivariant, and under Frobenius
trace translates to a T (o)-invariant function on X//N(o)∩T (F ), which will be denoted by π!Φ0.
Explicitly,

π!Φ0(a) =

∫︂
N(F )

Φ0(an)dn,

is a Radon transform on the spherical variety, i.e., the integral of the IC function Φ0 over generic
horocycles, that is, over the fibers of the map X(o) → X//N(o), where the Haar measure on
N(F ) is so that dn(N(o)) = 1.

This integral is really a finite sum, hence makes sense over Qℓ, but let us for simplicity
choose an isomorphism Qℓ ≃ C, such that the geometric Frobenius morphism Fr acts on the

chosen half-Tate twist Qℓ( 12 ) by q
1
2 . Our results and conjectures are best expressed under

the assumption that X carries a G-eigen-volume form; we will assume this for the rest of the

1To be precise, we are referring to the modification of the Gaitsgory–Nadler dual group described in [SV17],

because the Gaitsgory–Nadler dual group would be Ǧ even if the stabilizers were normalizers of tori. This
small distinction is important, and such cases (for example, On\GLn) are not expected to be directly related
to L-functions, and not included in the present paper.
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introduction. The absolute value of the volume form is a G(F )-eigenmeasure on the open orbit
X•(F ), whose eigencharacter we will denote by η. (We will not impose this assumption in the
rest of the paper, but see Remark 5.4.4.) Then, one should consider the following normalized
form of the integral above, analogous to the standard normalization of the Satake isomorphism:

(1.2) (ηδ)
1
2 (a)π!Φ0(a) = (ηδ)

1
2 (a)

∫︂
N(F )

Φ0(an)dn,

where δ = |e2ρG | is the modular character of the Borel subgroup.2

Ideally, we would like to prove a conjecture such as the following. To formulate it, recall that
T (o)-orbits on T (F ) are parametrized by Galois-fixed (that is, Fr-fixed) elements of Λ̌.

Conjecture 1.1.1. There is a symplectic representation ρX of the L-group, ρX : LG = Ǧ ⋊
⟨Fr⟩ → GL(VX), and a LT -stable polarization VX = V +

X ⊕ V
−
X , such that the multiset B+ of

Ť -weights of V +
X belongs to cX , and the pushforward of the IC function satisfies:

(1.3) (ηδ)
1
2 · π!Φ0 = (trŤ (Fr,Sym

•(ň(1))))
−1 · trŤ (Fr,Sym

•(V +
X )).

Here, for a representation V of LT = Ť ⋊ ⟨Fr⟩, the expression trŤ (Fr, V ) denotes the function

on Λ̌Fr whose value on λ̌ is equal to the trace of geometric Frobenius Fr on the (Ť, λ̌)-eigenspace
of V .

From the point of view of number theory, the spherical varieties satisfying our assumption
ǦX = Ǧ give, in some sense, the most interesting periods, because they are associated to
L-values at the center of the critical strip. Indeed, one should always be able to choose the
eigencharacter η such that the Frobenius morphism acts on V +

X by permuting elements of a

basis and scaling by q
1
2 . For example, when G is split and the colors (see below) of X are all

defined over F, this permutation action should be trivial, and (1.3) should read:

(1.4) (ηδ)
1
2π!Φ0 =

∏︁
α̌∈Φ̌+(1− q−1eα̌)∏︁
λ̌∈B+(1− q−

1
2 eλ̌)

,

where B+ is the multiset of weights, as in the conjecture, and eλ̌ denotes the characteristic

function of the T (o)-orbit of tλ̌.
We will explain the relationship of this conjecture to various conjectures of arithmetic and

geometric origin below. We do not quite prove the conjecture in all cases, but we determine the
weights of ρX (in terms of X) and in the cases where ρX is minuscule, we prove the conjecture

(Corollary 7.1.12). It is helpful to distinguish between the special case when X = H\G
aff

is
the affine closure of a homogeneous quasiaffine variety, and the general case. In the special
case, let us also assume, at first, that the monoid cX is freely generated with a basis ν̌1, . . . , ν̌r,
so X//N may be identified with Ar. This condition can always be achieved by passing to an
abelian cover of H\G and taking its affine closure, see §5.3. In that case, the generators ν̌i are
the valuations associated to the colors, that is, the prime B-stable divisors of H\G.

Theorem 1.1.2 (See §9.1). Assume that X = H\G
aff

satisfies the conditions above (TX = T ,
ǦX = Ǧ and cX ∼= Nr is free). Then there is a (Ť ⋊ ⟨Fr⟩)-representation V +

X satisfying:

(i) the Ť -weights of V +
X belong to cX − 0;

(ii) the set of weights of V +
X ⊕ (V +

X )∗ (without multiplicities) equals the set of weights of a

Ǧ-representation ρX ;

2We use additive notation for the character group Λ̌ of Ť , so eν̌ will denote the actual morphism Ť → Gm

corresponding to ν̌ ∈ Λ̌.
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(iii) the dimensions of the weight spaces of V +
X ⊕ (V +

X )∗ are invariant under the Weyl group
W of G;

(iv) the weight spaces in V +
X of the basis elements ν̌1, . . . , ν̌r of cX have multiplicity one,

(v) under the Frobenius action, we have

(1.5) V +
X =

⨁︂
B+

Qℓ( 12 ),

for some permutation action of Fr on the multiset B+ of weights, compatible with its
action on Ť ,

such that the pushforward π!Φ0 of the IC function3 satisfies the formula (1.3) above.

In fact, we show more: we endow the multiset B := B+ ⊔ (−B+) of weights of VX with the
structure of a Kashiwara crystal, see Theorem 1.3.2 below, and show that, if Conjecture 1.1.1
holds (equivalently, if the crystal is the one corresponding to the crystal basis of a finite-
dimensional Ǧ-module), then ρX must be the direct sum of the irreducible Ǧ-modules with
highest weights in Λ̌+ ∩ W{ν̌1, . . . , ν̌r}, each with multiplicity one (see Remark 7.1.11). In
other words, the highest weights of ρX are the dominant coweights that are Weyl translates of
the basis elements ν̌1, . . . , ν̌r.

As we already mentioned, Theorem 1.1.2 implies Conjecture 1.1.1 when ρX is minuscule.
In particular, when H\G is itself affine (equivalently, H is reductive: see [Lun73, Ric77]), we
observe that ρX always has multiplicity-free weight spaces (Corollary 7.3.4). In this case Conjec- This doesn’t im-

ply minuscule, so
we didn’t prove
Conjecture

ture 1.1.1 was previously proved by [Sak13, Theorem 7.2.1], under some additional assumptions,
and Theorem 1.1.2 gives a geometric interpretation of this result.

Did [SaSph] prove
existence of repre-
sentation vs virtual
rep?

For an example when H\G is not affine:

Example 1.1.3. Let X• = the quotient of SLn2 by the unipotent subgroup

H0 =

{︃(︃
1
x1 1

)︃
×
(︃

1
x2 1

)︃
× · · · ×

(︃
1
xn 1

)︃⃓⃓⃓⃓
x1 + x2 + · · ·+ xn = 0

}︃
,

under the action of G = the quotient of Gm × SLn2 by the diagonal copy of µ2, where a ∈ Gm
acts as left multiplication by

(︃
a−1

a

)︃
. Let X be the affine closure of X•. Denoting by m̌ the

identity cocharacter of Gm, the monoid cX is freely generated by the coweights

α̌1 + α̌2 + · · ·+ α̌n − m̌
2

and
−α̌1 − · · · − α̌i−1 + α̌i − · · · − α̌n + m̌

2
, i = 1, . . . , n,

see Remark 2.1.3. These are minuscule weights of Ǧ = GLn2/{(zi)i ∈ Gnm|
∏︁
i zi = 1}, and in

that case Conjecture 1.1.1 holds, confirming an expectation of [Sak12, §4.5].

For the general case, X contains an open G-orbit X• = H\G, which we will assume to satisfy
the conditions of Theorem 1.1.2, except perhaps for the freeness of cX• . In that case, the free
monoid ND, where D denotes the set of colors, maps through the valuation map to cX• , and
cX is generated by its image and a minimal set DGsat(X) = {θ̌1, . . . , θ̌d} of distinct antidominant

elements of the cocharacter group Λ̌ of T . For each θ̌i, we let V θ̌i be the irreducible module of
Ǧ with lowest weight θ̌i, and assume that the eigencharacter η of the G-eigenmeasure on X(F )
is of the form |eh| for some algebraic character h ∈ ΛW .

3Under the assumptions of the theorem, the restriction of the eigencharacter η to the colors ν̌i is uniquely
determined, see Remark 5.4.4.
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Theorem 1.1.4 (See §9.1). In the setting above, if V +
X• denotes the Ť -representation for X•

aff

described in Theorem 1.1.2,4 then the pushforward (ηδ)
1
2 · π!Φ0 of the IC function for L+X is

given by (1.3) with

(1.6) V +
X = V +

X• ⊕
⨁︂
i

V θ̌i

(︄⟨︁
h+ 2ρG, θ̌i

⟩︁
2

)︄
.

Notice that the set DGsat(X) is stable under the Frobenius morphism. The action of Frobenius

on the sum of V θ̌i ’s is the one obtained by identifying the crystal basis of this space with a set
of subvarieties of the affine Grassmannian (see Section 7), and considering the Frobenius action
on those.

The reader should compare the passage from Theorem 1.1.2 to Theorem 1.1.4 to the passage
from a reductive group G to an L-monoid X in [BNS16, BNS17, Theorem 4.1]. While the result
is similar, however, the straightforward proof of [BNS16] uses the monoid structure on X in a
crucial way, and cannot be used here.

In §1.3 below we will describe the sheaf-theoretic statements of these theorems, in the setting
of appropriate finite type models, the Zastava spaces for X and X//N . Before we do that, let
us relate the results above to conjectures in number theory and geometry.

1.2. Asymptotics and L-functions. The Radon transform π!Φ0 of the IC function (also
known as “basic function”) under the map X → X//N admits various interpretations in terms
of harmonic analysis, and, in particular, allows us to compute the Plancherel density of the
basic function,

(1.7) ∥Φ0∥2 =

∫︂
Ť 1/W

Ω(χ)dχ,

that is, the decomposition of its norm in the space L2(X•(F )) (with respect to the fixed
eigenmeasure) in terms of seminorms ∥ • ∥χ that factor through eigenquotients for the action

of the unramified Hecke algebra. The variable χ ∈ Ť 1 here denotes an unramified unitary
character of T (F ) (an element of the maximal compact subgroup of the complex dual Cartan),
which modulo the action of W represents the Satake parameter of such an eigenquotient, and
Ω(χ) = ∥Φ0∥2χ.

The passage from π!Φ0 to the Plancherel formula (1.7) is achieved through the theory of
asymptotics, which is of geometric interest because of its relation to nearby cycles. For an
affine spherical variety X over a field k in characteristic zero, one can define its horospherical
degeneration (or asymptotic cone) X∅, by passing to the associated graded of the coordinate
ring k[X] as a G-module. A similar degeneration exists under some assumptions in positive
characteristic, see §8.1. Under our current assumptions, its open G-orbit X•∅ is isomorphic to

N−\G, where we use N− to denote the unipotent radical of a Borel B− opposite to B — an
expository choice without mathematical significance, which we will use to identify the abstract
Cartan T = B/N as an automorphism group of X∅ by identifying it with the torus B− ∩ B
(the latter acting “on the left” on N−\G).

The theory of asymptotics states that there is a canonical morphism

e∗∅ : C
∞(X•(F ))→ C∞(X•∅ (F ))

which describes the behavior of any function “at infinity”, see [SV17, §5]. Of interest to us is
that the spaces X//N and X∅//N are canonically identified, and the corresponding pushforwards

4See §5.3 for a reduction to the case where cX• is free.
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π! and π∅! satisfy

(1.8) π! = π∅! ◦ e∗∅
(for appropriate functions, in order to ensure convergence), see [SV17, Proposition 5.4.6].

Inverting the Radon transform, (1.8) leads to a calculation of the asymptotics of the basic
function. This, in turn, leads to a calculation of the basic function itself, as a function on
X•(F )/G(o). To express both, we note that there is a natural parametrization of the coset space
X•∅ (F )/G(o) by the Frobenius-stable elements of the coweight lattice Λ̌ (simply assigning θ̌ ∈
Λ̌Fr to the orbit of N−tθ̌), and of the coset space X•(F )/G(o) by the Frobenius-stable elements
of its antidominant submonoid Λ̌− — this is explained in Theorem 2.3.5, in the geometric

setting, from which we will borrow the notation x0t
θ̌ to represent the orbit corresponding to

θ̌ ∈ Λ̌−,Fr. Then we have:

Corollary 1.2.1 (See §9.2). In the setting of Theorem 1.1.4, we have

(1.9) (ηδ)
1
2 (a)e∗∅Φ0(N

−aG(o)) = trŤ (Fr,Sym
•(ň))−1 · trŤ (Fr,Sym

•(V +
X )),

and

(1.10) (ηδ)
1
2 (a)Φ0(x0aG(o)) = trŤ (Fr,Sym

•(ň))−1 · trŤ (Fr,Sym
•(V +

X ))
⃓⃓
Λ̌−,Fr ,

where we use the notation trŤ (· · · ), as in Conjecture 1.1.1, to represent a T (o)-invariant func-
tion on T (F ).

For example, in the setting of (1.4), the right hand side reads∏︁
α̌∈Φ̌+(1− eα̌)∏︁

λ̌∈B+(1− q−
1
2 eλ̌)

.

Finally, the Plancherel decomposition of Φ0 coincides5 up to the factor |W |−1 with that of
e∗∅Φ0, which by Mellin transform on X•∅ (with respect to the action of T ) gives:

(1.11) ∥Φ0∥2 =

∫︂
T̂/W

∏︁
α̌∈Φ̌(1− eα̌(χ))∏︁

λ̌∈S(1− q−
1
2 eλ̌(χ))

dχ =

∫︂
T̂/W

L(χ, VX ,
1

2
)

dχ

L(χ, ǧ/̌t, 0)
.

Here B = B+ ⊔ (−B+), and L(χ, VX , 0) denotes a local unramified L-factor, while the

density dχ
L(χ,ǧ/ť,0)

is the unramified Plancherel measure for G.

The importance of (1.11) for arithmetic is that, according to the generalized Ichino–Ikeda
conjecture of [SV17], the quotient of the Plancherel density of Φ0 by the Plancherel measure
of G is related to the local Euler factor of the “X-period integral” of automorphic forms. A
provable case of such an Euler factorization is related to Example 1.1.3:

Example 1.2.2. LetG, X be as in Example 1.1.3, over the function field k = F(C) of a curve C,
and let Φ =

∏︁
v Φv be a smooth, factorizable function of moderate growth on the adelic points

of the open G-orbit X•, such that the support of Φv has compact closure in X(Fv), and for
almost every v the function Φv is equal to the IC function of X. Let ΘΦ(g) =

∑︁
γ∈X•(k) Φ(γg)

be the corresponding theta series, a function on the adelic points of G.
Let ϕ be a cusp form, belonging to a cuspidal automorphic representation π =

⨂︁′
v πv, and

let Wϕ(g) =
∏︁
vWϕ,v(gv) =

∫︁
N−(k)\N−(A) ϕ(ng)ψ(n)dn be the Whittaker function of ϕ (where

5See the proof of Proposition 9.3.1.
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N− is the lower triangular subgroup), with a chosen Euler factorization with Wϕ,v(1) = 1 for
almost all v. It can be proven by the usual unfolding argument that the pairing∫︂

G(k)\G(A)
ϕ(g)ΘΦ(g)dg

is convergent if the central character of ϕ is “large” enough (i.e., its restriction to Gm has
absolute value | • |s for some s≫ 0), and equal to the Euler product of zeta integrals∫︂

H0\G(kv)
Wϕ,v(gv)Φv(gv)dgv.

Our Theorem 1.1.2 implies that almost every Euler factor is equal to the local unramified
L-factor L(πv,⊗, 1 − n

2 ), where ⊗ is the tensor product representation of Ǧ. We explain this
in §9.3.

Such global applications are beyond the main focus of this paper. Of more immediate
interest here is the relation of the asymptotics map e∗∅ to nearby cycles: Since X∅ is obtained
by degenerating the coordinate ring of X, there is an associated Gm×G-equivariant Rees family
X → A1 (depending, really, on the choice of a strictly dominant cocharacter into T ), whose
general fiber is isomorphic to X, and whose special fiber is isomorphic to X∅. This also induces
a family of arc spaces, or loop spaces LA1X → A1 where LA1X denotes the family of fiberwise
loop spaces, not the loop space of X. In the context of an appropriate sheaf theory, to be
denoted by D, this would give rise to a nearby cycles map:

Ψ : D(LX)→ D(LX∅),

whose Frobenius trace is expected to recover the asymptotics map e∗∅.

After replacing L+X, L+X∅, L
+(X//N) by finite type models Y,Y∅,A, respectively (see §1.3

below), we prove:

Theorem 1.2.3 (see Theorem 8.3.8). Let X be an affine spherical variety such that B acts
freely on X◦. Then the following triangle of functors commutes up to natural isomorphism:

Dbc(Y) Dbc(Y∅)

Dbc(A)

Ψ

π!
π∅!

The function-theoretic asymptotics map e∗∅ satisfies the same commutative triangle (1.8),
which suggests that nearby cycles Ψ is in a suitable sense the geometrization of the asymptotics
map. This resembles an analogous result [BFO12, Corollary 6.2] in the setting of character
sheaves. In the case where X is a reductive group, the nearby cycles of the IC complex of
(finite type models of) L+X has been computed by S. Schieder [Sch18, Sch16, Sch15].

In Theorem 8.3.6, we compute the intersection complex of the global model MX of the arc
space, for the spherical varieties in (1.1), at the level of Grothendieck groups. We do this by
relating the nearby cycles complex to π!ICY, in a way that corresponds to the known relation
(1.8) between asymptotics and Radon transforms.

Finally, we explain how a formula like (1.11) relates to recent conjectures of Ben-Zvi–
Sakellaridis–Venkatesh [BZSV]: According to those conjectures, the formula should follow
by applying Frobenius traces on the endomorphism ring End(ICL+X), where the endomor-
phism ring is taken in the derived sense, in the dg-category of derived constructible sheaves on
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LX/L+G. (The proper definition of the intersection complex on the arc space remains conjec-
tural, in the singular setting.) This conjecture identifies (ignoring cohomological grading)

(1.12) End(ICL+Xk
) ≃ Qℓ[VX ]Ǧ

for some symplectic representation VX as above. We hope that our results can be related to
this conjecture in both directions: Namely, that by relating our results to such endomorphism
rings, one can upgrade the Ť -structure of Theorem 1.1.2 to a Ǧ-structure, proving Conjecture
1.1.1; and, vice versa, one can make progress towards the conjecture of [BZSV] by utilizing our
results.

The conjectures of [BZSV], and the problems addressed by the present paper, can be for-
mulated for more general affine spherical varieties, without the assumption that ǦX = Ǧ. As
already mentioned, from the point of view of number theory, the latter case is perhaps the most
interesting one, as it corresponds to central values of L-functions. In the general case, the vector
space VX appearing in the conjectural relation (1.12) needs to be replaced by a Hamiltonian
manifold living over the quotient ǦX\Ǧ.

1.3. Zastava spaces and the main theorems in terms of sheaves. From now on, we
work over the algebraic closure k of the finite field F, or over an algebraically closed field k
in characteristic zero. When X is defined over a finite field F, we will keep track of Weil
structures on our sheaves, which will always have the form of half-integral Tate twists, where,
as mentioned, ( 12 ) denotes a fixed square root of the cyclotomic twist. The intersection complex

of a d-dimensional scheme over k will be understood to have stalks Qℓ(d2 )[d] over the smooth
locus.

In order to replace the arc space by a model of finite type, we fix a smooth projective curve
C over k (or F). For an algebraic stack X and an open substack X◦ ⊂ X, we will use

Mapsgen(C,X ⊃ X◦)

to denote the prestack that assigns to a test scheme S the groupoid of maps C × S → X such
that the open locus of points sent to X◦ maps surjectively to S. Equivalently, these are the
maps such that for every geometric point s̄→ S, the restricted map C× s̄→ X generically lands
in X◦. Since C is smooth, Mapsgen(C,X ⊃ X◦) is an open substack of the prestack Maps(C,X).

Given an affine spherical G-variety X with open G-orbit X• and open B-orbit X◦, we
consider the following two models for the arc space of X:

• the Artin stack

M = MX = Mapsgen(C,X/G ⊃ X•/G),

that we will simply refer to as “the global model”;
• the stack

Y = YX = Mapsgen(C,X/B ⊃ X◦/B)

that we will refer to as “the Zastava model”. In our setting (X◦ ∼= B), this turns out
to be a scheme. Such a model is often referred to as the “local model” for reasons that
have to do with factorization structures, but since this can create confusion with the
genuinely local arc space, we will avoid such terminology.

For a discussion of why these are indeed formal models of the arc space (in the formal neigh-
borhoods of suitable points), see Theorem 3.8.2, Lemma 3.5.4. Note that the choice of a Borel
subgroup is immaterial, since X/B can also be written as (X×B)/G, where B is the flag variety,
with X◦/B = (X × B)•/G, where (X × B)• is the open orbit under the diagonal G-action.
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We will also let A denote the analog of these models for the toric variety X//N , that is,

A = Mapsgen(C, (X//N)/T ⊃ (X◦//N)/T ),

and notice that under our assumptions X◦//N ≃ T . Fixing such an identification, for every
χ ∈ c∨X (the subset of ΛX , the character group of T , of those elements that are ≥ 0 on cX),
the corresponding map X//N → Ga gives rise to a morphism A → Mapsgen(C,Ga/Gm ⊃
Gm/Gm) = SymC, the scheme of effective divisors on the curve. Thus, A can be thought of as
the scheme of cX -valued divisors. This scheme is well understood [BNS16]: its normalization is
a disjoint union of partially symmetrized powers CP of the curve, indexed by formal N-linear
combinations P ∈ Sym∞(Prim(cX)) of the primitive elements of cX (see §3.1.4).

The sheaf-theoretic analog of Theorems 1.1.2 and 1.1.4 is a statement about the pushforward
of the IC sheaf under

π : Y→ A.

We will only compute π!ICY in the Grothendieck group of sheaves on A (see Corollary 4.5.9),
which is enough to determine the trace of Frobenius on stalks. The reason we do not compute
the pushforward in the DG category (although this can be done in principle) is related to
the fact that the map π is not proper. However, one can compactify π by considering6 the
compactified Zastava space

Y = Mapsgen(C, (X/N)/T ⊃ X◦/B),

where X/N stands for the stack (X×N\G)/G, where N\G = Spec k[N\G] is the affine closure
of N\G.

The difference between Y and Y will account for the factor of
∏︁
α̌∈Φ̌+(1 − q−1eα̌) in (1.3).

The number theory-minded reader will recognize in this factor, in the case of G = SL2, the
Euler factor of the quotient between Eisenstein series obtained by summing over integral points
of N\SL2, versus integral points of N\SL2 = A2. More generally, this is the factor that relates
the “naive” and “compactified” Eisenstein series of [BG02], [BFGM02].

In Proposition 4.1.1 and Theorem 6.3.4 we prove:

Theorem 1.3.1. The map π̄ : Y→ A is proper and stratified semi-small.

This is one of the key technical results of this paper, because it allows us to get our hands
on the pushforward of the intersection complex, without having a description of the complex
itself. The assumption that ǦX = Ǧ is critical for the theorem: the analogous statement for
the usual Finkelberg–Mirković Zastava space ([FM99, BFGM02]) is far from true.

The condition of being stratified semi-small is a condition on “smallness” of fibers, relative
to a fixed stratification which, in this case, is the natural stratification of A by strata of the
form

ιP : C̊P ↪→ A,

where cX -valued divisors take a fixed set of values. (Here, C̊P denotes the open “disjoint” locus
in a certain product of symmetric powers of the curve, corresponding to divisors of the form∑︁
λ̌∈cX

∑︁Nλ̌
i=1(vi)µ̌ with all vi ∈ |C| distinct; we will denote by ῑP the natural compactification.)

By the decomposition theorem, stratified semi-smallness ensures that π̄!ICY is a direct sum of

irreducible perverse sheaves. By a factorization property of Y, this easily implies an expression
for π̄!ICY of the form

(1.13) π̄!(ICY)
∼=
⨁︂
P

(︂⨂︂
λ̌

SymNλ̌(VX,λ̌)
)︂
⊗ ῑP! (ICCP),

6One makes the usual modification to the definition when [G,G] is not simply connected.
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(see Proposition 6.4.1), where VX,λ̌ are the contributions of diagonal strata ι[λ̌] : C ↪→ A,
corresponding to divisors supported at one point. Moreover, perversity and an estimate of
dimensions imply that these contributions all come from the top degree cohomology of those
fibers of the map Y → A which (over diagonal strata) are of “maximal possible dimension”
in terms of the semi-smallness inequality. (We will discuss this dimension calculus in detail

below.) These fibers, over points on the diagonal stratum ι[λ̌](C) are called the central fibers,

and denoted by Yλ̌, with the point not appearing explicitly in the notation.

Therefore, to complete the calculation and prove Conjecture 1.1.1, we would need to count,

for every λ̌ ∈ cX , the irreducible components of the central fiber Yλ̌ which achieve the maximal
dimension, and show that their cardinality is equal to the dimension of the λ̌-weight space in
V +
X , which is “half” of a symplectic Ǧ-representation ρX . Note that cX is strictly convex, and

the weights of ρX will have the property that they belong to either cX − 0 or −cX − 0. Thus,
the monoid cX determines which “half” of ρX to consider.

There is a reduction from the general case of Theorem 1.1.4 to the special case of Theorem

1.1.2, that is, when X = X•
aff

is the affine closure of its open orbit (Theorem 5.1.5), and
the monoid cX is free. This reduction uses the action of the Hecke algebra, and resembles
the calculation of the IC sheaf of reductive L-monoids in [BNS16], but is much harder. This
reduction will be discussed in §1.4 below.

Hence for now let us focus on the case X = X•
aff
, assuming that cX is free. In that case,

the maximal possible dimension for the central fiber Yλ̌ will be called the critical dimension,
and is equal to

1

2
(len(λ̌)− 1),

where len(λ̌) :=
∑︁
imi, for λ̌ ∈ cX written uniquely as

∑︁
imiν̌i in terms of our basis of cX .

Conjecturally, the set of irreducible components of Yλ̌ of critical dimension, ranging over all
λ̌ ∈ cX , should correspond to the subset of the crystal basis of ρX with weights in cX .

We do not go quite as far in general, but we show that these irreducible components give
rise to the aforementioned crystal, in the sense of Kashiwara [Kas93], over the Langlands dual
Lie algebra ǧ. Namely, let B+

X• denote the set of irreducible components of the central fibers of

critical dimension, so B+
X• corresponds to a basis of V +

X• :=
⨁︁

cX
VX•,λ̌. Formally define B−X•

to be the “negatives” of B+
X• , so B−X• corresponds to a basis of the dual space (V +

X•)
∗. Let

BX• = B+
X• ⊔B−X• . We prove in Theorems 7.1.5 and 7.1.9:

Theorem 1.3.2. Let X = X•
aff

satisfy the assumptions of Theorem 1.1.2. The set BX• has
the structure of a semi-normal, self-dual crystal over ǧ such that the weights have the properties
described in Theorem 1.1.2.

We conjecture:

Conjecture 1.3.3. The crystal BX• is isomorphic to the unique crystal basis of a finite-
dimensional Ǧ-module VX .

This would imply Conjecture 1.1.1.

Theorem 1.3.2 endows V +
X ⊕ (V +

X )∗, as we have defined it, with an action of an SL2-triple

corresponding to every simple root of Ǧ. These actions imply that the dimensions of the weight
spaces are invariant under the Weyl group of G, which provides a kind of “functional equation”
for π!Φ0. This functional equation can be seen as a geometric analog of the functional equation
of the Casselman–Shalika method [Cas80, CS80, Sak13]. The content of Conjecture 1.3.3 is to



12 YIANNIS SAKELLARIDIS AND JONATHAN WANG

show that these SL2-triples satisfy the Weyl relations: [eα, fβ ] = 0 for simple roots α ̸= β. (The
Weyl relations imply the Serre relations by [CG97, Corollary 4.3.2].)

The construction of the action of the SL2 corresponding to a simple root α of G goes as
follows: we factor X → X//N through X → X//NPα

→ X//N , where Pα is the sub-minimal
parabolic corresponding to α and NPα is its unipotent radical. Then the GIT quotient Xα :=
X//NPα is a spherical variety for the Levi factor Mα. But now Xα is (usually) larger than
the affine closure of its homogeneous part X•α. The irreducible components of YX of critical
dimension (i.e., elements of B+

X•) will either go to irreducible components

(i) of YX•α of critical dimension or
(ii) of YXα − YX•α (not necessarily of critical dimension).

While the fibers of YX → YXα
are not necessarily irreducible, we show that the irreducible

components of different relevant fibers can be canonically identified. Then we define the SL2-
action by analyzing the two cases above in the base YXα .

Under our assumptions, X•α is a torus torsor over Gm\PGL2 and case (i) is an easy cal-
culation. Meanwhile our study of non-canonical affine embeddings using Hecke actions shows
that in case (ii) we always get a Mirković–Vilonen cycle (i.e., irreducible component of the
intersection of a semi-infinite orbit with a L+G-orbit in the affine Grassmannian). The crystal
structure on these cycles was constructed by [BG01].

To check the Weyl/Serre relations, one can similarly reduce to a spherical variety X•α,β for a

Levi of semisimple rank two. There are only a handful such varieties (up to center) satisfying
our assumptions — a small subset of the spherical (wonderful) varieties of rank two classified
by Wasserman [Was96].

However, checking the Weyl/Serre relations, even in a few cases, “by hand” does not seem to
be easy, and we do not have a conceptual proof of them; therefore, we refrain from attempting
such a verification.

The remainder of the introduction will be devoted to describing the two most important
elements in the proofs of the theorems above.

1.4. Reduction to canonical affine closure. We give an overview of how to reduce the case

of an arbitrary affine X with X• = H\G to the canonical affine closure Xcan = H\G
aff
.

There is a canonical map Xcan → X, which induces an inclusion Xcan(o)∩X•(F ) ⊂ X(o)∩
X•(F ) of G(o)-stable spaces. Of course, all points of X•(F ) are G(F )-translates of points in
Xcan(o) ∩ X•(F ). It is a fact that if θ̌ ∈ Λ̌− is antidominant and belongs to the monoid cX ,

then the action of the double coset G(o)tθ̌G(o) preserves X(o) ∩ X•(F ). The idea for what

follows is that we can obtain X(o) ∩X•(F ) by acting on Xcan(o) ∩X•(F ) by G(o)tθ̌G(o) for
θ̌ ∈ c−X := Λ̌− ∩ cX .

The Zastava model Y lives over BunB and does not carry a Hecke action. Thus, to model the
G(F )-action on X(o)∩X•(F ) we must use the global model M = MX , which lives over BunG.

The canonical map MXcan → MX is a closed embedding. For θ̌ ∈ c−X − 0, let Hθ̌
G,C denote

the Hecke stack over BunG×C with fibers isomorphic to Gr
θ̌

G, the closure of the L+G-orbit in
the affine Grassmannian corresponding to θ̌. In reality, we need a symmetrized (multi-point)
version of the Hecke stack, but we only describe the case where there is one point on the curve
in this introduction for simplicity. There is a well-defined map

(1.14) MXcan ×
BunG

Hθ̌
G,C →MX
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modeling the action of Hecke operators, and we show (Theorem 5.1.1) that this map is birational
onto its image. If we allow multiple points above, then the images of the corresponding Hecke
actions, with θ̌ varying, stratify MX .

Under the assumptions of the previous subsection, we show that MXcan is irreducible (Corol-
lary 5.6.4), so the study of ICMX

reduces to the study of the Hecke action on ICMXcan and the
determination of which of the strata above form irreducible components of MX . For the lat-
ter, we need to understand the closure relations among the different strata (Proposition 5.6.1).
When cX• = Nr, the stratum corresponding to θ̌ is contained in the closure of the stratum cor-
responding to θ̌′ if and only if θ̌− θ̌′ ∈ cX• (more generally, the closure relations are determined
by the colors of X).

1.5. Semi-infinite orbits and dimension estimates. There is another way to understand

the central fibers Yλ̌: as subsets of the affine Grassmannian of G. Let us fix the point v ∈ C
that we take central fibers with respect to. Then a k-point of Yλ̌ is a map C → X/B such
that C − v is sent to X◦/B = pt. Restricting to the completed local ring ov at v gives a map

Yλ̌ → LX◦/L+B. If we fix a base point x0 ∈ X◦(k) to identifyX◦ ∼= B, we get a map Yλ̌ → GrB
and this turns out to be a closed embedding. The reduced image of the components of GrB in

GrG are the semi-infinite orbits Sλ̌(k) = N(F )tλ̌G(o)/G(o). After passing to reduced schemes

we get identifications Yλ̌red = (Sλ̌×LX/L+G L+X/L+G)red and Y
λ̌

red = (S
λ̌×LX/L+G L+X/L+G)red

(see Lemma 4.3.2).

Semi-infinite orbits have an important meaning for the geometric Satake equivalence [MV07]:

the fundamental classes of the irreducible components of the intersection Sλ̌∩Gr
θ̌

G, theMirković–
Vilonen cycles, are in bijection with the “canonical basis” for the λ̌-eigenspace of the irreducible
Ǧ-module of lowest weight θ̌.

Our analysis of the central fibers Yλ̌ is founded upon the following argument from [MV07,

§3]. The boundary S
λ̌ − Sλ̌ = ∪ν̌<λ̌Sν̌ is a hyperplane section for some projective embedding

of GrG. Hence any closed subscheme of GrG which intersects S
λ̌
, also intersects its boundary

in codimension one (unless already contained in the boundary). By inductively “cutting” by
these hyperplanes, we prove:

Theorem 1.5.1. Let X = Xcan be as in Theorem 1.1.2. Let b be an irreducible component of

the central fiber Yλ̌. Then

• dim b ≤ 1
2 (len(λ̌)− 1),

• for a basis element ν̌i of cX (corresponding to a color), Yν̌i = pt,
• the inequality is an equality only if there is a sequence α1, . . . , αd of simple roots (with

repetitions) such that b∩ Sλ̌−α̌1−···−α̌j is of dimension dim b− j (hence, also of critical

dimension), and λ̌−
∑︁d
i=1 α̌i = ν̌ for a color ν̌.

The operation of hyperplane “cutting” can almost be thought of as the lowering operator for
some SL2-triple; unfortunately it is not quite precise enough, see Proposition 7.3.1.

If X ̸= Xcan, then we also show that if b is an irreducible component of Yλ̌X of critical

dimension that is not contained in Yλ̌Xcan , then λ̌ must be a weight of V θ̌i for one of the θ̌i

appearing in Theorem 1.1.4, and b is birational to a Mirković–Vilonen cycle in Sλ̌ ∩Grθ̌iG . The
latter correspondence comes from the Hecke action (1.14).
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Let us comment on how the above relates to Theorems 1.3.1 and 1.1.4. Under our assumption

that cX• = Nr, the space Yλ̌Xcan is irreducible. Then the dimension estimate in Theorem 1.5.1,
together with a factorization property of YX , implies the “stratified semi-smallness” condition.

The irreducible components of YXcan of critical dimension correspond to a basis of V +
X• .

The other irreducible components of YX −YXcan of critical dimension correspond to Mirković–

Vilonen cycles in Grθ̌iG , and these provide a basis for V θ̌i in Theorem 1.1.4 by geometric Satake.

1.6. Organization of the paper. In §2 we briskly review the salient combinatorics of spherical
varieties and the classification of G(o)-orbits of the loop space of X•. In §3 we introduce
the global and Zastava models for the arc space of X and their stratifications, explain why
they are indeed models, and prove some foundational properties. In §4, we introduce the
compactification of the Zastava model and define the central fibers of (compactified and non-
compactified) Zastava models. Then we perform the comparison between π!ICY and π̄!ICY that
accounts for the “numerator” in the Euler factor (1.4).

Sections 5 and 6 are the technical heart of this paper. In §5 we establish the closure relations
for the global model MX and determine its irreducible components. This involves a study of
the G-Hecke action on the global model, which also reduces the problem to the canonical affine
closure, as explained earlier. In §6, we analyze the geometry of the central fiber and prove the
crucial dimension estimates using the Mirković–Vilonen boundary hyperplanes of semi-infinite
orbits. This allows us to prove Theorem 1.3.1.

In §7, we prove the aforementioned results on crystals. In §8, we combine the results of the
preceding sections to compute the nearby cycles of the IC complex on the global model using a
well-known contraction principle. Here we establish that the nearby cycles functor does indeed
correspond to the asymptotics map under the sheaf–function dictionary.

In Appendix A, we collect various technical results concerning the stratification of the global
model, some of which use the notion of generic-Hecke modification from [GN10].

1.7. Index of notation.
In general, we will use calligraphic letters D,V to denote standard combinatorial objects

associated to spherical varieties in the literature, script letters M,Y,F for algebraic stacks and
sheaves, sans serif letters Y,S for (ind-)schemes that are subspaces of certain loop spaces with
respect to a fixed point v ∈ |C|. The following table contains most of the notation used in this
paper, except for notation defined and used locally.

k an algebraically closed field. The characteristic of k can be zero or positive,
but in the latter case we will impose some restrictions on our spherical
varieties (see §2.2), to ensure that their geometry is similar to that in
characteristic zero.

F, Fr At some points in this paper, k is the algebraic closure of a finite field F,
and then Fr denotes the geometric Frobenius morphism.

pt Spec k.
C a connected smooth projective curve over k.

SymC, C(n) the scheme of effective divisors on (=symmetric powers of) C, and the
component of divisors of degree n.

C̊n, C̊(n) the open subsets of distinct n-tuples of points, resp. multiplicity free divi-
sors of degree n, on the curve.∏̊︁

, ×̊ for schemes living over any partially symmetrized powers of the curve, the
restriction of their Cartesian product over the multiplicity-free locus.

k = k(C) the field of rational functions on C.
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|C| = C(k) the set of closed points of C.
ov for v ∈ |C|, it denotes the completion of the local ring at v.
Fv the fraction field of ov. By choosing a local coordinate t we have a non-

canonical isomorphism ov ∼= k[[t]] =: o and Fv ∼= k((t)) =: F . We sometimes
implicitly make this identification when the choice of local coordinate is
irrelevant.

N the monoid of non-negative integers.

G a connected reductive group over k.
T the (abstract) Cartan of G, i.e., the reductive quotient of any Borel sub-

group. We sometimes fix a splitting T ↪→ B ↪→ G of the abstract Cartan
into a Borel subgroup.

B the flag variety of Borel subgroups of G.
W the (abstract) Weyl group of G.

sα ∈W for a simple root α, the corresponding reflection.
Λ̌G (ΛG) the coweight (resp. weight) lattice of T . The index G will often be omitted.

Λ̌+
G (Λ+

G, Λ̌
−
G) The monoid of dominant coweights (resp., dominant weights, antidominant

coweights).
Λ̌pos
G

(Λpos
G ⊂ ΛG)

The monoid generated by the non-negative integral span of the positive
coroots (resp. roots) in Λ̌G.

∆̌G (∆G) the set of simple coroots (resp. roots) of G.
2ρ̌G ∈ Λ̌G

(2ρG ∈ ΛG)
the sum of the positive coroots (roots) of G

λ̌ ≥ µ̌ For λ̌, µ̌ ∈ Λ̌G, this means that λ̌− µ̌ ∈ Λ̌pos
G .

Ǧ the Langlands dual group of G over Qℓ, i.e., Ǧ is the connected reductive
group where the weights, roots of Ǧ equal the coweights, coroots of G, etc.

V λ̌ for λ̌ ∈ Λ̌G either dominant or antidominant, this denotes the irreducible
Ǧ-module over Qℓ with highest (resp. lowest) weight λ̌. Similarly, V λ

denotes the irreducible G-module over k for λ ∈ Λ+
G.

variety will mean a reduced, finite type k-scheme (not necessarily irreducible).
Z/H for a stack Z with an action of an algebraic group H, this will denote the

quotient stack.
Z//H for an affine variety Z over k, and a group H acting on it, the invariant-

theoretic quotient Spec k[Z]H .
X×G Y if X,Y are stacks with (right) G-actions, we will use this to denote the

stack quotient (X×Y)/G by the diagonal action.
L+X, LX the formal arc and loop spaces of a scheme X (see §2.3).

Dbc(Z) for an algebraic stack Z, this is the derived category of bounded con-
structible Qℓ-complexes on Z.

‘sheaf’ means a complex of sheaves. All functors between sheaves are derived
functors.

P(Z) ⊂ Dbc(Z) when Z is locally of finite type over k, this is the abelian category of
perverse sheaves.

pD≤0, pD≥0 the subcategories with respect to the perverse t-structure.
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ICZ the direct sum of the intersection cohomology complexes of all irreducible
components of Z. When working over a finite field, we will normalize this
sheaf to be pure of weight zero.

X an affine G-spherical variety over k. (See §2.1 for notions pertaining to
spherical varieties.)

X◦ the open B-orbit, for a fixed choice of Borel subgroup B.
x0 ∈ X◦(k) a fixed base point.

H the stabilizer of x0.
X• the open G-orbit H\G.

Xcan the “canonical” affine embedding Spec k[X•] of X•.
TX the (abstract) Cartan of X, that is, the quotient by which the abstact

Cartan of G acts on X◦//N , where N is the unipotent radical of B.
ΛX , Λ̌X the character and cocharacter groups of TX . Our assumptions on X will

identify Λ̌X with Λ̌G, so it will often just be denoted by Λ̌.
ǦX the dual group of X; it has a canonical maximal torus isomorphic to the

dual of TX .
V the cone of invariant valuations ofX; equivalently, the antidominant cham-

ber of the dual group of X.
c∨X ⊂ ΛX

(cX ⊂ Λ̌X)

the monoid of weights of TX on k[X//N ] (resp., its dual monoid).

C0 = C0(X) ⊂ tX the cone spanned by cX , inside of the vector space spanned by Λ̌X .
c−X the intersection of cX with the cone V of invariant valuations.

D(X) the set of irreducible B-stable divisors in X.
D the set of colors, i.e., irreducible B-stable divisors which are not G-stable;

equivalently, this can be identified with D(X•).
D(α) for a simple root α, the set of colors D of X• such that DPα ⊃ X◦, where

Pα is the parabolic generated by B and the root space g−α.
ϱX(D) = ν̌D for D ∈ D(X), the associated B-invariant valuation, restricted to the

group of nonzero B-eigenfunctions: ν̌D : k(X)(B) → Z, and understood as
a functional on the character group ΛX = k(X)(B)/k×.

cDX ⊂ Λ̌X the monoid generated by the ν̌D, D ∈ D.
λ̌ ⪯ µ̌ for λ̌, µ̌ ∈ Λ̌X , this means that µ̌− λ̌ ∈ cDX .

DGsat(X) the set of those primitive (=indecomposable) elements in c−X that are min-
imal with respect to the ⪯ partial order.

BunG,BunB the moduli stack of G-bundles, resp. B-bundles, on C.
MX the “global model” of generic maps from a curve to X/G; it lives over

BunG. The restriction of such a map, defined over k, to the formal neigh-
borhood of a point v ∈ |C| gives rise to a well-defined “valuation”, that is,
an element of (X•(Fv) ∩X(ov))/G(ov).
See Section 3 for the various models of the arc space. For any model, when
X is understood, the index will be omitted.

YX the “Zastava model” of generic maps from a curve to X/B; it lives over
BunB . The restriction of such a map, defined over k, to the formal
neighborhood of a point v ∈ |C| gives rise to a well-defined element of
(X◦(Fv) ∩X(ov))/B(ov)

BunB Drinfeld’s compactification of BunB , see §4.1.
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YX the compactified Zastava model (Section 4).
A the global/Zastava model for the TX -space X//N .

π, π̄ the natural maps π : YX → A, π̄ : YX → A (extending π).

X•(F )G:θ̌, L
θ̌X the G(o)-orbit on X•(F ) parametrized by θ̌ ∈ V ∩ Λ̌X (Theorem 2.3.5),

and the corresponding stratum of the loop space. When θ̌ ∈ c−X , these
belong to X(o), resp. the arc space L+X.

Sym∞(S) the set of multisets in elements of a set S; equivalently, the free monoid⨁︁
S N in the elements of S.

CP, C̊P for a multiset P =
∑︁
s∈SNs[s], the partially symmetrized power

∏︁
S C

(Ns)

of the curve, and its disjoint locus
∏̊︁

SC̊
(Ns).

MΘ̌ for Θ̌ ∈ Sym∞(c−X − {0}), the stratum of M containing those maps whose

multiset of nontrivial valuations (as elements of c−X − {0}) is equal to Θ̌.

When Θ̌ = {θ̌} is a singleton, we will write Mθ̌.

Aλ̌ the connected component of A of maps with total valuation λ̌ ∈ cX ⊂
Λ̌X = TX(F )/TX(o).

Yλ̌,Y
λ̌

the preimage of Aλ̌ in Y, resp. in Y. They live over strata Bun−λ̌B , Bun
−λ̌
B

of BunB , resp. BunB .

Yλ̌,Θ̌, Y
λ̌,Θ̌

the fiber products of Yλ̌,Y
λ̌
with MΘ̌ over M.

YD for D ∈ ND, a certain connected/irreducible component of the “open Zas-
tava” space YX• = Y?,0, defined in §5.4. The question mark ? corresponds
to the valuation ϱX(D).

M
Θ̌

denotes the closure of the stratum MΘ̌. Note that Y
λ̌
, Y

λ̌,Θ̌
, in contrast,

are not closures of strata, but strata of the compactified Zastava space. In
the case of the global model, there is no room for confusion, so we allow
ourselves this notation, for typographical reasons.

Cν̌ , ν̌Bun
λ̌

B , ν̌Y
λ̌

for ν̌ ∈ Λ̌pos
G , the partially symmetrized power CP when ν̌ is thought of

as a multiset P in the simple coroots, a stratum of Bun
λ̌

B , and a stratum

of Y
λ̌
, isomorphic, respectively, to Cν̌ × Bunλ̌+ν̌B ↪→ Bun

λ̌

B and Cν̌ × Yλ̌−ν̌

(see §4.2).

GrG,GrB the affine Grassmannian of G, resp. B.
GrG,SymC ,
GrB,SymC

the Beilinson–Drinfeld affine Grassmannians, living over SymC (see §3.7).

Grθ̌G, Gr
θ̌

G for θ̌ ∈ Λ̌−G, the L+G-orbit in the affine Grassmannian containing the class

of tθ̌, and its closure.

Gr
Θ̌

G,CΘ̌ for Θ̌ ∈ Sym∞(Λ̌−G − 0), the multi-point version of Gr
θ̌
, see §5.2.1.

Sλ̌, S
λ̌

the “semi-infinite” LN -orbit of tλ̌ in GrG, and its closure.

Yλ̌, Y
λ̌

the central fibers of Yλ̌,Y
λ̌
, living over a point of the diagonal stratum C ↪→

Aλ̌. They can be identified as subspaces of Sλ̌, S
λ̌
(see §4.3). From §4.3

onwards, we will implicitly consider only the underlying reduced structure
on all central fibers.
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BX,λ̌ for λ̌ ∈ cX , the set of all irreducible components of critical dimension of

the central fiber Yλ̌, see Proposition 6.5.1.

B+
X ,BX the union of all BX,λ̌, λ̌ ∈ cX , and the “crystal of X” (§7.1.4).
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IAS from the Charles Simonyi Endowment. J.W. was supported by NSF grant DMS-1803173.

2. Spherical varieties and their arc spaces

2.1. Spherical varieties. A spherical variety over k is a normal variety with an open B-orbit.
Let X be an affine G-spherical variety over k. Let X◦ denote the open B-orbit. We choose and
fix a point x0 ∈ X◦(k) and let H denote its stabilizer. Let X• = H\G denote the open G-orbit.

The quotient X◦//N has an action of the universal Cartan T = B/N , and is a torsor for a
quotient torus T ↠ TX . By our choice of base point, we can identify this torsor with TX . In
the rest of this paper, we will assume that our spherical variety satisfies TX = T ; however, for
now we proceed with general definitions.

All important combinatorial invariants of the spherical variety live in the rational vector
space t∗X spanned by the character group ΛX of this torus, or in the dual vector space tX ,

containing the dual lattice Λ̌X . By “lattice points”, below, we will mean points belonging to
one of these lattices. The spaces tX , t

∗
X are the root and coroot space for the dual group ǦX of

X.7 The antidominant Weyl chamber for ǦX in tX is denoted by V in the theory of spherical
varieties, because it coincides with the so-called cone of G-invariant valuations, see [Kno91].
Up to this point, all data depend only on the open G-orbit X•, not on its affine embedding X.

The affine embeddingX ofX◦ defines an affine toric embeddingX//N of TX , described by the

cone C0(X) ⊂ tX whose lattice points are all cocharacters λ̌ into TX such that limt→0 t
λ̌ ∈ X//N .

We will denote by cX the monoid of lattice points Λ̌X ∩C0(X) ⊂ tX , and by c−X its intersection
with the cone V of invariant valuations. The cone C0(X) ⊂ tX has a canonical set of generators
ν̌D, the valuations associated to all B-stable divisors D ⊂ X. The set of all irreducible B-stable
divisors in X will be denoted by D(X), and by “valuation associated” we mean the restriction
of the corresponding valuation to the group of nonzero B-eigenfunctions: ν̌D : k(X)(B) → Z,
which factors through the character group ΛX and hence can be identified with an element of
Λ̌X ⊂ tX . The map D(X) ∋ D ↦→ ν̌D ∈ Λ̌X will be denoted by ϱX . Inside of D(X) there is a
distinguished subset D, depending only on the open G-orbit X•, which consists of the closures
of B-stable divisors in X•; those are called colors. We will often abuse language and write
“colors” for the images of D in Λ̌X .

We remark that the valuation map ϱX may fail to be injective, but this can only happen
when two colors have the same image. If this is the case for X• = H\G, there is always a torus
covering of it such that all colors have distinct valuations (see §5.3); for example, GL1\PGL2

has two colors with valuation α̌
2 , but their preimages in GL1\GL2 (where GL1 is embedded

7The Gaitsgory–Nadler dual group was defined in a Tannakian way in [GN10], but not completely identified
in all cases. A combinatorial description of a dual group (presumably the same) was consequently afforded
by Knop and Schalke [KS17]. The invariants that we present here are those of Knop and Schalke, which

match standard invariants of the theory of spherical varieties. For this paper, however, this distinction between
constructions of the dual group is immaterial, as we impose the condition that TX = T and “all simple roots of
G are spherical roots of type T”, which implies that in both versions of the dual group, ǦX = Ǧ.
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as the general linear group of a one-dimensional subspace) induce different valuations. In any
case, colors give rise to a map ND → cX , whose image we denote by cDX .

We define an ordering ⪯ on Λ̌X by postulating that λ̌ ⪯ λ̌′ if λ̌′ − λ̌ can be written as a
non-negative integral combination of the valuations ν̌D, with D ∈ D, i.e., if λ̌′ − λ̌ ∈ cDX . We

use the symbol ≤ for the ordering on Λ̌G defined by the positive coroots of G, that is, λ̌ ≤ λ̌′

iff λ̌′− λ̌ is a sum of positive coroots. Notice that the ordering ⪯ is not defined simply in terms
of the cone spanned by the ν̌D’s: there can be non-comparable lattice points in this cone (and
similarly for the ordering ≤). As we will see later, this ordering describes the closure relations
on the global model of the arc space of X.

2.1.1. Spherical roots of type T . From Section 3 onwards we assume that TX = T , equiva-
lently, B acts simply transitively on X◦. From Section 5 on we assume, further, that all simple
roots of G are spherical roots of type T . Let us explain what this means: For a simple root
α of G, let Pα ⊃ B denote the corresponding parabolic of semisimple rank one. The quotient
Pα/R(Pα) by its radical is isomorphic to PGL2, and the invariant-theoretic (or geometric) quo-
tient X◦Pα/R(Pα) is a spherical variety for PGL2. In characteristic zero, over an algebraically
closed field, those belong to one of the following types, see [Kno95, Lemma 3.2]:

• a point: PGL2\PGL2;
• type T : Gm\PGL2;
• type N : N (Gm)\PGL2, where N denotes normalizer;
• type U : S\PGL2, where N ⊂ S ⊂ B.

In positive characteristic there are some more cases, investigated by Knop in [Kno14].
Our assumption from Section 5 onwards is that for every simple root α, this PGL2-spherical

variety is isomorphic to Gm\PGL2. Our assumptions imply that the stabilizer in Pα of a
point on the open orbit is isomorphic to Gm, and that there are precisely two colors D+

α , D
−
α

contained in X◦Pα (the ± labeling is arbitrary). We will denote the set of these two elements
by D(α) ⊂ D; notice that these sets are not disjoint as α varies. Moreover, the associated
valuations satisfy (see [Lun97, §3.4]):

ν̌D+
α
= −sαν̌D−α ,

ν̌D+
α
+ ν̌D−α = α̌,

and finally an element D ∈ D belongs to D(α) iff ⟨α, ν̌D⟩ > 0 (in which case ⟨α, ν̌D⟩ = 1, by
the above).

Remark 2.1.2. Our assumptions above are over the algebraically closed field k. Over a finite
field F, the Galois group acts on the set of colors, compatibly with its action on the set of simple
roots. If, for example, G is split, each set D(α) is preserved by Frobenius, and the stabilizer of
a point on the open Pα-orbit is a form of Gm. If that form is split, Frobenius acts trivially on
D(α); if not, it permutes the two colors.

Remark 2.1.3. A very straightforward way to compute the valuations ν̌D±α in any example is
the following: If all simple roots are spherical roots of type T and TX = T , the stabilizer S
of a point in the open Pα-orbit on X is a subgroup isomorphic (over the algebraic closure) to
Gm. Choose a Borel subgroup B ⊂ Pα containing S. An isomorphism Gm ≃ S gives rise to a
cocharacter ν̌ : Gm → B → T , and we can choose this isomorphism so that ⟨α, ν̌⟩ = 1. There
are two choices for B, and they correspond to the valuations ν̌D±α .
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2.2. Affine degeneration, and assumptions in positive characteristic. In characteristic
zero, there is a well-known affine family degenerating X to a horospherical variety [Pop86],
[GN10, §5.1], which in turn is related to its degeneration to the normal bundle of orbits in
a smooth toroidal (e.g., a “wonderful”) compactification of X, [Bri07], [SV17, §2.5]. These
constructions sometimes fail in positive characteristic, and therefore the statements of this
subsection should be considered as assumptions in positive characteristic. These
assumptions will be imposed on X for the remainder of the paper. Notice that the Luna–Vust
theory of spherical embeddings holds in arbitrary characteristic over an algebraically closed
field by [Kno91].

2.2.1. We define a filtration Fλ on k[X] for λ ∈ ΛX by letting Fλ consist of all f ∈ k[X]
such that every highest weight µ ∈ ΛX of the rational G-module generated by f satisfies
⟨λ − µ,V⟩ ≤ 0. The affine degeneration X is the affine variety defined to be the spectrum of
the Rees algebra associated to the filtration above:

k[X ] =
⨁︂
λ∈ΛX

Fλ⊗ eλ ⊂ k[X × TX ]

where eλ ∈ k[TX ] denotes the character corresponding to λ ∈ ΛX . This family is naturally
equipped with an action of the product G× TX .

Note that k[X ] contains
⨁︁
⟨λ,V⟩≤0 ke

λ. Define TX,ss to be the spectrum of
⨁︁
⟨λ,V⟩≤0 ke

λ.

This is an affine toric variety with open orbit isomorphic to the quotient TX,ss of TX by the
subtorus Z(X)0 (the “connected center of X”) generated by cocharacters in V ∩ (−V).

In summary, we get a G× TX -equivariant map

X → TX,ss,

which we consider as our affine family of degenerations.

2.2.2. For a ∈ TX,ss(k), let Xa denote the fiber of X → TX,ss over a. From the definition of the
filtration Fλ, it follows that k[Xa]

N = k[X]N . The following “multiplicity-free” characterization
of spherical varieties (in arbitrary characteristic) implies that each fiber Xa is spherical.

Theorem 2.2.3 ([VK78], [Tim11, Theorem 25.1]). A normal quasi-affine variety X is spherical
if and only if the non-zero weight spaces of k[X]N are all 1-dimensional.

Since the torus TX is determined by k[X]N , we have a family of spherical varieties Xa with
associated torus TXa

∼= TX .

We also have k[X ]N =
⨁︁
⟨λ−µ,V⟩≤0 k[X]

(B)
µ ⊗ eλ where k[X]

(B)
µ is the 1-dimensional B-

eigenspace of weight µ. This gives a canonical isomorphism

(2.1) X //N ∼= X//N × TX,ss.

Define X ◦ to be the preimage of TX × TX,ss ⊂ X //N under the projection X → X //N .
Equivalently, X ◦ is the union of the open B-orbits of the fibers Xa.

It will be convenient to lift the isomorphism (2.1) to X ◦.

Proposition 2.2.4. There is a (non-canonical) B-equivariant isomorphism X ◦ ∼= X◦ × TX,ss
over TX,ss, compatible with (2.1).

We will comment on the proof of this proposition in conjunction with Theorem 2.2.5 below.
The affine degeneration is closely related to compactifications of the spherical variety. Namely,

let X • ⊂ X denote the union of the G-translates of X ◦. (It is the open subvariety which
specializes over each fiber Xa to the open G-orbit.) The quotient X •/TX turns out to be a
proper embedding of X•/Z(X)0. For applications, one is interested in proper embeddings of
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X• itself, and preferably smooth ones. Without getting into the details of the construction
(we point the reader to [Kno91]), we formulate the following result on the existence and local
structure of “smooth toroidal compactifications”:

Define P (X) ⊃ B to be the parabolic subgroup of G equal to {g ∈ G | X◦ · g = X◦}, and
let NP (X) denote its unipotent radical. Recall that we have fixed a base point x0 ∈ X◦, for
convenience.

Theorem 2.2.5. There is a proper, smooth, G-equivariant embedding X• ↪→ X, a Levi8 L ⊂
P (X) ⊂ G, and a smooth toric embedding TX of the quotient TX of L, such that the action
map

L×NP (X) ∋ (l, u) ↦→ x0lu

descends to TX and extends to an open embedding

TX ×NP (X) ↪→ X,

whose image is the union of all open B-orbits on X. Moreover, the support of the fan describing
the toric variety TX is the cone V of invariant valuations.

Remark 2.2.6. Note that the embedding that we denoted above by TX,ss is associated to the

image of the opposite cone −V modulo V ∩ (−V). Thus, there is a map from TX to TX,ss only

after inversion in TX . We allow ourselves this notational flaw, since TX will not be used beyond
this subsection and the next.

Theorem 2.2.5 is the local structure theorem of Brion–Luna–Vust [BLV86, Théorème 3.5],
applied to smooth toroidal compactifications [Kno91]. We outline its proof due to Knop [Kno94,
Theorem 2.3], which also applies to Proposition 2.2.4. The main issue is how to choose the pair
(x0, L) appropriately. Let B denote the flag variety of G, and assume for the moment that no
choice of B, x0 has been made. One considers triples (x,B, χ) ∈ X ×B× t∗X such that x lies in
the open B-orbit. Out of these data one constructs elements in the cotangent bundle T ∗X• as
follows: If χ is the differential of a character (also to be denoted by χ ∈ ΛX), the corresponding

cotangent vector is the logarithmic differential
dfχ
fχ

⃓⃓⃓
x
at x of a rational B-eigenfunction with

eigencharacter χ, and for general χ we extend this construction by linearity. This gives rise to
a map

(X × B)• × t∗X → T ∗X•

(where the bullet denotes “open G-orbit”) with dense image. We can also apply this construc-
tion to the family X •, obtaining vectors in the relative cotangent bundle over TX,ss. Composing
with the moment map T ∗X• → g∗, Knop shows that if we choose a sufficiently generic, semisim-
ple vector ξ in the image, and take L = StabG(ξ) and x0 a point of a triple (x0, B, χ) in its
fiber, Theorem 2.2.5 is satisfied. The same argument applies to prove Proposition 2.2.4, as fol-
lows: Instead of fixing x0, fix first just the Borel subgroup B, and consider all triples (x,B, χ)
over ξ, now with x ∈ X ◦ (defined with respect to this Borel). The set of these triples is a
TX -equivariant section of the map X →X //N ∼= X//N ×TX,ss over TX ×TX,ss, where TX acts
diagonally on the latter.

8Of course, there is no distinguished Levi in P (X) abstractly, but the choice of base point x0 sometimes

imposes restrictions on the Levi subgroups that work; for example, the derived subgroup of L must stabilize x0.
In any case, the assumptions on X in the main body of this paper, that B acts simply transitively on X◦ and

V = the antidominant cone, imply that any L ⊂ P (X) = B satisfies the Local Structure Theorem.
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2.3. The formal loop space. For any k-scheme X, define the space of formal arcs by

L+X(R) = X(R[[t]])

for a test ring R. It is well-known (cf. [KV04, Proposition 1.2.1]) that L+X is representable by a
scheme (of infinite type), which is the projective limit of the schemes L+nX, n ∈ N, representing
the spaces of n-arcs L+nX(R) = X(R[t]/tn). If X is of finite type over k, then so is each L+nX.
If X is smooth over k, then each L+nX is smooth over k and L+X is formally smooth over k. If
X is affine, then so are L+nX and L+X.

Define the formal loop space LX(R) = X(R((t))). If X is affine, then LX is representable by
an ind-affine ind-scheme, and we have a closed embedding L+X ↪→ LX.

2.3.1. Let X be an affine spherical G-variety. Define

L•X := LX − L(X −X•),
which admits an open embedding into LX. The G-action on X induces a natural action of L+G
on LX and L+X, L•X are stable under this action.

Example 2.3.2. Let X = A1 with the scaling Gm-action. Then L+X = A∞, where we
consider A∞ = Spec k[a0, a1, . . . ] as the coefficients of infinite Taylor series, and the ind-scheme
LX = “ lim

−→m
” Spec k[a−m, a−m+1, . . . ] considered as the coefficients of Laurent series. Let X• =

A1 − {0}. Then L•X = LX − {0} so L+X ∩ L•X = A∞ − {0}, whereas L+(X•) = Gm × A∞.

Remark 2.3.3. The k-points of L•X are in bijection with X•(k((t))). Since X• is in general not
affine, however, X•(k((t))) does not always have an ind-scheme structure. Even when X• is
affine, L(X•) may not be isomorphic to L•X, despite having the same sets of k-points.

2.3.4. Orbits on the formal loop space. For ease of notation, let o = k[[t]] and F = k((t)), so
L+G(k) = G(o), L•X(k) = X•(F ). We review the decomposition of G(o)-orbits on X•(F ) due
to [LV83]. We present the reformulation of this result found in [GN10, Theorem 3.3.1].

Let X be an affine spherical variety, and pick a pair (x0, L) as in Theorem 2.2.5 to write

X◦ = TX ×NP (X) for its open Borel orbit. For a cocharacter θ̌ ∈ Λ̌X we let tθ̌ ∈ TX(F ) denote

the image of the uniformizer t ∈ o under the map θ̌ : Gm → TX . Let X•(F )/G(o) denote the
set of equivalence classes of G(o)-orbits in X•(F ).

Theorem 2.3.5 ([LV83], [GN10, Theorem 3.3.1]). (i) The map

(2.2) θ̌ ↦→ X•(F )G:θ̌ := x0 · tθ̌G(o)
is a bijection of sets V ∩ Λ̌X ∼= X•(F )/G(o) (which is independent of the choice of
(x0, L)).

(ii) This bijection restricts to a bijection c−X
∼= (X(o) ∩X•(F ))/G(o).

The theorem can be viewed as a generalization of the Cartan decomposition. Define Lθ̌X to

be the L+G-orbit of x0t
θ̌ ∈ L•X.

Remark 2.3.6. Observe that if θ̌ ∈ c−X , then in particular θ̌ ∈ Λ−X is antidominant (as a weight

for the dual group ǦX of X). Therefore, wθ̌ − θ̌ ∈ Λpos
X ⊂ cX for any w ∈ WX , and hence

wθ̌ ∈ cX . We suggest that the monoid c−X = C0(X)∩V ∩ Λ̌X should be thought of as the set of

WX -orbits in Λ̌X that are entirely contained in the cone C0(X).

Proposition 2.3.7. If k has positive characteristic, assume that the stabilizer of B acting on

x0 ∈ X◦ is a smooth subgroup. For any θ̌ ∈ V ∩ Λ̌X , the L+G-orbit Lθ̌X is a formally smooth

k-scheme with k-points equal to X•(F )G:θ̌, and Lθ̌X is open in its closure in LX.
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Therefore, the collection of Lθ̌X, θ̌ ∈ V ∩ Λ̌X , form a stratification of L•X, in the sense that
the strata are disjoint and contain all the k-points.

Proof. Let S ⊂ L+G denote the stabilizer subgroup of x0t
θ̌ ∈ LX(k). A priori, the L+G-orbit

Lθ̌X is defined as the fpqc sheaf quotient L+G/S. For n ∈ N, let Sn denote the scheme-theoretic
image of S under the projection L+G→ L+nG. For m > n, the transition map

L+mG/Sm → L+nG/Sn = L+mG/(Sn · ker(L+mG→ L+nG))

is smooth affine since ker(L+mG → L+nG) is smooth and unipotent. The schemes L+nG/Sn are

also smooth since L+nG is smooth. Therefore Lθ̌X ∼= L+G/S ∼= lim←− L+nG/Sn is representable by
a formally smooth scheme.

The fact that Lθ̌X → LX is open in its closure will follow from Lemma 2.3.10 below. □

2.3.8. Recall the family X introduced in §2.2. We define a map of formal loop spaces

(2.3) iθ̌ : LX → LX

as follows: By definition, we have a map p : X×TX →X . For a test ring R and γ ∈ X(R((t))),

define iθ̌(γ) = p(γ, t−θ̌) ∈X (R((t))), where we are considering t−θ̌ ∈ TX(R((t))).

Lemma 2.3.9. The point iθ̌(x0t
θ̌) ∈ LX (k) is contained in L+(X ◦).

Proof. By Proposition 2.2.4 (and the ensuing discussion), there exists a non-canonical section
s : TX × TX,ss → X ◦ such that s(1, 1) = x0. If we choose a splitting T ↪→ G contained in the
Levi L from Theorem 2.2.5, then the section s is T ×TX -equivariant, where TX acts diagonally

on TX×TX,ss. Thus on k((t))-points, we have iθ̌(x0tθ̌) = p(x0t
θ̌, t−θ̌) = s(tθ̌ ·t−θ̌, t−θ̌) = s(1, t−θ̌),

which lies in X ◦(k[[t]]) since −θ̌ ∈ −V. □

The map iθ̌ is LG-equivariant. As a consequence of the lemma, we see that the L+G-orbit

of iθ̌(x0t
θ̌) is contained in L+(X •). Thus iθ̌ restricts to a map Lθ̌X → L+(X •).

We have a closed embedding L+X ↪→ LX and an open embedding L+(X •) ↪→ L+X .

Lemma 2.3.10. Assume that the stabilizer of B acting on x0 ∈ X◦ is a smooth subgroup.
Then the map iθ̌ induces an isomorphism

Lθ̌X
∼→ LX ×

iθ̌,LX
L+(X •).

Proof. Since iθ̌ : LX → LX is injective on S-points, it suffices to show that LX ×iθ̌,LX L+(X •)

is the L+G-orbit of iθ̌(x0t
θ̌) ∈ L+(X •)(k).

Let B = G/B denote the flag variety, and let (X ×B)• ⊂X ×B denote the G-stable open

subvariety consisting of all points (x, B̃) where x ∈X in the open B̃-orbit. We have a smooth
surjection (X × B)• → X • by first projection. On the other hand, Proposition 2.2.4 gives a
non-canonical G-equivariant isomorphism X ◦×B G ∼= (X◦×B G)×TX,ss. The action map and
second projection induce an isomorphism X ◦×B G ∼= (X × B)• and similarly for X◦×B G.
Thus there is a G-equivariant isomorphism

(X × B)• ∼= (X × B)• × TX,ss
over the base TX,ss. The choice of base point (x0, B) ∈ (X × B)• gives an isomorphism

G/StabB(x0) ∼= (X × B)•. Thus we have a G-equivariant smooth surjection G × TX,ss → X •

which induces a surjection

(2.4) L+(G× TX,ss)→ L+(X •)



24 YIANNIS SAKELLARIDIS AND JONATHAN WANG

because StabB(x0) is assumed to be smooth. Since the composition LX
iθ̌→ LX → LTX,ss

sends everything to the image of t−θ̌ in LTX,ss(k), we deduce that (2.4) induces a surjection
L+G→ LX ×iθ̌,LX L+(X •). Thus the latter fiber product is a single L+G-orbit. □

2.3.11. In this subsection we will use properties of toroidal compactifications of X. We refer
the reader to [SV17, §2.3-2.5], [Kno91], [GN10, §8] for an overview.

Let X denote a complete, smooth toroidal embedding of X• = H\G (the embedding is not

simple if NG(H)/H is not finite). For any θ̌ ∈ V ∩ Λ̌X , the point x0 · tθ̌ ∈ X•(F ) ⊂ X(F )
defines an o-point of X by the valuative criterion of properness. In particular, we can take the

limit as t→ 0 to get a point xθ̌ := limt→0 x0 · tθ̌ ∈ X(k). Let Z ⊂ X denote the G-orbit of xθ̌.
Let ∆X denote the set of normalized spherical roots of X. Equivalently, ∆X is the set of

simple coroots of ǦX . Let I ⊂ ∆X denote the set of spherical roots σ such that ⟨σ, θ̌⟩ = 0. In
the language of [SV17, §2.3.6], the orbit Z “belongs to I-infinity”. Let X•I = HI\G denote the

open G-orbit on the normal bundle NZX of Z in X; this is called a boundary degeneration of
X. As the notation suggests, X•I and the conjugacy class of HI depend only on the subset I and

not θ̌ (see [SV17, Proposition 2.5.3]). We call HI a “satellite” of H, following the terminology
of [BM20].

Lemma 2.3.12. Assume that B acts simply transitively on X◦. Then the satellite subgroup
HI ⊂ G is connected and smooth, for any subset I ⊂ ∆X .

Proof. We have X◦ ∼= X◦I
∼= B. Let H0

I denote the reduced identity component of HJ . Then
H0
I \G → HI\G is a finite covering of spherical varieties sending the open B-orbit of H0

I \G to
X◦I . Since B acts on X◦I

∼= X◦ with trivial stabilizer, the covering must be an isomorphism. □

Corollary 2.3.13. Assume that B acts simply transitively on X◦. Let θ̌ ∈ V ∩ Λ̌X . Then the

stabilizer of the group ind-scheme LH acting on tθ̌ ∈ GrG is a connected scheme.

Proof. The cocharacter −θ̌ ∈ (−V) extends to a map A1 → TX,ss. Let X := X ×TX,ss,−θ̌ A
1.

Then X → A1 is an affine family with preimage over Gm isomorphic to X × Gm. By [SV17,
Proposition 2.5.3], the open G-orbit of the fiber over 0 is isomorphic to X•I . Let X

• denote the
union of the open G-orbits on each fiber, so X• is a family over A1 degenerating X• to X•I .

The map iθ̌ from (2.3) factors through an embedding

ĩθ̌ : LX ↪→ LX ×
LA1

pt

where pt→ LA1 corresponds to t ∈ k((t)). Lemma 2.3.9 implies that γ := ĩθ̌(x0t
θ̌) ∈ L+(X•).

Observe that StabLH(tθ̌,GrG) = LH ∩ tθ̌(L+G)t−θ̌ conjugates to

t−θ̌(LH)tθ̌ ∩ L+G = StabL+G(x0 · tθ̌, LX) = StabL+G(γ, L
+(X•)).

Let J ⊂ G × X• denote the inertia group scheme consisting of all (g, x) ∈ G × X• such that
gx = x. The fibers of J → X• are all conjugate to either H or HI . Since X• is smooth over
A1 (cf. [GN10, Corollary 5.2.3]), we have H and HI are of the same dimension, and they are
smooth by Lemma 2.3.12. Thus J→ X• is a smooth morphism.

Consider γ as an arc Spec k[[t]] → X•. For n ∈ N, let γn : Dn := Spec(k[t]/tn) → X• denote
the corresponding n-jet and Jn := J×X•,γn Dn the fiber product, which is a smooth group
scheme over Dn. Then

StabL+G(γ, L
+(X•)) ∼= lim←−

n

Sect(Dn, Jn)

where Sect(Dn, Jn) is the scheme of maps Dn → Jn over Dn. By smoothness of J → X•,
the transition maps Sect(Dm, Jm) → Sect(Dn, Jn) are surjective for m > n. The transition
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maps are also group homomorphisms with unipotent kernels, so they have contractible fibers.
Therefore StabL+G(γ, L

+(X•)) contracts to Sect(D0, J0) = StabG(γ(0), X
•
I ), which is conjugate

to the subgroup HI . Since HI is connected by Lemma 2.3.12, we are done. □

3. Models for the arc space

In this section we define two models (in the sense of Grinberg–Kazhdan) for the arc space
of X, both of which were already introduced in [GN10] and go back to ideas of Drinfeld. We
call these the global and Zastava models (the term ‘global’ refers to the fact that the model
depends on the curve C). The global model MX is crucial because it allows us to model the
G(o)-orbits of X(o), something which cannot be done directly via the Zastava model. On the
other hand, the Zastava model YX is more suitable for finite type calculations.

Various incarnations of these constructions have been used in [FM99, FFKM99, BG02,
BFGM02, BFG06, ABB+05]. To place our work in this context, we remark that when X =

N\G
aff

we have MX = BunN is Drinfeld’s compactification of BunN and YX is “the” Zastava
space of [FM99].

While Gaitsgory–Nadler define the global and Zastava models for any affine X, in order to
avoid various technical difficulties they faced (such as the existence of twisted strata, which are
related to the existence of disconnected stabilizer subgroups) we make the following simplifying
assumption:

Starting from §3.3, we assume for the rest of the paper that B acts simply transitively on X◦.
If ǦX = Ǧ and X has no spherical roots of type N , then the assumption above always holds.

Remark 3.0.1. The assumption that B acts simply transitively on X◦ implies that H must be
connected, by Lemma 2.3.12.

3.1. Global model. Gaitsgory–Nadler [GN10] define certain stacks of meromorphic quasimaps
from C ‧‧➡ X/G to model X•(F ), the loop space of X•. Our global model MX is the substack
consisting of those quasimaps that extend to regular maps9 C → X/G.

3.1.1. Definition. Define the stack

MX := Mapsgen(C,X/G ⊃ X•/G)

to be the open substack of Maps(C,X/G) representing maps generically landing in X•/G =
(H\G)/G = H\pt.

An S-point of MX is a map f : C × S → X/G, which is equivalent to the datum (PG, σ)
where

• PG is a G-bundle on C × S and
• σ : C × S → X ×G PG is a section over C × S such that
• σ|Spec k(C)×S lands in X•×G PG = H\PG and gives PG|Spec k(C)×S the structure of
an H-bundle.

We call the preimage σ−1(X•×G PG) ⊂ C ×S the locus of G-nondegenerate points.

Proposition 3.1.2. The natural map MX → BunG is schematic locally of finite type. In
particular, MX is an algebraic stack locally of finite type over k.

9In the literature, when X = N\G regular maps C → N\G are still referred to as quasimaps to N\G.
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Proof. SinceMX is an open substack of Maps(C,X/G), it suffices to show the latter is schematic
locally of finite type over BunG. Let S → BunG correspond to a G-bundle PG on C ×S. Then
the fiber product S ×

BunG

Maps(C,X/G) is isomorphic to the space of sections C ×S → X×GPG

over C ×S. This space is representable by a k-scheme locally of finite type ([FGI+05, Theorem
5.23]). □

If X = H\G is homogeneous, then MX = Maps(C,H\pt) = BunH .

3.1.3. Adelic description. For motivational purposes, we give an “adelic” description of the k-
points of MX . Let A denote the restricted product

∏︁′
v∈|C| Fv and O =

∏︁
v∈|C| ov. (If k = Fq

then A is the ring of adeles of the function field k = k(C).)
The underlying set of meromorphic quasimaps C ‧‧➡ X/G can be identified with the set

X•(k)
G(k)
× G(A)/G(O) = H(k)\G(A)/G(O).

Note that the G-action on X induces a map

X•(k)
G(k)
× G(A)/G(O)→ X•(A)/G(O) ⊂ X(A)/G(O).

The underlying set of MX(k) identifies with the preimage of (X•(A) ∩X(O))/G(O) under the
map above.

Note that the topologies on X•(A) vs. X(A) are different: the fact that the geometric
constructions above depend on X can be expressed by saying that we are always using the
topology of X(A), not of X•(A).

3.1.4. For any set S, define the set of unordered multisets in S to be the formal direct sum

Sym∞(S) :=
⨁︂
λ̌∈S

N[λ̌].

An element of Sym∞(S) is a formal sum P =
∑︁
λ̌∈SNλ̌[λ̌] where Nλ̌ ≥ 0 are integers and only

finitely many are nonzero. For a multiset P, define

C̊P =
∏̊︂

λ̌∈S
C̊(Nλ̌)

to be the open subscheme of CP :=
∏︁
C(Nλ̌) with all diagonals removed, i.e., the subscheme of

multiplicity free divisors. We write P = 0 for the zero element, and we will use the convention
C̊0 = C0 = pt. If we define |P| =

∑︁
Nλ̌, then there are natural maps C |P| → CP → C(|P|) ⊂

SymC.
Now consider the case when S = M − 0 for a commutative monoid M. Then Sym∞(M − 0)

identifies with the set of partitions of arbitrary elements inM. Given a partitionP ∈ Sym∞(M−
0) as above, we define deg : Sym∞(M− 0)→ M by

deg(P) :=
∑︂

λ̌∈M−0

Nλ̌λ̌

with addition taking place in M. There is a natural order on the set Sym∞(M−0): we say that
P refines P′ if the difference P−P′ viewed as an element of

⨁︁
λ̌∈M−0 Z[λ̌] can be written as a

sum of elements of the form [λ̌′] + [λ̌′′]− [λ̌] with λ̌′ + λ̌′′ = λ̌ in M.
Let Prim(M) be the set of primitive elements of M, i.e., the elements λ̌ ∈ M− 0 that cannot

be decomposed as a sum λ̌ = λ̌1+ λ̌2 where λ̌1, λ̌2 ∈ M−0. Then any partition in Sym∞(M−0)
can be refined to an element in Sym∞(Prim(M)).
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3.1.5. Stratification of MX . We would like to stratify MX according to G(ov)-orbits of X(ov)∩
X•(Fv) at each v ∈ |C|, described in Theorem 2.3.5.

Consider the set Sym∞(c−X − 0) of partitions in c−X , as defined in §3.1.4. Let

Θ̌ =
∑︂

θ̌∈c−X−0

Nθ̌[θ̌]

denote such a partition. We will write Θ̌ = 0 for the empty partition and Θ̌ = [θ̌] for the
singleton partition corresponding to a single element θ̌.

In §A.3, we define locally closed substacks MΘ̌
X of MX ranging over all partitions Θ̌ in c−X . For

simplicity we only describe MΘ̌
X on k-points below: Such a point consists of a map f : C → X/G

and a formal sum
∑︁
v∈|C| θ̌v · v satisfying the following conditions:

• θ̌v ̸= 0 for finitely many v ∈ |C|,
• for a fixed θ̌ ̸= 0, the cardinality of {v ∈ |C| | θ̌v = θ̌} equals Nθ̌,
• for each v ∈ |C| the restriction f |Spec ov

: Spec ov → X/G defines a point in Lθ̌vX/L+G.

Lemma 3.1.6. The substack MΘ̌
X is smooth and locally closed in MX .

We defer the proof of Lemma 3.1.6 to §A.3 of the appendix.

Proposition 3.1.7. Assume k = C. Let S denote the collection of connected components of

MΘ̌
X , ranging over all Θ̌ ∈ Sym∞(c−X − 0). Then S is a Whitney10 stratification of MX .

By a stratification we mean a collection of locally closed substacks that form a disjoint union
on k-points and such that the closure of any stratum is a union of strata. The stratification is
Whitney if the strata are smooth and every pair of strata satisfies Whitney’s condition B. (This
only makes sense if the characteristic of k is zero; in positive characteristic, see §3.1.9 below.)

The proof of Proposition 3.1.7 is given in §A.4.8. We call this the fine stratification of MX .

The open stratum M0
X = Maps(C,H\G/G) identifies with BunH . We abbreviate Mθ̌

X := M
[θ̌]
X .

Remark 3.1.8. If X is affine and homogeneous, then C0(X) ∩ V = 0 so the stratification is
trivial, consisting of the single smooth stratum MX itself.

3.1.9. Let DbS(MX ,Qℓ) denote the subcategory of bounded S-constructible complexes, i.e., the
usual cohomology sheaf Hi(F)|S is a local system of finite rank for all i ∈ Z and S ∈ S. As
explained in [BBDG18], the category DbS(MX) has a perverse t-structure. Let PS(MX) denote
the heart of this t-structure, i.e., this is the abelian subcategory of all perverse sheaves that are
S-constructible.

In particular, the IC complex of the closure of any stratum MΘ̌
X is an object of PS(MX).

When k has positive characteristic, this is the condition on S that we need (in place of the
Whitney condition). Proposition A.4.11 shows that this condition indeed holds in positive
characteristic.

3.2. Toric case. If we apply the definitions above to the special case where G is replaced by
the torus TX and X is replaced by the toric variety X//N , we obtain the space

(3.1) A = Mapsgen(C, (X//N)/TX ⊃ pt)

of maps generically landing in TX/TX = pt.

10We say that a stratification on an algebraic stack M locally of finite type is Whitney if the stratification is
Whitney after pullback along any (equivalently all) smooth cover of M by a scheme.
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The stack A has been previously studied in [BNS16, §3] as a model for the formal arc space
of the toric variety X//N (in particular, A turns out to be representable by a scheme). We
review the relevant properties below.

For any N ∈ N, we have the Nth symmetric product C(N) of C, which identifies with the
Hilbert scheme HilbN (C) parametrizing relative effective divisors in C of degree N . Let SymC
denote the disjoint union

⨆︁
N∈N C

(N) (where C(0) = pt).

Example 3.2.1. Observe that Mapsgen(C,A1/Gm ⊃ pt) sends a test scheme S to the set of

relative effective Cartier divisors on C × S, i.e., Mapsgen(C,A1/Gm ⊃ pt) ∼= SymC. Addition
of divisors gives SymC the structure of a monoid.

Let c∨X = Hom(cX ,N) denote the monoid dual to cX , so k[X//N ] is the semigroup algebra of
c∨X . Then there is an isomorphism

A ∼= Hom(c∨X ,SymC)

where the right hand side represents homomorphisms of monoid objects in the category of
schemes (with c∨X viewed as a discrete scheme). A k-point of A is a formal finite sum∑︂

v∈|C|

λ̌v · v

where λ̌v is an element of the dual monoid cX and λ̌v = 0 for all but finitely many v.

3.2.2. The stratification described in §3.1.5 takes here the following form: For any P ∈
Sym∞(cX − 0) there is a natural map

C̊P ↪→ A,

where the image consists of the k-points
∑︁
v∈|C| λ̌v · v such that the unordered multiset of

nonzero λ̌v, counted with multiplicities, coincides with P.

Proposition 3.2.3 ([BNS16, Proposition 3.5]).

(i) The maps C̊P ↪→ A are locally closed embeddings, and the collection of such embeddings
over all P ∈ Sym∞(cX − 0) forms a stratification of A.

(ii) C̊P′ lies in the closure of C̊P if and only if P refines P′.

(iii) The irreducible components of A are in bijection with the closures of C̊P for P ∈
Sym∞(Prim(cX)).

Corollary 3.2.4 ([BNS16, Corollary 3.6]). For λ̌ ∈ cX , let

Aλ̌ ⊂ A

denote the subscheme whose k-points consist of all
∑︁
v∈|C| λ̌v · v such that

∑︁
v λ̌v = λ̌. Then

Aλ̌ is a connected component of A, and this gives a bijection

π0(A) ∼= cX .

Remark 3.2.5. If cX is a free monoid with basis {ν̌i}, then for λ̌ =
∑︁
iNiν̌i we have Aλ̌ =∏︁

i C
(Ni). The bases for the Zastava spaces in [BFGM02, §2.1] take this form.
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3.3. Zastava model. For the rest of this paper we assume that B acts simply transitively on
X◦. This implies that TX = T and ΛX = ΛG, so we will use the notation interchangeably.

We introduce a special case of the model used in [GN10, Part III], which is based on a
general pattern pointed out by Drinfeld (see [Dri18, §4.2–4.4]). These are a generalization of
the Zastava11 spaces introduced by Finkelberg–Mirković in [FM99, FFKM99, BFGM02], and
we will henceforth call them the Zastava model for X.

The Zastava model for X is defined as

(3.2) Y = YX = Mapsgen(C,X/B ⊃ pt),

the stack of maps C × S → X/B generically landing in X◦/B = pt.
Applying Maps(C, ?/T ) to the natural map X/N → X//N induces a map

(3.3) π : Y→ A.

For λ̌ ∈ cX , let Yλ̌ denote the preimage of Aλ̌ under π.
We show in Proposition 3.7.2 below that Y is representable by a scheme locally of finite type

over k. This was predicted by Drinfeld [Dri18, Conjecture 4.2.3] in a more general setting.

Example 3.3.1. Let X = Gm\GL2 where Gm is embedded as ( 1 ∗ ). Then ǦX = Ǧ = GL2

and Λ̌X = Λ̌G = Z2 with standard basis ε̌1, ε̌2. The B-orbits on X are the same as Gm-orbits
on G/B = P1, so there are three orbits: Gm, {0}, {∞}. These correspond to X◦ and two colors
D+, D− ⊂ X, respectively. We have ν̌D+ = ε̌1, ν̌D− = −ε̌2 and cX = N2 is the free monoid
generated by ν̌D+ , ν̌D− . Note that ν̌D+ + ν̌D− = α̌ is the simple coroot.

Since X is affine homogeneous, MX = BunH = Bun1 is the moduli stack of line bundles.
The Zastava model is Y = Mapsgen(C,Gm\GL2/B ⊃ pt) = Mapsgen(C,Gm\P1 ⊃ pt). This is
the stack parametrizing two line bundles L,L′ on C and a fiberwise injective map of vector
bundles σ : L ↪→ OC ⊕ L′ such that both coordinates σ1 : L ↪→ OC and σ2 : L ↪→ L′

are generically nonzero. Thus, σ1, σ2 are equivalent to two effective Cartier divisors D1, D2

which give L = O(−D1) and L′ = O(D2 − D1). The condition that σ = (σ1, σ2) is fiberwise
injective is equivalent to saying that the supports of D1, D2 are disjoint. Therefore, we have an
identification

YGm\GL2
= SymC×̊SymC =

⨆︂
(n1,n2)∈N2

C(n1)×̊C(n2).

Meanwhile AGm\GL2
= SymC ×SymC =

⨆︁
N2 C(n1)×C(n2). In this case Y→ A is the natural

open embedding, and Yn1ν̌D++n2ν̌D− = C(n1)×̊C(n2) is connected. The map Y→MX forgetting
the B-structure corresponds to (D1, D2) ↦→ O(D2 −D1).

Note that for the embedding above of Gm ↪→ GL2, the open B-orbit is the orbit of ( 1 0
1 1 ) ∈

Gm\GL2. In particular X◦ does not contain the identity coset. If we conjugate Gm to the
embedding

(︁
1 0

1−a a
)︁
, then we may take the base point x0 = 1.

Example 3.3.2. In the example above we could instead replace GL2 by G = PGL2 and
H = Gm becomes the split torus inside PGL2. Then we still have X = Gm\PGL2 affine
spherical with ǦX = Ǧ = SL2 and two colors D+, D−. However now Λ̌X = Λ̌G = Z α̌

2 and

ν̌D+ = ν̌D− = α̌
2 . The space YGm\PGL2

still identifies with SymC×̊SymC. However now

AGm\PGL2
= SymC with An

α̌
2 = C(n). Then Y

n α̌
2

Gm\PGL2
=
⨆︁
n1+n2=n

C(n1)×̊C(n2) and the map

Y→ A corresponds to addition of divisors.

11“Zastava” is Croatian for “flag”.
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Note that MX = Bun1 and C(n1)×̊C(n2) maps to the component Bunn2−n1
1 of degree n2 −

n1 line bundles. Thus, while Yn
α̌
2 is not connected, fixing a connected component of Bun1

determines the connected component of Yn
α̌
2 .

3.4. Graded factorization property. Note that our assumption on X◦ implies that X◦/B =
pt is a dense open substack of X/B. In the language of [Dri18, §4.2.1], the stack X/B is pointy.
Drinfeld observed that maps from a curve to a pointy stack will have local behavior with respect
to C (compared to [Dri18], we are in the special setting where we have a group B acting on X,
not just a groupoid).

Let λ̌ = λ̌1 + λ̌2 with λ̌i ∈ cX and let us denote by Aλ̌1×̊Aλ̌2 the open subset of the direct

product Aλ̌1 ×Aλ̌2 consisting of α1, α2 : C → (X//N)/T such that the supports of C −α−11 (pt)

and C − α−12 (pt) are disjoint. We have a natural étale map Aλ̌1×̊Aλ̌2 → Aλ̌.

Proposition 3.4.1. The scheme Y has the graded factorization property, in the sense that there
is a natural isomorphism

Yλ̌ ×
Aλ̌

(Aλ̌1×̊Aλ̌2) ∼= (Yλ̌1 × Yλ̌2)|
Aλ̌1 ×̊Aλ̌2

.

Proof. Let y1, y2 : C×S → X/B be S-points of Yλ̌1 ,Yλ̌2 , respectively. Let Ui = y−1i (pt) ⊂ C×S;
the condition that (π(y1), π(y2)) ∈ Aλ̌1×̊Aλ̌2 is equivalent to requiring that U1 ∪ U2 = C × S.
Then y1|U1∩U2

∼= y2|U1∩U2
: U1 ∩ U2 → pt provides a gluing data for y1, y2 on the covering of

C×S by U1 and U2. Since X/B is a stack, the gluing data descends to a map y : C×S → X/B

that sends U1 ∩ U2 to pt. This defines y ∈ Yλ̌(S). The map in the opposite direction is
constructed in the same way and they are mutually inverse. □

We will henceforth use the notation Yλ̌1×̊Yλ̌2 to denote (Yλ̌1 × Yλ̌2)|
Aλ̌1 ×̊Aλ̌2

.

3.5. Global-to-Zastava yoga. We have a map Y→MX by forgetting the B-structure. More
precisely, we have an open embedding

(3.4) Y ↪→MX ×
BunG

BunB .

Although the natural map BunB → BunG is in general not smooth, it is smooth over a large
enough open substack: consider T as the Levi quotient of B−. Let n− denote the Lie algebra
of N− viewed as a T -module. Define the open substack BunrT ⊂ BunT to consist of those T -
bundles PT for which H1(C, V ×T PT ) = 0, for all T -modules V which appear as subquotients
of n−. Let BunrB be the preimage of BunrT under the natural projection BunB → BunT .

For µ̌ ∈ Λ̌T , let Bun
µ̌
T denote the corresponding connected component of BunT of degree µ̌,

and let Bunµ̌B (resp. Bunµ̌,rB ) be its preimage in BunB (resp. BunrB). Note that by Riemann–

Roch, Bun−µ̌,rB = Bun−µ̌B if ⟨αi, µ̌⟩ > 2g − 2 for all simple roots αi, where g is the genus of C.
We say that µ̌ is “large enough” if ⟨αi, µ̌⟩ > N for all simple roots αi and some N ≫ 0.

Lemma 3.5.1 ([DS95], [BFGM02, Lemma 3.7], [GN10, Lemma 14.2.1]). The restriction of
the map BunB → BunG to BunrB is smooth. Any open substack U ⊂ BunG of finite type is

contained in the image of Bun−µ̌B for µ̌ large enough, and the fibers of Bun−µ̌B → BunG over U
are geometrically connected.

Under our conventions, the composition Yλ̌ → BunB → BunT lands in the connected com-

ponent Bun−λ̌T .

Corollary 3.5.2. (i) The map Yµ̌ →MX is smooth with geometrically connected fibers (when
nonempty) for µ̌ large enough.

(ii) Any k-point of MX lies in the image of Yµ̌ for all µ̌ in a translate of Λ̌pos
G .



INTERSECTION COMPLEXES AND UNRAMIFIED L-FACTORS 31

Proof. We have an open embedding Yµ̌ ↪→MX ×BunG
Bun−µ̌B , so (i) follows from Lemma 3.5.1

by base change. To show (ii), we consider the fiber of Y→MX on k-points:
A point in MX(k) is equivalent to a datum (PG, σ : C → X ×G PG). First we show that

there exists some point in Y(k) that maps to f . By [Ste65], there exists an open subscheme
U ⊂ C on which PG|U can be trivialized. If we fix such a trivialization, then σ|U identifies
with a section U → H\G. Since H\G is spherical, σ(U) intersects the open orbit of a Borel
subgroup gBg−1 ⊂ G for some g ∈ G(k). Then g defines a point in (G/B)(k) ⊂ (G/B)(k),
where k = k(C). Using our fixed trivialization of PG|U , we get a section

Speck g→ Speck×G/B ∼= P0
G|Spec k

G
×(G/B) ∼= PG|Spec k

G
×G/B,

which extends to a section C → PG×GG/B since G/B is proper. The latter is equivalent to
giving a B-structure PB on PG. By construction (PB , σ) satisfies the generic condition for it
to lie in Y(k), and (PB , σ) maps to (PG, σ) ∈MX(k).

Next let us fix an arbitrary lift of (PG, σ) to (P1
B , σ) ∈ Y(k). Fix a trivialization of P1

B |Spec k,
which also specifies a trivialization PG|Spec k ∼= P0

G|Spec k. With respect to this trivialization, we
have a bijection of sets

(3.5) H(k)B(k)/B(k) ∼→ {lift of (PG, σ) to a point in Y(k)}

where the map is given by sending h ∈ H(k)B(k)/B(k) ⊂ (G/B)(k) to the section

Speck h→ Speck×G/B ∼= P0
G|Spec k

G
×(G/B) ∼= PG|Spec k

G
×G/B

and uniquely extending to a section C → PG×GG/B. The point B ∈ (G/B)(k) is sent under
(3.5) to the lift (P1

B , σ).
We are concerned with the possible degrees of PB for lifts (PB , σ) ∈ Y(k) above (PG, σ). For

a simple root α of G, let Pα denote the corresponding minimal parabolic in G. The image of
H ∩ Pα in Pα/R(Pα) = PGL2 must contain a subgroup conjugate to ( ∗ 0

0 ∗ ) or (
1 ∗
0 1 ). Thus we

can choose an identification Pα/B ∼= P1 such that the image of (H ∩ Pα)(k) in P1(k) contains
k× = k(C)×. For f ∈ (H ∩ Pα)(k), let f̄ denote its image in (Pα/B)(k) ∼= P1(k). For such
a function f , let (PB , σ) denote the corresponding lift of (PG, σ) under the bijection (3.5). If
f̄ ∈ k(C)×, then PB is of degree −(µ̌1 + Nα̌), where −µ̌1 is the degree of P1

B and N is the
degree of the divisor of zeros of f̄ .

By the Riemann–Roch theorem, we have a rational function f̄ ∈ k(C)× with divisor of zeros
of degree N for any N ≫ 0. Therefore for any N ≫ 0, there is a lift PB of degree −(µ̌1 +Nα̌).
We conclude that there exists a lift (PB , σ) ∈ Yµ̌(k) for any µ̌ in a certain translate of Λ̌pos

G . □

3.5.3. It is not in general true that the natural map Yλ̌ → MX is smooth for arbitrary λ̌.
However, the following well-known argument (cf. [GN10, Theorem 16.2.1]) shows that any

neighborhood of a point in Yλ̌ is smooth locally isomorphic to a neighborhood of a point in
MX :

Let λ̌ ∈ cX be arbitrary. Since Λ̌pos
G ⊂ cX , we can always find µ̌ ∈ Λ̌pos

G large enough such

that λ̌+ µ̌ is also large enough. Let Yµ̌,0 denote the preimage of M0
X = BunH under the smooth

map Yµ̌ →MX . Then Yµ̌,0 is smooth and the first projection

Yλ̌ × Yµ̌,0 → Yλ̌

is smooth. On the other hand, by the graded factorization property (Proposition 3.4.1), there
is a natural étale map

Yλ̌×̊Yµ̌,0 → Yλ̌+µ̌.
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We can compose this with the smooth map Yλ̌+µ̌ →MX to get a smooth map Yλ̌×̊Yµ̌,0 →MX .
To summarize, we have constructed:

Lemma 3.5.4. For any λ̌ ∈ cX and any µ̌ ∈ Λ̌pos
G large enough, there is a correspondence

Yλ̌ ← Yλ̌×̊Yµ̌,0 →MX

where the left arrow is smooth surjective, and the right arrow is smooth.

3.6. Stratification of the Zastava model. We stratify Yλ̌ according to the fine stratification
of MX : for a partition Θ̌ ∈ Sym∞(c−X − 0) and λ̌ ∈ cX , define the stratum

Yλ̌,Θ̌ := Yλ̌ ×
MX

MΘ̌
X .

Abbreviate Yλ̌,θ̌ := Yλ̌,[θ̌].

Proposition 3.6.1. The stratum Yλ̌,Θ̌ is a smooth locally closed subscheme of Yλ̌.

Proof. By Lemma 3.5.4, there exists µ̌ ∈ Λ̌X such that there is a smooth correspondence

Yλ̌ ← Yλ̌×̊Yµ̌,0 →MX

where the left arrow is surjective. Note that by definition of MΘ̌
X , the preimage of MΘ̌

X in

Yλ̌×̊Yµ̌,0 is isomorphic to Yλ̌,Θ̌×̊Yµ̌,0 since Yµ̌,0 consists of maps C → X•/B which can only
define points in L0X/L+G upon restriction to ov for any v ∈ |C|. Therefore, we get a smooth
correspondence

(3.6) Yλ̌,Θ̌ ← Yλ̌,Θ̌×̊Yµ̌,0 →MΘ̌
X

where the left arrow is still surjective. Now smoothness of Yλ̌,Θ̌ follows from smoothness of MΘ̌
X

(Lemma 3.1.6). □

We call the collection of connected components of Yλ̌,Θ̌ the fine stratification of Yλ̌. By the
smooth correspondence (3.6) above and Proposition 3.1.7, this is a Whitney stratification (in
fact the Zastava model is used in the proof of loc cit.).

Note that for a fixed λ̌, many of the Yλ̌,Θ̌ are empty.

3.7. Relation to the affine Grassmannian. Let GrG,SymC → SymC denote the following
version of the Beilinson–Drinfeld affine Grassmannian: an S-point consists of a relative effec-
tive Cartier divisor D ⊂ C × S and a G-bundle PG on C × S together with a trivialization
PG|C×S−D ∼= P0

G|C×S−D where P0
G is the trivialG-bundle. For any linear algebraic groupG, the

functor GrG,SymC is representable by an ind-scheme, ind-of finite type over SymC (cf. [BD96],
[Zhu17, Theorem 3.1.3]).

In particular, we can consider the ind-scheme GrB,SymC . Let GrB,C(N) denote the preimage

over C(N).

3.7.1. Choose some δ ∈ ΛX that lies on the interior of the cone dual to C0(X), so ⟨δ, λ̌⟩ > 0
for any nonzero λ̌ ∈ C0(X). Let fδ ∈ k[X](B) denote the corresponding δ-eigenfunction. Then

fδ induces a map X//N → A1, which in turn induces a map A→ SymC sending Aλ̌ → C(⟨δ,λ̌⟩).
We can map12

(3.7) Yλ̌ → GrB,C(⟨δ,λ̌⟩)

12The effective Cartier divisor cut out by fδ has the property that the complement of its support in X equals
X◦. In this guise, the map Y → SymC we have constructed coincides with the one described in [Dri18, Remark

4.2.6].
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as follows: let y : C × S → X/B be an S-point of Y. Let D ⊂ C × S be the relative effective
divisor corresponding to the image of π(y) ∈ A(S) under the map A → SymC. Since δ was
chosen in the interior of the dual cone of C0(X), we have C × S − D = y−1(pt) =: U . Thus,
y defines a B-bundle PB on C ×S together with a section U → X◦×B PB ∼= PB , i.e., a
trivialization of PB |U . The datum (D,PB ,PB |U ∼= P0

B |U ) defines an S-point of GrB,SymC .

Proposition 3.7.2. The map (3.7) is a closed embedding. Moreover, the stack Y is repre-

sentable by a scheme locally of finite type over k, and for fixed λ̌ ∈ cX , the scheme Yλ̌ is of
finite type over k. Consequently, the map π : Y→ A is schematic of finite type.

Proof. First we show that (3.7) is a closed embedding. Fix a map S → GrB,SymC corresponding
to a pair (D,PB) and a trivialization of PB away from D. A trivialization of PB on C ×S −D
is equivalent to a section σ0 : C × S −D → PB ∼= X◦×B PB . The fiber of Y→ GrB,SymC over
S parametrizes commutative diagrams

C × S′ −D′ X◦
B
× PB

C × S′ X
B
× PB

σ0

σ

where S′ is an S-scheme, D′ := D ×S S′, and σ is a section over C × S. Observe that σ is
uniquely determined by σ0. By Lemma 3.7.3 below, the condition that σ0 extends to σ is closed
in S.

We have shown that Y is representable by an ind-scheme ind-closed in GrB,SymC . On the
other hand, we have a map Y → BunB whose fiber over an S-point PB ∈ BunB(S) is open in
the space of sections C × S → X ×B PB over C × S. This space is representable by a scheme
locally of finite type over k ([FGI+05, Theorem 5.23]). Since BunB is an algebraic stack, we
conclude that Y is an algebraic stack representable by an ind-scheme. Hence Y is representable

by a scheme. For fixed λ̌ ∈ cX , we now know that Yλ̌ is a closed subscheme of GrB,C(⟨δ,λ̌⟩) ,

which is ind-of finite type. It follows that Yλ̌ is of finite type over k. The other assertions all
follow. □

Lemma 3.7.3. Let S be a test scheme and D ⊂ C ×S a relative effective divisor. Let X

be a scheme affine of finite presentation over C ×S. Suppose that there exists a section σ :
C ×S −D → X over C ×S. Then the functor sending S′ to the set of maps S′ → S such that
σ extends to a regular map on C ×S′ is representable by a closed subscheme of S.

Proof. The map σ is equivalent to a map of OC×S-algebras OX → OC×S−D. Given S′ → S, the
condition that σ extends to C ×S′ is equivalent to requiring the image of OX → OC×S−D to land
in OC×S′ ⊂ OC×S′−D′ after base change to S

′, where D′ := D×S S′. The claim is local in S, so
we may assume that OX is surjected onto by SymOC×S

(E∨) for some vector bundle E on C ×S.
Then we just need the composed OC×S-linear map E∨ → OC×S−D → OC×S−D/OC×S to vanish
after base change to S′. Since E∨ is coherent, the image of this map is contained in a submodule
F = O(m ·D)/OC×S for some integer m ≥ 0. The projections p : C × S → S, p′ : C × S′ → S′

are proper, and we are considering when an element in H0p′∗(E ⊗OC×S
F ⊗OS

OS′) vanishes.
Note that p∗(E⊗OC×S

F) is finite locally free as an OS-module. By cohomology and base change
we are reduced to asking when an element of p∗(E⊗O F) vanishes after base change to S′. This
is a closed condition on S. □
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Remark 3.7.4 (Open curves). The graded factorization property of Yλ̌ implies that the geometry

of Yλ̌ is purely local with respect to the curve C. Therefore, we could define

Y(C) = Mapsgen(C,X/B ⊃ pt)

for any smooth curve C (not necessarily projective), and all the same properties would still
hold. For example, in [FM99], [Dri18], the affine curve C = A1 is used.

3.7.5. Beauville–Laszlo’s theorem. Let S be an affine scheme and D a closed affine subscheme
of C × S. Denote by ˆ︁CD the formal completion of C × S along D and by ˆ︁C ′D the spectrum

of the ring of regular functions on ˆ︁CD (so ˆ︁CD is an ind-affine formal scheme and ˆ︁C ′D is the

corresponding true scheme). Let ˆ︁C◦D := ˆ︁C ′D −D denote the open subscheme.

There are maps p̂ : ˆ︁CD → C × S and i : ˆ︁CD → ˆ︁C ′D. We will implicitly use the following fact
in what follows:

Proposition 3.7.6 ([BD96, Proposition 2.12.6]). There exists a unique map p : ˆ︁C ′D → C × S
such that p̂ = p ◦ i.

To justify that Y is of local nature, we record the following consequence of the globalized
version of Beauville–Laszlo’s theorem (cf. [BD96, Theorem 2.12.1], [BL95]). Let S be an affine
scheme and D ⊂ C × S a relative effective divisor. Proposition 3.7.6 implies that there exists

a map p : ˆ︁C ′D → C × S.

Lemma 3.7.7. Let X be any affine scheme with an action of an algebraic group B such that
X/B is pointy, i.e., X has an open B-orbit X◦ with X◦/B = pt. Let C, S and D be as above.

Then there is a natural equivalence between the following categories:

(i) the groupoid of (PB , σ) where PB is a B-bundle on C × S and a section σ : C × S →
X ×B PB that sends C × S −D to X◦ ×B PB,

(ii) the groupoid of (P̂B , σ̂) where P̂B is a B-bundle on ˆ︁C ′D and a section σ̂ : ˆ︁C ′D → X×B P̂B
that sends ˆ︁C◦D to X◦ ×B P̂B.

Proof. The functor from (i) to (ii) is just pullback along p. To define the functor from (ii)

to (i) we descend along the covering ˆ︁C ′D ⊔ (C × S − D) → C × S. The justification for
this is Beauville–Laszlo’s theorem (cf. [BD96, Theorem 2.12.1]). First, σ̂ induces a sectionˆ︁C◦D → X◦ ×B P̂B ∼= P̂B . Then we can “descend” P̂B to a B-bundle PB on C × S with a
section C × S − D → PB (which is equivalent to a trivialization of PB |C×S−D). The section
σ̂ is equivalent to a map of quasicoherent O ˆ︁C′D -algebras OX×BP̂B

→ O ˆ︁C′D since X is affine.

Again by [BD96, Theorem 2.12.1], this descends to a map of quasicoherent OC×S-algebras
OX×BPB

→ OC×S such that the restriction to C × S − D factors through the trivialization
OX◦×BPB

∼= OPB
→ OC×S−D. By construction, the two functors are mutually inverse. □

3.8. Theorem of Grinberg–Kazhdan, Drinfeld. We now justify why MX and Y are indeed
“models” for the formal arc space L+X. Since MX and Y are smooth-locally isomorphic, it
suffices to explain the latter.

Definition 3.8.1. A finite type formal model of L+X at γ0 ∈ L+X(k) is the formal completionˆ︁Yy of a k-scheme of finite type Y at a point y ∈ Y equipped with an isomorphism of formal
schemes

(3.8) ˆ︁L+Xγ0 ≃ ˆ︁Yy × ˆ︁A∞,
where ˆ︁A∞ is the product of countably many copies of the formal disk Spf k[[t]].
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Since X/B ⊃ pt is a pointy stack, Drinfeld’s proof [Dri18, §4.2-4.3] of the Grinberg–Kazhdan
theorem essentially shows that the scheme Y (which we have shown is a disjoint union of finite
type schemes) explicitly satisfies the following:

Theorem 3.8.2 (Grinberg–Kazhdan, Drinfeld). Fix an arc γ0 : Spec k[[t]]→ X in L+X(k) such
that γ0(Spec k((t))) ⊂ X◦. Then there exists a point y ∈ Y(k) such that the formal completion
of Y at y is a finite type formal model of L+X at γ0.

More precisely, if γ0 belongs to the stratum Lθ̌X, for θ̌ ∈ c−X , we can take y to be the point

tθ̌ in the central fiber Yθ̌,θ̌ over any point v ∈ |C|.

The central fiber Yθ̌ over a point v ∈ |C| is the fiber of Yθ̌ → Aθ̌ over the “diagonal divisor”

θ̌ · v ∈ Aθ̌(k). We define Yθ̌,θ̌ := Yθ̌ ×MX
Mθ̌
X . Then Yθ̌ is naturally a subvariety of GrB (see

§4.3), and tθ̌ denotes the corresponding point in GrB . The significance of this point will become
evident in Corollary 5.5.6(iii).

The statements all follow from the proof of [Dri18, §4]. We also give the same argument,
with some notational changes, in the proof of Theorem 8.2.4.

Remark 3.8.3. The point y : C → X/B can be chosen so that y−1(pt) = C−v for a single point
v ∈ |C|. However it is essential, for the theorem to hold, that Y contains maps with multiple
points of C mapping to (X −X◦)/B.

4. Compactification of the Zastava model

The map π : Y→ A defined in (3.3) is in general not proper, so for example we cannot apply
the decomposition theorem. To rectify this, we introduce a compactification.

4.1. Basic properties. Let G/N = Spec k[G/N ] denote the canonical affine closure of the
quasiaffine variety G/N . For an arbitrary connected reductive group G, Drinfeld’s compactifi-
cation BunB is defined13 as the closure of BunB inside

Mapsgen(C,G\G/N/T ⊃ pt/B),

the stack parametrizing maps C → G\G/N/T that generically land in the open substack
G\(G/N)/T = pt/B. (When [G,G] is simply connected, [BG02, Proposition 1.2.3] show that

BunB is dense in Mapsgen(C,G\G/N/T ⊃ pt/B).)

Consider the stack quotient X ×GG/N := (X × G/N)/G, where G acts anti-diagonally.

Then X/N = X ×GG/N is an open substack of X ×GG/N , so we also have the open substack

pt = X◦/B ⊂ X/B ⊂ X ×GG/N/T . Define

(4.1) Y = (MX ×
BunG

BunB)
◦ ⊂ Mapsgen(C,X

G
×G/N/T ⊃ pt)

where the superscript ◦ denotes the open substack of

MX ×
BunG

BunB ⊂ Mapsgen(C,X
G
×G/N/T ⊃ X•/B)

parametrizing maps generically landing in pt = X◦/B. In particular, Y is an algebraic stack

locally of finite type. We can identify Y ∼= Y×BunB
BunB as an open substack of Y. (If [G,G]

is simply connected, the containment in (4.1) is an equality.)

13The definition as a closure is only true in characteristic 0. In positive characteristic, see [ABB+05, §4.1],
[Sch15, §7.2].
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There is a natural map from X ×GG/N to

(X ×G/N)//G = Spec k[X ×G]G×N .

Since k[X × G]G = k[X], we deduce that (X × G/N)//G = X//N . Therefore, we have a map

X ×GG/N → X//N extending the natural map X/N → X//N . Applying Maps(C, ?/T ) to the
former, we have constructed a map

(4.2) π̄ : Y→ A

extending π : Y → A. Let Y
λ̌
denote the preimage of the subscheme Aλ̌. The same proof

as in Proposition 3.4.1 shows that Y has the graded factorization property. We will see from

Lemma 4.1.2 below that Y
λ̌
is representable by a scheme of finite type over k.

First, we show that π̄ is indeed a compactification:

Proposition 4.1.1. The map π̄ : Y→ A is proper.

We proceed as in §3.7.1. Choose δ ∈ ΛX lying on the interior of the cone dual to C0(X). Then
δ defines a map X//N → A1, which induces a map A→ SymC. This allows us to consider Y as
a scheme over SymC. Proposition 3.7.2 gives a closed embedding Y ↪→ GrB,SymC over SymC.
We compose this with the natural map GrB,SymC → GrG,SymC to get a map Y → GrG,SymC .
We can extend this to a map

(4.3) Y→ GrG,SymC

using the same idea as in the definition of (3.7). Namely, let y : C × S → X ×G G/N/T be

an S-point of Y and let D ⊂ C × S denote the divisor it maps to. In particular, y defines a
G-bundle PG on C×S with a B-reduction on C×S−D. Since y(C×S−D) = X◦/B = pt, the
G-bundle in fact admits a trivialization on C×S−D. The data of D,PG, and the trivialization
defines an S-point of GrG,SymC .

Lemma 4.1.2. The map Y→ GrG,SymC ×
SymC

A is a closed embedding.

Since GrG,SymC is ind-proper over SymC (cf. [Zhu17, Remark 3.1.4]), Proposition 4.1.1

follows from Lemma 4.1.2. We also deduce from the lemma that Y is representable by a scheme,

and each Y
λ̌
is of finite type.

Proof. The discussion above really defines a map

(4.4) Mapsgen(C,X
G
×G/N/T ⊃ pt)→ GrG,SymC ×

SymC
A,

and Y ↪→ Mapsgen(C,X ×GG/N/T ⊃ pt) is a closed embedding. Thus, it suffices to prove that

(4.4) is a closed embedding. Fix a test scheme S. Let P0
G,P

0
B ,P

0
T denote the respective trivial

bundles on C × S. An S-point of GrG,SymC ×SymC A consists of the data

(PG,PT , D, τ, α)

with PG ∈ BunG(S), PT ∈ BunT (S), D ∈ SymC(S), a trivialization τ : P0
G|C×S−D ∼=

PG|C×S−D, and a section α : C × S → (X//N) ×T PT such that (PT , α) ∈ A(S) maps to
D. In particular, this means that α induces a trivialization P0

T |C×S−D ∼= PT |C×S−D. Using
the identification X◦ ∼= B, we get a section

σ0 : C × S −D → P0
B
∼= X◦

B
×P0

B ↪→ X
B
×P0

B = X
G
×P0

G.
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The composition σ := τ ◦σ0 then defines a section C×S−D → X ×G PG. On the other hand,
the trivial B-bundle also corresponds to a section κ0 : C ×S−D → P0

G×G(G/N). Composing
κ0 with the trivialization α : P0

T |C×S−D ∼= PT |C×S−D, we get a section

κ : C × S −D → PG
G
×G/N

T
×PT .

The datum (PG,PT , σ, κ) defines an S-point of Maps(C,X ×GG/N/T ) if and only if σ, κ both
extend to regular maps on C×S. Therefore, the fiber of our chosen S-point over the map (4.4)
parametrizes maps S′ → S such that the base change of σ, κ to S′ both extend to C × S′. By
Lemma 3.7.3, this fiber is represented by a closed subscheme of S (here the key point is that

both X and G/N are affine). □

Remark 4.1.3. We need the extra factor of A in Lemma 4.1.2 which was not present in Propo-
sition 3.7.2 because the map GrB → GrG is a bijection on k-points but far from an isomor-
phism of ind-schemes. Since A embeds into GrT,SymC , the lemma is really embedding Y into
GrG,SymC ×SymC GrT,SymC . The ind-scheme GrT is highly non-reduced, while (GrT )red is a
disjoint union of points.

Example 4.1.4. Let X = Gm\GL2 as in Example 3.3.1. Then Y = SymC ×SymC and Y→ A

is the identity morphism.

4.2. Stratification. We can uniquely write any ν̌ ∈ Λ̌pos
G as a sum ν̌ =

∑︁
α∈∆G

nαα̌ where

∆G is the set of simple coroots and nα are positive integers. Let Cν̌ :=
∏︁

∆G
C(nα) denote the

corresponding partially symmetrized power of C. Recall that Drinfeld’s compactification BunB
of BunB has a stratification by defect, where the strata are given by locally closed embeddings

iν̌ : Cν̌ × Bunµ̌+ν̌B ↪→ Bun
µ̌

B ,

for ν̌ ∈ Λ̌pos
G , µ̌ ∈ Λ̌G, cf. [BFGM02, §1.5, p. 7]. Define the substack ν̌Bun

µ̌

B to be the image

of the corresponding embedding. We obtain an open substack ≤ν̌Bun
µ̌

B ⊂ Bun
µ̌

B by taking the

union of the strata ν̌′Bun
µ̌

B for all ν̌′ ≤ ν̌.
Since Y

λ̌
maps to Bun

−λ̌
B for λ̌ ∈ cX , by base change we have locally closed subschemes

ν̌Y
λ̌
:= Y

λ̌ ×
Bun

−λ̌
B

ν̌Bun
−λ̌
B ↪→ Y

λ̌

and open subschemes ≤ν̌Y
λ̌
↪→ Y

λ̌
defined analogously. Observe that the identification ν̌Bun

−λ̌
B
∼=

Cν̌ × Bunν̌−λ̌B induces an isomorphism

(4.5) ν̌Y
λ̌ ∼= Cν̌ × Yλ̌−ν̌ .

On the other hand, Y
λ̌
also maps to MX , so we get a locally closed subscheme

ν̌Y
λ̌,Θ̌

:= ν̌Y
λ̌ ×
MX

MΘ̌
X ↪→ ν̌Y

λ̌
↪→ Y

λ̌

for Θ̌ any partition in c−X (by Lemma 3.1.6). We deduce from (4.5) that there is an isomorphism

ν̌Y
λ̌,Θ̌ ∼= Cν̌ × Yλ̌−ν̌,Θ̌.

In particular, Proposition 3.6.1 implies that ν̌Y
λ̌,Θ̌

is smooth. In summary:
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Proposition 4.2.1. The collection of locally closed subschemes ν̌Y
λ̌,Θ̌

, ranging over all ν̌ ∈ Λ̌pos
G

and partitions Θ̌ ∈ Sym∞(c−X − 0), forms a smooth stratification of Y
λ̌
.

Note that for fixed λ̌, many of these strata may be empty.

4.2.2. Changing the curve. In this subsection we let C be a smooth curve which is not necessarily
proper and we define

A(C) = Hom(c∨X ,SymC), Y(C) = Mapsgen(C,X/B ⊃ pt)

and Y(C) to be the closure of Y(C) in Mapsgen(C,X ×GG/N/T ⊃ pt) to emphasize the curve
being used. Here Hom denotes homomorphisms of monoid objects in the category of schemes.

Similarly we have Aλ̌(C),Yλ̌(C),Y
λ̌
(C). The local nature of Y(C) (in particular Lemma 4.1.2)

ensures that Y
λ̌
(C) is still a finite type k-scheme.

Let p : ˜︁C → C be an étale map of smooth curves. Let (Sym ˜︁C)disj ⊂ Sym ˜︁C be the open

subset that consists of divisors ˜︁D on ˜︁C such that any fiber of p contains at most one point

of the support of ˜︁D. Let A( ˜︁C)disj denote the open subset of Hom(c∨X ,Sym
˜︁C) consisting of

homomorphisms landing in (Sym ˜︁C)disj. Then pushforward of divisors defines a map Aλ̌( ˜︁C)→
Aλ̌(C).

Proposition 4.2.3 ([BFG06, Proposition 2.19]). For an étale map ˜︁C → C we have a canonical
isomorphism

Y
λ̌
(C) ×

Aλ̌(C)

Aλ̌( ˜︁C)disj ∼= Y
λ̌
( ˜︁C) ×

Aλ̌( ˜︁C)

Aλ̌( ˜︁C)disj
which preserves the fine stratification.

Note that setting ˜︁C = C ⊔ C recovers the graded factorization property.

Proof. Choose δ ∈ c∨X as in §3.7.1. For (y, ã) ∈ Y
λ̌
(C)×Aλ̌(C) A

λ̌( ˜︁C)disj, let ˜︁D (resp. D)

denote the divisor corresponding to δ paired with ã (resp. π(y) ∈ Aλ̌(C)). Then p∗ ˜︁D = D

and we deduce that there is an isomorphism ˆ︁C ′D ∼= ˆ︁˜︁C ′˜︁D. Lemma 3.7.7, applied to the affine

G×T -scheme X ×G/N , implies that the point y ∈ Y
λ̌
(C) is equivalent to its restriction y| ˆ︁C′D .

Applying the same lemma again shows that y| ˆ︁C′D is equivalent to a point ỹ ∈ Y
λ̌
( ˜︁C) such that

ỹ( ˜︁C − ˜︁D) = pt. This defines mutually inverse maps in both directions and the compatibility
with strata is clear. □

Since the diagonal δλ̌ : ˜︁C ↪→ Aλ̌( ˜︁C) sending ṽ ↦→ λ̌ · ṽ is contained in Aλ̌( ˜︁C)disj, we de-

duce from the graded factorization property and Proposition 4.2.3 that Y
λ̌
(C) is étale-locally

isomorphic to Y
λ̌
(A1) for any smooth curve C.

4.3. The central fiber. Let λ̌ ∈ cX . There is a diagonal map δλ̌ : C → Aλ̌ sending v ↦→ λ̌ · v.
For a fixed point v ∈ |C|, let us consider δλ̌v : v → Aλ̌.

Define the central fiber Yλ̌ of Yλ̌ to be the preimage of δλ̌v under π : Yλ̌ → Aλ̌. If we take
central fibers of the map (3.7), Proposition 3.7.2 implies that we have a closed embedding
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Yλ̌ ↪→ GrB . In fact, λ̌ · v can be considered as a point in GrT . If we let Sλ̌ denote the preimage
of this point under the projection GrB → GrT , then we get a closed embedding

(4.6) Yλ̌ ↪→ Sλ̌.

Note that Sλ̌ identifies with the LN -orbit of tλ̌ in GrG. The orbits Sλ̌ are commonly known
as the semi-infinite orbits of GrG, and their geometric properties were extensively studied by

Mirković–Vilonen in [MV07]. Let S
λ̌
denote the scheme-theoretic closure of Sλ̌ in GrG.

We analogously define Y
λ̌

as the central fiber14 of π̄ : Y
λ̌ → Aλ̌, and we deduce from

Lemma 4.1.2 that there is a closed embedding Y
λ̌
↪→ GrG. From the moduli-theoretic descrip-

tion of S
λ̌
(see [Zhu17, proof of Proposition 5.3.6]), we see that this factors through a closed

embedding

(4.7) Y
λ̌
↪→ S

λ̌
.

4.3.1. Local description of Yλ̌. Note that the central fiber Yλ̌ intersects the stratum Yλ̌,Θ̌ only

if Θ̌ = [θ̌] is the singleton partition corresponding to a single θ̌ ∈ c−X . In this case, let Yλ̌,θ̌

denote the intersection Yλ̌ ∩ Yλ̌,θ̌ = Yλ̌×MX
Mθ̌
X . Also let Y

λ̌,θ̌
= Y

λ̌×MX
Mθ̌
X .

The LG-action on the base point x0 ∈ LX(k) defines a map LG→ LX, which induces a map
GrG → LX/L+G.

Lemma 4.3.2. There are natural isomorphisms

Yλ̌ ∼= Sλ̌ ×
LX/L+G

L+X/L+G(4.8)

Y
λ̌ ∼= S

λ̌ ×
LX/L+G

L+X/L+G(4.9)

which induce (Yλ̌,θ̌)red ∼= (Sλ̌ ×
LX/L+G

Lθ̌X/L+G)red and (Y
λ̌,θ̌

)red ∼= (S
λ̌ ×
LX/L+G

Lθ̌X/L+G)red.

Proof. Consider the composition Grλ̌B → GrG → LX/L+G. It follows from the definitions that
we have an embedding

Yλ̌ ↪→ Grλ̌B ×
LX/L+G

L+X/L+G

The map in the reverse direction is defined using Beauville–Laszlo’s theorem: for a k-algebra R,

an R-point of Grλ̌B consists of a B-bundle P̂B on SpecR[[t]] and a section σ̂0 : SpecR((t))→ P̂B .
Using the identification B ∼= X◦, we can identify σ̂0 with a section σ̂ : SpecR((t)) → X◦ ×B
P̂B . If the image of (P̂B , σ̂) in LX/L+G belongs to L+X/L+G, then σ̂ extends to a section

SpecR[[t]] → X ×B P̂B . By Lemma 3.7.7, the pair (P̂B , σ̂) is equivalent to an R-point y ∈ Y.

By construction, y ∈ Yλ̌. The two maps are mutually inverse, so we get (4.8).
The same argument proves (4.9), and the other identifications are by definition. □

We included the subscript red above for clarity, but from now on we consider only the
underlying reduced structure on all central fibers and omit the subscript since the étale site is
insensitive to reduced structures.

14The open subscheme Yλ̌ does not need to be dense in Y
λ̌
.
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Example 4.3.3. Resume the setting of Example 3.3.1. Then Yn1ν̌D++n2ν̌D− is empty if both
n1 and n2 are nonzero. Otherwise it consists of a single point. If we use the embedding
Gm ↪→ GL2 via a ↦→

(︁
1 0

1−a a
)︁
and fix the base point x0 = 1, then Yν̌D+ corresponds to the point

( 1 1
0 1 ) t

ε̌1 ∈ GrB while Yν̌D− corresponds to t−ε̌2 ∈ GrB .

4.3.4. Lemma 4.3.2 implies that the central fibers Yλ̌,Y
λ̌
can be defined purely locally (in

particular, independently of the point v ∈ |C|). We also deduce that Yλ̌×Aλ̌,δλ̌ C
∼= Yλ̌ ×̃C

and Y
λ̌×Aλ̌,δλ̌ C

∼= Y
λ̌ ×̃C, where ? ×̃C := ? ×Aut k[[t]] C∧ and C∧ → C is the Aut k[[t]]-torsor

classifying v ∈ C together with an isomorphism ov ∼= k[[t]].

4.4. Dimension of central fibers. We will now discuss an argument that is critical when
estimating dimensions of Zastava spaces and their central fibers. This argument appeared in
the proof of [MV07, Theorem 3.2]. The second author thanks M. Finkelberg for explaining this
proof to him.

Semi-infinite orbits have a very simple geometric structure, summarized by the following:

Proposition 4.4.1 ([MV07, Proposition 3.1], [Zhu17, Proposition 5.3.6, Corollary 5.3.8]).

(i) We have a stratification S
λ̌
=
⋃︁
λ̌′≤λ̌ S

λ̌′ .

(ii) Inside S
λ̌
, the boundary of Sλ̌ is given by a hyperplane section under an embedding of

GrG in projective space.

In particular, if a projective subvariety meets the semi-infinite orbit Sλ̌, it also meets its

boundary
⋃︁
λ′<λ̌ S

λ̌′ . We will use this simple fact several times, in order to estimate the dimen-
sions of central fibers.

For λ̌ ∈ cX , consider the central fiber Y
λ̌ ⊂ S

λ̌ ⊂ GrG. Observe that the defect stratification

of Y
λ̌
(§4.2) gives a stratification of Y

λ̌
=
⋃︁
λ̌′≤λ̌ Y

λ̌′ , where Yλ̌
′
= Y

λ̌ ∩ (λ̌−λ̌′Y
λ̌
). This is

compatible with the stratification of S
λ̌
=
⋃︁
λ̌′≤λ̌ S

λ̌′ under the closed embedding Y
λ̌ ⊂ S

λ̌
.

From Lemma 4.3.2 we have Y
λ̌ ∩ Sλ̌

′
= Yλ̌

′
for λ̌′ ≤ λ̌.

Proposition 4.4.2. Given an irreducible component Y ⊂ S
λ̌
of the central fiber Y

λ̌
of Y

λ̌
, there

is a λ̌′ ≤ λ̌ with Y ∩ Sλ̌
′
nonempty of dimension zero, and d := dimY ≤ ⟨ρG, λ̌− λ̌′⟩.

Moreover, if d = ⟨ρG, λ̌− λ̌′⟩, then there exists a sequence of simple roots α1, . . . , αd (possibly

with repetitions) and subvarieties Yj ⊂ Yλ̌−α̌1−···−α̌j for j = 0, . . . , d such that

• Y0 = Y,

• Yj is an irreducible component of Yj−1∩Sλ̌−α̌1−···−α̌j of dimension d−j for j = 1, . . . , d.

Proof. By the stratification S
λ̌
=
⋃︁
λ̌′≤λ̌ S

λ̌, there must exist λ̌0 ≤ λ̌ such that Y0 := Y ∩ Sλ̌0 is

dense in Y. Then Y ⊂ S
λ̌0

so we may assume λ̌ = λ̌0. Write ∂S
λ̌
= S

λ̌ − Sλ̌ for the hyperplane

of Proposition 4.4.1(ii). Since Y is a projective subvariety of S
λ̌
, it must meet ∂S

λ̌
. Hence

there exists λ̌1 < λ̌ such that dim(Y ∩ Sλ̌1) = d − 1. Let Y1 be any irreducible component

of Y ∩ Sλ̌1 and Y1 its closure in S
λ̌1
. Continuing in this fashion we produce a sequence of

coweights λ̌0 = λ̌, λ̌1, . . . , λ̌d and irreducible components Yj ⊂ Yj−1 ∩ Sλ̌j for j = 1, . . . , d, such

that λ̌j < λ̌j−1 and dimYj = d − j. Since λ̌j < λ̌j−1 implies ⟨ρG, λ̌j−1 − λ̌j⟩ ≥ 1, we get

⟨ρG, λ̌− λ̌d⟩ ≥ d and λ̌′ = λ̌d is the claimed coweight in the proposition statement.
In order for the last inequality to be an equality, we must have λ̌ = λ̌0 and λ̌j = λ̌j−1 − α̌j

for some simple coroot α̌j , j = 1, . . . , d. □
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4.5. Comparison of IC complexes. In order to describe the restriction of ICY to strata we

will need to introduce several (graded) factorization algebras on the collection of Cν̌ , ν̌ ∈ Λ̌pos
G .

We only state their definitions; we refer the reader to [BG08, Gai] for further context.

Let ňC = ň⊗Qℓ
QℓC be the constant sheaf of Lie algebras over C. Let U(ňC)

ν̌ denote the

following sheaf on Cν̌ for ν̌ ∈ Λ̌pos
G : its ∗-stalk at a point

∑︁
ν̌i · vi with vi ∈ |C| distinct

is the tensor product
⨂︁

i U(ň)ν̌i where the superscript ν̌i refers to the corresponding weight
space of the universal enveloping algebra U(ň). These stalks glue to a sheaf by means of the
co-multiplication map on U(ň). Let U∨(ňC)

−ν̌ = D(U(ňC)ν̌) ∈ Dbc(Cν̌) denote the Verdier dual.
We will also need the Chevalley–Cousin complex Υ(ňC) of ňC . Consider the (homological)

Chevalley complex C•(ňC) as a sheaf of co-commutative DG co-algebras on C, endowed with a
grading by elements of Λ̌pos

G . By the general procedure of [BD04, §3.4], a sheaf of Λ̌pos
G -graded

co-commutative DG co-algebras on C is equivalent to a commutative factorization algebra
on
⨆︁
Cν̌ . We let Υ(ňC)

ν̌ denote the corresponding complex on Cν̌ , which can be explicitly
constructed via a Cousin complex. Its ∗-stalk at

∑︁
ν̌i · vi with vi’s disinct is the tensor product⨂︁

i C•(ň)
ν̌i . We remark that Υ(ňC)

ν̌ is actually a perverse sheaf, and Υ(ňC) and U∨(ňC) are
related by a certain Koszul duality.

4.5.1. Let

iY,ν̌ : Cν̌ × Yλ̌−ν̌ ↪→ Y
λ̌

denote the locally closed embedding corresponding to (4.5).

Proposition 4.5.2. For any λ̌ ∈ cX , ν̌ ∈ Λ̌pos
G , there is an equality

[i∗
Y,ν̌

(IC
Y

λ̌)] = [U∨(ňC)
−ν̌ ⊠ ICYλ̌−ν̌ ]

in the Grothendieck group of perverse sheaves on Cν̌ ×Yλ̌−ν̌ .

We will prove the proposition in the course of this subsection. It is based on the following
result of [BG08, Proposition 4.4], [BFGM02, Theorem 1.12].

Theorem 4.5.3. There exists a canonical isomorphism

i∗ν̌(ICBun
µ̌
B
) ∼= U∨(ňC)

−ν̌ ⊠ ICBunµ̌+ν̌
B

for any ν̌ ∈ Λ̌pos
G , µ̌ ∈ Λ̌G.

Given a map f : Y → S between finite type algebraic k-stacks, we use the notion of a complex
on Y which is universally locally acyclic (ULA) with respect to f , as in [Del77, Définition 2.12].

The general lemma we will use is the following:

Lemma 4.5.4 ([BG02, Lemma 7.1.3]). Consider a Cartesian diagram of finite type algebraic
stacks

Y ′ S′

Y S

f ′

g′ g

f

where S is smooth. Let j : Y0 ↪→ Y be an open dense substack such that the map f ◦ j : Y0 → S
is smooth. In addition, assume that the complexes ICY and j!(ICY0) are ULA with respect to
the map f .

Denote the closure15 of Y0×S S′ in Y ′ by Y0×S S′. Then there is a natural isomorphism

ICY0×S S′
∼= ICS′ ⊠

S
ICY := f ′∗(ICS′)⊗ g′∗(ICY )[−dimS],

15In general it is possible for Y ′ to have more irreducible components than Y0 ×S S′.
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where the left hand side is implicitly extended by zero to Y ′.

For a proof of Lemma 4.5.4, see [Wan].

We would like to apply this lemma with Y = BunB , Y0 = BunB , S = BunG, and S
′ = MX .

Unfortunately the stack BunB is “too big” for all of ICBunB
to be ULA over BunG. However,

we do get the ULA property if we restrict to open substacks where the defect is not “too big”:
Let j : BunB ↪→ BunB denote the open embedding.

Proposition 4.5.5 ([Cam19, Cam18]). Fix ν̌ ∈ Λ̌pos
G . Then for any µ̌ ∈ Λ̌G large enough:

(i) The complexes IC
≤ν̌Bun

−µ̌
B

and j!ICBunB
|
≤ν̌Bun

−µ̌
B

are ULA over BunG.

(ii) The fiber of Bun−µ̌B → BunG is dense in the fiber of ≤ν̌Bun
−µ̌
B → BunG over any k-point

of BunG.

Here “large enough” is in the same sense as in Lemma 3.5.1, i.e., deep enough in the dominant
chamber Λ̌+

G.

Proof. The ULA property for IC
≤ν̌Bun

−µ̌
B

is [Cam19, Corollary 4.1.1.1]. The ULA property for

j!ICBunB
|
≤ν̌Bun

−µ̌
B

can be deduced from the former, cf. [Cam18, §4.3]. We review the salient

features of the proof in [Cam19] to deduce (ii).

The key object introduced in [Cam19] is Kontsevich’s compactification Bun
K

B of BunB , which

is a resolution of singularities Bun
K

B → BunB of Drinfeld’s compactification. For an affine test

scheme S, an S-point of Bun
K

B is a commutative square

˜︁C pt/B

C ×S pt/G
PG

where ˜︁C→ S is a flat family of connected nodal projective curves of the same arithmetic genus

as C, the map ˜︁C → C ×S has degree 1, and the induced section ˜︁C → PG×GG/B is stable
in the sense of [Kon95] over every geometric point of S. Let MC denote the moduli stack of

proper connected nodal curves ˜︁C equipped with a degree one map to C. Then the natural map

Bun
K

B →MC is smooth, and MC is smooth ([Cam19, Proposition 2.4.1]) and there is a proper

map Bun
K

B → BunB over BunG ([Cam19, Proposition 3.2.2]). Inside MC we have the open
point corresponding to id : C → C and the complement ∂MC is a normal crossings divisor

([Cam19, Proposition 4.4.1]). Evidently the preimage of the open point in Bun
K

B identifies with

BunB . Let ≤ν̌Bun
K,−µ̌
B denote the preimage of ≤ν̌Bun

−µ̌
B . Then [Cam19, Proposition 4.1.1]

shows that for ν̌ fixed and µ̌ large enough, the map ≤ν̌Bun
K,−µ̌
B → MC ×BunG is smooth.

Now for any PG ∈ BunG(k), the fiber of ˜︁pK : ≤ν̌Bun
K,−µ̌
B → BunG is smooth over MC . The

preimage over the open point equals (˜︁pK)−1(PG)∩BunB , and since ∂MC is a normal crossings
divisor, (˜︁pK)−1(PG) ∩ BunB must be dense in (˜︁pK)−1(PG). Since (˜︁pK)−1(PG) is a resolution

of the fiber of ≤ν̌Bun
−µ̌
B → BunG, we have proved (ii). □

Corollary 4.5.6. For any λ̌ ∈ cX , the subscheme Yλ̌ is dense in Y
λ̌
.

Proof. The subschemes ≤η̌Y
λ̌
= Y

λ̌×BunB
≤η̌BunB for η̌ ∈ Λ̌pos

G form an open covering of Y
λ̌
.

Since Y
λ̌
is quasicompact, there must exist some η̌ such that ≤η̌Y

λ̌
= Y

λ̌
. Fix λ̌, η̌ as above.
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Then we can choose µ̌ ∈ Λ̌pos
G such that λ̌ + µ̌ − ν̌ is large enough, for all 0 ≤ ν̌ ≤ η̌, for the

purposes of Proposition 4.5.5 and Lemma 3.5.1. Now we may consider ≤η̌Y
λ̌+µ̌

as an open

subscheme of Y ′ := MX ×
BunG

≤η̌Bun
−λ̌−µ̌
B . Proposition 4.5.5(ii) implies that MX ×

BunG

Bun−λ̌−µ̌B

is dense in Y ′, which implies that Yλ̌+µ̌ is dense in Y
λ̌+µ̌

. The graded factorization property of
Y gives a natural étale map

(4.10) Y
λ̌×̊Yµ̌ := (Y

λ̌×Yµ̌)|Aλ̌×̊Aµ̌ → Y
λ̌+µ̌

,

where Yµ̌ ↪→ Y
µ̌
is the open embedding. We deduce that Yλ̌×̊Yµ̌ is dense in Y

λ̌×̊Yµ̌, which
implies Yλ̌ is dense in Y

λ̌
.

□

Proof of Proposition 4.5.2. Applying Lemma 4.5.4 to the Cartesian square

Y ′ MX

≤η̌Bun
−λ̌−µ̌
B BunG,

we can identify

(4.11) ICY ′ ∼= ICMX
⊠

BunG

IC
≤η̌Bun

−λ̌−µ̌
B

.

In particular, this gives us a description of IC
≤η̌Y

λ̌+µ̌ = ICY ′ |
≤η̌Y

λ̌+µ̌ . For 0 ≤ ν̌ ≤ η̌, we have a

Cartesian square

Cν̌ × Yλ̌+µ̌−ν̌ Y
λ̌+µ̌

Cν̌ × Bun−λ̌−µ̌+ν̌B Bun
−λ̌−µ̌
B

i
Y,ν̌

iν̌

Theorem 4.5.3, together with the Cartesian square above and (4.11), allow us to deduce that
there exists an isomorphism

i∗
Y,ν̌

(IC
Y

λ̌+µ̌) ∼= U∨(ňC)
−ν̌ ⊠(ICMX

⊠
BunG

IC
Bun−λ̌−µ̌+ν̌

B

)|Yλ̌+µ̌−ν̌ = U∨(ňC)
−ν̌ ⊠(ICMX

|!∗
Yλ̌+µ̌−ν̌ )

on Cν̌ ×Yλ̌+µ̌−ν̌ . In the last equality we have used the fact that BunB is smooth. Since we chose

λ̌+ µ̌− ν̌ large enough to satisfy Lemma 3.5.1, the map Yλ̌+µ̌−ν̌ →MX is smooth. Therefore,
ICMX

|!∗
Yλ̌+µ̌−ν̌

∼= ICYλ̌+µ̌−ν̌ and we get a canonical isomorphism

(4.12) i∗
Y,ν̌

(IC
Y

λ̌+µ̌) ∼= U∨(ňC)
ν̌ ⊠ ICYλ̌+µ̌−ν̌ .

Observe that the following diagram is Cartesian:

(Cν̌ ×Yλ̌−ν̌)×̊Yµ̌ Y
λ̌×̊Yµ̌

Cν̌ ×Yλ̌+µ̌−ν̌ Y
λ̌+µ̌

i
Y,ν̌×id

(4.10)

i
Y,ν̌
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where the left vertical arrow is identity on Cν̌ times the map Yλ̌−ν̌×̊Yµ̌ → Yλ̌+µ̌−ν̌ coming from

graded factorization. Since the restriction of IC
Y

λ̌+µ̌ to Y
λ̌×̊Yµ̌ is IC

Y
λ̌ ⊠̊ ICYµ̌ , we deduce from

the Cartesian square and (4.12) that there is a canonical isomorphism

i∗
Y,ν̌

(IC
Y

λ̌) ⊠̊ ICYµ̌ ∼= (U∨(ňC)
−ν̌ ⊠ ICYλ̌−ν̌ ) ⊠̊ ICYµ̌

when restricted to (Cν̌ ×Yλ̌−ν̌)×̊Yµ̌. Lastly, let Y be a connected component of Yµ̌,0 so that

the projection p : (Cν̌ ×Yλ̌−ν̌)×̊Y → Cν̌ ×Yλ̌−ν̌ is smooth surjective with irreducible fibers.
We have constructed an isomorphism

p∗(i∗
Y,ν̌

(IC
Y

λ̌)) ∼= p∗(U∨(ňC)
−ν̌ ⊠ ICYλ̌−ν̌ ),

which implies Proposition 4.5.2 because the functor p∗[dimY ] is fully faithful on the category
of perverse sheaves ([BBDG18, Proposition 4.2.5]). □

4.5.7. Convolution product. The toric variety X//N has the natural structure of a commutative
algebraic monoid. The multiplication operator on X//N induces a finite map

mA : Aλ̌1 ×Aλ̌2 → Aλ̌1+λ̌2 .

If we have sheaves Fi ∈ Dbc(A
λ̌i), i = 1, 2, we define their convolution by

F1 ⋆ F2 := mA,!(F1 ⊠F2) ∈ Dbc(A
λ̌1+λ̌2).

4.5.8. We have a closed embedding iA,ν̌ : Cν̌ ↪→ Aν̌ corresponding to the partition
∑︁
i ni[α̌i]

of degree ν̌ =
∑︁
i niα̌i.

Corollary 4.5.9. There is an equality

[π!(ICYλ̌)] =
∑︂

ν̌∈Λ̌pos
G

[iA,ν̌,!(Υ(ňC)
ν̌) ⋆ π̄!(IC

Y
λ̌−ν̌ )]

in the Grothendieck group of perverse sheaves on Aλ̌.

Proof. Taking the Grothendieck–Cousin complex associated to the stratifications iY,ν̌ and ap-
plying Proposition 4.5.2 gives an equality

[IC
Y

λ̌ ] =
∑︂

ν̌∈Λ̌pos
G

[iY,ν̌,!(U
∨(ňC)

ν̌ ⊠ ICYλ̌−ν̌ )]

in the Grothendieck group of perverse sheaves on Y
λ̌
. Note that Yλ̌−ν̌ is nonempty for finitely

many values of ν̌. The composition π̄ ◦ iY,ν̌ : Cν̌ ×Yλ̌−ν̌ → Aλ̌ coincides with the composition

Cν̌ ×Yλ̌−ν̌
iA,ν̌ ×π−→ Aν̌ ×Aλ̌−ν̌

mA→ Aλ̌. Therefore, applying π̄! to the equality above, we get the
equality

[π̄!(IC
Y

λ̌)] =
∑︂

ν̌∈Λ̌pos
G

[iA,ν̌,!(U
∨(ňC)

ν̌) ⋆ π!(ICYλ̌−ν̌ )]

in the Grothendieck group of perverse sheaves on Aλ̌. Applying a further convolution by any
T ∈ Dbc(Cν̌′), ν̌

′ ∈ Λ̌pos
G gives

[iA,ν̌′,!(T) ⋆ π̄!(IC
Y

λ̌)] =
∑︂
ν̌

[iA,ν̌+ν̌′,!(T ⋆ U
∨(ňC)

ν̌) ⋆ π!(ICYλ̌−ν̌ )].
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It is known ([BG08, §6.4]) that for a fixed nonzero ν̌ ∈ Λ̌pos
G , we have an equality∑︂

ν̌1,ν̌2∈Λ̌pos
G

ν̌1+ν̌2=ν̌

[Υ(ňC)
ν̌1 ⋆ U∨(ňC)

−ν̌2 ] = 0

in the Grothendieck group of perverse sheaves on Cν̌ . The two preceeding equalities and
induction prove the claim. □

5. Global Hecke action and closure relations

For the rest of this paper, assume that ǦX = Ǧ and all simple roots of G are spherical
roots of type T . Equivalently, we are assuming that B acts simply transitively on X◦ and for
every simple root α of G, the PGL2-variety X

◦Pα/R(Pα) is isomorphic to Gm\PGL2 (over the
algebraically closed field k).

As a consequence, V ∩ Λ̌X = Λ̌−G, the monoid of antidominant coweights of G. Recall from
§2.1.1 that the type T assumption also implies that for every simple root α, the open Pα-orbit
X◦Pα is the union of X◦ and the open B-orbits of two colors D(α) = {D+

α , D
−
α }. We will let ν̌±α

denote the valuation of D±α , respectively. Then ν̌+α + ν̌−α = α̌ and ⟨α, ν̌±α ⟩ = 1. We encourage
the reader to refer to Examples 3.3.1, 3.3.2, 4.1.4 and 4.3.3.

5.1. Main results of this section. This section is quite technical, and we advise the reader
to read the main results listed here, and skip the rest of the section at first reading. Before
we introduce the results, let us observe that, so far, we have uniformly treated all affine spher-
ical varieties. However, the classification of spherical varieties is divided into two parts: (i)
the classification of homogeneous spherical varieties H\G, and (ii) the classification of spher-
ical embeddings H\G ↪→ X (by a spherical embedding we mean a G-equivariant open, dense
embedding H\G ↪→ X, where X is a normal, and hence spherical, G-variety).

Since X is affine, X• = H\G is quasiaffine and there is a canonical affine embedding

Xcan := Spec k[H\G].

(The fact that the coordinate ring of k[H\G] is finitely generated follows from the fact that
B-eigenspaces are one-dimensional, and the B-character group is finitely generated.) By nor-
mality, Xcan has no divisors that do not meet H\G, i.e., D(X) has no G-stable divisors, and
coincides with the set D of colors. Therefore, the cone C0(H\G) := C0(Xcan) is generated by
the valuations ϱX(D) of colors.

For any other affine spherical embedding H\G ↪→ X, there is a natural map Xcan → X, so
Xcan is universal among affine embeddings of H\G.

It turns out that this distinction between the minimal and the general embeddings is impor-
tant when we consider arc spaces and their global models. As we will recall in Lemma 5.6.6,
the map Xcan → X induces a closed embedding of mapping stacks

MXcan ↪→MX ,

whose image is a union of irreducible components.
We are more interested in the closure of M0

X• = BunH in the former, which we will denote

by M
0

X (it may or may not be the same as MXcan depending on whether the monoid cXcan is
generated by colors, see Corollary 5.6.4):

(5.1) M
0

X ↪→MXcan ↪→MX .
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The main theme of this section is, in some sense, a reconstruction of MX out of suitable

Hecke operators acting on M
0

X : For any Θ̌ ∈ Sym∞(c−X − 0), a multiset of nonzero elements in

c−X , there is a natural proper map

(5.2) actM : M
0

X ×̃Gr
Θ̌

G,CΘ̌ →MX ,

which corresponds to the action on the “basic stratum” M
0

X by the closed stratum of the affine
Grassmannian parametrized by Θ̌. (See Proposition–Construction 5.2.3.) Recall that such a

multiset Θ̌ also parametrizes a stratum MΘ̌
X of the global mapping space (§3.1.5). The main

technical result of this section is the following:

Theorem 5.1.1. For every Θ̌ ∈ Sym∞(c−X − 0), the action map (5.2)

(i) has image equal to the closure of MΘ̌
X , and

(ii) is birational onto its image.

(iii) The restriction of actM to act−1M (MΘ̌
X) ∩ (BunH ×̃GrΘ̌

G,C̊Θ̌)→MΘ̌
X is an isomorphism.

The proof of Theorem 5.1.1 will be given in §5.5.
We use this theorem to achieve two goals in this section:
The first goal is to understand irreducible components of MX and closure relations among

the strata MΘ̌
X . We will introduce the natural generalization to multisets of the order ⪰ among

elements of the lattice Λ̌X (we remind that this order is determined by the monoid of colors,
see §2.1), and prove:

Proposition 5.1.2 (See Proposition 5.6.1.). Let Θ̌, Θ̌′ ∈ Sym∞(c−X−0). The stratum MΘ̌′

X lies

in the closure of MΘ̌
X if and only if there exists Θ̌′′ such that Θ̌ refines Θ̌′′ and Θ̌′ ⪰ Θ̌′′.

Moreover, observe that the irreducible components of M
0

X are in bijection with connected
components of MX• = BunH , i.e., parametrized by π0(BunH) = π1(H). Using the action (5.2)
on those components gives us a parametrization of the irreducible components of the closure of
each stratum:

Proposition 5.1.3 (See Corollaries 5.5.9 and 5.7.2). For every Θ̌ ∈ Sym∞(c−X − 0), the irre-

ducible components in the closure M
Θ̌

X of the corresponding stratum are naturally parametrized

by π1(H). For any λ̌ ∈ cX , the base change of an irreducible component to Yλ̌×MX
M

Θ̌

X is still
irreducible (when nonempty).

The combination of Propositions 5.1.2 and 5.1.3 implies:

Corollary 5.1.4 (See Corollary 5.6.5). There is a natural bijection between the set of irreducible
components of MX and

π1(H)×Sym∞(DGsat(X)),

where DGsat(X) denotes the set of primitive elements in c−X that cannot be decomposed as a sum

θ̌ + ν̌D where θ̌ ∈ c−X − 0 and ν̌D is the valuation attached to a color.

The second goal achieved by Theorem 5.1.1 is to reduce the study of the IC complex of an
arbitrary mapping space MX to that of the minimal affine embedding:

Theorem 5.1.5. For any Θ̌ ∈ Sym∞(c−X − 0), there is a natural isomorphism

IC
M

0
X
⋆ IC

Gr
Θ̌

G,CΘ̌

∼= IC
M

Θ̌
X

.
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We point to §A.5 for the notation and the proof. Theorem 5.1.5 and its proof are independent
from the rest of this paper; we include it only for conceptual completeness. The proof involves
a passage to Zastava model (the extra structure of a flag) and uses the results of the sequel
§6. The argument of proof can also be extended to meromorphic quasimaps to verify [GN10,
Conjecture 7.3.2] in the case ǦX = Ǧ.

5.2. Hecke action on global model. Now we introduce the action map (5.2), as an analog
of the action of G(F ) on X•(F ) for the global model.

The notation is cumbersome because we give a multi-point version of the action, but the idea
is simple: in the notation of §3.1.3, the k-points ofMX correspond to a subset ofH(k)\G(A)/G(O),
where O =

∏︁
v∈|C| ov. We have a Hecke correspondence

H(k)\G(A)
G(O)
× G(A)/G(O)→ H(k)\G(A)/G(O)

induced by multiplication in G. We think of G(A)/G(O) as a factorizable version of the affine
Grassmannian. Then the “action map” is simply the restriction of the above to a positively
graded subset of G(A)/G(O) such that everything maps to (X•(A) ∩ X(O))/G(O), i.e., the
locus of regular maps.

5.2.1. Positively graded subscheme of factorizable affine Grassmannian. Let Θ̌ =
∑︁
θ̌Nθ̌[θ̌] ∈

Sym∞(c−X − 0) be a partition. We have a closed subscheme

Gr
θ̌

G,C = Gr
θ̌

G ×̃C := Gr
θ̌

G

Aut0(k[[t]])
× Coord0(C) ⊂ GrG,C

where Aut0(k[[t]]) = Spec k[a±11 , a2, . . . ] is the group scheme of algebra automorphisms of k[[t]]

that preserve the maximal ideal, and Coord0(C)→ C is the Aut0(k[[t]])-torsor classifying v ∈ C
together with an isomorphism k[[t]] ∼= ov sending t to a uniformizer (see §A.1.1 or [Zhu17,

(3.1.11)]). Consider the Nθ̌-fold product (Gr
θ̌

G,C)
Nθ̌ ×CN

θ̌
C̊Nθ̌ restricted to the disjoint locus

with all diagonals removed. This descends to a subscheme Gr
Nθ̌ θ̌

G,C̊(N
θ̌
) ⊂ Gr

G,C̊(N
θ̌
) . In the

notation of §3.1.4, let

Gr
Θ̌

G,C̊Θ̌ :=
∏̊︂

θ̌
Gr

Nθ̌ θ̌

G,C̊(N
θ̌
) ⊂ GrG,C(|Θ̌|) ×

C(|Θ̌|)
C̊Θ̌

and let Gr
Θ̌

G,CΘ̌ denote its closure in GrG,C(|Θ̌|) ×C(|Θ̌|) CΘ̌. We consider Gr
Θ̌

G,CΘ̌ as a scheme

over C(|Θ̌|) with an action of the group scheme (L+G)C(|Θ̌|) , the multi-point version of the arc
space defined in §A.1.

The closure relations of the Beilinson–Drinfeld affine Grassmannian are known (cf. [Zhu17,

Proposition 3.1.14]), so we can describe the reduced fiber of Gr
Θ̌

G,CΘ̌ over a point of CΘ̌ as follows:

a point of CΘ̌ is the collection (Dθ̌)θ̌, for each θ̌, of a degree Nθ̌ divisor Dθ̌ =
∑︁
v∈|C|Nθ̌,vv.

The reduced fiber of Gr
Θ̌

G,CΘ̌ over this point is the scheme

(5.3)
∏︂
v∈|C|

Gr
∑︁

θ̌ Nθ̌,v θ̌

G,v .
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5.2.2. Let ˆ︁MX denote the stack representing the data of

(σ,PG) ∈MX , D ∈ SymC, and a trivialization PG| ˆ︁C′D ∼= P0
G| ˆ︁C′D

(see §3.7.5 for the definition of ˆ︁C ′D), i.e., a point of MX together with infinite G-level structure
at points in the support of D. This admits a natural action by L+G, and the forgetful mapˆ︁MX →MX ×SymC is a L+G-torsor. Let

MX ×̃Gr
Θ̌

G,CΘ̌ := ˆ︁MX

L+G
×

SymC
Gr

Θ̌

G,CΘ̌

denote the twisted product over C(|Θ̌|) ⊂ SymC.

For an affine test scheme S, an S-point of MX ×̃Gr
Θ̌

G,CΘ̌ is the data (σ,PG,P
′
G, (D

θ̌)θ̌, τ)
where

• PG,P
′
G are G-bundles on C ×S,

• σ : C ×S → X ×G PG is a section such that (σ,PG) ∈MX(S),

• for each θ̌ ∈ c−X − 0, we have a degree Nθ̌ effective Cartier divisor Dθ̌ ⊂ C ×S,
• τ : P′G|C×S−D ∼= PG|C×S−D is a trivialization for D :=

∑︁
θ̌D

θ̌

such that after fixing an isomorphism PG| ˆ︁C′D ∼= P0
G| ˆ︁C′D (which always exists after flat base

change over S), the datum ((Dθ̌),P′G| ˆ︁C′D , τ) defines a point in Gr
Θ̌

G,CΘ̌ . Here we are implicitly

using Beauville–Lazlo’s theorem to pass between the global and local descriptions of GrG,SymC ,
cf. §A.1.3.

Proposition-Construction 5.2.3. For any Θ̌ ∈ Sym∞(c−X − 0) there is a natural proper map

actM : MX ×̃Gr
Θ̌

G,CΘ̌ →MX .

Proof. Fix an affine test scheme S and (σ,PG,P
′
G, (D

θ̌)θ̌, τ) ∈ MX ×̃Gr
Θ̌

G,CΘ̌(S). The compo-

sition τ−1 ◦ σ|C×S−D defines a section σ′ : C ×S −D → X ×G P′G. We claim that σ′ extends
to a regular map on C ×S. Given this claim, we can define (σ′,P′G) ∈MX(S) to be the image

of actM. Properness of actM follows from properness of Gr
Θ̌

G,CΘ̌ and Lemma 3.7.3.
We now prove the claim that σ′ extends to all of C ×S. Since k[X] is a locally finite G-

module, it is generated as an algebra by some finite dimensional G-submodule V ⊂ k[X]. This
induces a G-equivariant embedding of varieties φ : X ↪→ V ∗, where V ∗ is considered as a right
G-module. It suffices to show that the composition φ(σ′) : C ×S − D → V ∗×G P′G extends.

For any weight µ of V ⊂ k[X], we have µ ≤ λ for λ ∈ c∨X . Therefore given θ̌ ∈ c−X , we have

⟨µ, θ̌⟩ ≥ 0 for all weights µ of V . We deduce that the group homomorphism G → GL(V )
induces a natural map

Gr
Θ̌

G,CΘ̌ → L+End(V )/L+GL(V ).

Hence τ−1 induces a regular map V ∗×G PG| ˆ︁C′D → V ∗×G P′G| ˆ︁C′D and φ(τ−1 ◦ σ| ˆ︁C′D ) defines a

section ˆ︁C ′D → V ∗×G P′G. By Beauville–Laszlo’s theorem (cf. [BD96, Theorem 2.12.1]), this
implies that φ(σ′) is defined on all of C ×S. □

We describe more precisely what actM is doing on k-points: at a single v ∈ |C|, a k-point of
MX gives an element of (X(ov)∩X•(Fv))/G(ov) and the map actM corresponds to the natural
G(Fv)-action on X•(Fv). For µ̌ ∈ Λ̌−G, define the set

X•(Fv)G:⪰µ̌ =
⋃︂

µ̌′∈Λ̌−G,µ̌
′⪰µ̌

X•(Fv)G:µ̌′ ,
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in the notation of §2.3.4. In the next subsection we prove a slightly more precise16 version of
[SV17, Lemma 5.5.2]:

Lemma 5.2.4. Let µ̌, θ̌ ∈ Λ̌−G. The action map sends

X•(Fv)G:⪰µ̌
G(ov)
× L+G · tθ̌ · L+G(k)→ X•(Fv)G:⪰µ̌+θ̌.

5.3. Reduction to cX• = ND. We are interested in applying Hecke actions to M
0

X , the closure
of MX• = M0

X = BunH in MX , since it is the most basic closure of a stratum. On the other

hand, in order to determine the stratification of M
0

X we need a moduli description of this stack.

A first guess would be that M
0

X = (MXcan)red, but this may not be true if cX• := cXcan is
not equal to cDX = {λ̌ ⪰ 0}. In this subsection we explain how to get around this technical
issue: we can always replace G by a central extension G′ → G such that if H\G = H ′\G′ and
X ′ := Spec k[H ′\G′], then M

0

X′ = MX′ and cX′ = ND (see Lemma 5.3.3).

This is a generalization of the need to replace N\G
aff

by N\ ˜︁Gaff

for ˜︁G a simply connected
cover of G in [ABB+05, §4.1], [Sch15, §7.2] to correctly define Drinfeld’s compactification of
BunN for an arbitrary reductive group G.

5.3.1. Let us first assume that k[G] is a UFD. Further, assume that H is connected, as is
the case under our assumptions (Remark 3.0.1). Then the preimage of any color D in G is
irreducible, and this defines a bijection between H × B-stable prime divisors in G and colors;
moreover, under our UFD assumption, the former are all principal.

Let k(G)(H ×B) denote the H ×B-eigenvectors of k(G). Then, since HB is open dense in
G, we have

k(G)(H×B)/k× = X (H) ×
X (B∩H)

X (B),

where X (H) is the character group of H (so X (B) = ΛG by definition). The valuation map
gives rise to a short exact sequence

(5.4) 0→ X (G)→ X (H) ×
X (B∩H)

X (B)→ ZD → 0,

which sends an element of k(G)(H×B)/k× to its divisor, identified with a Z-linear combination
of the colors. (We have used here both the UFD property, and the fact that invertible regular
functions on G are multiples of characters.)

The preimage in G of each color D defines a valuation vHD on k(G)×; its restriction to
k(G)(H ×B) defines a map

˜︁ϱH\G : D → (X (H) ×
X (B∩H)

X (B))∨.

Composing with the second projection to Λ̌X gives the usual valuation map ϱH\G. By con-
struction we have vHD(fD′) = δD,D′ for D,D

′ ∈ D, and the sequence dual to (5.4) is

0→ ZD
˜︁ϱH\G−→ (X (H) ×

X (B∩H)
X (B))∨ → X (G)∨ → 0.

16In [SV17] the ordering ⪰ is defined with respect to the rational cone generated by the valuations of colors,
whereas we define ⪰ with respect to the monoid generated by non-negative integral combinations of valuations

of colors.
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5.3.2. Now we return to the case of arbitrary G. Let

1→ Z → ˜︁G→ G→ 1

be a central extension with connected kernel Z such that the derived group [ ˜︁G, ˜︁G] is simply

connected (such a ˜︁G always exists). Then k[ ˜︁G] is a UFD ([KKLV89, Proposition 4.6], [Ive76]).

We consider H\G as a ˜︁G-spherical variety, so H\G = ˜︁H\ ˜︁G where ˜︁H = HZ is the preimage of

H in ˜︁G. Let ˜︁B denote the Borel subgroup of ˜︁G. If H is connected, then ˜︁H is also connected.
The colors stay the same, so ˜︁ϱ ˜︁H\ ˜︁G induces a short exact sequence

(5.5) 0→ ZD
˜︁ϱ˜︂H\ ˜︁G−→ (X ( ˜︁H) ×

X ( ˜︁B∩ ˜︁H)

X ( ˜︁B))∨ → X ( ˜︁G)∨ → 0.

Let ˜︁Hab = ˜︁H/[ ˜︁H, ˜︁H], so X ( ˜︁H) = X ( ˜︁Hab). We consider [ ˜︁H, ˜︁H]\ ˜︁G as a spherical variety for

the group G′ := ˜︁Hab

Z
× ˜︁G, where ˜︁Hab acts by left translation and ˜︁G acts by right translation.

Then [ ˜︁H, ˜︁H]\ ˜︁G = H ′\G′ whereH ′ = ( ˜︁H/Z)diag = Hdiag is diagonally embedded inG′. Observe

that G′ → G is a central extension with kernel ˜︁Hab and

H ′\G′ = [ ˜︁H, ˜︁H]\ ˜︁G→ ˜︁H\ ˜︁G = H\G

is a ˜︁Hab-torsor. The Borel subgroup B′ of G′ is ˜︁Hab×Z ˜︁B and B′ ∩H ′ = (( ˜︁B ∩ ˜︁H)/Z)diag, so
(5.5) is equivalent to a short exact sequence

0→ ZD
ϱH′\G′−→ Λ̌H′\G′ = ker(X (B′)→ X (B′ ∩H ′))∨ → X ( ˜︁G)∨ → 0.

To summarize:

Lemma 5.3.3. Let H\G be a homogeneous spherical variety with H connected. Then there
exists a central extension G′ → G with connected kernel Z ′ and a spherical subgroup H ′ ⊂ G′

such that

(i) [G′, G′] is simply connected.
(ii) The covering G′ → G restricts to an isomorphism H ′ ∼= H. In particular, the projection

H ′\G′ → H\G is a Z ′-torsor.
(iii) The valuation map ϱH′\G′ embeds ZD ↪→ Λ̌H′\G′ as a direct summand.

By (iii), we have that cH′\G′ = cDH′\G′ = ND so there is no question of integrality. For a similar

result, see [Bri07, Lemma 2.1.1].

Example 5.3.4. If we start with H = Gm the torus inside G = PGL2, then G
′ = Gm×GL2

and H ′ = Gm where Gm maps to GL2 by ( ∗ 0
0 1 ). So H

′\G′ = GL2, where Gm acts by left trans-
lations and GL2 by right translations. This is a Gm-torsor over Gm\GL2 and a Gm×Z(GL2)-
torsor over Gm\PGL2.

Proof of Lemma 5.2.4. Let 1 → Z ′ → G′ → G → 1 be a central extension as in Lemma 5.3.3.
Since cH′\G′ = cDH′\G′ , there is no question of integrality and [SV17, Lemma 5.5.2] applied to

the G′-variety H ′\G′ says that the action map sends

(H ′\G′)(Fv)⪰µ̃
G′(ov)
× G′(ov)t

θ̃G′(ov)→ (H ′\G′)(Fv)⪰µ̃+θ̃,

where µ̃, θ̃ ∈ Λ̌−H′\G′ . Since H ′\G′ → H\G = X• is a Z ′-torsor, it is surjective on Fv-points

(and corresponding orbits). Since cDH′\G′ maps to cDX , we deduce that the action map sends

X•(Fv)⪰µ̌
G(ov)
× G(ov)t

θ̌G(ov)→ X•(Fv)⪰µ̌+θ̌
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for µ̌, θ̌ ∈ Λ̌−G. The preimage of Gr
θ̌

G(k) in G(Fv) consists of the union of G(ov)t
θ̌′G(ov) for

θ̌′ ∈ Λ̌−G, θ̌
′ ≥ θ̌. Since θ̌′ ≥ θ̌ implies θ̌′ ⪰ θ̌, we deduce the claim. □

5.4. Open Zastava. Consider Y?,0 = YX• = Y×MX
M0
X = Mapsgen(C,H\G/B ⊃ pt), which

is an open subscheme of Y. Since M0
X
∼= BunH is smooth and YX• is smooth locally isomorphic

to M0
X by Lemma 3.5.4, the scheme YX• is also smooth.

The preimage of the connected component Aλ̌ in YX• is by definition Yλ̌,0. Let G′ → G be a
central extension as in Lemma 5.3.3, so we have a torsor H ′\G′ → X•. Let X ′ = Spec k[H ′\G′].
Then cX′ = ND and we have an isomorphism of stacks X ′•/B′ ∼= X•/B. Hence,

(5.6) YX• ∼= YX′• = Mapsgen(X
′•/B′ ⊃ pt),

and the map YX• → A factors through πX′ : YX′ → AX′ . The base AX′ is a disjoint union
of smooth partially symmetrized powers of the curve indexed by ND. For D =

∑︁
D nD′ ·D′ ∈

ND, we will denote by YDX• the preimage of the corresponding component of AX′ . We define

ϱX(D) =
∑︁
nD′ ν̌D′ and len(D) =

∑︁
nD′ . Hence, if λ̌ = ϱX(D), then YDX• ⊂ Yλ̌X• .

This implies:

Lemma 5.4.1. The stratum Yλ̌,0 is nonempty only if λ̌ ⪰ 0.

Under our assumption that all simple roots of G are spherical roots of type T , every color
D ∈ D belongs to D(α) for some simple root α of G and X◦Pα/R(Pα) = Gm\PGL2.

Lemma 5.4.2. If D(α) = {D+
α , D

−
α } for a simple root α, then for any n± ∈ N, there is an

isomorphism

Y
n+D+

α+n−D−α
X• = C(n+)×̊C(n−).

Proof. We may assume cX• = ND. Then, Yn
+D+

α+n−D−α
X• classifies maps from the curve to X•/B

which have zero valuation on every color other than those in D(α), and therefore is a subscheme
of Mapsgen(C, (X

• −
⋃︁
D∈D−D(α)D)/B ⊃ pt). Since X◦Pα = Gm\Pα is affine, its complement

is the union of the colors that it does not intersect. Hence

(X• −
⋃︂

D∈D−D(α)

D)/B = (X◦Pα)/B = Gm\PGL2/BPGL2
= Gm\P1.

By Example 3.3.1, we see that Mapsgen(C,Gm\P1 ⊃ pt) = SymC×̊SymC, and it follows that

the components correspond to ND(α) in the natural way. □

Remark 5.4.3. For a general element D =
∑︁
D nD′ ·D′ ∈ ND, the graded factorization property

together with Lemma 5.4.2 imply that there is an open embedding
∏̊︁
DC

(nD′ ) ↪→ YDX• , where
the product is over the disjoint locus. We will show in Lemma 6.2.1 that YDX• , D ∈ ND are
precisely the connected components of YX• , so the open subscheme above is dense. (This also
implies that the YDX• are defined intrinsically and independently of the choice of G′ → G.)

Remark 5.4.4. If D is as above, and λ̌ = ϱX(D), we can read off the length len(D) directly from
λ̌, if X• happens to admit a G-eigen-volume form. Namely, under this assumption there is a
character γ ∈ Λ such that ⟨γ, ν̌D′⟩ = 1 for every colorD′, and therefore len(D) =

⟨︁
γ, λ̌

⟩︁
. Indeed,

for such a color D′, there is a simple root α such that D′Pα contains the open Borel orbit, and
then D′Pα ≃ ν̌D′(Gm)\Pα. For such a homogeneous space to have a Pα-eigen-volume form
with eigencharacter h, we must have that ⟨h+ 2ρNα

, ν̌D′⟩ = 0, where 2ρNα
is the sum of roots

in the unipotent radical of Pα. Equivalently, since ⟨α, ν̌D′⟩ = 1, this reads ⟨h+ 2ρG, ν̌D′⟩ = 1.
Therefore,

(5.7) len(D) =
⟨︁
h+ 2ρG, λ̌

⟩︁
,
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which we can unambiguously denote by len(λ̌).

5.5. Proof of Theorem 5.1.1.

5.5.1. Idea of the proof. Let us give a set-theoretic idea for the proof of Theorem 5.1.1, as well
as a guide to new notation we are about to introduce. The discussion here is not rigorous, using
sets as avatars for geometric objects.

We have been using the notation X•(F )G:θ̌, or (X
•(F )/K)G:θ̌ to denote the set of points in

the K-orbit parametrized by θ̌ ∈ V ∩ Λ̌X , where K = G(o). The stratum Mθ̌
X of the global

model corresponds to (X(o)/K)G:θ̌, in the sense that it is determined by the condition that the

“G-valuation” of maps in this stratum, at points where they fail to land in X•, is given by θ̌.
Similarly, T (o)N(F )-orbits on X◦(F ) are parametrized by Λ̌X , and let us denote by X(F )B:λ̌

the subset of points which: (1) belong to X◦(F ), and (2) belong to the T (o)N(F )-orbit

parametrized by λ̌ ∈ Λ̌X . As with the global model, the central fibers of the stratum Y
λ̌,θ̌
X

of the Zastava space correspond to (X(o)/B(o))G:θ̌
B:λ̌

.

The following facts will be proven about the space Y
λ̌,θ̌
X :

• It is nonempty only if λ̌ ⪰ θ̌ (see Lemma 5.4.1 and Corollary 5.5.6). This is essentially
a statement about the image of X(o) in X//N(F ).

• It contains Y
λ̌−θ̌,0
X ×̊Yθ̌,θ̌X as an open dense (see Lemma 5.5.7). This is a geometric

statement, and it follows from the constructions that we describe below.

Theorem 5.1.1 says that the geometric analog of the action map

(5.8) act : X•(o)×K Ktθ̌K → X(o)G:θ̌

is birational and proper. (The closures are also understood here in the “geometric” topology,
see Lemma 5.2.4.)

To prove this, we fix θ̌ ∈ c−X , which will not appear in the notation, and work with B(o)-
orbits, defining spaces whose central fibers satisfy the following set-theoretic analogies:

Z λ̌−ν̌,λ̌ X•(o)B:λ̌−ν̌
B(o)
× (T (o)tν̌N(F ) ∩Ktθ̌K)/B(o)

Z λ̌−ν̌,λ̌,θ̌
′,η̌ X•(o) G:θ̌′

B:λ̌−ν̌

B(o)
× (T (o)tν̌N(F ) ∩Ktη̌K)/B(o)

Here, η̌ ≥ θ̌ (and antidominant), so that the Cartan double coset Ktη̌K belongs (in the

affine Grassmannian) to the closure of Ktθ̌K. Both of the spaces above are subspaces of the

preimage ofX(o)B:λ̌ inX•(o)×KKtθ̌K — in fact, substacks, in the appropriate setting. Indeed,

stratifying Ktθ̌K by the “Mirković–Vilonen (MV) cycles” corresponding to its intersection with
the horocycles Ktν̌N(F ), we obtain a stratification of this space by(︂

X•(o)×K (Ktν̌N(F ) ∩Ktθ̌K)
)︂
/B(o) ∩ act−1(X(o)/B(o))B:λ̌

(where act denotes the action map). Note that Ktν̌N(F )/B(o) = K ×B(o) T (o)tν̌N(F )/B(o),
hence the above can also be written(︂

X•(o)×B(o) (T (o)tν̌N(F ) ∩Ktθ̌K)
)︂
/B(o) ∩ act−1(X(o)/B(o))B:λ̌.

An element of X•(o), multiplied by tν̌N(F ), lands in (X(o)/B(o))B:λ̌ if and only if it belongs

to X•(o)B:λ̌−ν̌ , showing that the sets corresponding to Z λ̌−ν̌,λ̌ (and also to Z λ̌−ν̌,λ̌,θ̌
′,η̌, after a

further stratification by G-valuations) are indeed subspaces of X•(o)×K Ktθ̌K.
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Here comes the important geometric input: the topology on the affine Grassmannian, resp.

on the arc space of X (or rather, its global models), implies that Z λ̌−θ̌,λ̌,0,θ̌ is open and dense.

This is a combination of the statements that X•(o) is (tautologically) open dense in X•(o)

(allowing us to take θ̌′ = 0), that the Cartan double coset Ktθ̌K is (again tautologically) open

dense in its closure, and that the MV cycle Ktθ̌K ∩Ktθ̌N(F ) is open in it.

The open MV stratum on the affine Grassmannian K\G(F ) meets the coset K\Ktθ̌K along

the N(o)-orbit K\Ktθ̌N(o). Therefore, the quotient

(T (o)tθ̌N(F ) ∩Ktθ̌K)/B(o)

is just a point (θ̌ is anti-dominant). Thus,

X•(o)B:λ̌−θ̌ ×
B(o) (T (o)tθ̌N(F ) ∩Ktθ̌K)/B(o) = (X•(o)/B(o))B:λ̌−θ̌,

which, on the other hand, can be identified as an open dense subset of (X(o)/B(o))G:θ̌
B:λ̌

. Thus,

in the geometric setting, the action map (5.8), restricted to the subsets with B-valuation equal

to some (any) λ̌, is indeed birational. On the other hand, the map Yλ̌ → MX is smooth for
large λ̌ (Corollary 3.5.2), proving the birationality of (the geometric version of) (5.8).

5.5.2. We now turn to the actual proof of Theorem 5.1.1.

Since Gr
Θ̌

G,CΘ̌ lives over CΘ̌, we can factor actM into

(5.9) MX ×̃Gr
Θ̌

G,CΘ̌

act
CΘ̌−→ MX ×CΘ̌ pr1−→MX

where actCΘ̌ is the naturally induced map over CΘ̌.

Lemma 5.5.3. Let Θ̌ ∈ Sym∞(c−X − 0).

(i) The preimage of MΘ̌
X in MX ×̃Gr

Θ̌

G,CΘ̌ under actM is contained in the open substack

BunH ×̃GrΘ̌
G,C̊Θ̌ .

(ii) The image actM(BunH ×̃Gr
Θ̌

G,C̊Θ̌) ⊂MX contains MΘ̌
X as an open dense substack.

Proof. Statement (i) follows from the description of actM on k-points, Lemma 5.2.4, and the
fact that no element of c−X − 0 is ⪯ 0.

To simplify notation, we give the proof of (ii) in the case when Θ̌ = [θ̌], θ̌ ̸= 0 is a singleton
partition. The general case is entirely analogous.

Now we are considering actC : MX ×Gr
θ̌

G,C →MX ×C. Recall that we have a locally closed

embedding Mθ̌
X ↪→MX×C. First we show thatM := actC(BunH ×̃Gr

θ̌

G,C) ⊂MX×C contains

Mθ̌
X . Fix v ∈ |C|. Take an arbitrary H-bundle PH ∈ BunH(k), and choose a trivialization of

PH |Spec ov , which induces a trivialization τ0 : (PH ×H G)|Spec ov
∼= P0

G|Spec ov . Then (PH , v, τ0)

defines a point of ˆ︁MX . We also have the point tθ̌ ∈ Grθ̌G,v. The image of (PH , v, τ0, t
θ̌) gives a

point in MX ×̃Grθ̌G,v, and by construction actC will send this point to the stratum Mθ̌
X .

Thus we have shown that M contains a point of Mθ̌
X over every point v ∈ |C|. It follows

from Lemma A.4.7 that M ⊂ MX ×C is stable under generic-Hecke modifications away from
the marked point in C. Since these generic-Hecke modifications act transitively on the stratum

Mθ̌
X (Proposition A.4.5), we deduce that M contains all of Mθ̌

X .
The previous paragraph and Lemma 5.2.4 imply that

Mθ̌
X =M −

⋃︂
θ̌′≻θ̌

actC(MX ×̃Gr
θ̌′

G),
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which shows that Mθ̌
X is open in M .

Since Gr
θ̌

G is irreducible, for every connected component U of BunH , the image MU :=

actC(U ×̃Gr
θ̌

G,C) is irreducible. It is easy to see that its intersection with Mθ̌
X is nonempty,

hence dense. □

As a corollary, we can now prove Theorem 5.1.1(i):

Proof of Theorem 5.1.1(i). Let M denote an irreducible component of M
0

X . Then M ′ :=

actM(M ×̃Gr
Θ̌

G,C) is an irreducible closed substack of MX , and since M contains a connected

component of BunH , Lemma 5.5.3(ii) implies thatM ′∩MΘ̌
X is dense inM ′. It follows that MΘ̌

X

is dense in actM(M
0

X ×̃Gr
θ̌

G,C). □

5.5.4. Base change to Zastava model. Fix θ̌ ∈ c−X − 0 and a point v ∈ |C|. Consider the

restriction of actM to MX ×̃Gr
θ̌

G,v →MX , which is the fiber of actC over v → C = C [θ̌].

Let us consider for λ̌ ∈ cX the fiber product diagram

(5.10)

Z?,λ̌
v Yλ̌

M
0

X ×̃Gr
θ̌

G,v MX

actY

actM

An S-point of Z?,λ̌
v consists of the data (σ,PG,P

′
B , v, τ) where

• (σ,PG) ∈M
0

X ,

• P′B ∈ Bun−λ̌B is a B-structure on a G-bundle P′G := G×B P′B ,

• τ : P′G|(C−v)×S ∼= PG|(C−v)×S is a modification inducing a point in Gr
θ̌

G such that

τ−1 ◦ σ generically lands in X◦×B P′B .

Let ˆ︁Y → Y denote the Zariski locally trivial L+B-torsor parametrizing (σ,PB) ∈ Y and a

trivialization PB | ˆ︁C′v ∼= P0
B | ˆ︁C′v , and let ˆ︁Y0 → Y0 be the restriction to M

0

X . (We will use the index

0 for the same purpose on the strata of Y.)

Proposition-Construction 5.5.5.

(i) The fiber product Z?,λ̌
v admits a stratification by

Z λ̌−ν̌,λ̌v := ˆ︁Y0

L+B
× (L+T · tν̌ · LN ∩ L+G · tθ̌ · L+G)/L+B,

where ν̌ ranges over the weights of the irreducible Ǧ-module V θ̌.
(ii) We have an isomorphism at the level of reduced schemes

Z λ̌−ν̌,λ̌v
∼= Yλ̌−ν̌0 ×̃(Sν̌ ∩Gr

θ̌

G).

where Yλ̌−ν̌0 ×̃− means ˆ︁Y0×L+B −.
(iii) The open stratum corresponds to ν̌ = θ̌. More precisely, we have

Z λ̌−θ̌,λ̌v
∼= Yλ̌−θ̌0 × v,

where v corresponds to the embedding {tθ̌} ↪→ Grθ̌G,v.
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Proof. Recall that L+G · tθ̌ · L+G has a stratification by intersecting with L+G · tν̌ · LN . If we
take the quotient on the left by L+G, then under the identification L+G\LG ∼= GrG : g ↦→ g−1,

we have described above the stratification of Gr
−θ̌
G by MV cycles Gr

−θ̌
G ∩ S−ν̌ , where −θ̌ is

dominant. It is known by [MV07, Theorem 3.2] that Gr
−θ̌
G ∩ S−ν̌ is non-empty precisely when

−ν̌ is a weight of V −θ̌, and the open stratum corresponds to when −ν̌ equals −θ̌.
Now let (σ,PG,P

′
B , τ) be an S-point of Z?,λ̌

v . The restriction of (PG,P
′
B , τ) to ˆ︁C ′v gives a

point in L+G\L+G · tθ̌ · L+G/L+B. Therefore, by the previous paragraph, we can stratify Z?,λ̌
v

by the preimages of

L+G\(L+G · tθ̌ · L+G ∩ L+G · tν̌ · LN)/L+B.

Suppose our S-point lies in such a stratum corresponding to ν̌. In particular, τ corresponds
to a point in L+B\(Grν̌B)red, which means that there exists a B-structure PB | ˆ︁C′v on PG| ˆ︁C′v
such that τ gives an isomorphism of generic B-bundles τ : P′B | ˆ︁C◦v ∼= PB | ˆ︁C◦v . By Beauville–

Laszlo’s theorem, the datum (P′B |C−v,PB | ˆ︁C′v , τ) descends to a B-structure PB on PG such that

P′B |C−v ∼= PB |C−v. Then (σ,PB) ∈ Yλ̌−ν̌0 (S) and (σ,PB ,P
′
B , v, τ) ∈ Z λ̌−ν̌,λ̌v (S). The procedure

above can be reversed to see that Z λ̌−ν̌,λ̌v is equal to the entire stratum. This shows (i).

Observe that L+T · tν̌ · LN = LN · tν̌ · L+B and there is a map from (LN · tν̌ · L+B ∩
L+G · tθ̌ · L+G)/L+B to Sν̌ ∩ Gr

θ̌

G which is an isomorphism at the level of reduced schemes.
Now (ii) follows from (i).

The open stratum Z λ̌−θ̌,λ̌v corresponds to the open stratum Gr
−θ̌
G ∩ S−θ̌, when ν̌ = θ̌. By

[MV07, (3.6)], we have Sθ̌ ∩Gr
θ̌

G = {tθ̌} so (iii) is a special case of (ii). □

Observe that M
0

X ×̃Gr
θ̌

G,v has a stratification by MΘ̌′

X ×̃Grη̌G,v for those Θ̌′ ∈ Sym∞(c−X − 0)

such that the stratum MΘ̌′

X belongs to M
0

X — still to be determined, see Lemma 5.6.3 — and

those η̌ ∈ Λ̌−G such that η̌ ≥ θ̌ (equivalently, η̌ is a weight of V θ̌). Let Z?,λ̌,Θ̌′,η̌
v denote the

preimage of the corresponding stratum in Z?,λ̌
v , so we have a Cartesian square

(5.11)

Z?,λ̌,Θ̌′,η̌
v Yλ̌X

MΘ̌′

X ×̃Grη̌G,v MX

actY

actM

This diagram now has no dependence on θ̌ and is defined entirely with respect to η̌. Proposi-
tion 5.5.5 implies that there is a stratification

Z?,λ̌,Θ̌′,η̌
v =

⋃︂
ν̌

Z λ̌−ν̌,λ̌,Θ̌
′,η̌

v

where ν̌ runs through the weights of V η̌, and Z λ̌−ν̌,λ̌,Θ̌
′,η̌

v admits a map to Yλ̌−ν̌,Θ̌
′
. The open

stratum is

Z λ̌−η̌,λ̌,Θ̌
′,η̌

v
∼= Yλ̌−η̌,Θ̌

′
× {tη̌}.

We will make special use of the case Θ̌′ = 0 and η̌ = θ̌ because Lemma 5.5.3 implies that

Yλ̌,θ̌ is contained in the images of Z?,λ̌,0,θ̌
v → Yλ̌ over all v ∈ |C|. Note that Z λ̌−θ̌,λ̌,0,θ̌v = Yλ̌−θ̌,0.

Recall that cDX denotes the monoid generated by ν̌D for D ∈ D.

Corollary 5.5.6. Let θ̌ ∈ c−X − 0.
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(i) The scheme Yλ̌,θ̌ is nonempty only if λ̌ ⪰ θ̌.
(ii) We have an isomorphism (Yθ̌,θ̌)red ∼= C over the diagonal C ↪→ Aθ̌.

(iii) The single point in the central fiber Yθ̌,θ̌ corresponds to tθ̌ ∈ Sθ̌ ∩Grθ̌G.

Proof. As we remarked above, every point of Yλ̌,θ̌ is contained in the image of Z?,λ̌,0,θ̌
v for some

v ∈ |C|. By the description of the stratification of Z?,λ̌,0,θ̌
v , the latter is nonempty only if Yλ̌−ν̌,0

is nonempty for some ν̌. This implies that λ̌ ⪰ ν̌ by Lemma 5.4.1. Since ν̌ ≥ θ̌, we deduce (i).

If λ̌ = θ̌, then Yθ̌−ν̌,0 is only nonempty when ν̌ = θ̌, in which case Y0 = pt and Z0,θ̌,0,θ̌
v =

{tθ̌}. By moving the point v around, we get a surjection C → (Yθ̌,θ̌)red and it must be an

isomorphism (on reduced schemes) since the composition with π : Yθ̌,θ̌ → Aθ̌ gives the diagonal
embedding. □

Let Yλ̌−θ̌,0×̊v denote the disjoint locus Yλ̌−θ̌,0×̊Yθ̌,θ̌v . Observe that the composition

Yλ̌−θ̌×̊v ↪→ Yλ̌−θ̌ × v = Z λ̌−θ̌,λ̌v
actY−→ Yλ̌

coincides with the composition Yλ̌−θ̌×̊v ↪→ Yλ̌−θ̌×̊Yθ̌,θ̌ → Yλ̌ where the second map is given by
the graded factorization property.

Lemma 5.5.7. Let θ̌ ∈ c−X − 0. Then:

(i) The open embedding Yλ̌−θ̌,0×̊Yθ̌,θ̌ ↪→ Yλ̌,θ̌ given by the graded factorization property is
dense.

(ii) For λ̌ large enough, the open stratum Yλ̌−θ̌,0× v ↪→ Z?,λ̌,0,θ̌
v is dense.

Proof. First observe that by Lemma 3.5.4 we may always assume that λ̌ is large enough so that

the conditions of Corollary 3.5.2 hold: namely, Yλ̌ →MX is smooth with connected fibers.

By definition, Yλ̌,θ̌ is the preimage of Mθ̌
X . Now let V be a connected component of Mθ̌

X

that intersects the image of Yλ̌. Then Y
λ̌,θ̌
V := Yλ̌×MX

V is a nonempty connected component

of the smooth scheme Yλ̌,θ̌. Lemma 5.5.3 implies that V lies in actM(U ×̃Grθ̌G,C), where U is a
connected component of BunH . Consider the fiber product diagram

(5.12)

Z?,λ̌,0,θ̌ Yλ̌

BunH ×̃Grθ̌G,C MX

which is the analog of (5.11) where we allow v to vary. The fibers of Yλ̌ →MX are irreducible,

so Z?,λ̌,0,θ̌
U := Z?,λ̌,0,θ̌ ×BunH

U is irreducible and the image of

Z?,λ̌,0,θ̌
U → Yλ̌

contains Y
λ̌,θ̌
V as a dense open. Proposition 5.5.5 (twisted by C) implies that Z?,λ̌,0,θ̌

U has a

stratification
⋃︁
ν̌ Z

λ̌−ν̌,λ̌,0,θ̌
U over the weights ν̌ of V θ̌, and Z λ̌−ν̌,λ̌,0,θ̌U maps to Yλ̌−ν̌,0×BunH

U .

In particular, Yλ̌−ν̌,0U := Yλ̌−ν̌,0×BunH
U is nonempty for some ν̌. Since ν̌ ≥ θ̌, Corollary 3.5.2(ii)

implies that Yλ̌−θ̌,0U is also nonempty. Therefore, the open stratum Z λ̌−θ̌,λ̌,0,θ̌U
∼= Y

λ̌−θ̌,0
U × C is

nonempty. By Corollary 5.5.6, we can identify C ∼= (Yθ̌,θ̌)red, and the map

Yλ̌−θ̌,0×̊C ↪→ Z?,λ̌,0,θ̌ → Yλ̌

coincides with the open embedding Yλ̌−θ̌,0×̊Yθ̌,θ̌ ↪→ Yλ̌,θ̌ given by graded factorization. Then

Yλ̌−θ̌U ×̊C is a nonempty open subscheme of the irreducible component Yλ̌,θ̌V , so it must be dense.
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To show (ii), note that a priori the preimage of Yλ̌,θ̌V in Z?,λ̌,0,θ̌ is contained in a finite union

of Z?,λ̌,0,θ̌
U for connected components U of BunH . However we saw above that the open stratum

Y
λ̌−θ̌,0
U × C is nonempty, and therefore dense in Z?,λ̌,0,θ̌

U , for each such U . □

In the proof above, we have essentially shown Theorem 5.1.1(ii) along the way:

Proof of Theorem 5.1.1(ii). To simplify notation, we only show the case Θ̌ = [θ̌]. The multi-
point version is proved in exactly the same way. We continue to use the notation from the
previous proof of Lemma 5.5.7. By Corollary 3.5.2 and the base change diagram (5.12), it is
enough to show, by restricting to open dense subsets, that

Z?,λ̌,0,θ̌ → Yλ̌ ×
MX

M
θ̌

X

is birational for λ̌ large enough. It follows from Lemma 5.5.7 that Yλ̌−θ̌,0×̊C is a dense open in
both the target and source. □

Proof of Theorem 5.1.1(iii). Again to simplify notation we only show the case Θ̌ = [θ̌]. By
Zariski’s Main Theorem, it suffices to show that the restriction of actM to

(5.13) act−1M (Mθ̌
X) ∩ (BunH ×̃Grθ̌G,C)→Mθ̌

X

is a bijection on k-points. By Lemma A.4.7, this map is equivariant with respect to generic-
Hecke modifications away from the marked point in C. Fix a marked point v ∈ C and let

Mθ̌
X,v denote the preimage of v under the projection Mθ̌

X → C. By Proposition A.4.5, all

the k-points of Mθ̌
X,v are equivalent under the equivalence relation generated by generic-Hecke

correspondences. Thus it suffices to determine the fiber of (5.13) at the single point {tθ̌v} = Yθ̌,θ̌.

By Proposition 5.5.5, the fiber of tθ̌v has a stratification by Yθ̌−ν̌,0 ×̃(Sν̌ ∩ Gr
θ̌

G) for ν̌ a weight

of V θ̌. On the other hand, Corollary 5.5.6 implies that Yθ̌−ν̌,0 is nonempty only if ν̌ = θ̌. In

this case Y0,0 × (Sθ̌ ∩Gr
θ̌

G) is a point. □

5.5.8. Recall that for an arbitrary algebraic groupH, the algebraic fundamental group π1(H) is
defined as the quotient of the coweight lattice by the coroot lattice of the reductive group H/Hu,

where Hu is the unipotent radical of H. For µ̌ ∈ π1(H), let Bunµ̌H denote the corresponding

connected component of BunH and let µ̌M
0

X be its closure in MX .

Corollary 5.5.9. Let Θ̌ ∈ Sym∞(c−X − 0). Then the set of irreducible components of M
Θ̌

X is in
bijection with π1(H), where µ̌ ∈ π1(H) corresponds to

µ̌M
Θ̌

X := actM(µ̌M
0

X ×̃Gr
Θ̌

G,CΘ̌).

Proof. It follows from Theorem 5.1.1 that the irreducible components of M
Θ̌

X are in bijection

with the irreducible components of BunH ×̃Gr
Θ̌

G,CΘ̌ . Since Gr
Θ̌

G,CΘ̌ is irreducible, the latter are
in bijection with π0(BunH) = π1(H). □

We will let µ̌MΘ̌
X := µ̌M

Θ̌

X ∩ MΘ̌
X denote the corresponding connected component of MΘ̌

X

(which is smooth).
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5.5.10. Mirković–Vilonen cycles. We finish this subsection by proving a result that will be used
in the following sections. The goal here is to show that the Mirković–Vilonen cycles in the θ̌-
stratum of the affine Grassmannian map, generically, to the θ̌-stratum of the global model of
X, under the action map.

Fix v ∈ |C| and θ̌ ∈ c−X − 0. Consider the restriction of actM,v to

(5.14) pt×Gr
θ̌

G,v → BunH ×̃Gr
θ̌

G,v →M
θ̌

X ,

where pt→ BunH corresponds to the trivial H-bundle. Note that the map (5.14) above can be
extended to a map

(5.15) actv : GrG ×
LX/L+G

(L+X/L+G)→MX

using Beauville–Laszlo’s theorem: a point of the left hand side consists of a G-bundle PG and
a trivialization τ : PG|C−v ∼= P0

G|C−v such that τ−1 ◦ x0 : C − v → X ×G PG is regular when
localized at ov. Here x0 : C → X ×G P0

G = X ×C denotes the section corresponding to the

base point x0 ∈ X◦. Thus, actv(PG, τ) := (PG, τ
−1 ◦ x0) ∈Mθ̌

X is well-defined.

Define
◦
Grθ̌G ⊂ Grθ̌G to be the open subscheme equal to the preimage of the stratum Mθ̌

X

under (5.14). We can also identify
◦
Grθ̌G = Grθ̌G ×

LX/L+G
(Lθ̌X/L+G).

Taking central fibers with respect to v, the restriction of actv to a semi-infinite orbit factors
through

(5.16) Sλ̌ ∩Gr
θ̌

G ↪→ Yλ̌ ×
MX

M
θ̌

X ,

where λ̌ is a weight of V θ̌ and we consider (Yλ̌)red as a subscheme of Sλ̌ via Lemma 4.3.2. Note

that Sλ̌ ∩ Gr
θ̌

G is isomorphic to the closed stratum Z0,λ̌
v from Proposition 5.5.5. Under this

identification (5.16) coincides with the restriction of the map actY : Z?,λ̌
v → Yλ̌ from (5.10).

Observe that Sθ̌ ∩Gr
θ̌

G = {tθ̌} is contained in
◦
Grθ̌G. We will use this to deduce:

Lemma 5.5.11. Let λ̌, θ̌ as above. Then Sλ̌ ∩
◦
Grθ̌G intersects every irreducible component of

Sλ̌ ∩Gr
θ̌

G.

Proof. Let Z denote an irreducible component of Sλ̌ ∩ Gr
θ̌

G, which must be of dimension d =

⟨ρG, λ̌ − θ̌⟩. Let Z denote its closure in S
λ̌ ∩ Gr

θ̌

G. Then the proof of [MV07, Theorem 3.2],

which we briefly recall in the next paragraph, shows that Z contains tθ̌ ∈
◦
Grθ̌G. Thus, Z ∩

◦
Grθ̌G

is open and nonempty, hence dense in Z.

Since the boundary of Sλ̌ in S
λ̌
is a hyperplane section (Proposition 4.4.1), Z−Z contains an

irreducible component of dimension d− 1 inside Sλ̌1 ∩Gr
θ̌

G for λ̌1 < λ̌. In this way we produce

a sequence λ̌ = λ̌0, . . . , λ̌d and irreducible components of Sλ̌i ∩ Z of dimension d− i. The only

weight λ̌d of V θ̌ such that ⟨ρG, λ̌− λ̌d⟩ ≥ d is λ̌d = θ̌, so Z must contain Sθ̌ ∩Gr
θ̌

G = {tθ̌}. □

5.6. Closure relations and components in the global model. Let Θ̌, Θ̌′ ∈ Sym∞(c−X−0).
Consider Θ̌′ − Θ̌ as a formal sum in

⨁︁
θ̌∈c−X−0

Z[θ̌]. We say that

Θ̌′ ⪰ Θ̌
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if Θ̌′−Θ̌ can be written as a sum of formal differences [θ̌′]−[θ̌] where θ̌, θ̌′ ∈ c−X and θ̌′ ⪰ θ̌. Note

that we allow θ̌ = 0 (in which case [0] = 0), and for general θ̌, θ̌′ as above, it is not necessarily
the case that θ̌ − θ̌′ ∈ V.

Proposition 5.6.1. Let Θ̌, Θ̌′ ∈ Sym∞(c−X − 0). We have that MΘ̌′

X lies in the closure of MΘ̌
X

if and only if there exists Θ̌′′ ∈ Sym∞(c−X − 0) such that Θ̌ refines Θ̌′′ and Θ̌′ ⪰ Θ̌′′.

Remark 5.6.2. We warn that our notation in Corollary 5.5.9 is unfortunately not compatible

with the closure relations in the following sense: it is possible that µ̌M
Θ̌

X ∩MΘ̌′

X ̸= µ̌MΘ̌′

X for

Θ̌′ ≻ Θ̌ and µ̌ ∈ π1(H).

The reader may want to skip the proof of this proposition at first reading, and focus on the
corollaries that follow. Note that the proof will use Zastava models, despite the fact that the
statement is about the global model. The proof of the proposition starts with the following
special case:

Lemma 5.6.3. The closure of M0
X in MX intersects MΘ̌

X only if Θ̌ ⪰ 0.

Proof. Let Θ̌ correspond to a stratum such that MΘ̌
X intersects M

0

X . Then by Corollary 3.5.2

there exists λ̌ such that Yλ̌,Θ̌ intersects the closure of Yλ̌,0 in Yλ̌. Now consider the torsor
H ′\G′ → X• from Lemma 5.3.3. Let X ′ = Spec k[H ′\G′] considered as an affine G′-variety.

The corresponding compactified Zastava model Y
D

X′ → ADX′ is indexed by D ∈ cX′ = ND. Since
X ′•/B′ ∼= X•/B as stacks, Yλ̌,0X is a disjoint union of YDX• = Y

D,0
X′ ranging over all D ∈ ND such

that ϱX(D) = λ̌ (see §5.4). Choose D ∈ ND such that the closure of YDX• in Yλ̌X intersects the

stratum Y
λ̌,Θ̌
X . The map

(5.17) Y
D

X′ → Y
λ̌

X

is proper because Y
D

X′ ,Y
λ̌

X are proper over ADX′ ,A
λ̌
X , respectively, and the natural map ADX′ →

Aλ̌X is proper. Therefore, the closure of YDX• in Yλ̌X is contained in the image of (5.17). Note

that the stratification of MX′ is indexed by Θ̌′ ∈ Sym∞(c−X′ − 0). In particular, Θ̌′ ⪰ 0 since

cX′ = ND. Therefore, Y
D

X′ is a union of Y
D

X′ ×MX′ M
Θ̌′

X′ for Θ̌
′ ⪰ 0, which implies its image in

Y
λ̌

X is contained in the union of Y
λ̌

X ×MX
MΘ̌
X for Θ̌ ⪰ 0. □

Proof of Proposition 5.6.1. By Theorem 5.1.1(i), the closure of MΘ̌
X is equal to the image of

M
0

X ×̃Gr
Θ̌

G,CΘ̌ , so we will consider the latter. Note that CΘ̌ is stratified by disjoint loci C̊Θ̌′′

for all partitions Θ̌′′ such that Θ̌ refines Θ̌′′. By the description of the fibers of GrΘ̌
G,CΘ̌ → CΘ̌

in (5.3), we have an identification

Gr
Θ̌

G,CΘ̌ ×
CΘ̌

C̊Θ̌′′ = Gr
Θ̌′′

G,C̊Θ̌′′

at the level of reduced schemes. Therefore, replacing Θ̌ by Θ̌′′, it suffices to show that the

image of M
0

X ×̃Gr
Θ̌

G,C̊Θ̌ contains MΘ̌′

X if and only if Θ̌′ ⪰ Θ̌.
The “only if” direction follows from the description of actM on k-points and Lemmas 5.2.4

and 5.6.3.

We will show the “if” direction only in the case when Θ̌ = [θ̌], Θ̌′ = [θ̌′] are singleton (so
θ̌′ ⪰ θ̌) to lessen notation (allowing θ̌ = 0), but the multi-point version is proved in exactly the

same way. Fix v ∈ |C|. We have a distinguished point in Mθ̌′

X degenerate at v: the image under
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actv of tθ̌
′ ∈ Yθ̌

′,θ̌′ . We will show that M
θ̌

X contains this point. Then, stability of M
θ̌

X under
generic-Hecke correspondences (Theorem 5.1.1(i) and Lemma A.4.7) and Proposition A.4.5

imply that M
θ̌

X contains all of Mθ̌′

X,v.

Since θ̌′ ⪰ θ̌, we can decompose θ̌′ − θ̌ =
∑︁d
j=1 ν̌j for (not necessarily distinct) ν̌j equal to

valuations of colors Dj ∈ D (in case Dj is not uniquely determined by its valuation, the choice

of Dj is arbitrary). The graded factorization property gives a map C̊ := Yθ̌,θ̌×̊
∏̊︁
jY
Dj

X• → Yθ̌
′
.

We claim that the image of C̊ contains C = Y
θ̌′,θ̌′

red in its closure. (Note that C̊red = C̊d+1.) This

will produce an irreducible variety whose generic point maps to Mθ̌
X while a special point maps

to actv(t
θ̌′) ∈Mθ̌′

X .

Consider the Beilinson–Drinfeld affine Grassmannian GrB,Cd+1 , whose fiber over d+ 1 pair-

wise distinct points (v0, . . . , vd) ∈ C̊d+1 is
∏︁d
j=0 GrB while the fiber over v0 = . . . = vd is GrB .

By Lemma 4.3.2, we have an isomorphism Yλ̌ ∼= Grλ̌B ×LX/L+B(L
+X/L+B), which depends on

a fixed base point x0 ∈ X. Now a reduction to Gm\GL2 (see proof of Lemma 5.4.2 and Exam-

ple 4.3.3) shows that the central fiber Y
Dj

X• = pt is contained in L+N · tν̌j ⊂ Gr
νj
B . Therefore, C̊

is contained in the orbit of the multi-point jet space (L+N)Cd+1 acting on the closed subscheme

Cd+1 ⊂ GrT,Cd+1 ⊂ GrB,Cd+1 given by (v0, . . . , vd) ↦→ tθ̌v0
∏︁
j t
ν̌j
vj , where the vj ’s are allowed to

collide. The orbit of (v0, . . . , vd) ∈ C̊d+1 is

{tθ̌v0}×
∏︁d
j=1(L

+N · tν̌jvj ) ⊂ Grθ̌B,v0 ×
∏︁d
j=1 Gr

ν̌j
B,vj

,

while the orbit of the diagonal v = v0 = . . . = vd is L+N · tθ̌′v = {tθ̌′v } ⊂ Grθ̌
′

B,v since θ̌′ is
antidominant.

Now assume that C = A1, which is justified by Proposition 4.2.3. Then we can identify

(L+N)C = L+N ×C. Let YDj

X• correspond to the point njt
ν̌j ∈ GrB for nj ∈ L+N(k). For any

pairwise distinct v0, . . . , vd ∈ A1 we have a line A1 → Cd+1 : a ↦→ (av0, . . . , avd) contracting all
points to 0. Multiplication defines a map m : (L+N ×C)d → (L+N)Cd . Letting m(n1, . . . , nd)

act on the point tθ̌av0
∏︁
j t
ν̌j
avj ∈ GrT,Cd+1 as a→ 0, we get a curve connecting {tθ̌v0}×

∏︁
Y
Dj

X•,vj

to tθ̌
′

0 . Hence the closure of C̊ in Yθ̌
′ ×Aθ̌′ Cd+1 ⊂ GrB,Cd+1 contains Y

θ̌′,θ̌′

red . Since the map

Cd+1 → Aθ̌
′
is finite and C̊ is irreducible, we have proved the claim. □

Now we draw some corollaries from Proposition 5.6.1.

Corollary 5.6.4. The open substack M0
X = BunH is dense in MXcan iff cDX ∩ V = c−Xcan .

This is an analog of [BG02, Proposition 1.2.3], which says that BunB is dense in BunB if
[G,G] is simply connected.

Proof. Indeed, cDX ∩ V = c−Xcan is precisely the condition that every Θ̌ ∈ Sym∞(c−X − 0) is
⪰ 0. □

Define DGsat(X) to be the set of primitive elements in Prim(c−X) that cannot be decomposed

as a sum θ̌ + λ̌ where θ̌, λ̌ are both nonzero, θ̌ ∈ c−X and λ̌ ⪰ 0 (see §3.1.4 for the definition of
primitive). Note that DGsat(X) contains ϱX(D(X) − D), the valuations of the G-stable prime
divisors, but the containment may be strict.

Corollary 5.6.5. There is a bijection between the set of irreducible components of MX and

π1(H)×Sym∞(DGsat(X)),
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such that µ̌ ∈ π1(H), Θ̌ ∈ Sym∞(DGsat(X)) corresponds to µ̌M
Θ̌

X .

Proof. For any Θ̌′ ∈ Sym∞(c−X−0), let Θ̌′′ ∈ Sym∞(c−X−0) be a minimal element with respect to

the ordering ⪯ such that Θ̌′′ ⪯ Θ̌′. Then Θ̌′′ can be refined to an element Θ̌ ∈ Sym∞(DGsat(X)).
Therefore, the closure relations from Proposition 5.6.1 tell us that any stratum is contained in

the closure of MΘ̌
X for a partition Θ̌ as above. By definition if θ̌1, θ̌2 ∈ DGsat(X) satisfy θ̌1 ⪰ θ̌2

then they must be equal. From this one deduces that MΘ̌
X is not contained in the closure of

any other stratum.

Thus, the closure of each MΘ̌
X , Θ̌ ∈ Sym∞(DGsat(X)), is a union of irreducible components,

and no irreducible component is contained in two different such closures. The Corollary now

follows from the description of irreducible components of MΘ̌
X by Corollary 5.5.9. □

Lemma 5.6.6. Let X1 → X2 be a G-equivariant map of affine spherical varieties with X•1 =
X•2 = H\G. Then the induced map MX1 →MX2 is a closed embedding.

Proof. Let S be a test scheme and let (PG, σ2) ∈ MX2
(S), where σ2 : C ×S → X2×G PG is

a section. By Corollary 3.5.2 there exists a B-structure PB on PG after a suitable surjective
étale base change S′ → S such that (PB , σ2) ∈ YX2(S

′). Then in particular there exists a
relative effective divisor D ⊂ C ×S′ such that σ2(C ×S′ −D) ⊂ X◦2 ×B PB , cf. §3.7.1. Since
X•1 = X•2 , we have X◦1 = X◦2 . By Lemma 3.7.3 the condition that σ2|C×S′−D extends to a
section C ×S′ → X1×B PB = X1×G PG is closed in S′. Therefore, S′×MX2

MX1
→ S′ is a

closed embedding. □

Lemma 5.6.6 implies that MXcan is a closed substack of MX containing M
0

X , and when the

condition of Corollary 5.6.4 is satisfied, MXcan = M
0

X .

5.7. Closure relations and components in the Zastava model. In order to extend the
results above to strata of Y, we will need the following result:

Lemma 5.7.1. Let y ∈ Yλ̌(k) for λ̌ ∈ cX . For any simple root α with D(α) = {D+
α , D

−
α } and

any N ≫ 0, there exists a k-point

y′ ∈ Yλ̌×̊C(N)×̊C(N) ⊂ Yλ̌×̊YNν̌
+
α ×̊YNν̌

−
α

such that the first coordinate is y and the image of y′ under the composition

Yλ̌×̊YNν̌
+
α ×̊YNν̌

−
α → Yλ̌+Nα̌ →MX

coincides with the image of y.

Above we are using the fact, from Lemma 5.4.2, that YNν̌
±
α contains C(N) if ν̌+α ̸= ν̌−α or

C(N)⊔C(N) if ν̌+α = ν̌−α . In the latter case, Lemma 5.7.1 is picking out one of these components
(depending on the point y).

Proof. The point y is equivalent to a datum (PB , σ) where PB is a B-bundle on C and σ :
C → X ×B PB is a section. Let PG = G×B PB denote the induced G-bundle. The image
of y in MX corresponds to (PG, σ). Set k := k(C). Then σ|Spec k defines a trivialization of
PG|Spec k, which we fix. With respect to this trivialization, B-structures on PG are in bijection
with sections Speck→ G/B, and PB corresponds to 1B ∈ (G/B)(k). The preimage of (PG, σ)
in Y identifies with the orbit H(k) · 1B ⊂ (G/B)(k). Since X◦Pα/R(Pα) = Gm\PGL2, the
orbit of H ∩ Pα on 1 ∈ Pα/B = P1 is Gm. Let r ∈ Gm(k) = k(C)× be a rational function
on the curve C. Then the principal divisor defined by r is of the form v+ − v− where v±

are effective divisors with disjoint supports. By the Riemann–Roch theorem, for any N ≫ 0
there exists r ∈ k(C)× such that deg(v+) = deg(v−) = N and the supports of v+ and v− are
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both contained in σ−1(X◦×B PB). Under the isomorphism X◦Pα/B ∼= Gm\P1, let us identify
D+
α with 0 ∈ P1 and D−α with ∞ ∈ P1. Then the preimage of (PG, σ) in Y corresponding to

r ∈ P1(k) has the desired property. □

Recall from Corollary 5.5.9 that the irreducible components of MΘ̌
X are denoted by µ̌MΘ̌

X ,

with µ̌ ∈ π1(H). For any λ̌ ∈ cX , define µ̌Yλ̌,Θ̌ = Yλ̌×MX
µ̌MΘ̌

X and µ̌Yλ̌,⪰Θ̌ := Yλ̌×MX
µ̌M

Θ̌

X .

Corollary 5.7.2. For any λ̌ ∈ cX , µ̌ ∈ π1(H), Θ̌ ∈ Sym∞(c−X − 0), the scheme µ̌Yλ̌,⪰Θ̌ is

irreducible (if nonempty), and µ̌Yλ̌,Θ̌ is open dense in it.

Proof. For λ̌ large enough, the claim immediately follows from Corollaries 3.5.2 and 5.6.5.
Now, for arbitrary λ̌, consider λ̌′ = λ̌+

∑︁
α∈∆G

nαα̌ large enough. By the graded factorization
property and Lemma 5.7.1, there exists an étale map

(5.18) µ̌Yλ̌,⪰Θ̌×̊C→ µ̌Yλ̌
′,⪰Θ̌,

where C =
∏̊︁

∆G
C(nα)×̊C(nα).

By the validity of the proposition for large λ̌′, we know that µ̌Yλ̌
′,Θ̌ is connected and dense

in µ̌Yλ̌
′,⪰Θ̌. Therefore, if µ̌Yλ̌,⪰Θ̌ is not irreducible, there exist y1, y2 in disjoint connected

components of µ̌Yλ̌,Θ̌ and c1, c2 ∈ C such that (y1, c1) and (y2, c2) have the same image in
µ̌Yλ̌

′,Θ̌. Let |c1|, |c2| ⊂ |C| denote the support of c1, c2 as divisors. From the definition of the
factorization map (5.18), if (y1, c1) and (y2, c2) have the same image, we have

y′ = y1|C−(|c1|∪|c2|) = y2|C−(|c1|∪|c2|) : C − (|c1| ∪ |c2|)→ X/B.

We can extend y′ to an element of Yλ̌−ν̌,Θ̌ with |c1|∪ |c2| in its B-nondegenerate locus, for some
ν̌ ≻ 0. By replacing C by a possibly different irreducible scheme C′, we may assume that |c1|
and |c2| are disjoint. Now we must have (y′, c2) ↦→ y1, (y

′, c1) ↦→ y2 under the factorization map

Yλ̌−ν̌,Θ̌×̊C′ → Yλ̌,Θ̌. This implies that y1, y2 were originally in the same connected component.
□

Corollary 5.7.3. For every λ̌ ∈ cX , there is an injection from the set of irreducible components

of Yλ̌ to π1(H)×Sym∞(DGsat(X)).

Proof. By Corollaries 5.7.2 and 5.6.5, the irreducible components Yλ̌ are those µ̌Yλ̌,⪰Θ̌ that are
nonempty, for Θ̌ ∈ Sym∞(DGsat(X)). □

In §6.2, and in particular Corollary 6.2.2, we will see a different description of the irreducible

components of YX , based on the partition of YX• = Y
?,0
X into the subschemes YDX• of §5.4.

6. Stratified semi-smallness

We keep the assumptions of §5, i.e., B acts simply transitively on X◦ and every simple root
of G is a spherical root of type T .

The main result of this section is the following, which will be proved in §6.3.

Theorem 6.0.1. Under the assumptions above, π̄!(IC
Y

λ̌) is perverse and constructible with

respect to the stratification Aλ̌ =
⋃︁

deg(P)=λ̌ C̊
P of Proposition 3.2.3.
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6.1. Upper bounds on dimension. Define

Y
λ̌,⪰θ̌

= Y
λ̌ ×
MX

M
θ̌

X ⊂ Y
λ̌

Y
λ̌,⪰θ̌

= Y
λ̌,⪰θ̌ ∩ Y

λ̌ ⊂ S
λ̌

and let Yλ̌,⪰θ̌,Yλ̌,⪰θ̌ denote the corresponding intersections with Yλ̌ (the notation is justified

by Proposition 5.6.1). From the stratification Y
λ̌
=
⋃︁
ν̌Y

λ̌
we deduce that

Y
λ̌,⪰θ̌

=
⋃︂
λ̌′≤λ̌

Yλ̌
′,⪰θ̌.

Proposition 6.1.1. Let λ̌ ∈ cX − 0 and θ̌ ∈ c−X . For any connected component Y of Yλ̌,θ̌, we
have

(6.1) dim(Yλ̌ ∩ Y ) ≤ 1

2
(dim(Y )− 1).

Moreover, whenever the inequality above is an equality for an irreducible component Y of

Yλ̌ ∩ Y , the same holds for the inequality of Proposition 4.4.2; that is, the closure Y in the

affine Grassmannian GrG meets a semi-infinite orbit Sλ̌
′
with

⟨︁
ρG, λ̌− λ̌′

⟩︁
= dimY.

Proof. Let Y denote the closure of Y in Y
λ̌
. Recall from Corollary 5.7.2 that Y = Yλ̌×MX

M

where M is a connected component of Mθ̌
X . Then we have Y ⊂ Y

λ̌×MX
M where M is the

closure of M in M
θ̌

X .

Fix an irreducible component Y of Yλ̌∩Y and let Y be its closure in Y
λ̌∩Y . From Proposi-

tion 4.4.2 we know, by intersecting Y with semi-infinite orbits in the affine Grassmannian, that

there is a λ̌′ ≤ λ̌ with Y′ := Y∩Sλ̌′ nonempty of dimension zero, and d := dimY ≤ ⟨ρG, λ̌− λ̌′⟩.
Note that Y′ ⊂ Yλ̌

′ ∩ Y ⊂ Yλ̌
′ ×MX

M .
Since λ̌−λ̌′ ∈ Λ̌pos

G , we can decompose λ̌−λ̌′ =
∑︁
α∈∆G

nα(ν̌D+
α
+ ν̌D−α ) where the sum is over

simple roots and
∑︁
nα = ⟨ρG, λ̌− λ̌′⟩. By the graded factorization property and Lemma 5.7.1,

there is an étale map

(6.2) (Yλ̌
′
×
MX

M )×̊
∏̊︂
α∈∆G

(C(nα)×̊C(nα))→ Yλ̌ ×
MX

M

over M .
If λ̌′ ̸= 0, then Yλ̌

′ ×MX
M contains Y′×̃C and hence (6.2) implies that dim(Y ) ≥ 1 +

2⟨ρG, λ̌− λ̌′⟩. Therefore,

(6.3) d ≤ ⟨ρG, λ̌− λ̌′⟩ ≤
1

2
(dim(Y )− 1)

if λ̌′ ̸= 0. This proves the claim in the case λ̌′ ̸= 0.

There remains to consider when d = ⟨ρG, λ̌ − λ̌′⟩ and λ̌′ = 0. In particular, Y0×MX
M
θ̌

X is

nonempty, which can only be the case if θ̌ = 0 since Y0 = Y0,0 = pt. When considering Yλ̌,0, we
may use §5.3 to reduce to assuming that cX = ND. In this case again by Proposition 4.4.2, there
is a simple root α and an irreducible component Yd−1 of Y ∩ Sα̌ of dimension 1 such that Yd−1
contains Y0,0 = pt. This implies that Yd−1 is an irreducible component of Yα̌,0 of dimension 1.
Since cX is now the free monoid, α̌ = ν̌D+

α
+ ν̌D−α for D(α) = {D+

α , D
−
α }. Lemma 5.4.2 implies

that Yα̌,0 is empty, a contradiction. □
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6.2. Connected components of open Zastava. Recall from §5.4 that Y
?,0
X = YX• is a

disjoint union of subschemes YDX• , indexed by D ∈ ND, i.e., multisets of colors. Therefore, we
have a map π0(YX•)→ ND. On the other hand, Corollary 5.7.3 gives an injection π0(YX•) ↪→
π1(H)× cX where µ̌Yλ̌,0 ↦→ (µ̌, λ̌) when the former is nonempty.

Observe that π1(H)⊗Q ∼= X (H)⊗Q. Then tensoring (5.5) by Q, we get an injection

(6.4) ZD ↪→ QD ↪→ (π1(H)× Λ̌X)⊗Q.

One can check that the maps above fit into a commutative diagram

(6.5)

π0(YX•) π1(H)× cX

ND (π1(H)× Λ̌X)⊗Q(6.4)

We now show that the left vertical arrow is a bijection.

Lemma 6.2.1. For D ∈ ND, the smooth scheme YDX• is connected of dimension len(D).

Proof. As discussed in §5.4, we may assume that X = Xcan and cX = ND. Now the claim is

equivalent to showing that, under those assumptions, Yλ̌,0 is connected for λ̌ =
∑︁
nD′ ν̌D′ . One

deduces from the graded factorization property of Y that if Yλ̌,0 is not connected, there must
exist a possibly different λ̌ with a connected component Y contained entirely in the preimage

of the diagonal Yλ̌,0×Aλ̌,δλ̌ C. Then dim(Yλ̌ ∩ Y ) = dimY − 1, and the dimension inequality
of Proposition 6.1.1 can only hold if dimY = 1. By Corollary 5.7.2, the component Y must
be of the form

Y = µ̌Yλ̌,0 = Bunµ̌H ×
BunG

Bun−λ̌B

for some µ̌ ∈ π1(H). Now by the graded factorization property and Lemma 5.7.1, we have an
étale map

µ̌Yλ̌,0×̊
◦∏︂

α∈∆G

C(Nα)×̊C(Nα) → µ̌Yλ̌
′,0

for λ̌′ = λ̌+
∑︁
Nαα̌ and any Nα large enough. Thus, dim µ̌Yλ̌

′,0 = 1+2
∑︁
Nα. By Lemma 3.5.1

we may assume that Bun−λ̌
′

B → BunG is smooth. Note that dimBunµ̌H only depends on the
image of µ̌ in π1(H)⊗Q. On the other hand, the commutative diagram (6.5) says that this

image is determined by λ̌′. These observations imply that Yλ̌
′,0 = BunH ×

BunG

Bun−λ̌
′

B is equidi-

mensional. However we know that Yλ̌
′,0 has a connected component birational to Aλ̌

′
, which is

of dimension
∑︁
nD′ + 2

∑︁
Nα. The equality

dim µ̌Yλ̌
′,0 = 1 + 2

∑︁
Nα =

∑︁
nD′ + 2

∑︁
Nα

forces λ̌ = ν̌D′ for some color D′ ∈ D, hence D = D′. Lemma 5.4.2 now implies that Yν̌D,0 is
connected. □

Corollary 6.2.2. For every λ̌ ∈ cX , θ̌ ∈ c−X , the connected components of Yλ̌,θ̌ are in bijection
with the closures of

YDX•×̊Yθ̌,θ̌ ↪→ Yλ̌,θ̌

for D ∈ ND such that ϱX(D) = λ̌− θ̌.

Proof. Immediate from Lemmas 5.5.7(i) and 6.2.1. □



INTERSECTION COMPLEXES AND UNRAMIFIED L-FACTORS 65

6.3. Stratified semi-smallness. Following [MV07, §4], we will use the notion of a stratified
semi-small map, which we now review. Let f : Y → A be a proper map between two stratified
spaces (Y, S) and (A,T). Suppose all strata are smooth and connected and each f(S), S ∈ S is
a union of strata S′ ∈ T. We say f is étale-locally trivial (in the stratified sense) if whenever
S′ ⊂ f(S), the restriction of f to S ∩ f−1(S′) → S′ is étale-locally a trivial fibration. We say
that f is stratified semi-small if it is étale-locally trivial and for any S ∈ S and any S′ ∈ T such
that S′ ⊂ f(S) we have

(6.6) dim(f−1(a) ∩ S) ≤ 1

2
(dimS − dimS′)

for any (and thus all) a ∈ S′.
The notion of stratified semi-smallness is relevant due to the observation below, which follows

from dimension counting and the definition of the perverse t-structure:

Lemma 6.3.1 ([MV07, Lemma 4.3]). If f is a stratified semi-small map then f∗(F) ∈ PT(A)
for all F ∈ PS(Y ).

Note that the lemma holds even if the stratifications are not Whitney. In this case we
simply define PS(Y ) := P(Y ) ∩ DbS(Y ) to be the subcategory of perverse sheaves that are S-
constructible, i.e., the F ∈ P(Y ) such that Hi(F)|S is a local system of finite rank for all i ∈ Z
and S ∈ S.

6.3.2. Let us return to our situation: consider the proper map π̄ : Y
λ̌ → Aλ̌.

We have the smooth stratification defined in Proposition 4.2.1,

Y
λ̌
=
⋃︂
ν̌,Θ̌

ν̌Y
λ̌,Θ̌

, ν̌Y
λ̌,Θ̌ ∼= Cν̌ ×Yλ̌−ν̌,Θ̌

for ν̌ ∈ Λ̌pos
G , Θ̌ ∈ Sym∞(c−X − 0). Let (Y

λ̌
, S) denote the stratification by the connected

components of ν̌Y
λ̌,Θ̌. We will not show that S is a Whitney stratification; for our purposes the

following suffices:

Lemma 6.3.3. For any λ̌ ∈ cX , the IC complex of Y
λ̌
is S-constructible, i.e.,

IC
Y

λ̌ ∈ PS(Y
λ̌
).

Proof. Let ν̌ ∈ Λ̌pos
G be such that Y

λ̌
= ≤ν̌Y

λ̌
, which exists since Y

λ̌
is of finite type. For any

µ̌ ∈ Λ̌pos
G large enough, we have a smooth correspondence preserving stratifications

Y
λ̌ ← Y

λ̌×̊Yµ̌,0 → ≤ν̌Y
λ̌+µ̌

=: Y

where the right arrow comes from the graded factorization property of Y. Thus, it suffices to
check that ICY is S-constructible. By (4.11), we have an isomorphism

ICY ∼=
(︂
ICMX

⊠
BunG

IC
Bun

−λ̌−µ̌
B

)︂⃓⃓⃓
Y
.

Now Proposition 3.1.7 implies that ICMX
is constructible with respect to the fine stratification

onMX , and Theorem 4.5.3 implies that ICBunB
is constructible with respect to the stratification

by defect. Thus, it follows that ICY is S-constructible. □

Let (Aλ̌,T) denote the stratification from Proposition 3.2.3,

Aλ̌ =
⋃︂
P

C̊P
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for P ∈ Sym∞(cX − 0) such that deg(P) = λ̌.
Now Theorem 6.0.1 follows from Lemmas 6.3.1, 6.3.3 and the following theorem:

Theorem 6.3.4. The map π̄ : (Y
λ̌
, S)→ (Aλ̌,T) is stratified semi-small.

Proof. Fix P ∈ Sym∞(cX − 0) such that λ̌ = deg(P). Let I = {1, . . . , |P|} be the finite set
of cardinality |P|. We fix an ordering P =

∑︁
i∈I [λ̌i] on our partition P, so each λ̌i ∈ cX . Let

C̊I denote the I-fold product CI with the diagonal divisor removed. Then the map C̊I → C̊P

corresponds to choosing an ordering on an unordered multiset of points in C.
We leave it to the reader to check that π̄(S) is a union of strata for S ∈ S. It is also a

consequence of the graded factorization property that for ν̌ ∈ Λ̌pos
G , Θ̌ ∈ Sym∞(cX − 0), the

fiber product

(6.7) ν̌Y
λ̌,Θ̌ ×

Aλ̌

C̊I =
⨆︂

i ↦→ν̌i,λ̌′i,θ̌i

∏̊︂
i∈I

(Yλ̌
′
i,θ̌i ×̃C)

is equal to a disjoint union of open and closed subschemes, running over all assignments i ∈
I ↦→ ν̌i ∈ Λ̌pos

G , λ̌′i ∈ cX , θ̌i ∈ c−X (including zero) such that ν̌i + λ̌′i = λ̌i and
∑︁
I [θ̌i] =

Θ̌ + (|I| − |Θ̌|)[0] ∈ Sym∞(cX) as a multiset with zero.

Since C̊I → C̊P is finite étale, (and everything is of finite type) we deduce that the restriction

of π̄ to ν̌Y
λ̌,Θ̌ ∩ π̄−1(C̊P)→ C̊P is étale-locally a trivial fibration.

It remains to check the dimension inequality (6.6). Let P, ν̌, Θ̌ be as before, and fix a

connected component S of ν̌Y
λ̌,Θ̌

. We deduce from (6.7) that for any a ∈ C̊P, the restricted

fiber π̄−1(a) ∩ S is contained in a union of
∏̊︁
I(Y

λ̌′i,θ̌i ∩ Si) for ν̌i, λ̌
′
i, θ̌i as above and Si some

connected component of Yλ̌
′
i,θ̌i . By Proposition 6.1.1, we have

(6.8) dim(Yλ̌
′
i,θ̌i ∩ Si) ≤

1

2
(dim(Si)− 1).

The image of the composition∏̊︂
i∈I

(Cνi ×Si)→
∏̊︂
i∈I

ν̌iY
λ̌i,θ̌i → ν̌Y

λ̌,Θ̌

is connected, so it must be contained in S. Thus, dim(S) ≥ ⟨ρG, ν̌⟩ +
∑︁
I dim(Si). Summing

(6.8) over I, we get

dim(π̄−1(a) ∩ S) ≤ 1

2
(dim(S)− dim(C̊P)− ⟨ρG, ν̌⟩),

which establishes the inequality (6.6). □

6.4. Euler product. Let us explain how we can combine the graded factorization property of
Y with Theorem 6.3.4 to deduce that π̄!(ICY) “looks like an Euler product”.

In the expression that we are about to obtain, a special role will be played by those strata

Yλ̌,θ̌ of Yλ̌ which correspond to elements θ̌ ∈ DGsat(X)∪{0}. Recall, by Corollary 5.7.2, that the
closures of those strata are unions of irreducible components of Y. Let

(6.9) BX,λ̌ =
⋃︂

θ̌∈DG
sat(X)∪{0}

⋃︂
Y

BY ,

where Y runs over all irreducible components of Yλ̌,θ̌, and BY is the set of those irreducible

components b of the central fiber Yλ̌ ∩ Y for which the inequality of (6.1) is an equality, that
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is,

(6.10) dim b =
1

2
(dimY − 1).

Such components will be said to be of critical dimension; we will explicate this dimension in
Proposition 6.5.1. The sets BX,λ̌ will define the crystal of X in Section 7. For now, we treat
them as a black box.

We let VX,λ̌ denote the free vector space on BX,λ̌, that is,

(6.11) VX,λ̌ =
⨁︂
BX,λ̌

Qℓ.

Note that, when X is defined over a finite field F, and k is its algebraic closure, the (geomet-
ric) Frobenius morphism induces a dimension-preserving bijection between the sets BX,λ̌ and

BX,Frλ̌, for every λ̌ ∈ Λ̌. Hence, Fr acts naturally on the sum of vector spaces
⨁︁

λ̌∈cX VX,λ̌.

For a partition R =
∑︁
µ̌∈cX−0Nµ̌[µ̌] ∈ Sym∞(cX − 0), let ιR : C̊R :=

∏̊︁
C̊(Nµ̌) ↪→ Aλ̌ denote

the locally closed embedding, with λ̌ = deg(R). This extends to a finite map ῑR : CR :=∏︁
C(Nµ̌) → Aλ̌ which is the normalization of the closure of C̊R in Aλ̌.

Proposition 6.4.1. For λ̌ ∈ cX , there exists a canonical isomorphism

(6.12) π̄!(IC
Y

λ̌) ∼=
⨁︂

deg(R)=λ̌

(︂⨂︂
µ̌

SymNµ̌(VX,µ̌)
)︂
⊗ ῑR! (ICCR)

where R =
∑︁
µ̌∈cX−0Nµ̌[µ̌] and the spaces VX,µ̌ are defined by (6.11).

When X is defined over a finite field F, and k is its algebraic closure, this isomorphism is
Galois-equivariant.

The implied Galois action on the right hand side of (6.12) is the one obtained by the action
of Frobenius on the sum of spaces VX,µ̌ (by permuting their basis elements), and the standard

Weil structure Qℓ(
|R|
2 )[|R|] on ICCR .

Note that if R = [λ̌] is the singleton partition, then C [λ̌] = C and ι[λ̌] = δλ̌ : C ↪→ Aλ̌ is the
diagonal embedding. The corresponding summand of π̄!(IC

Y
λ̌) above is VX,λ̌⊗ ICC . We call

this the diagonal contribution of π̄!(IC
Y

λ̌).

Proof. The proof follows the same logic as [BFGM02, §5.4, 5.11]. Theorem 6.0.1 implies that
π̄!(IC

Y
λ̌) is perverse, and the decomposition theorem ([BBDG18, Théorème 6.2.5]) implies that

it is semisimple. Since π̄!(IC
Y

λ̌) is constructible with respect to the stratification by ιR : C̊R ↪→
Aλ̌ for R ∈ Sym∞(cX − 0), deg(R) = λ̌, we deduce that there exists a canonical decomposition

(6.13) π̄!(IC
Y

λ̌) ∼=
⨁︂

deg(R)=λ̌

ιR!∗(L
R)[|R|]

where ιR!∗ denotes the middle extension functor along the locally closed embedding, and LR is

a local system on C̊R.

Now consider the singleton partition [λ̌]. For v ∈ |C| let δλ̌v : v → Aλ̌ denote the composition

of v → C with δλ̌ : C → Aλ̌. Recall from §4.3.4 that Y
λ̌×Aλ̌,δλ̌ C

∼= Y
λ̌×Aut k[[t]] C∧. Taking

the ∗-pullback along δλ̌v of (6.13), we have

RΓ(Y
λ̌
, IC

Y
λ̌ |∗

Y
λ̌) ∼=

⨁︂
deg(R)=λ̌

(δλ̌v )
∗ιR!∗(L

R)[|R|].



68 YIANNIS SAKELLARIDIS AND JONATHAN WANG

For R = [λ̌], we have L[λ̌] is a local system on C, so (δλ̌v )
∗ι

[λ̌]
!∗ (L

[λ̌])[1] lives in cohomological

degree −1. ForR ̸= [λ̌], we have dimCR > 1 so the uniqueness property of middle extension im-

plies that (δλ̌)∗ιR!∗(L
R)[|R|] has lisse cohomology sheaves on C and lives in usual cohomological

degrees < −1. Therefore, we deduce that

L[λ̌]|∗v→C = H−1c (Y
λ̌
, IC

Y
λ̌ |∗

Y
λ̌),

which is the top cohomological degree.

Recall from Corollary 5.7.3 that the irreducible components of Yλ̌ are naturally parametrized

by a subset of π1(H)×Sym∞(DGsat(X)). Let Yλ̌,◦ denote the union of Yλ̌,Θ̌ for all Θ̌ ∈
Sym∞(DGsat(X)). Then Yλ̌,◦ is a disjoint union of smooth connected components in bijection

with the irreducible components of Yλ̌, by Corollary 5.7.2. Again, the uniqueness property of the
IC complex implies that IC

Y
λ̌ |∗

Y
λ̌−Yλ̌,◦

lives in strictly negative perverse cohomological degrees.

Since π̄! is perverse t-exact by Theorem 6.3.4, we deduce that π̄!(IC
Y

λ̌ |∗
Y

λ̌−Yλ̌,◦
) is constructible

and lives in strictly negative perverse degrees. This in turn implies that (δλ̌v )
∗π̄!(IC

Y
λ̌ |∗

Y
λ̌−Yλ̌,◦

)

lives in (usual=perverse) degrees < −1. We conclude that

L[λ̌]|∗v→C = H−1c (Yλ̌, (IC
Y

λ̌ |Yλ̌,◦)|∗Yλ̌) =
⨁︂
Y

HdimY −1
c (Yλ̌ ∩ Y ,Qℓ(dimY

2 )),

with the sum running over all irreducible components of Yλ̌,◦. Note that Yλ̌ ∩ Yλ̌,Θ̌ is empty
unless Θ̌ = [θ̌] is singleton, for θ̌ ∈ DGsat(X) ∪ {0}. Moreover, the right hand side consists of

only top cohomological degrees, by Proposition 6.1.1, so HdimY −1
c (Yλ̌ ∩Y ,Qℓ(dimY

2 )) is equal
to the sum ⨁︂

BY

Qℓ( 12 ),

where BY is the set of irreducible components of Yλ̌ ∩Y of dimension dimY −1
2 . In particular,

L[λ̌]|∗v→C has trivial monodromy under Aut k[[t]], so we deduce that L[λ̌] ∼= VX,λ̌ ⊗ ICC where

VX,λ̌ is defined by (6.11) (with the ( 12 )-twist absorbed by ICC).

Next, consider an arbitrary partition R =
∑︁
µ̌∈cX−0Nµ̌[µ̌]. We defined C̊R =

∏̊︁
µ̌C̊

(Nµ̌). By
the graded factorization property, we have a diagram with Cartesian squares∏̊︁

µ̌(Y
µ̌ ×̃C)×̊Nµ̌

∏̊︁
µ̌(Y

µ̌
)×̊Nµ̌ Y

λ̌

∏̊︁
C̊Nµ̌

∏̊︁
µ̌(A

µ̌)×̊Nµ̌ Aλ̌

étale

étale

and the composition of the bottom arrows factors through the (
∏︁
µ̌SNµ̌

)-torsor∏̊︁
C̊Nµ̌ →

∏̊︁
C̊(Nµ̌) = C̊R,

where SN denotes the symmetric group on N elements. By induction, we deduce that

(6.14) LR[|R|]|∗∏̊︁
C̊Nµ̌

∼= (⊠
µ̌
(VX,µ̌⊗ ICC)

⊠Nµ̌)|∗∏̊︁
C̊Nµ̌

.

There is a natural SNµ̌
-equivariant structure on (VX,µ̌⊗ ICC)

⊠Nµ̌ compatible with the SNµ̌
-

action on CNµ̌ . On the other hand, we have the map

(Y
µ̌ ×̃C)×̊Nµ̌ → YNµ̌·µ̌ ×

ANµ̌·µ̌
C̊(Nµ̌)
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which is a SNµ̌
-torsor, where SNµ̌

acts on the left hand side in the natural way. Now from
the definition of VX,µ̌ we deduce that the isomorphism (6.14) must intertwine the

∏︁
SNµ̌-

structures. By Galois descent we conclude that LR[|R|] ∼= (
⨂︁

µ̌ Sym
Nµ̌(VX,µ̌))⊗ ICC̊R . Since

ῑR : CR → Aλ̌ is the normalization of the closure of the stratum C̊R in Aλ̌, the middle extension
of ICC̊R is isomorphic to ῑR! (ICCR).

When X is defined over a finite field F and k is the algebraic closure, the Galois group of k
over F acts naturally on the set of componentsB+

X :=
⋃︁
µ̌∈cX BX,µ̌, and the isomorphisms above

are clearly equivariant, taking into account that ICCR is the constant sheaf Qℓ(
|R|
2 )[|R|]. □

6.5. Critical dimension. We can now give a more precise description of the diagonal contri-
bution VX,λ̌ defined in (6.11), that is, the free vector space on the set BX,λ̌ of components of

critical dimension in the “open strata” of the central fiber Yλ̌.

Proposition 6.5.1. For λ̌ ∈ cX − 0, the set BX,λ̌ of components of critical dimension on the

central fiber Yλ̌ consists of

(i) the irreducible components of YDX• ∩ Yλ̌ of dimension 1
2 (len(D) − 1), for D ∈ ND with

ϱX(D) = λ̌;

(ii) the irreducible components of Sλ̌ ∩Grθ̌G, for θ̌ ∈ DGsat(X), embedded in Yλ̌ via (5.16).

Remark 6.5.2. We have MV cycles for every θ̌ ∈ c−X , but only those belonging to DGsat(X)

contribute to VX,λ̌ since those correspond to Yλ̌,θ̌ which are connected components of Yλ̌. We

will reserve the term critical dimension of Yλ̌ for the maximal dimensions in the two cases
above.

Proof. By definition, an element of BX,λ̌ is a component b of the central fiber Yλ̌ ∩ Y , where

Y is an irreducible component of the smooth stratum Yλ̌,θ̌, for some θ̌ ∈ DGsat(X) ∪ {0}, such
that

(6.15) dim(b) =
1

2
(dim(Y )− 1).

If θ̌ = 0, then Yλ̌,0 is the disjoint union of connected components YDX• for D ∈ ND with

ϱX(D) = λ̌, by Lemma 6.2.1. Then (6.15) becomes dim(b) = 1
2 (len(D)− 1).

If θ̌ ̸= 0, by Corollary 6.2.2 the connected components of Yλ̌,θ̌ are in bijection with the
closures of

YDX•×̊Yθ̌,θ̌ ↪→ Yλ̌,θ̌

for D ∈ ND such that ϱX(D) = λ̌ − θ̌. The statement now follows from the following lemma,
which we write separately, for later use, because it applies to arbitrary θ̌ ̸= 0.

□

Lemma 6.5.3. For any θ̌ ∈ c−X−0, D ∈ ND and λ̌ = ϱX(D)+ θ̌, if we denote by Y the closure
of the image of

YDX•×̊Yθ̌,θ̌ ↪→ Yλ̌,θ̌,

then we have dim(Yλ̌∩Y ) ≤ 1
2 len(D) = 1

2 (dimY −1). The irreducible components of Yλ̌,θ̌ for

which this is an equality are precisely the MV cycles in Sλ̌ ∩Gr
θ̌

G, embedded in Yλ̌ via (5.16).

Proof. Proposition 6.1.1 implies that dim(Yλ̌ ∩ Y ) ≤ 1
2 (dimY − 1). Since θ̌ ̸= 0, we have

Y
θ̌,θ̌
red = C, and by Lemma 6.2.1 this inequality translates to dim(Yλ̌ ∩ Y ) ≤ 1

2 len(D).
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If v ∈ |C| is the point we are taking central fibers with respect to, then Yλ̌ maps to the
substack MX,v ⊂ MX of maps that are only G-degenerate at v. Recall from Theorem 5.1.1

that Mθ̌
X,v is contained in the image of

actM,v : BunH ×̃Grθ̌G →MX,v

and the map is birational onto its image. We deduce from (5.11) and Proposition 5.5.5 that

the fiber product (BunH ×̃Grθ̌G)×MX
Yλ̌ has a stratification by⋃︂

ν̌

Yλ̌−ν̌,0 ×̃(Sν̌ ∩Grθ̌G)

where ν̌ ranges over the weights of V θ̌.
Observe that we have an embedding Λ̌pos

G ↪→ ND by sending a simple coroot α̌ ↦→ D+
α +D−α .

By restricting to X◦Pα we can deduce that the image of α̌ in π1(H)⊗Q under (6.4) is zero.
Thus, the commutativity of diagram (6.5) ensures that if we restrict to the connected component
of BunH corresponding to YDX• , then the stratification above becomes⋃︂

ν̌

(Yλ̌−ν̌ ∩ Y
D−(ν̌−θ̌)
X• ) ×̃(Sν̌ ∩Grθ̌G),

where ν̌ − θ̌ ∈ Λ̌pos
G ⊂ ND. In particular, the dimension of the stratum corresponding to ν̌ is

≤ 1

2

(︂
len(D − (ν̌ − θ̌))− 1

)︂
+ ⟨ρG, ν̌ − θ̌⟩ ≤

1

2
(len(D)− 1)

by Proposition 6.1.1 unless D = ν̌− θ̌. Thus, in order for dimYλ̌,θ̌ = 1
2 len(λ̌− θ̌), we must have

λ̌ = ν̌ is a weight of V θ̌ and Yλ̌,θ̌ is birational to an irreducible component of pt ×̃(Sλ̌ ∩Grθ̌G),
i.e., a Mirković–Vilonen cycle. By Lemma 5.5.11, this latter case always occurs. □

Remark 6.5.4. By Proposition 6.5.1, the irreducible components of central Zastava fibers of
critical dimension, which give rise to the “new” contributions VX,λ̌ to the pushforward of the
IC sheaf by Proposition 6.4.1, are of two different kinds: those associated to the Zastava space
of the open G-orbit X•, and those associated to certain strata of the affine Grassmannian. On
the other hand, Theorem 5.1.5 gives a similar description of the intersection complex of the
global model in terms of the Hecke action on the intersection complex of the global model for
X•. These two descriptions “match” under the nearby cycles functor of Theorem 8.3.6 and the
Hecke action on Drinfeld’s compactification BunN− (cf. [BG02]).

7. The crystal of a spherical variety

We keep the assumptions of §5–6. In this section, we study the irreducible components of
central Zastava fibers of critical dimension (Proposition 6.5.1) which give rise to the “new”
contributions VX,λ̌ to the pushforward of the IC sheaf by Proposition 6.4.1. Our main result is
that these components give rise to a crystal, in the sense of Kashiwara, if we formally attach
to them their “negatives”. These components are, by Proposition 6.5.1, of two different kinds,
namely those associated to the Zastava space of the open G-orbit X• and those associated to
certain strata of the affine Grassmannian. Since the relation of the latter to crystals is well-
known by [BG01, BFG06], the problem quickly reduces to the study of the crystal associated
to X•.

7.1. The crystal BX .
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7.1.1. Definition of crystal. We review the definition of crystal, in the sense of Kashiwara
[Kas93], over the Langlands dual Lie algebra ǧ. We refer the reader to [Kas94, Kas95, BS17,
HK02] for further details on crystals, which can be associated to any Kac–Moody algebra.

Let I denote the set of vertices of the Dynkin diagram associated to G, so {αi}i∈I = ∆G is
the set of simple roots of G.

A crystal B over ǧ is a set with the following data:

wt : B→ Λ̌G

εi, φi : B→ Z ⊔ {−∞} for i ∈ I,

ẽi, f̃i : B→ B ⊔ {0} for i ∈ I,
satisfying the following axioms:

(1) φi(b) = εi(b) + ⟨αi,wt(b)⟩ for b ∈ B, i ∈ I.
(2) If b ∈ B and ẽib ̸= 0, then

wt(ẽib) = wt(b) + α̌i, εi(ẽib) = εi(b)− 1, φi(ẽib) = φi(b) + 1.

(3) If b ∈ B and f̃i ̸= 0, then

wt(f̃ib) = wt(b)− α̌i, ε(f̃ib) + 1, φi(f̃ib) = φi(b)− 1.

(4) For b1, b2 ∈ B, b2 = f̃ib1 if and only if b1 = ẽib2.

(5) If φi(b) = −∞, then ẽib = f̃ib = 0.

A crystal B is called seminormal17 if

εi(b) = max{n ≥ 0 | ẽni b ∈ B} ∈ N, φi(b) = max{n ≥ 0 | f̃ni b ∈ B} ∈ N

for all b ∈ B, i ∈ I. From now on we will only consider seminormal crystals, so the maps εi, φi
are uniquely determined by wt, ẽi, f̃i.

Kashiwara showed the existence and uniqueness of crystal bases for any integrable module
of the quantized enveloping algebra Uq(ǧ). The crystal basis of an integrable Uq(ǧ)-module is
the limit at q = 0 of Lusztig’s canonical basis ([Lus90, GL93]). A crystal B is called normal if
it is isomorphic to the crystal basis of an integrable Uq(ǧ)-module.

For any subset J ⊂ I, let ǧJ denote the corresponding Levi subalgebra. For a crystal B of
ǧ, let ΦJ(B) denote B regarded as a crystal over ǧJ . Then saying that B is seminormal is
equivalent to saying that Φ{i}(B) is isomorphic to the crystal basis of an integrable Uq(ǧ{i})-
module. One can check the normality of a crystal by restricting to every pair of vertices in the
Dynkin diagram:

Proposition 7.1.2 ([KKM+92, Proposition 2.4.4], [BS17, Theorem 5.21]). Let B be a finite
crystal over ǧ such that for every subset {i, j} ⊂ I, the crystal Φ{i,j}(B) is isomorphic to the
crystal basis of a finite-dimensional Uq(ǧ{i,j})-module. Then B is normal.

For a crystal B one can construct an oriented crystal graph with vertex set B and edges
given by the f̃i. We can decompose B into a disjoint union of crystals corresponding to the
connected components of the crystal graph. We will call these the connected components of B.

For λ̌ ∈ Λ̌+
G, there is a unique crystal basis Bλ̌

ǧ for the irreducible highest weight module V λ̌

of Uq(ǧ). (We will abuse notation and use V λ̌ to denote both the representation of the quantized
enveloping algebra and its classical limit at q = 1, which is the corresponding irreducible ǧ-
module.) In other words, there is a unique normal connected crystal with highest weight vector

17This is the terminology of [Kas94, Kas95]. In [Kas93] the term normal was used for what we call
seminormal.
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of weight λ̌. However, we warn that in general there may be many seminormal connected
crystals with the same property.

Given a crystal B, we can define a crystal B∨ by “reversing the arrows”: the set B∨ =
{b∨ | b ∈ B} is formally the same as B, and wt(b∨) = −wt(b). The roles of ẽi, f̃i are swapped.

The crystal (Bλ̌
ǧ)
∨ is isomorphic to the crystal basis of the irreducible Uq(ǧ)-module of lowest

weight −λ̌, which we also denote by V −λ̌.

7.1.3. Let us mention an important consequence of the structure of a seminormal crystal B.

Let ˜︂W be the free group generated by {si | i ∈ I} with the relation s2i = 1. The Weyl group

W is the quotient of ˜︂W by the braid relations.
It follows from the classification of integrable Uq(sl2)-modules that we have a natural action

of ˜︂W on B defined by

si(b) =

{︄
f̃
⟨αi,wt(b)⟩
i (b) if ⟨αi,wt(b)⟩ ≥ 0

ẽ
−⟨αi,wt(b)⟩
i (b) if ⟨αi,wt(b)⟩ ≤ 0

for b ∈ BX• . For w̃ ∈ ˜︂W we have wt(w̃b) = w̃(wt(b)), where ˜︂W acts on Λ̌G = Λ̌X through W .
In other words, we have isomorphisms

(7.1) w̃ : Bλ̌
∼→ Bw̃λ̌

a priori depending on w̃ ∈ ˜︂W for all λ̌ ∈ Λ̌G.

If B is normal, the ˜︂W -action on B factors through W .

7.1.4. Definition of BX . For λ̌ ∈ cX , we have defined the set BX,λ̌ to consist of the irreducible

components of Yλ̌ of critical dimension (Proposition 6.5.1), that is:

• if λ̌ ∈ cDX , the irreducible components of Yλ̌ (or equivalently, of Yλ̌X• = Yλ̌,0) of dimen-

sion 1
2 (len(λ̌)− 1);

• the irreducible components of Sλ̌ ∩ Grθ̌G of dimension ⟨ρG, λ̌ − θ̌⟩, for θ̌ ∈ DGsat(X),

identified with their image in Yλ̌ through the action map (5.16).

Note that λ̌ = 0 never satisfies the conditions above.
Define BX,−λ̌ := BX,λ̌, which is well-defined since C0(X) is strictly convex. Let

B+
X =

⋃︂
λ̌∈cX

BX,λ̌, B−X =
⋃︂
λ̌∈cX

BX,−λ̌.

In other words B+
X is the set of all irreducible components of the central fiber of Y of the

maximal dimensions satisfying the semi-smallness equality.
We (rather artificially) define BX = B+

X ⊔ B−X . Let wt : BX → cX be the map sending

BX,λ̌ to λ̌.

Theorem 7.1.5. The set BX has the structure of a semi-normal crystal over ǧ such that the
defining bijection B+

X ↔ B−X is an isomorphism of crystals BX
∼= B∨X .

The statement of the theorem above is not optimal, of course, as it does not specify all the
data that give rise to the structure of a crystal, such as the operations ẽi, f̃i. To do so, we will
need to introduce a process of “reduction to a Levi”, in particular, a Levi of semisimple rank
one, that will provide these operators. We will define these operators, giving the structure of a
self-dual semi-normal crystal to BX , in §7.2.5.

Conjecture 7.1.6. The crystal BX is isomorphic to the unique crystal basis of a finite-
dimensional Ǧ-module ρX .
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In Remark 7.2.6 we explain that it suffices to prove Conjecture 7.1.6 when G has semisimple
rank 2, where there are finitely many cases (corresponding to the wonderful varieties in [Was96]
with only spherical roots of type T ).

7.1.7. Reduction to X•. Theorem 7.1.5 and Conjecture 7.1.6 immediately reduce to the study
of the irreducible components of critical dimension in the central fiber of YX• :

Lemma 7.1.8. Let B+
X• = BX ×Λ̌X

cDX , hence B+
X• is the set of irreducible components of

central fibers of YX• of critical dimension. Define B−X• and BX• = B+
X• ⊔ B−X• as before.

Then, Theorem 7.1.5 and Conjecture 7.1.6 hold if they hold for BX• , with a decomposition of
the crystal BX into a disjoint union of crystals:

(7.2) BX = BX• ⊔
⨆︂

θ̌∈±DG
sat(X)

Bθ̌
ǧ,

where Bθ̌
ǧ is the crystal associated to the irreducible Ǧ-module V θ̌ of lowest weight θ̌, if θ̌ ∈

DGsat(X) ⊂ Λ̌−G, or highest weight θ̌ if −θ̌ ∈ DGsat(X).

Proof. Indeed, by Proposition 6.5.1, the elements of B+
X consist of elements of B+

X• and irre-

ducible components of Sλ̌ ∩ Grθ̌G of dimension ⟨ρG, λ̌ − θ̌⟩, for θ̌ ∈ DGsat(X). As explained in
[BG01], the latter can be identified with the elements of the crystal basis in the λ̌-eigenspace

of the irreducible Ǧ-module V θ̌ of lowest weight θ̌. □

While the methods of this paper are insufficient to prove Conjecture 7.1.6 for BX• , we do
show that it must satisfy the following properties in §7.3.

Theorem 7.1.9. The crystal BX• has the following properties:

(i) The set wt(BX•) is equal18 to the set of weights of
⨁︁

λ̌∈Λ̌+
G∩WϱX(D) V

λ̌, where Λ̌+
G ∩

WϱX(D) denotes the dominant Weyl translates of valuations of colors.

(ii) If b ∈ B+
X• , then there is a sequence of lowering operators f̃ij sending b to an element

of BX•,ν̌D for some color D ∈ D.
(iii) For λ̌ ∈ WϱX(D), the cardinality of BX•,λ̌ is equal to 1, unless λ̌ = γ̌

2 for some (not

necessarily simple) coroot γ̌, in which case the cardinality is 2.

Remark 7.1.10. The “multiplicity 2” case appears when two colors have the same valuation,
e.g., X = Gm\PGL2; see §2.1.

Remark 7.1.11. Note that if Conjecture 7.1.6 is true, then properties (i)–(iii) of Theorem 7.1.9
uniquely determine the Ǧ-module ρX : it must be isomorphic to

(7.3)
⨁︂

λ̌∈Λ̌+
G∩WϱX(D)

(V λ̌)⊕|BX•,λ̌| ⊕
⨁︂

θ̌∈±DG
sat(X)

V θ̌,

where the cardinality of BX•,λ̌ is specified by property (iii). problem: what if
two colors belong
to same weight-
multiplicity-free
irrep?

Corollary 7.1.12. If all coweights in Λ̌+
G ∩ WϱX(D) are minuscule, then Conjecture 7.1.6

holds, i.e., BX is the crystal basis of the Ǧ-module given by (7.3).

Proof. This is immediate from Theorems 7.1.5, 7.1.9 and §7.1.3 after we make the assumption
cX• = ND, which is allowed by (5.6). □

We also show in Corollary 7.3.4 that ifX is affine homogeneous (equivalently, H is reductive),
then all coweights in Λ̌+

G ∩WϱX(D) must be minuscule.

18Here we only describe an equality of sets counted without multiplicities.
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7.2. Reduction to Levi. From now on, having reduced the problem to giving a crystal struc-
ture to the set BX• , we may (by (5.6)) and will assume, unless otherwise specified, that

X = Xcan and cX ∼= ND. Under this assumption, Yλ̌,0 is dense in Yλ̌ by Corollary 5.7.2,
and BX = BX• . Moreover, any λ̌ ⪰ 0 is an element of ND, so the length function len is a
function of λ̌.

Let P be a standard parabolic subgroup of G, i.e., P ⊃ B. Let NP denote its unipotent
radical and M = P/NP the Levi quotient. Observe that the map X → X//N factors through
X → X//NP → X//N . Set

XM := X//NP = Spec k[X]NP .

Then XM is an affine spherical M -variety and the map X → XM is M -equivariant. However,
note that even if X = Xcan, it will not in general be true that XM is the canonical embedding
of X•M . We will use this to our advantage later, using the crystals of Lemma 7.1.8 to produce

the ẽi, f̃i operations, when M is taken to have semisimple rank one.
For now, we work with a general parabolic P . Let BM denote the image of the Borel

subgroup B in M . We have k[X](B) = k[XM ](BM ), therefore cXM
= cX . On the other hand,

c−XM
= cXM

∩ Λ̌−M is, in general, larger than c−X . The open P -orbit X◦P maps to the open
M -orbit X•M , and we have

Lemma 7.2.1. The preimage of X•M under the quotient map X → XM coincides with the open
P -orbit X◦P , and the quotient stacks X◦P/P and X•M/M are isomorphic.

Proof. A color D ∈ D belongs to the open P -orbit X◦P if and only if D ∈ D(α) for some
α ∈ ∆M ; otherwise, it is P -stable, and induces an M -stable valuation on k(XM ), which is the
function field of k[X]NP . This valuation is nontrivial (because it is nontrivial on k[X](B) =
k[XM ](BM )), therefore the image of D cannot belong to X•M .

Since N acts freely on X◦, the subgroup NP acts freely on X◦P , and therefore X◦P/P =
(X◦P/NP )/M = X•M/M . □

Define the parabolic Zastava model

YX,P := Mapsgen(C,X/P ⊃ X◦P/P ) ⊂MX ×
BunG

BunP ,

which naturally maps to BunP . The Cartesian diagram

X/B X/P

XM/BM XM/M

gives rise to a diagram

(7.4)

Yλ̌X YX YX,P

Yλ̌XM
YXM

MXM

q πX,P

with all squares Cartesian. Central fibers are taken with respect to a fixed point v ∈ |C|.
Our goal is to study the components of critical dimension of Yλ̌X in terms of Yλ̌XM

and the

fibers of the map πX,P . At this point, it will be critical to distinguish the stratum Yλ̌,θ̌XM
where

the image of the generic point of a component b ∈ BX,λ̌ lies, that is, the M(ov)-orbit of its

image in XM (ov) (after trivialization in a formal neighborhood of v). The reason is, as we are
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about to see, that this stratum will completely determine the fiber of the map πX,P over the
image.

Indeed, recall from §4.3 that lifting a point from MXM
to Yλ̌XM

induces a trivialization of the
corresponding G-bundle away from v (depending on a fixed choice of base point x0 ∈ X◦), which
identifies the central fiber Yλ̌XM

with a subscheme of the affine Grassmannian GrM . Moreover,

the map Yλ̌XM
→MXM

factors through the map

GrM ×
LXM/L+M

(L+XM/L
+M)→MXM

.

as defined in (5.15). Similarly, the map Yλ̌X → YX,P factors through

GrP ×
LX/L+P

(L+X/L+P )→ YX,P .

Hence we have a commutative diagram

(7.5)

Yλ̌X GrP ×
LX/L+P

(L+X/L+P ) YX,P

Yλ̌XM
GrM ×

LXM/L+M
(L+XM/L

+M) MXM

ιX,P

q

actv

πX,P

ιXM actv

with all squares Cartesian.
Let HM be the stabilizer in P of the base point x0. By Lemma 7.2.1, it is isomorphic to the

stabilizer in M of the image of x0 in XM . We first note:

Lemma 7.2.2. For any θ̌ ∈ c−XM
, the fibers of the map of ind-schemes

(7.6) GrP ×
LX/L+P

(L+X/L+P )→ GrM ×
LXM/L+M

(L+XM/L
+M)

over the stratum Lθ̌XM/L
+M are isomorphic under the LHM -action, and this action gives rise

to a canonical bijection between the irreducible components of any two fibers.

More precisely, all fibers are isomorphic to {tθ̌}×MXM
YX,P and of dimension ≤ 1

2 (len(θ̌)−
1), unless θ̌ = 0, in which case the restriction of (7.6) to the θ̌-stratum is an isomorphism.

Notice that, under our assumption that cX ∼= ND since the beginning of this subsection,
len(θ̌) makes sense.

Proof. Since LHM acts transitively on GrM ×LXM/L+M (Lθ̌XM/L
+M), the fibers of (7.6) over

the θ̌-stratum are all isomorphic.

We may now choose the point tθ̌ ∈ Yθ̌XM
, whose image in L+XM/L

+M lies in the θ̌-stratum

— in fact, by Corollary 5.5.6, Yθ̌,θ̌XM
= {tθ̌}. By Corollary 2.3.13, the stabilizer in LHM of its

image tθ̌ ∈ GrM is connected. Therefore, the action of LHM induces a canonical bijection
between irreducible components of the fibers.

Finally, if θ̌ ̸= 0, the dimension of Yθ̌X is ≤ 1
2 (len(θ̌)− 1), as explained in Proposition 6.5.1,

and therefore so is, a fortiori, the dimension of the fiber over Yθ̌,θ̌XM
= {tθ̌}. For θ̌ = 0, we

observe that

YX,P ×
MXM

M0
XM

= Maps(C,X◦P/P ) = Maps(C,X•M/M) = M0
XM

,

by Lemma 7.2.1, so the fibers are singletons. □
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Remark 7.2.3. At this point, we would like to emphasize a fine point in the arguments that
follow: Consider the decomposition of B+

XM
according to (7.2) (restricted to the +-part):

B+
XM

= B+
X•M
⊔

⨆︂
θ̌∈DM

sat(XM )

Bθ̌
m̌

(where we have denoted Bθ̌ by Bθ̌
m̌, to emphasize that it corresponds to the θ̌-lowest weight

crystal of a m̌-module). We will not claim that the map q of (7.4) induces a map from B+
X to

B+
XM

. Indeed, the generic fiber of a b ∈ B+
X may map to the image of Sλ̌M∩Grθ̌M → Yλ̌XM

(where

Sλ̌M denotes the semi-infinite orbit corresponding to λ̌ in GrM ), for some θ̌ ∈ c−XM
that is not

an element of DMsat(XM ). These are the MV cycles that were discussed in Remark 6.5.2, which
are not “of critical dimension” in terms of XM . Representation-theoretically, if we believe that
BX corresponds to a representation of Ǧ (as predicted by Conjecture 7.1.6), this just says that
the M̌ -lowest weights of the spans of some vectors do not need to be extremal in c−XM

; however,

in §7.3 we will see that there are weight-lowering operators f̃i, possibly corresponding to roots
not in M̌ , which eventually lower such weights to the weight of a color.

For that reason, for the following proposition, which is the main technical result of this

subsection, we denote by Bθ̌
m̌ the crystal corresponding to the representation of m̌ of lowest

weight θ̌, that is, the set of irreducible components of Sλ̌M ∩Grθ̌M , for any θ̌ ∈ c−XM
.

Proposition 7.2.4. For any λ̌ ∈ cDX , the diagram (7.4) induces a canonical decomposition

(7.7) BX•,λ̌ = BX•M ,λ̌ ⊔
⨆︂

θ̌∈c−XM
−0

BP
X,θ̌
×Bθ̌

m̌,λ̌
,

where BP
X,θ̌

denotes the set of irreducible components of {tθ̌}×MXM
YX,P of dimension 1

2 (len(θ̌)−
1).

Taking the union over all such λ̌, we get

(7.8) B+
X• = B+

X•M
⊔

⨆︂
θ̌∈c−XM

−0

BP
X,θ̌
×Bθ̌

m̌.

The set BP
X,θ̌

should be thought of as the multiplicity space for the irreducible representation

with basis Bθ̌
m̌, and is something of a “black box” to us.

Proof. The dimension yoga here goes as follows: Let b ∈ BX•,λ̌, and suppose that its generic

point lands in the stratum Yλ̌,θ̌XM
under the map q of (7.5).

If θ̌ = 0, then λ̌ ⪰X•M 0, i.e., it belongs to the positive span of colors in XM , hence len(λ̌)
is the same, whether we define it with respect to X or with respect to XM . By Lemma 7.2.2
the irreducible components of critical dimension 1

2 (len(λ̌)− 1) of YX and YX•M are in bijection,

hence the set of b ∈ BX,λ̌ which map generically to Yλ̌,0XM
is identified with BX•M ,λ̌.

If θ̌ ̸= 0, then q sends b to Yλ̌,⪰θ̌XM
, which has dimension ≤ 1

2 len(λ̌− θ̌) by Lemma 6.5.3. On
the other hand, Lemma 7.2.2 states that the dimension of the corresponding fibers of πX,P is

≤ 1
2 (len(θ̌) − 1). Thus, the only way that b is of critical dimension 1

2 (len(λ̌) − 1) is if both

inequalities are equalities. In this case Lemma 6.5.3 implies that λ̌ ≥ θ̌ and the generic point of

b is sent under the map (actv ◦ιX , ιXM
◦ q) to an element of BP

X,θ̌
×Bθ̌

m̌,λ̌
. Vice versa, for any

irreducible component (MV cycle) of Sλ̌M ∩ Grθ̌M (i.e., every element of Bθ̌
m̌,λ̌

), Lemma 5.5.11
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guarantees that it corresponds to a component b′ of Yλ̌,θ̌XM
of the same dimension, and Lemma

7.2.2 ensures that the components of Yλ̌X of critical dimension in the preimage of b′ are in
canonical bijection with BP

X,θ̌
. □

7.2.5. Kashiwara operations ẽi, f̃i. For i ∈ I let Pi = Pαi
denote the corresponding parabolic

subgroup of semisimple rank one. Let Mi denote the Levi factor. Then the Langlands dual Lie
algebra m̌i equals ǧ{i} in our previous notation. Applying Proposition 7.2.4 to Mi we get the
disjoint union

B+
X• = B+

X•Mi

⊔
⨆︂

θ̌∈c−i −0

BPi

X,θ̌
×Bθ̌

m̌i
,

where c−i = c−XMi
.

Now, by our “type T” assumption (see §2.1.1), X•Mi
/BMi

= Gm\P1 as stacks. Therefore,

YX•Mi
= SymC×̊SymC (see Example 3.3.1) and B+

X•Mi

consists of two elements, which can be

identified with their images ν̌±i in Λ̌X , ν̌±i = ϱX(D±αi
) are the valuations of the two colors in

D(αi). Therefore, we have a bijection of sets

BX• = B+
X• ∪B−X• = {ν̌

+
i , ν̌

−
i ,−ν̌

+
i ,−ν̌

−
i } ⊔

⨆︂
θ̌∈c−i −0

BP
X,θ̌
×
(︁
Bθ̌

m̌i
⊔ (Bθ̌

m̌i
)∨
)︁
.

Observe that {ν̌+i ,−ν̌
−
i } is in bijection with the normal crystal B

ν̌+
i

m̌i
since ⟨αi, ν̌+i ⟩ = 1 and

ν̌+i − α̌i = −ν̌
−
i . We also observe that {ν̌−i ,−ν̌

+
i } = B

ν̌−i
m̌i

= (B
ν̌+
i

m̌i
)∨ as sets.

Now we simply define the operations ẽi, f̃i such that

(7.9) Φ{i}(BX•) = B
ν̌+
i

m̌i
⊔B

ν̌−i
m̌i
⊔

⨆︂
θ̌∈c−i −0

BP
X,θ̌
×
(︁
Bθ̌

m̌i
⊔ (Bθ̌

m̌i
)∨
)︁

as normal crystals over m̌i, where BP
X,θ̌

is treated as an abstract set. This gives the structure

of a seminormal crystal over ǧ to BX , such that the bijection B+
X ↔ B−X identifies it with its

dual. This completes the proof of Theorem 7.1.5.

Remark 7.2.6. The decomposition (7.7) gives a decomposition into crystals over m̌. Therefore,
if we consider Proposition 7.2.4 for all standard parabolics corresponding to {i, j} ⊂ I, then
Proposition 7.1.2 implies that BX is normal (i.e., Conjecture 7.1.6 holds) if BX•M

is normal for
all M of semisimple rank 2.

The discussion of §7.2.5 also leads to the following observation:

Lemma 7.2.7. The W -orbit of ϱX(D) is contained in cDX ⊔ −cDX . If λ̌ ∈ wt(B+
X•) is not in

WϱX(D), the entire W -orbit Wλ̌ is contained in the monoid cDX .

Proof. Let b ∈ B+
X• with λ̌ = wt(b). The decomposition of Φ{i}(B

+
X•) from §7.2.5 shows that

if λ̌ /∈ {ν̌±i }, we have sib ∈ B+
X• , so siλ̌ ∈ cDX . Since siν̌

±
i = −ν̌∓i , we can iteratively apply

simple reflections to deduce the claims. □

7.3. Lowering operators via hyperplane intersections. In this subsection we prove The-

orem 7.1.9. Property (iii) follows from Lemma 5.4.2 and the ˜︂W -action on BX given by semi-
normality of the crystal (§7.1.3).

To prove properties (i)–(ii) we will need a geometric interpretation of the weight-lowering

operators f̃i. This interpretation is already hiding behind the crystal structure of Bθ̌
m̌ (in the

notation of Proposition 7.2.4), and has to do with closure relations of semi-infinite orbits in the
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affine Grassmannian. To bring such closure relations into our discussion, we need to extend the
considerations of §7.2 to the compactified Zastava models.

Proposition 7.3.1. For λ̌ ∈ cDX , let b ∈ BX•,λ̌ be an irreducible component of critical dimen-

sion, and let b be its closure in Y
λ̌
. For i ∈ I, consider the intersection

b ∩ Yλ̌−α̌i ⊂ Y
λ̌
.

(i) If the intersection above is non-empty, then f̃ib ̸= 0 and it corresponds to an irreducible

component of dimension dim(b) − 1 of b ∩ Yλ̌−α̌i . Vice versa, if f̃ib ̸= 0 then the

intersection above is non-empty, unless λ̌ = ν̌±i is a color, in which case b ⊂ Yλ̌ is a
point.

(ii) The intersection b ∩ Yλ̌−α̌i is empty only if either λ̌ = ν̌±i or ⟨αi, λ̌⟩ ≤ 0.

We remark that it may be possible for b ∩ Yλ̌−α̌i

X to be reducible (cf. [BFG06, Proposition
19.2], which replaces the erroneous Proposition 15.2 of loc. cit.).

The proof of this proposition will be given at the end of this section. We first use the
proposition to prove Theorem 7.1.9. Both properties (i)–(ii) of the theorem rely on the following
observation:

Lemma 7.3.2. For λ̌ ∈ cDX and b ∈ BX•,λ̌ there is a sequence α1, . . . , αd of simple roots

(possibly with repetitions), where d = dim b, such that we have

• bj := f̃αj
· · · f̃α1

(b) ̸= 0 for 0 ≤ j ≤ d,
• the intersection bj−1 ∩ Sλ̌−α̌1−···−α̌j is nonempty of dimension d− j for 1 ≤ j ≤ d,
• λ̌−

∑︁d
j=1 α̌j = ν̌D for some color D ∈ D.

In particular, λ̌ ≥ ν̌D.

Proof. By definition, b is of critical dimension d = 1
2 (len(λ̌)− 1). Proposition 4.4.2 shows that

there exists a λ̌′ ≤ λ̌ such that ⟨ρG, λ̌−λ̌′⟩ ≥ 1
2 (len(λ̌)−1), and b̄∩Sλ̌′ is nonempty of dimension

zero. Proposition 6.1.1 states that the dimension inequality should be an equality, in which case
Proposition 4.4.2 again provides the sequence of simple roots as in the statement. In that case,
len(λ̌′) = 1, hence λ̌′ = ν̌D for some color D ∈ D. Then Proposition 7.3.1(i) applied inductively

shows that f̃αj
· · · f̃α1

(b) ̸= 0 satisfies the claim. □

Proof of Theorem 7.1.9(ii). Immediate from Lemma 7.3.2. □

Proof of Theorem 7.1.9(i). We assume as in §7.2 that cX = ND. First we show that the weights

of BX• are contained in the weights of V λ̌ for λ̌ ∈ Λ̌+
G ∩WϱX(D). Let θ̌ ∈ wt(B+

X•). By (7.1)

and Lemma 7.2.7, we may assume that θ̌ ∈ Λ̌−G. Now Lemma 7.3.2 gives some color D ∈ D
such that ν̌D ≤ θ̌. Since θ̌ is antidominant, it must be a weight of V λ̌ where λ̌ is the unique
dominant coweight in the W -orbit of ν̌D. If α is a simple root such that D(α) = {D,D′},
then sα(ν̌D′) = −ν̌D. Thus, we see that WϱX(D) = −WϱX(D). Hence all of wt(B−X•) is also
contained in the weights of the claimed representations.

Next suppose that µ̌ is a weight of V λ̌ for λ̌ ∈ Λ̌+
G ∩WϱX(D) ⊂ cDX . We will show that

BX•,µ̌ is nonempty. By Theorem 7.1.9(iii), there exists an element b ∈ BX,λ̌, and by (7.1) we

may assume that µ̌ ∈ Λ̌+
G is also dominant. By Lemma 7.3.3 below, we can find a sequence

of simple coroots α̌1, . . . , α̌d (possibly with repetitions), where d = ⟨ρG, λ̌ − µ̌⟩, such that
λ̌j := λ̌ − α̌1 − · · · − α̌j satisfies λ̌j + ρ̌G ∈ Λ̌+

G for j = 1, . . . , d and λ̌d = µ̌. In particular,

this means that ⟨αj+1, λ̌j − α̌j+1⟩ = ⟨αj+1, λ̌j+1⟩ ≥ −1 for all 0 ≤ j < d. Equivalently,
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⟨αj+1, λ̌j⟩ > 0 for all 0 ≤ j < d. Now Proposition 7.3.1(ii) implies that f̃αd
· · · f̃α1

(b) ∈ BX•,µ̌

is nonzero. □

Lemma 7.3.3. Let µ̌ ∈ Λ̌+
G and λ̌ ∈ Λ̌G such that λ̌ ≥ µ̌ and λ̌ + ρ̌G ∈ Λ̌+

G. Then λ̌ − µ̌ =

α̌1+ · · ·+α̌d for a sequence of simple coroots α̌j (possibly with repetitions) where d = ⟨ρG, λ̌−µ̌⟩
such that λ̌− α̌1 − · · · − α̌j + ρ̌G ∈ Λ̌+

G for j = 1, . . . , d.

Proof. Since λ̌ ≥ µ̌ we can decompose λ̌ − µ̌ = α̌1 + · · · + α̌d into a sum of simple coroots
(possibly with repetitions), where d = ⟨ρG, λ̌− µ̌⟩. To prove the lemma, it suffices, by induction
on λ̌, to show that there exists an α̌j such that λ̌− α̌j + ρ̌G ∈ Λ̌+

G for some 1 ≤ j ≤ d. We claim

that if λ̌ ̸= µ̌, then there exists some α̌j with ⟨αj , λ̌⟩ ≥ 1. If not, then ⟨αj , λ̌− µ̌⟩ ≤ ⟨αj , λ̌⟩ ≤ 0

for all j. This implies that λ̌ − µ̌ has non-positive norm with respect to an appropriate inner
product on t, and hence λ̌ = µ̌. Therefore if d > 0, then we have an α̌j such that ⟨αj , λ̌⟩ ≥ 1.

Equivalently, ⟨αj , λ̌+ρ̌G⟩ ≥ 2 and ⟨αj , λ̌−α̌j+ρ̌G⟩ ≥ 0. This implies that λ̌−α̌j+ρ̌G ∈ Λ̌+
G. □

Corollary 7.3.4. If X• = H\G is affine, then all weights in wt(BX•) are Weyl translates of
colors ϱX(D). The multiplicities of these weights are determined by Theorem 7.1.9(iii).

problem: we don’t
show crystal is nor-
mal anymore

Proof. Assume X• is affine, so c−X• = 0. If there exists a non-minuscule coweight in Λ̌+
G ∩

WϱX(D), then Theorem 7.1.9(i) implies that BX•,θ̌ is non-empty for some θ̌ ∈ cX• − 0 not in

WϱX(D). Lemma 7.2.7 and (7.1) allow us to assume θ̌ ∈ c−X• = 0, which gives a contradiction.
□

7.3.5. The rest of this section is devoted to the proof of Proposition 7.3.1. We use the notation
from §7.2.5. For brevity we write Xi = XMi

, Hi = HMi
, Bi = BMi

and Ni = NBi
. We say

µ̌ ≤i λ̌ if λ̌− µ̌ ∈ Nα̌i.
We would like to embed the left Cartesian square of (7.5) into a Cartesian square involving

compactified Zastava spaces. For that purpose, consider the extension of the map ιXM
= ιXi

of that diagram to Y
λ̌

Xi
, and define Y≤iλ̌

X by the Cartesian diagram

(7.10)

Y≤iλ̌
X GrPi

×
LX/L+Pi

(L+X/L+Pi) YX,Pi

Y
λ̌

Xi
GrMi

×
LXi/L+Mi

(L+Xi/L
+Mi) MXi

ιX,Pi

q

actv

πX,Pi

ιXi actv

Lemma 7.3.6. The scheme (Y≤iλ̌
X )red is naturally a locally closed subscheme of Y

λ̌

X , equal to
the union of strata

Y≤iλ̌
X =

⋃︂
n≥0

Yλ̌−nα̌i

X .

Proof. From the Cartesian diagram (7.4), we see that the stratification Y
λ̌

Xi
=
⋃︁
n≥0 Y

λ̌−nα̌i

Xi

induces a stratification of Y≤iλ̌
X by

⋃︁
n≥0 Y

λ̌−nα̌i

X .

A point of Y≤iλ̌
X is a map of stacks

y : C → X
Pi

×Mi/Ni/T
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such that C−v is sent to the open substack pt = X◦/B. In particular, y defines a Pi×T -bundle
together with a trivialization on C − v, i.e., a point of GrPi ×GrT . This gives a map

(7.11) Y≤i,λ̌
X → GrPi ×Grλ̌T .

Since X ×Mi/Ni is affine and X ×Mi/Ni/(Pi×T ) ⊃ (X ×Mi)/(Pi×NiT ) = X/B contains
pt as an open substack, Lemma 3.7.3 implies that (7.11) is a closed embedding (the argument
is the same as the proof of Lemma 4.1.2). Therefore, at the level of reduced schemes we have
a closed embedding

(Y≤iλ̌
X )red ↪→ GrPi

.

We deduce that (Y≤iλ̌
X )red is a locally closed subscheme of (Y

λ̌

X)red, since the (reduced) connected
components of GrPi are locally closed subschemes of GrG. □

We are now ready to prove Proposition 7.3.1:

Proof of Proposition 7.3.1. Let b ∈ BX•,λ̌. The generic point of b ⊂ Yλ̌X maps to Yλ̌,θ̌Xi
for some

θ̌ ∈ c−Xi
.

If θ̌ = 0, then in the decomposition (7.7) we have that b ∈ BX•i ,λ̌
and λ̌ = ν̌±i is the valuation

attached to a color of X•i . In that case, ν̌±i − α̌i /∈ cX , so Yλ̌−α̌i,0
Xi

= ∅. At the same time, b is
a point, as recalled in §7.2.5.

Now assume θ̌ ̸= 0. As in the proof of Proposition 7.2.4, the composition ιXi
◦ q sends b into

Sλ̌Mi
∩Gr

θ̌

Mi
; let bi be the image. By construction, f̃ib either

• is zero iff λ̌ = θ̌, which happens precisely when Sλ̌Mi
∩Gr

θ̌

Mi
= {tθ̌} is closed in Gr

θ̌

Mi
;

• or has image (under ιXi ◦q) equal to an irreducible component f̃ibi of bi∩Sλ̌−α̌i

Mi
. Indeed,

this is a property of the crystal structure on MV cycles by [BG01].

In either case, the closure relations “downstairs” lift to closure relations “upstairs” under
(7.10), as b and f̃ib get identified with the lifts of bi and f̃ibi corresponding to the same element

of BPi

X,θ̌
under the identification of fibers afforded by Lemma 7.2.2. Therefore, in the first case

the closure of b in Y≤iλ̌
X is entirely contained in Yλ̌, which by Lemma 7.3.6 means that b∩Yλ̌−α̌i

is empty; while in the second case f̃ib corresponds to an irreducible component of b∩Yλ̌−α̌i . □

8. Nearby cycles

8.1. Principal degeneration. In this section we will consider the principal degeneration X→
A1 degenerating X to a horospherical variety. This is the base change of the affine family
X → TX,ss from §2.2 along a certain line in the base. The principal degeneration was studied
by [Pop86] in characteristic 0 and [Gro92] in positive characteristic.

We fix a choice of a regular dominant coweight ϱ̌ ∈ Λ̌+
G ∩ Λ̌pos

G once and for all; none of our

results depend on this choice. The image of ϱ̌ lies in −V and thus induces a map A1 → TX,ss.
We define the principal degeneration

X := X ×
TX,ss,ϱ̌

A1.

We have a G×Gm-morphism X→ A1, where G acts trivially on A1. This forms an affine flat
family ([Pop86, Proposition 9]). The fiber over 1 ∈ A1 is canonically isomorphic to X and
the fiber over 0 ∈ A1 is X∅ := Spec(gr k[X]). The Gm-action on X induces an isomorphism
X ×Gm ∼= X×A1 Gm. We also have a canonical isomorphism X//N = (X//N)× A1.
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For k of arbitrary characteristic, Grosshans showed that there is an injection

(8.1) k[X∅]→ (k[X//N ]⊗ k[N−\G])T

of G-algebras, which is an isomorphism if and only if k[X] admits a G-module filtration with
subquotients isomorphic to dual Weyl modules of G ([Gro92, Theorems 8, 16]). Of course
this always holds in characteristic 0; in positive characteristic we will assume that (8.1) is an
isomorphism in what follows.

Let X◦ denote the preimage of TX ×A1 ⊂ X//N ×A1 under the map X→ X//N . This is the
open subvariety which specializes over each fiber above A1 to the dense open B-orbit of that
fiber. Let X• ⊂ X denote the open subvariety which specializes over each fiber to the open
G-orbit of that fiber.

The isomorphism (8.1) implies that X∅ has a natural left TX -action, and the orbit of the
coset N−1 gives an embedding TX ↪→ X∅. We will temporarily denote its closure by TX .

Lemma 8.1.1. The composition TX ↪→ X∅ → X∅//N = X//N is an isomorphism. In other
words, we have a section X//N ↪→ X∅.

Proof. This is essentially a special case of [AT05, Proposition 7]. For λ ∈ Λ+
G, the isotypic com-

ponent k[N−\G](λ) is the dual Weyl module of highest weight λ. The embedding T ↪→ N−\G
corresponds to the algebra map k[N−\G] → k[T ] that sends k[N−\G](λ) → keλ (explic-
itly it sends all T -eigenvectors not of highest weight to zero). Thus, using (8.1), the map
k[X∅]→ k[TX ] sends k[X∅]

(λ) → keλ for λ ∈ c∨X . □

8.1.2. Contracting action. Let s : X//N ↪→ X denote the composition of the section given by
Lemma 8.1.1 and the embedding X∅ ↪→ X as the zero fiber. We will construct a Gm-action on
X that contracts X to the section s.

Recall the coweight ϱ̌ : Gm → T used to define X. Let Gm act on X via the group homomor-
phism Gm → G×Gm : a ↦→ (ϱ̌(a−1), a) and the natural G×Gm-action on X.

Lemma 8.1.3. The action map Gm ×X→ X extends to a regular map A1 ×X→ X such that

the composition 0× X→ A1 × X→ X coincides with the composition X→ X//N
s→ X.

Proof. The action map can be described as the map of rings

k[X]→ k[Gm]⊗ k[X] : fµen ↦→ en−⟨µ,ϱ̌⟩⊗ fµen

for a T -eigenvector fµ ∈ k[X](λ) of weight µ. We have ⟨µ, ϱ̌⟩ ≤ ⟨λ, ϱ̌⟩ ≤ n, so the image of the

co-action lies in the subalgebra k[A1]⊗ k[X].
Moreover, since ϱ̌ is regular dominant, observe that n − ⟨µ, ϱ̌⟩ = 0 if and only if fµ is a

highest weight vector and n = ⟨λ, ϱ̌⟩, which implies that the composition 0×X→ A1 ×X→ X

factors through X→ X//N
s→ X. □

8.2. Grinberg–Kazhdan theorem in families. The map X→ A1 induces a map of formal
arc spaces L+X→ L+A1. Define L+A1X = L+X ×

L+A1
A1 where A1 ↪→ L+A1 is the map of constant

arcs. Then L+A1X is an affine scheme over A1 with fiber over Gm isomorphic to L+X and zero
fiber isomorphic to L+X∅. While there does not currently exist a theory of nearby cycles for
infinite type schemes, we explain below how the nearby cycles of the “IC complex” of L+X can
be modeled by nearby cycles on the global or Zastava model.
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8.2.1. From now on we return to assuming that B acts simply transitively on X◦, so TX = T .
Note that now (8.1) implies that X∅ is an affine embedding of N−\G.

First, we define the analogous models in families: let

MX = Mapsgen(C,X/G ⊃ X•/G), YX = Mapsgen(C,X/B ⊃ X◦/B),

where X◦/B = A1. Since C is proper, MX maps to A1 with generic fiber isomorphic to MX

and special fiber MX∅ . The arguments of §3 easily generalize to show that MX is an algebraic
stack locally of finite type over A1

The B-equivariant map X→ X//N ×A1 induces a map YX → A×A1. We think of YX → A1

as a family degenerating Y = YX to Y∅ := YX∅ . For λ̌ ∈ cX , let Yλ̌X denote the preimage

of Aλ̌ under πX : YX → A. We summarize the properties of YX below; the proofs are easy
generalizations of those for Y.

• Yλ̌X is representable by a finite type scheme,
• YX satisfies the graded factorization property in families, in the sense that there is a
natural isomorphism

Yλ̌X ×
Aλ̌

(Aλ̌1×̊Aλ̌2) ∼= (Yλ̌1

X ×A1
Yλ̌2

X )|
Aλ̌1 ×̊Aλ̌2

when λ̌1 + λ̌2 = λ̌.
• There exists a closed embedding YX ↪→ GrB,SymC ×A1.

The modelsMX,YX are smooth-locally isomorphic as families, by the following generalization
of Lemma 3.5.4: Let YX• = Mapsgen(C,X

•/B ⊃ X◦/B).

Lemma 8.2.2. For fixed λ̌ ∈ cX and any µ̌ ∈ Λ̌pos
G large enough, there is a correspondence

(8.2) Yλ̌X ← Yλ̌X ×̊
A1

Y
µ̌
X• →MX

over A1, where the left arrow is smooth surjective and the right arrow is smooth.

The proof is the same as in loc cit., together with the observation that Maps(C,X•/G) is
smooth because X•/G is the classifying stack of a smooth group scheme over A1.

8.2.3. Fix an arc γ0 ∈ X∅(k[[t]]) ∩X•∅ (k((t))) and consider γ0 as a point in L+A1X(k).

Theorem 8.2.4 (Grinberg–Kazhdan, Drinfeld). There exists a point y ∈ Y∅(k) ⊂ YX(k) such

that the formal neighborhood (ˆ︁L+A1X)γ0 is isomorphic to ˆ︁A∞ × ˆ︁YX,y.

Proof. Fix a point v ∈ |C| and an identification ov ∼= k[[t]]. Note that each orbit inX•∅ (Fv)/G(ov)
has a representative in X◦∅ (Fv). Thus, by G(ov)-translation we may assume that γ0 ∈ X∅(ov)∩
X◦∅ (Fv). We may consider γ0 as a section Spec ov → X∅×B P̂0

B where P̂0
B is the trivial B-bundle

on Spec ov. By Lemma 3.7.7, this is equivalent to a map y : C → X∅/B with y(C − v) = pt.
This is the point y ∈ Y∅(k) we will use.

Next, we define a map of formal schemes

(8.3) (ˆ︁L+A1X)γ0 → ˆ︁YX,y

as follows: Formal schemes are determined by their R-points where R is a local commutative k-
algebra with residue field k whose maximal ideal m is nilpotent. Let γ : SpecR[[t]]→ X be an R-

point of (ˆ︁L+A1X)γ0 . The reduction modulo m of γ|SpecR((t)) equals γ0|Spec k((t)) ∈ X◦(k((t))). Since
k((t)) is the unique closed point of R((t)), we deduce that γ|SpecR((t)) has image contained in X◦.

Consider γ as a section Spec(R ˆ︁⊗ ov)→ X×B P̂0
B where P̂0

B is the trivial B-bundle. By an easy
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generalization of Lemma 3.7.7, the pair (P̂0
B , γ) is equivalent to a map ỹ : C × Spec(R)→ X/B

such that ỹ|(C−v)×SpecR factors through Spec(R) → A1 = X◦/B. We define (8.3) on R-points
by sending γ ↦→ ỹ.

Since (ˆ︁L+B)1 is non-canonically isomorphic to ˆ︁A∞, the theorem follows from the proposition
below. □

Proposition 8.2.5. Let y : C → X∅/B satisfy y(C − v) = pt and y|Spec ov
corresponds to

(P̂0
B , γ0). Then the map (8.3) is a (ˆ︃L+B)1-torsor.

Proof. Let (R,m) as above. By a generalization of Lemma 3.7.7, an R-point of ˆ︁YX,y is equivalent
to a map γ̄ : SpecR[[t]]→ X/B such that γ̄|SpecR((t)) factors through SpecR→ A1. The fiber of
(8.3) over γ̄ parametrizes maps γ : SpecR[[t]] → X that induce γ̄ and whose reduction modulo

m equals γ0. Since any B-bundle on SpecR[[t]] can be trivialized, we see that (ˆ︁L+B)1(R) acts
simply transitively on this fiber, since γ0 ∈ X◦∅ (k((t))) ∼= B(k((t))). □

8.3. Results on nearby cycles. We will now consider nearby cycles on the global and Zastava
models.

8.3.1. Fix λ̌ ∈ cX and consider the family f : Yλ̌X → A1. We have complementary embeddings

Yλ̌∅
i
↪→ Yλ̌X

j
←↩ Yλ̌ ×Gm

where i, j correspond to f−1(0), f−1(Gm), respectively. We let

ΨY : Dbc(Y
λ̌ ×Gm)→ Dbc(Y

λ̌
∅)

denote the nearby cycles functor defined in [SGA73, Exposé XIII], shifted by 1 so that ΨY is
perverse t-exact.

Let ΨuY denote the direct summand where the monodromy operator acts unipotently.

Remark 8.3.2. Since X has a Gm-action making f equivariant and F⊠ ICGm is Gm-equivariant

for any sheaf F on Yλ̌, a standard argument ([AB09, Remark 14]) shows that ΨY(F⊠ ICGm
) =

ΨuY(F⊠ ICGm
), i.e., the monodromy is unipotent.

By t-exactness, ΨY(ICYλ̌×Gm
) is also perverse. In this section we will compute the im-

age of ΨY(ICYλ̌×Gm
) in the Grothendieck group of Dbc(Y

λ̌
∅) (equivalently, that of P(Yλ̌∅)); this

determines the semisimplification of ΨY(ICYλ̌×Gm
) in the Artinian category P(Yλ̌∅) over the

algebraically closed field k.

There is an analogous global family MX → A1 and complementary embeddings

MX∅ ↪→MX ←↩MX ×Gm.

Denote the associated unipotent nearby cycles functor by ΨM : Dbc(MX × Gm) → Dbc(MX∅).
We will simultaneously compute [ΨM(ICMX×Gm

)].

8.3.3. Stratifications in the horospherical case. Before proceeding, we give a more concrete
description of the stratifications on Y∅,MX∅ using (8.1).

Since TX = T , we have X•∅ = N−\G and MX•∅
= BunN− . The isomorphism (8.1) induces a

map of affine schemes X//N ×T N−\G→ X∅, which in turn induces a map of stacks

ῑM : A ×
BunT

BunB− →MX∅ .
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Let ιM : A ×
BunT

BunB− ↪→MX∅ denote the restriction. For λ̌ ∈ cX , let ιλ̌M, ῑ
λ̌
M denote the maps

corresponding to Aλ̌. The following is a variant of [BG02, Proposition 1.2.7], whose proof we
leave to the reader.

Proposition 8.3.4. The map ῑλ̌M is finite, and its restriction ιλ̌M is a locally closed embedding.

The subschemes M
(λ̌)
X∅

= ιλ̌M(Aλ̌ ×
Bun−λ̌

T

Bun−λ̌B−) for λ̌ ∈ cX form a (possibly non-smooth)

stratification of MX∅ . This is a coarser stratification than the one defined in §3.1.5 in the

following sense: Note that V(X∅) = tX so c−X∅ = cX . For a partition P ∈ Sym∞(cX − 0), there

is a locally closed embedding C̊P ↪→ Adeg(P), and the collection of these subschemes ranging

over all partitions P with deg(P) = λ̌ forms a smooth stratification of Aλ̌. It follows from the
constructions that the strata from §3.1.5 are given by

M
P
X∅
∼= C̊P ×

BunT

BunB− ∼= C̊P ×
Adeg(P)

M
(deg(P))
X∅

indexed over all P ∈ Sym∞(cX − 0).

Next if we consider the corresponding Zastava model, we have

YX•∅ = Z?,0 = Maps(C,N−\G/B ⊃ pt)

is the open Zastava space of Finkelberg–Mirković. The Zastava space19 is in turn defined by
Z = Mapsgen(C,N

−\G/N/T ⊃ pt). The geometry of the Zastava space has been extensively

studied in [FM99, FFKM99, BFGM02]. The components of Z are indexed by Λ̌pos
G .

We can also define the relative open Zastava space Z
?,0
BunT

= Mapsgen(C,B
−\G/B ⊃ pt/T ).

The spaces Z?,0 and Z
?,0
BunT

are smooth locally isomorphic (cf. [BFGM02, §3.1]). For λ̌ ∈ Λ̌pos
G ,

let Zλ̌,0BunT
denote the preimages of Bunµ̌B− ×Bunµ̌−λ̌B running over all µ̌ ∈ Λ̌G.

Since Y∅ is open inMX∅×BunG
BunB , we deduce by base change that for any λ̌ ∈ cX , µ̌ ∈ Λ̌pos

G ,
there is a locally closed embedding

ιλ̌,µ̌Y∅
: Aλ̌ ×

BunT

Z
µ̌,0
BunT

↪→ Y
λ̌+µ̌
∅

where we are mapping Z
?,0
BunT

→ BunB− → BunT . Note that Z
0,0
BunT

= BunT , so ι
λ̌,0
Y∅

defines

a map Aλ̌ ↪→ Yλ̌∅ . One can check that this map corresponds to applying Maps(C, T\?) to the
section s∅ : X//N ↪→ X∅ from Lemma 8.1.1. Therefore,

sλ̌∅ := ιλ̌,0Y∅
: Aλ̌ ↪→ Yλ̌∅

is a section of the projection π∅ : Y
λ̌
∅ → Aλ̌.

8.3.5. We compute the ∗-restriction of nearby cycles to the strata above, which suffices to
determine nearby cycles in the Grothendieck group. Let Ω(ňC)

−ν̌ = D(Υ(ňC)
ν̌) denote the

Verdier dual of the factorization algebra defined in §4.5. Recall that we defined a convolution
product ⋆ on Dbc(A) in §4.5.7. The statement of our main result is:

19The Finkelberg–Mirković Zastava space is the Zastava model for G/N . In this paper we made a slight
distinction in semantics between ‘model’ and ‘space’ to avoid confusion, but the two terms are interchangeable.
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Theorem 8.3.6. We have equalities in the Grothendieck group

[ΨM(ICMX×Gm
)] =

∑︂
λ̌∈cX

∑︂
ν̌≥0

[︂
ιλ̌M,!

(︂(︁
iA,ν̌,!(Ω(ňC)

−ν̌) ⋆ π̄!(IC
Y

λ̌−ν̌ )
)︁

⊠
BunT

ICBunB−

)︂]︂
[ΨY(ICYµ̌×Gm

)] =
∑︂
λ̌∈cX
λ̌≤µ̌

∑︂
ν̌≥0

[︂
ιλ̌,µ̌−λ̌Y,!

(︂(︁
iA,ν̌,!(Ω(ňC)

−ν̌) ⋆ π̄!(IC
Y

λ̌−ν̌ )
)︁

⊠
BunT

IC
Z

µ̌−λ̌,0
BunT

)︂]︂

for any µ̌ ∈ cX in the second equality.

We point out that the description of π̄!ICYλ̌ is the main content of the previous sections of
this paper. In particular it has the format (6.12).

Recall that F ⊠
BunT

G denotes the ∗-restriction of F ⊠ G to the corresponding fiber product

over BunT , shifted by [−dimBunT ]. Note that BunB− and Z
?,0
BunT

are smooth stacks, so the
respective IC complexes are shifted constant sheaves.

Proof. Theorem 8.3.6 follows by combining Corollary 4.5.9 with Lemma 8.3.7 and Theorem 8.3.8
below. □

First, a well-known argument using some Zastava-to-global yoga allows us to reduce from

computing restrictions to all strata to only computing sλ̌,∗∅ ΨY(ICYλ̌×Gm
) for all λ̌ ∈ cX .

Lemma 8.3.7. We have equalities in the Grothendieck group20

[ιλ̌,∗M ΨM(ICMX×Gm
)] = [sλ̌,∗∅

(︁
ΨY(ICYλ̌×Gm

)
)︁

⊠
BunT

ICBunB−
](8.4)

[ιλ̌,ν̌,∗Y∅
ΨY(ICYλ̌+ν̌×Gm

)] = [sλ̌,∗∅
(︁
ΨY(ICYλ̌×Gm

)
)︁

⊠
BunT

ICZ
ν̌,0
BunT

],(8.5)

where λ̌ ∈ cX , ν̌ ∈ Λ̌pos
G .

Proof. The argument is the same as [BFGM02, §3.1], [BFGM04, §8(1)] and [BG08, Proof of
Proposition 4.4]. The strategy is that we first show (8.4) and then use it to show (8.5).

Fix λ̌′ ∈ cX and µ̌ ∈ Λ̌pos
G large enough as in Lemma 8.2.2 and consider the correspondence

(8.2). The fiber of (8.2) over 0 ∈ A1 gives the correspondence

Yλ̌
′

∅ ← Yλ̌
′

∅ ×̊ Zµ̌,0 →MX∅ .

Since nearby cycles commutes with smooth base change of the family over A1, we deduce that
there is an isomorphism

(8.6) ΨY(ICYλ̌′×Gm
)|!∗
Yλ̌′
∅ ×̊Zµ̌,0

∼= ΨM(ICMX×Gm
)|!∗
Yλ̌′
∅ ×̊Zµ̌,0 ,

We now restrict to strata: for λ̌ ∈ cX observe that there is a commutative diagram where both
squares are Cartesian

(8.7)

Aλ̌ ×
BunT

Z
λ̌′−λ̌,0
BunT

(Aλ̌ ×
BunT

Z
λ̌′−λ̌,0
BunT

) ×̊ Zµ̌,0 Aλ̌ ×
BunT

BunB−

Yλ̌
′

∅ Yλ̌
′

∅ ×̊ Zµ̌,0 MX∅

ιλ̌,λ̌′−λ̌
Y∅ ιλ̌M

20In fact the isomorphisms hold in the derived category, but we omit the proof as it uses generic-Hecke
equivariance to show no twist exists on the BunB− factor.
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By the argument of [BFGM02, §8(1)], every point of Aλ̌ ×BunT
BunB− is in the image of

Aλ̌ ×̊ Zµ̌,0 for some µ̌ large enough, i.e., we only need to consider the diagram (8.7) when

λ̌′ = λ̌. Note that Aλ̌×BunT
BunB− is of finite type, so there exists a single µ̌ such that the

map Yλ̌∅×̊Z
µ̌,0 → MX∅ has geometrically irreducible fibers and contains Aλ̌ ×BunT

BunB− in
its image (Corollary 3.5.2). In particular, pullback along this map is fully faithful on perverse
sheaves.

By restricting the isomorphism (8.6) to the stratum Aλ̌ ×̊ Zµ̌,0, we get

sλ̌,∗∅ ΨY(ICYλ̌×Gm
)|!∗
Aλ̌×̊Zµ̌,0

∼= ιλ̌,∗M ΨM(ICMX×Gm)|!∗
Aλ̌×̊Zµ̌,0 .

This establishes the equality (8.4) in the Grothendieck group by fully faithfulness of the pull-
back.

The equality (8.5) follows from (8.4) and (8.6) in the same fashion by considering the diagram
(8.7) with λ̌′ = λ̌+ ν̌. □

Define the functor Ψ : Dbc(Y
λ̌) → Dbc(Y

λ̌
∅) by Ψ(F) := ΨY(F ⊠ ICGm) = ΨuY(F⊠ ICGm). The

crucial fact that will allow us to do our computations is the following:

Theorem 8.3.8. There are natural isomorphisms of functors Dbc(Y
λ̌)→ Dbc(A

λ̌):

sλ̌,∗∅ Ψ ∼= π∅,∗Ψ ∼= π∗

sλ̌,!∅ Ψ ∼= π∅,!Ψ ∼= π!.

The theorem will be proved using a standard argument involving the contraction principle.

8.4. Contraction principle. Set sλ̌ = i ◦ sλ̌∅ : Aλ̌ ↪→ Yλ̌X. We drop the superscript to denote
the section s : A ↪→ YX on all components. Recall that s corresponds to the map induced by
the embedding s : X//N → X, and Lemma 8.1.3 defines an action of A1 on X that contracts to
s. The action of A1 commutes with that of G, so we get an action A1 × YX → YX such that
0 × YX → YX coincides with s ◦ πX. In this situation, the contraction principle ([BFGM02,
Lemma 5.3], [Laf, Lemme 2.2], which is closely related to Braden’s theorem [Bra03]) says that
there is a natural isomorphism of functors πX,∗ ∼= s∗ : Dbc(YX)→ Dbc(A).

Proof of Theorem 8.3.8. We will prove the first line of isomorphisms; the second line follows

from the first by Verdier duality. If we apply the contraction principle to sλ̌,∗∅ Ψ = sλ̌,∗i∗Ψ, we

immediately get the first isomorphism sλ̌,∗∅ Ψ ∼= π∅,∗Ψ.

Next, we will show the isomorphism sλ̌,∗∅ Ψ ∼= π∗. Recall that [Bei87b] gives an equivalence

DbP(Yλ̌) ∼= Dbc(Y
λ̌), so we only need to define the isomorphism on perverse sheaves. Let

F ∈ P(Yλ̌). For any a ≥ 1, let La denote the local system on Gm whose monodromy is a
unipotent Jordan block of rank a. There are canonical injections La → La+1. Beilinson’s
construction of the unipotent nearby cycles functor (cf. [Bei87a, 2.3]) gives an isomorphism

Ψ(F) ∼= colim
a≥1

i∗j∗(F⊠La).

We can further apply sλ̌,∗∅ to get an isomorphism sλ̌,∗∅ Ψ(F) ∼= colim sλ̌,∗j∗(F⊠La). Applying
the contraction principle, we get an isomorphism

sλ̌,∗∅ Ψ(F) ∼= colim
a≥1

(πX ◦ j)∗(F⊠La).
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Note that πX ◦ j : Y×Gm → A is equal to the composition of the first projection Y×Gm → Y

and π : Y→ A. Therefore,

(πX ◦ j)∗(F⊠La) = π∗(F)⊗H∗(Gm,La).

Since colima≥1H
∗(Gm,La) = Qℓ, we conclude that sλ̌,∗∅ Ψ(F) ∼= π∗(F). □

9. Function-theoretic corollaries

9.1. Pushforward of the basic function. When k is the algebraic closure of a finite field
F, and X is defined over F, satisfying the assumptions of §2.2, the action of the geometric
Frobenius Fr morphism on π̄!(IC

Y
λ̌) is described, up to a yet unknown permutation action on

the set B+
X =

⋃︁
λ̌BX,λ̌ of central components of critical dimension, by Proposition 6.4.1. We

use this to prove Theorems 1.1.2 and 1.1.4 from the introduction.

Proof of Theorems 1.1.2 and 1.1.4. Recall that o, in the context of these theorems, denotes the
ring F[[t]], where F is the finite field of definition of X, and F is its fraction field.

We need to recall the definition of the IC function Φ0 from [BNS16]: It is a function on
(X(o) ∩X•(F ))/G(o) which, in our case, is parametrized by the set (c−X)Fr of elements of c−X
that are fixed under the Galois group. To define it, choose an arc γ in the coset of such an

element θ̌, and consider a finite-dimensional formal model ˆ︁Yy of the formal neighborhood of γ

in the arc space L+X (Definition 3.8.1). In our case, we can take Y = Yθ̌ and y = the point tθ̌

on the central fiber Yθ̌,θ̌, by Theorem 3.8.2. Then, the value of Φ0 on θ̌ is equal to the trace of
geometric Frobenius on the stalk of the intersection complex ICY at y, where the intersection
complex is normalized to be constant (without Tate or cohomological twists) on the smooth
locus of Y .

In our setting, this means that for every component Y as in Proposition 6.4.1, the Tate
and cohomological twist on ICY should be modified from Qℓ(dimY

2 )[dimY ] to Qℓ, and (6.11)
should be replaced by the space

(9.1)
⨁︂
Y

⨁︂
BY

Qℓ(−dimY
2 )[−dimY ] =

⨁︂
b∈BX,λ̌

Qℓ(−dim b− 1
2 )[−2 dim b− 1].

To calculate the value at λ̌(t) of the integral of the basic function that was denoted by π!Φ0

in the introduction, for λ̌ fixed by Frobenius, we need to calculate the (alternating) trace of

Frobenius on the fiber of π̄!(IC
Y

λ̌) over an F-point of the diagonal C ↪→ Aλ̌, and then divide

by the factor trŤ (Fr,Sym
•(ň(1))) in order to account for the difference between ICY and ICY

(Corollary 4.5.9).
Taking into account the twists in the intersection complexes of the CR’s in (6.12), we deduce

that, with this normalization of the IC sheaves, Frobenius acts on that fiber as on⨁︂
deg(R)=λ̌

(︂⨂︂
µ̌

SymNµ̌(
⨁︂

b∈BX,µ̌

Qℓ(−dim b)[2 dim b])
)︂
.

Thus, in the notation of Theorems 1.1.2 and 1.1.4, we have

π!Φ0 = trŤ (Fr,Sym
•(ň(1)))−1 · trŤ (Fr,Sym

•(
⨁︂

b∈B+
X

Qℓ(−dim b))),

where we remind that B+
X =

⋃︁
µ̌∈cX BX,µ̌.

The dimensions dim b are given by Proposition 6.5.1: they are either equal to 1
2 (len(D)− 1),

if b meets YDX• , or ⟨ρG, λ̌− θ̌⟩, if b meets Yλ̌,θ̌ for θ̌ ∈ DGsat(X).
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Both theorems assume the existence of a G-eigen-volume form on X•, which we fix, with
eigencharacter h. We denote the absolute value of this eigencharacter by η. By Remark 5.4.4,
for any D ∈ ND with ϱX(D) = λ̌, we have len(D) =

⟨︁
h+ 2ρG, λ̌

⟩︁
. The effect of multiplying by

(ηδ)
1
2 (t) will be to replace Qℓ(−dim b), in the expression above, by Qℓ( 12 ), for those b in YDX• ;

this proves Theorem 1.1.2(i),(iv),(v).
For the rest of the components b, taking into account that λ̌ ≥ θ̌ and h is trivial on the roots,

therefore
⟨︁
h, λ̌
⟩︁
=
⟨︁
h, θ̌
⟩︁
and

⟨︁
2ρG, λ̌

⟩︁
has the same parity as

⟨︁
2ρG, θ̌

⟩︁
, the effect of multiplying

by (ηδ)
1
2 (t) will be to replace Qℓ(−dim b) by Qℓ(

⟨h+2ρG,θ̌⟩
2 ), proving Theorem 1.1.4.

The remaining parts, (ii), (iii) of Theorem 1.1.2 follow directly from Theorem 7.1.9. □

9.2. Asymptotics and the basic function. We explain the proof of Corollary 1.2.1, com-
puting the basic function and its asymptotics.

Proof of Corollary 1.2.1. The (function-theoretic) Radon transform π∅! onX
•
∅ is well-understood;

in particular, the function 1X•∅ (o) maps to

δ−
1
2 trŤ (Fr,Sym

•(ň)) · trŤ (Fr,Sym
•(ň(1)))−1,

in the notation of (1.3). Moreover, π∅! is equivariant for the action of the torus T (F ). This
implies the formula (1.9) for e∗∅Φ0.

This, in turn, implies the formula (1.10) for Φ0, by [Sak18, Corollary 5.5], where it is proven
that, for an appropriate parametrization of the G(o)-orbits, any G(o)-invariant function Φ on
X•(F ) is equal to its asymptotic e∗∅Φ, restricted to the antidominant lattice Λ̌−,Fr. Note that
that paper was written under the assumption of G being split (and X being “wavefront”, which
is automatic in our setting), but the proof of the result that we are quoting is valid without this
assumption. (For example, “quasi-split” is enough for the Casselman–Shalika method, which is
the basis of that argument, and for the asymptotics theory developed in [SV17].) □

9.3. Euler factors of global integrals. Finally, to demonstrate how our results apply directly
to compute Euler factors of global integrals of automorphic forms, let us return to the setting of
Examples 1.1.3, 1.2.2, in order to discuss the Euler factorization of the pertinent global period
integral. This will not directly invoke the nearby cycles functor (hence, is based on results of
previous sections only), but it makes use of the asymptotics map e∗∅ that we just recalled.

To recall, the group is G = (Gm × SLn2 )/µ2, and X is the affine closure of H\G, where H is
the product of the group H0 of (1.1.3) with a copy of Gm embedded diagonally into G as

(9.2) a mod µ2 ↦→
(︃
a,

(︃
a

a−1

)︃n)︃
mod µ2.

We let Φ =
∏︁
v Φv be a function on X•(A) as in Example 1.2.2.

Let ϕ ∈ π be a cusp form, where the restriction of π to Gm is a character of the form χ0| • |s
for χ0 unitary and some s ≫ 0. Fix a nontrivial character ψ of A/k, identified as a character
of the quotient N−/H0, where N

− is the lower triangular unipotent subgroup (mapping to the
additive group through summation of the entries). The standard method of writing ϕ in terms
of its Whittaker function Wϕ with respect to (N−, ψ) shows that the integral∫︂

G(k)\G(A)
ϕ(g)

∑︂
γ∈X•(k)

Φ(γg)dg =

∫︂
X•(A)

Φ(g)

∫︂
H(k)\H(A)

ϕ(hg)dhdg

“unfolds” to the Eulerian integral ∫︂
H0\G(A)

Wϕ(g)Φ(g)dg.
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We can write the Whittaker function as WΦ(g) =
∏︁
vWϕ,v(gv), so that Wϕ,v(1) = 1 for

almost all v, and we can factorize the invariant measure on H0\G so that for almost all v,
µv(H0\G(ov)) = 1.

Proposition 9.3.1. At places v where Wϕ,v(1) is G(ov)-invariant with Wϕ,v(1) = 1 (in par-
ticular, πv is unramified), Φv = Φ0,v (the IC function), µv(H0\G(ov)) = 1, and the conductor
of ψ|kv is the ring of integers, we have

(9.3)

∫︂
H0\G(kv)

Wϕ,v(gv)Φv(gv)dgv = L(πv,⊗, 1−
n

2
).

Proof. The proof can be obtained by direct computation from the explicit formula (1.10) for
the basic function. However, we would like to sketch a “pure thought” argument, which applies
to other cases as well, without providing all details. We drop the index v, denoting the place
under consideration, and write F for kv.

First of all, the square of the absolute value of (9.3) follows immediately from Plancherel-
theoretic considerations. Indeed, we can write the local integral as

Z(Φ, π) =

∫︂
N−\G(F )

Wϕ(g)WΦ(g)dg,

where

(9.4) WΦ(g) =

∫︂
H0\N−(F )

Φ(ng)ψ(n)dn.

We identify the abelianization Gab with Gm, so that the composite Gm → G → Gm is the
square character. Let η be the character a ↦→ |a|1−n on G — it is the character by which it acts
on the SLn2 -invariant measure on X•. Fix that measure giving volume 1 to X•(o). It is known
from [SV17, Theorem 9.5.9] that the “unfolding” map Φ ↦→WΦ extends to an L2-isometry

L2(X•(F ))
∼−→ L2(N−\G(F ), ψ−1),

where the Haar measure on N−\G(F ) is fixed so that the volume of N−\G(o) is 1.
The local zeta integrals appear in the Plancherel decomposition of Whittaker functions,

(9.5) ∥Φ∥2L2(X•(F )) = ∥WΦ∥2L2(N(F )\G(F ),ψ−1) =

∫︂
|Z(Φ, π)|2dπ,

where π ranges over the unitary unramified dual of G(F ), which can be identified with the set
of semisimple conjugacy classes in the compact form of the complex dual group Ǧ(C), and the

Plancherel measure dπ is the Weyl measure |(1− eα̌)|2 dχ (when we identify the unramified
dual with the quotient Ť 1/W , where Ť 1 is the group of unitary unramified characters — the
maximal compact subgroup of the complex points of the dual Cartan Ť ).

On the other hand, the Plancherel decomposition of Φ can also be expressed in terms of its
asymptotics:

∥Φ∥2L2(X•(F )) =
1

|W |
∥e∗∅Φ∥

2
L2(X•∅ (F )),

where we have applied [SV17, Theorem 7.3.1], together with the following observations: 1) our
calculation of e∗∅Φ shows that it already lies in L2(X•∅ (F )), so there is no difference between
that and what is denoted by ι∗∅Φ in loc.cit.; 2) there are no unramified functions Φ on X•(F )
with e∗∅Φ = 0; this is essentially [Sak08, Theorem 6.2.1], and it implies, together with the
previous point, that the summands of [SV17, Theorem 7.3.1] with Θ ̸= ∅ do not contribute
to the Plancherel decomposition. (This is not an essential point for this proof; the argument
would go through even if there were contributions outside of the most continuous spectrum.)
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By our formula (1.4), as specialized in Example 1.1.3, and the commutation of asymptotics
with Radon transform, (1.8), we can write the Plancherel decomposition of the basic function
as

(9.6) ∥Φ∥2L2(X•(F )) =
1

|W |

∫︂
Ť 1

⃓⃓⃓⃓
⃓
∏︁
α̌∈Φ̌+(1− eα̌(χ))∏︁

λ̌∈B+(1− q−
1
2 eλ̌(χ))

⃓⃓⃓⃓
⃓
2

dχ =

∫︂
L(π,⊗, 1

2
)L(π̃,⊗, 1

2
)dπ.

Comparing (9.5) and (9.6), we get that |Z(Φ, π)|2 = L(π,⊗, 12 )L(π̃,⊗,
1
2 ) for π unitary. This

is what we get “for free” from the L2-decomposition.
To upgrade it to a formula on Z(Φ, π), we utilize the following information about the image

WΦ under the unfolding map. Note that this is a G(o)-invariant Whittaker function, hence can

be identified as a function on the antidominant coweights, by evaluating it on the elements tθ̌.
The facts that we need are:

(i) The support of WΦ lies in the intersection of the antidominant lattice with the cone
generated by c−X and the coweight

θ̌0 := − α̌1 + α̌2 + · · ·+ α̌n − m̌
2

.

Its value at 1 = t0 is 1.

Indeed, the support of Φ lies in Hξtc
−
XG(o), where ξ is the diagonal image of

(︃
1 0
1 1

)︃
,

and from the definition (9.4) of the unfolding map, the support of WΦ will lie in

HξN−tc
−
XG(o) = N−Gmtc

−
XG(o), where Gm is embedded as in (9.2). But a G(o)-

invariant Whittaker function with respect to a character of N− whose conductor is o
can only be supported on antidominant elements.

When g = 1, the integrand of (9.4) only lies in the support of Φ when n ∈ H0\N−(o).
(ii) The value of WΦ at any tθ̌ is a polynomial in q−

1
2 .

This fact, which can be seen as expressing the “motivic” nature of this function,
requires some explanation. First of all, the statement is true if WΦ is replaced by the
pushforward π!Φ, by Theorem 1.1.2 (see also §9.1). Secondly, the unfolding integral
(9.4) of the characteristic function of each G(o)-orbit has this property; this can be
seen by direct calculation, or by a similar geometric argument, and we omit the details.

(iii) If φθ̌ denotes the G(o)-invariant Whittaker function supported on the coset N−tθ̌G(o)

(with θ̌ antidominant) and equal to 1 on θ̌, its asymptotic e∗∅φθ̌ is supported on the

union of a finite number of cosets N−tθ̌
′
G(o), with θ̌′ − θ̌ in the positive root monoid,

and is a polynomial in q−
1
2 .

Here, the asymptotics map is for the Whittaker model, but we denote it by the
same symbol. It takes values in N−\G(F ), without a character on N−. This fact is
a corollary of the Casselman–Shalika formula. (See [Sak18, Theorem 6.8 and Example
6.4] for an intepretation of the Casseman–Shalika formula in terms of asymptotics.)

Granted, now, the facts above, we can represent e∗∅WΦ as a formal series in the elements

eθ̌, which stand for the characteristic functions of the sets N−tθ̌G(o), multiplied by δ−
1
2 (tθ̌) =

q⟨ρG,θ̌⟩, with coefficients in C[q− 1
2 ]:

e∗∅WΦ =
∑︂
i,θ̌

ci,θ̌q
− i

2 eθ̌.
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According to the first and the third facts above, the support of this function lies in the set
of θ̌’s which are translates, by the positive coroot monoid, of the intersection

(c−X + span(θ̌0)) ∩ Λ̌−.

The description of colors of X in Example 1.1.3 allows us to conclude that this monoid only
includes coweights for which the “determinant” character

κµ̌+
∑︁
i κiα̌i

2
↦→ κ

is nonnegative; moreover, the restriction to the kernel of the determinant cocharacter is simply
equal to the asymptotics of the “basic Whittaker function” φ0, which by [Sak18, Theorem 6.8
and Example 6.4] is equal to ∏︂

α̌∈Φ̌+

(1− eα̌).

Thus, if we “divide” the function e∗∅WΦ by the product above (this corresponds to acting on
it by a series in the Hecke algebra of the torus T ), we obtain another series∏︂

α̌∈Φ̌+

(1− eα̌)−1e∗∅WΦ = 1 · e0 +
∞∑︂
j=1

∞∑︂
i=0

q−
i
2 ej

µ̌
2Ci,j ,

where the Ci,j ’s are finite linear combinations of the elements eλ̌, where λ̌ now ranges over
half-multiples of elements in the coroot lattice. (The finiteness of the linear combination also
follows from [Sak18, Theorem 6.8 and Example 6.4]: the asymptotics of every φθ̌ is a “multiple”

of the factor
∏︁
α̌∈Φ̌+(1 − eα̌).) Note that µ̌

2 is not, by itself, a coweight of G, so one has to

expand this series to make sense of it as a linear combination of the elements eθ̌ with θ̌ ∈ Λ̌.
Now we invoke the Plancherel formula: the fact that the unfolding map is an isometry tells

us that the Plancherel density of WΦ is also given by (9.6). On the other hand, this Plancherel
density can be expressed in terms of the asymptotics e∗∅WΦ as

∥WΦ∥2 =
1

|W |
∥e∗∅WΦ∥2 =

1

|W |

∫︂
Ť 1

⃓⃓⃓⃓
⃓⃓1 · e0 + ∞∑︂

j=1

∞∑︂
i=0

q−
i
2 ej

µ̌
2Ci,j

⃓⃓⃓⃓
⃓⃓
2 ⃓⃓⃓⃓
⃓⃓ ∏︂
α̌∈Φ̌+

(1− eα̌)

⃓⃓⃓⃓
⃓⃓
2

dχ =

=
1

|W |

∫︂
Ť 1

⎛⎝1 · e0 +
∞∑︂
j=1

∞∑︂
i=0

q−
i
2 ej

µ̌
2Ci,j

⎞⎠⎛⎝1 · e0 +
∞∑︂
j=1

∞∑︂
i=0

q−
i
2 e−j

µ̌
2C∗i,j

⎞⎠ ∏︂
α̌∈Φ̌+

⃓⃓
(1− eα̌)

⃓⃓2
dχ,

where we now identify the elements eθ̌ with characters of the dual torus Ť , use the fact that

for a unitary character eθ̌(χ) = e−θ̌(χ), and set C∗i,j =
∑︁
λ̌ cλ̌e

−λ̌ if Ci,j =
∑︁
λ̌ cλ̌e

λ̌.
In other words, we have expressed the Plancherel density

L(π,⊗, 1
2
)L(π̃,⊗, 1

2
)

as the product ⎛⎝1 · e0 +
∞∑︂
j=1

∞∑︂
i=0

q−
i
2 ej

µ̌
2Ci,j

⎞⎠⎛⎝1 · e0 +
∞∑︂
j=1

∞∑︂
i=0

q−
i
2 e−j

µ̌
2C∗i,j

⎞⎠ .

We will be done if we can identify the first factor of the former with the first factor of the latter.

But, viewed as series in the elements q−
i
2 e−j

µ̌
2 (with coefficients in polynomials in the group

ring of the half-root lattice), the first factor of the former is the restriction of the series to the

elements of the form q−
i
2 ei

µ̌
2 , while the product L(π,⊗, 12 )L(π̃,⊗,

1
2 ) is supported on elements
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of the form q−
i
2 ej

µ̌
2 with j ≤ i. It follows that the series 1 · e0 +

∑︁∞
j=1

∑︁∞
i=0 q

− i
2 ej

µ̌
2Ci,j is also

supported on elements of the form q−
i
2 ej

µ̌
2 with j ≤ i, coincides with L(π,⊗, 12 ) on elements

with i = j, and a simple inductive argument in the variable i− j shows that it coincides with
it everywhere. □

Appendix A. Properties of the global stratification

A.1. The factorizable space of formal loops. We briskly review the definitions of multi-
point versions of the spaces of formal arcs and formal loops. We refer the reader to [KV04],
[Zhu17, §3.1] for a more complete account.

Let C be a smooth curve over k. For any N ∈ N, we have the Nth symmetric product
C(N) of C, which identifies with the Hilbert scheme HilbN (C) parametrizing relative effective
divisors in C of degree N .

Recall that if S is an affine scheme and D ⊂ C × S is a closed affine subscheme, we denote

by ˆ︁C ′D the spectrum of the ring of regular functions on the formal completion of C × S along

D (so ˆ︁C ′D is a true scheme, not merely a formal scheme). Let ˆ︁C◦D := ˆ︁C ′D −D denote the open
subscheme.

For any k-scheme X, we define the global space of formal arcs by the functor

(L+X)C(N)(S) = {D ∈ C(N)(S), γ ∈ X( ˆ︁C ′D)}.
for affine test schemes S. By [KV04, Proposition 2.4.1], the functor (L+X)C(N) is representable
by a scheme of infinite type over C(N). If X is affine, then (L+X)C(N) is affine over C(N),
cf. [KV04, 2.4.3]. More specifically, define the space of n-jets (L+

nX)C(N) by

(L+
nX)C(N)(S) = {D ∈ C(N)(S), γ ∈ X( ˆ︁CnD)},

where ˆ︁CnD denotes the nth infinitesimal neighborhood of D in C × S. Then (L+
nX)C(N) is

representable by a scheme over C(N), which is affine (resp. of finite type) if X is. As n
varies the schemes (L+

nX)C(N) form a projective system of schemes with affine transition maps,
and (L+

nX)C(N) is equal to the projective limit of this system. If X is smooth, the schemes
(L+

nX)C(N) are smooth over C(N) with smooth surjective transition maps (cf. [Ras, Lemma
2.5.1]).

We can also define the functor for the global loop space by

(LX)C(N)(S) = {D ∈ C(N)(S), γ ∈ X( ˆ︁C◦D)}.
If X is affine, then (LX)C(N) is representable by an ind-scheme ind-affine over C(N), cf. [KV04,
Proposition 2.5.2]. We have a closed embedding (L+X)C(N) ↪→ (LX)C(N) .

A.1.1. Let Aut0(k[[t]]) denote the functor sending a k-algebra R to the group of R-algebra
automorphisms of R[[t]] that reduce to the identity map mod t. Then Aut0(k[[t]]) is representable
by the group scheme Spec k[a±11 , a2, a3, . . . ], cf. [Zhu17, (1.3.13)].

There is an Aut0(k[[t]])-torsor Coord0(C) → C classifying v ∈ C together with an iso-
morphism k[[t]] ∼= ov that sends t to a uniformizer, cf. [Zhu17, (3.1.10)]. We can think of
(L+X)C , (LX)C as twisted products

(L+X)C = C ×̃ L+X, (LX)C = C ×̃ LX,

where C ×̃ L+X := Coord0(C)×Aut0(k[[t]]) L+X.
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Remark A.1.2. The space LX really lives over the Ran space of C. Essentially this just means
LX only cares about the support of the divisor D and not its multiplicities. More specifically
for any finite set I we have a map CI → C(|I|) where |I| denotes the cardinality of I. Then
the spaces (LX)CI := CI ×C(|I|) (LX)C(|I|) have a factorization monoid structure as defined in
[KV04, Definition 2.2.1], and we can think of the collection of these spaces as (LX)RanC

. This
is certainly the more philosophically correct approach to considering the loop space, but for
technical simplicity it will suffice for our study of arc spaces to work with L+X over SymC.

A.1.3. We can apply the constructions above to the algebraic group G. Since G is smooth,
L+G is a group scheme formally smooth over SymC.

Consider the (factorizable) Beilinson–Drinfeld affine Grassmannian GrG,SymC defined in §3.7.
By Beauville–Laszlo’s theorem (see [BD96, Remark 2.3.7], [Zhu17, Proposition 3.1.9]), we have
an isomorphism GrG,SymC

∼= LG/L+G.

A.1.4. Let X be an affine spherical G-variety. Define

L•X := LX − L(X −X•),

which admits an open embedding into LX. The G-action on X induces a natural action of LG
on LX and the subspace L•X (resp. L+X) is stable under the action of LG (resp. L+G).

We will primarily be concerned with the global space of non-degenerate arcs

(L+X)• := L+X ×LX L•X.

The study of the loop space L•X is beyond the scope of this paper.

A.2. Multi-point orbits. We now consider the L+G-orbits on (L+X)•, and we will prove a
multi-point version of Proposition 2.3.7.

A.2.1. What is going on at the level of k-points. A k-point of RanC is a nonempty finite subset
{vi ∈ |C|}i∈I of points on C. Then a k-point of (L+X)•RanC

over {vi} consists of points

xi ∈ X(ovi) ∩ X•(Fvi). Each xi belongs to an orbit X•(Fvi)G:θ̌i
for a unique θ̌i ∈ c−X by

Theorem 2.3.5(ii). The collection θ̌i, i ∈ I forms a multiset in c−X . Note that θ̌i may be zero.

Therefore, the tuple (xi)i∈I is a k-point in the product of orbits
∏︁
i∈I

Lθ̌iviX.

The idea for what follows is that this product of orbits only depends on the unordered
multiset {θ̌i}, counted with multiplicity. Moreover since C0 is a strictly convex cone, the set of
formal sums

∑︁
I θ̌i · vi admits a positive grading.

A.2.2. Construction. Let Θ̌0 denote an (unordered) multiset in c−X , by which we mean a formal
sum ∑︂

θ̌∈c−X

Nθ̌[θ̌] ∈ Sym∞(c−X)

where all but finitely many Nθ̌ = 0. Note that we include the case θ̌ = 0 and N0 may be
nonzero. See §3.1.4 for notation.

We have an étale map

C̊ |Θ̌0| =
∏̊︂
θ̌∈c−X

C̊Nθ̌ →
∏̊︂
θ̌∈c−X

C̊(Nθ̌) = C̊Θ̌0 .
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By the factorization property, the base change C̊ |Θ̌0|×SymC L+X identifies with the |Θ̌0|-fold
disjoint product of C ×̃ L+X. By Proposition 2.3.7, we have the locally closed subscheme

(A.1)
∏̊︂
θ̌∈c−X

(C ×̃ Lθ̌X)×̊Nθ̌ ↪→ C̊ |Θ̌0| ×
SymC

L+X.

This is stable under the action of
∏︁
θ̌SNθ̌

, and therefore (A.1) descends to a locally closed
subscheme

LΘ̌0X ↪→ C̊Θ̌0 ×
SymC

L+X =: (L+X)C̊Θ̌0 .

Proposition A.2.3. The scheme LΘ̌0X is formally smooth over C̊Θ̌0 , and second projection

induces a locally closed embedding LΘ̌0X ↪→ L+X.

Proof. Formal smoothness follows from Proposition 2.3.7. It remains to show that the second

projection pr2 : LΘ̌0X → L+X is a locally closed embedding. Note that pr2 is the composition
of the finite étale map

pr′2 : (L+X)C̊Θ̌0 → (L+X)C̊(|Θ̌0|) := C̊(|Θ̌0|) ×
SymC

L+X

and the open embedding (L+X)C̊(|Θ̌0|) ↪→ L+X. Hence it suffices to show that the restriction

LΘ̌0X ⊂ (L+X)C̊Θ̌0 → (L+X)C̊(|Θ̌0|) is locally closed. Let Y be the closure of LΘ̌0X in

(L+X)C̊Θ̌0 , so Y
′ = pr′2(Y ) is a closed subscheme of (L+X)C̊(|Θ̌0|) and pr′2(L

Θ̌0X) is open in
Y ′. Observe that the induced map

(A.2) LΘ̌0X → pr′2(L
Θ̌0X)

is a bijection on geometric points: a point in the right hand side consists of an unordered set of
points {vi} ⊂ C and xi ∈ L+viX such that if θ̌i denotes the G-valuation of xi, then

∑︁
i[θ̌i] = Θ̌0.

There is a unique way to partition the vi’s according to distinct values of θ̌i’s to get a point in

LΘ̌0X. Therefore (A.2) is étale and a bijection on geometric points, hence an isomorphism. □

A.3. Proof of Lemma 3.1.6. Assume that C is complete. Let (MX ×SymC)• denote the
substack of MX ×SymC consisting of those pairs (f,D) where f(C −D) ⊂ X•/G, i.e., C −D
is contained in the non-degenerate locus. This is an open substack since C is complete. Define
the map

(A.3) (MX × SymC)• → L+X/L+G

over SymC by sending (f,D) to (f | ˆ︁C′D , D). Here we are using the fact that an L+G-torsor on

an affine scheme S is the same as a G-torsor on ˆ︁C ′D by formal lifting.

Recall that we defined a partition Θ̌, or unordered multiset without zero, in c−X , to mean

an element of Sym∞(c−X − 0). To such a partition Θ̌, we have a corresponding locally closed

subscheme LΘ̌X ↪→ L+X by Proposition A.2.3. Then we can define MΘ̌
X to be the preimage

of LΘ̌X/L+G under the map (A.3). One can check from the construction that this definition

gives the description on k-points from §3.1.5. By base change MΘ̌
X is a locally closed subscheme

of MX × C(|Θ̌|). In particular, MΘ̌
X is an algebraic stack locally of finite type over k.

Lemma A.3.1. The natural map MΘ̌
X → LΘ̌X/L+G is formally smooth.

Proof. Let S ↪→ S′ be a nilpotent thickening of affine schemes. Let (f,D) ∈ MΘ̌
X(S). This

maps to the point (f | ˆ︁C′D , D) ∈ LΘ̌X(S). Suppose that we have a lift of this point to (f̂, D′) ∈



INTERSECTION COMPLEXES AND UNRAMIFIED L-FACTORS 95

LΘ̌X(S′), where D′ ⊂ C × S′ is a relative effective Cartier divisor and f̂ : ˆ︁C ′D′ → X/G is

equivalent to the datum of a G-bundle P̂′G on ˆ︁C ′D′ and a section σ̂′ : ˆ︁C ′D′ → X ×G P̂′G.

We would like to lift (f,D) to an S′-point of MΘ̌
X that maps to (f̂, D′). The map f : C×S →

X/G consists of the datum of a G-bundle PG on C × S and a section σ : C × S → X ×G PG
satisfying the condition that σ(C × S − D) ⊂ X• ×G PG = (H\G) ×G PG. The restriction
σ|C×S−D gives a reduction of PG|C×S−D ∼= G×H PH to an H-bundle PH on C × S −D such
that σ|C×S−D identifies with the canonical section

C × S −D ∼= H\PH ↪→ (H\G)
H
× PH ∼= (H\G)

G
× PG|C×S−D

corresponding to H1 ∈ H\G.
The obstruction to lifting PH to an H-bundle P′H on C×S′−D′ is an element in H2(C×S−

D, hPH
⊗OS

I) where I is the zero ideal of S ↪→ S′ and hPH
denotes the quasicoherent sheaf on

C×S−D obtained by twisting the adjoint representation ofH by PH . This obstruction vanishes
since C×S−D has relative dimension 1 over S and we can compute cohomology over the Zariski
site. Thus, we obtained anH-bundle P′H over C×S′−D′. Let σ′ : C×S′−D′ → X×G(G×HP′H)
denote the corresponding section.

We know that after base change to S, there exists an isomorphism

τ : P̂′G| ˆ︁C◦D ∼= PG| ˆ︁C◦D ∼= (G
H
× P′H)| ˆ︁C◦D

such that τ ◦ σ̂′| ˆ︁C◦D = σ′| ˆ︁C◦D . This is equivalent to a section β : ˆ︁C◦D → P′H ×H G ×G P̂′G such

that β is sent under

(A.4) P′H
H
×G

G
× P̂′G → (C × S′)×X

G
× P̂′G

to the restriction σ̂′| ˆ︁C◦D . The map (A.4) is smooth since G → X• = H\G is smooth. The

scheme ˆ︁C◦D′ is affine since S′ is affine. The zero ideal of ˆ︁C◦D ↪→ ˆ︁C◦D′ is still nilpotent, so by
formal smoothness of (A.4), we can lift β to a section β′ that maps to σ̂′| ˆ︁C◦

D′
. Such a section

β′ is equivalent to an isomorphism τ ′ : P̂′G| ˆ︁C◦
D′
∼= (G×H P′H)| ˆ︁C◦

D′
such that τ ′ ◦ σ̂′| ˆ︁C◦

D′
= σ′| ˆ︁C◦

D′
.

By Beauville–Laszlo’s theorem (Lemma 3.7.7), the data ((P̂′G, σ̂
′), (P′H , σ

′), τ ′) descends to a

map f ′ : C × S′ → X/G. By construction, (f ′, D′) is an S′-point of MΘ̌
X lifting f . □

Proof of Lemma 3.1.6. Lemma A.3.1 and Proposition A.2.3 together imply thatMΘ̌
X is formally

smooth over k. Since MΘ̌
X is locally of finite type, it is therefore smooth over k.

We claim that the first projection pr1 : MX×C(|Θ̌|) →MX induces a locally closed embedding

MΘ̌
X ↪→MX . Let Z ⊂MX ×C(|Θ̌|) denote the substack with S-points consisting of those (f,D)

such that f−1(X•/G) ∩D = ∅. Since D is faithfully flat over S, the image of f−1(X•/G) ∩D
in S is open. Therefore, Z is a closed substack of MX × C(|Θ̌|). Since Θ̌ is a multiset without

zero, observe that MΘ̌
X embeds into Z. Now (f,D) ∈ Z(k) satisfies the property that the

support of D ∈ C(|Θ̌|) is contained in the support of C − f−1(X•/G). We deduce that pr1|Z :
Z → MX is proper and quasifinite, hence finite. On the other hand, pr1 |MΘ̌

X
is injective on

k-points, and (pr1|Z)−1(pr1(MΘ̌
X)) = MΘ̌

X . From this we deduce that pr1 |MΘ̌
X
is a locally closed

embedding. □

A.4. Generic-Hecke modifications. We review the notion of generic-Hecke modifications
between quasimaps introduced in [GN10, §2.2], applied to our situation. We assume that B
acts simply transitively on X◦ and that H is connected.
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A.4.1. Function-theoretic analog. We explain the idea behind the generic-Hecke modifications
at the level of sets; this construction appears in the geometric Langlands program in the con-
struction of Whittaker models, cf. [Gai15, §5.3.1].

We use the notation of §3.1.3. For any finite subset v ⊂ |C|, let Av =
∏︁′
v′ /∈v Fv′ , Av =∏︁

v′∈v Fv′ and similarly for Ov,Ov. Then we can consider the set

(A.5) G(Av)/G(Ov)×H(Av)/H(Ov)
which maps to H(k)\G(A)/G(O) in two ways: (i) by projecting along the first factor to
(H(k)×H(Av)H(Ov))\G(Av)/G(Ov) ⊂ H(k)\G(A)/G(O) and (ii) by projecting to

H(k)\
(︂
G(Av)/G(Ov)×H(Av)/H(Ov)

)︂
⊂ H(k)\G(A)/G(O).

Every meromorphic quasimap (element ofH(k)\G(A)/G(O)) belongs to the image of the second
projection for some v. If H is connected, then by weak approximation H(Av) = H(k)H(Ov) so
every quasimap also belongs to the image of the first projection. Thus, the union of (A.5) over
all finite subsets v defines a groupoid acting on the set of quasimaps.

A.4.2. We define the ind-stack HH,MX
of generic-Hecke modifications to be the stack classi-

fying data
(P1
G,P

2
G, σ1, σ2; v, τ)

where (PiG, σi) ∈ MX , v ∈ SymC is a divisor with support v contained in the non-degenerate

locus σ−1i (X•×G PiG) for both i = 1, 2 and τ is an isomorphism of G-bundles

τ : P1
G|C−v ∼= P2

G|C−v
such that the following diagram commutes

C − v P1
G

G
×X|C−v

P2
G

G
×X|C−v.

σ1

σ2
τ

Note that the definition only depends on the support of v and not its multiplicities.
We call a generic-Hecke modification trivial if the isomorphism τ extends to an isomorphism

over all of C. We have the natural projections

MX
h←← HH,MX

h→→ MX ,

and HH,MX
→ SymC. By definition, the generic-Hecke correspondence preserves the strata

MΘ̌
X .
Define a smooth generic-Hecke correspondence to be any stack U equipped with smooth

maps

MX
h←U← U

h→U→ MX

such that there exists a map U → HH,MX
such that the following diagram commutes

U

MX HH,MX
MX

h←U h→U

h← h→

Call a smooth generic-Hecke correspondence U trivial if the image of U → HH,MX
consists of

trivial generic-Hecke modifications.
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Define a morphism of smooth generic-Hecke correspondences to be a map p : U1 → U2 such
that h←U2

◦ p = h←U1
and h→U2

◦ p = h→U1
.

A.4.3. Generic-Hecke equivariant sheaves. We define a generic-Hecke equivariant perverse sheaf
on MX to be an object F ∈ P(MX) of the category of perverse sheaves on MX equipped with
isomorphisms

ϕU : h←∗U (F)
∼→ h→∗U (F)

for every smooth generic-Hecke correspondence U , satisfying some natural conditions (see
[GN10, §2.3] for details).

For any Θ̌ ∈ Sym∞(c−X − 0), the uniqueness of the IC complex endows IC
M

Θ̌
X

with the

structure of a generic-Hecke equivariant perverse sheaf. (In general, when H is connected, the
condition of generic-Hecke equivariance is a property, not additional structure, of a perverse
sheaf on MX by [GN10, Proposition 3.5.2].)

A.4.4. Fix θ̌ ∈ c−X − 0. Recall that by definition Mθ̌
X is a substack of MX ×C. For a fixed

v0 ∈ |C|, define Mθ̌
X,v0

:= Mθ̌
X ×C v0 to be the based stratum consisting of maps C → X/G

such that C − v0 maps to H\pt and the G-valuation at v0 is θ̌. Observe that the generic-Hecke

modifications preserve the substack Mθ̌
X,v0

.

Proposition A.4.5 ([GN10, Proposition 3.5.1]). If H is connected, then all geometric points

of Mθ̌
X,v0

⊂ MX are equivalent under the equivalence relation generated by the generic-Hecke
correspondences.

The preimage of C ⊂ SymC in HH,MX
may be realized as the twisted product of an open

substack of MX ×C with the affine Grassmannian GrH . From this it is not hard to deduce
that all geometric points of Mθ̌

X,v0
are equivalent under smooth generic-Hecke correspondences.

A.4.6. Recall the G-Hecke action defined in Proposition 5.2.3. By construction, this action
commutes with the generic H-Hecke modifications (in our set-theoretic description above, we
are considering the action of right G(Fv′)-translation at some point v′ ̸= v0):

Lemma A.4.7. The map actC : MX ×̃Gr
θ̌

G,C → MX ×C is equivariant with respect to the
generic-Hecke modifications away from the marked point in C.

A.4.8. Proof of Proposition 3.1.7. Proposition A.4.5 allows us to consider the based strata with
generic-Hecke modifications as an analog of the stratification by orbits of a group action. This
will be the idea behind the proof of Proposition 3.1.7, together with the following fact:

Theorem A.4.9 ([Kal05, Theorem 2]). Let S be a smooth stratum in an algebraically stratified
scheme of finite type over k = C. Then the subset of points in S that do not satisfy Whitney’s
condition B form a constructible subset of dimension strictly lower than dimS.

Thus, if we show that any two points in a given stratum have neighborhoods in MX that
are smooth locally isomorphic and compatible with the stratification, Theorem A.4.9 will imply
that every point must satisfy Whitney’s condition B.

Fix a connected component of MΘ̌
X for some Θ̌ ∈ Sym∞(cX − 0). Since Whitney’s condition

B is local in the smooth topology, it suffices by Corollary 3.5.2 to show that every point in

Yλ̌,Θ̌ satisfies Whitney’s condition for all λ̌ ∈ cX . Now the graded factorization property of Y
allows us to to reduce to the case where Θ̌ = [θ̌] is singleton. By Proposition 4.2.3, we may

replace our curve C with A1 = P1−∞, i.e., Yλ̌ = Yλ̌(A1). Now A1 acts on itself by translation,

which induces an A1-action by automorphisms on Yλ̌(A1). This action allows us to move the
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degenerate point of any y ∈ Yλ̌,θ̌(A1) to v0 = 0 ∈ A1, i.e., the map y : A1 → X/B sends
A1− 0→ X•/B and the G-valuation at v0 equals θ̌. Thus, we are reduced to showing that any

point in Yλ̌,θ̌ with degenerate point at v0 satisfies Whitney’s condition.

Embed A1 = P1−∞ ⊂ P1 so we also have an open embedding Yλ̌(A1) ⊂ Yλ̌(P1). Lemma 3.5.4

shows that Yλ̌(P1) is smooth locally isomorphic to MX = MX(P1) in a way that preserves

strata and degenerate points. Therefore, we may reduce to checking that any point in Mθ̌
X,v0

satisfies Whitney’s condition B. Proposition A.4.5 implies that all such points are equivalent
under smooth generic-Hecke correspondences (which preserve strata), so either they all satisfy
or fail to satisfy Whitney’s condition. By Theorem A.4.9, we deduce that every point satisfies
Whitney’s condition B.

The same argument as above also shows that the closure of any stratum in MX must equal
a union of strata.

A.4.10. Arbitrary characteristic. Let the characteristic of k be arbitrary.

Proposition A.4.11. For any Θ̌ ∈ Sym∞(c−X − 0), the complex IC
M

Θ̌
X

is constructible with

respect to the fine stratification of MX .

Proof. The argument is exactly the same as in the proof of Proposition 3.1.7 above, except
that we replace the use of Theorem A.4.9 with the fact that for any connected smooth stratum
S in MX , there exists some open U ⊂ S such that Hi(IC

M
Θ̌
X

)|U is a local system for all i.

We implicitly use the uniqueness of the IC complex, which in particular implies that IC
M

Θ̌
X

is

generic-Hecke equivariant. □

A.5. Proof of Theorem 5.1.5. For Θ̌ ∈ Sym∞(c−X − 0), let PL+G(Gr
Θ̌

G,CΘ̌) denote the

category of perverse sheaves on Gr
Θ̌

G,CΘ̌ that are equivariant with respect to the action of

(L+G)C(|Θ̌|) , considered as a group scheme over SymC (defined in §A.1). For F ∈ P(MX) and

G ∈ PL+G(Gr
Θ̌

G,CΘ̌), we can form the twisted external product

F ⊠̃ G ∈ P(MX ×̃Gr
Θ̌

G,CΘ̌)

with respect to the projections of ˆ︃MX ×L+GGr
Θ̌

G,CΘ̌ to MX and L+G\Gr
Θ̌

G,CΘ̌ . Then we define
the external convolution product by

F ⋆ G := actM,!(F ⊠̃ G) ∈ Dbc(MX).

We have introduced all the ingredients in the statement of Theorem 5.1.5. The remainder
of this section will be devoted to its proof.

Observe that IC
M

0
X
⊠̃ IC

Gr
Θ̌
G,C

= IC
M

0
X ×̃Gr

Θ̌
G,C

, which we will simply denote IC for brevity.

We have a stratification

M
0

X ×̃Gr
Θ̌

G,CΘ̌ =
⋃︂

Θ̌′,Θ̌′′

M
Θ̌′

X ×̃GrΘ̌
′′

G,C̊Θ̌′′

running over all Θ̌′ ⪰ 0 and Θ̌′′ ≥ Θ̌1 where Θ̌ refines Θ̌1 (the definition of Θ̌′′ ≥ Θ̌1 is analogous

to that of ⪰). Lemma 5.5.3(i) implies that act−1M (MΘ̌
X) is contained in the dense open stratum

corresponding to Θ̌′ = 0 and Θ̌′′ = Θ̌.
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A.5.1. By Proposition 3.1.7 we know that IC
M

0
X

is constructible with respect to the fine

stratification of MX . Therefore, IC is constructible with respect to the stratification above, so

if we let LΘ̌′,Θ̌′′

glob denote the ∗-restriction of IC to the stratum MΘ̌′

X ×̃GrΘ̌
′′

G,C̊Θ̌′′ , we have that

its cohomology sheaves are local systems. Since LΘ̌′,Θ̌′′

glob is the restriction of an IC complex,

it lives in perverse cohomological degrees ≤ 0, and the inequality is strict unless Θ̌′ = 0 and

Θ̌′′ = Θ̌. Since its cohomology sheaves are local systems, this implies that LΘ̌′,Θ̌′′

glob lives in usual

cohomological degrees ≤ − dim(MΘ̌′

X ×̃GrΘ̌
′′

G,C̊Θ̌′′ ), and the inequality is strict unless Θ̌′ = 0

and Θ̌′′ = Θ̌. We are abusing notation here: MΘ̌′

X may not be connected, in which case each
connected component should be considered separately.

We abuse notation and also use LΘ̌′,Θ̌′′

glob to denote its !-extension to MX ×̃Gr
Θ̌

G,CΘ̌ . Then

by the characterizing properties of the intermediate extension (and the fact that IC is Verdier
self-dual), Theorem 5.1.5 is equivalent to the following assertion:

Proposition A.5.2. For Θ̌′, Θ̌′′ as above, consider the complex actM,!(L
Θ̌′,Θ̌′′

glob ). Then:

(i) It lives in pD≤−1(MX) unless Θ̌′ = 0 and Θ̌′′ = Θ̌.

(ii) The ∗-restriction of actM,!(L
0,Θ̌
glob) to M

Θ̌

X −MΘ̌
X lives in perverse cohomological degrees

≤ −1.
(iii) There is a natural identification actM,!(L

0,Θ̌
glob)|∗MΘ̌

X

∼= IC
MΘ̌

X
.

Point (iii) follows immediately from Theorem 5.1.1(iii). Points (i)-(ii) concern the cohomo-

logical degrees of the ∗-restriction of actM,!(L
Θ̌′,Θ̌′′

glob ) to a stratum of M
Θ̌

X −MΘ̌
X . To simplify

notation we only consider the restriction to a stratum of the form M
η̌
X where η̌ ∈ c−X − 0. The

general case is proved in the same way by considering multiple points on C simultaneously.

By Theorem 5.1.1 and Proposition 5.6.1, the preimage act−1M (Mη̌
X) intersects MΘ̌′

X ×̃GrΘ̌
′′

G,C̊Θ̌′′

only if Θ̌′ = [θ̌′] and Θ̌′′ = [θ̌′′] are singletons (θ̌′ is allowed to be 0). Moreover we must have
θ̌′′ ≥ deg(Θ̌) and η̌ ⪰ θ̌′ + θ̌′′.

A.5.3. Fiber dimension. Fix a point v ∈ |C| and consider the subscheme MX,v of maps where

there is only one G-degenerate point at v. Let M
η̌
X,v denote the substack of MX,v where the

G-valuation at this degenerate point is η̌. Then the preimage act−1M (Mη̌
X,v) ∩ (Mθ̌′

X ×̃Grθ̌
′′

G,C) is

contained in Mθ̌′

X ×̃Grθ̌
′′

G,v. The restricted map

(A.6) actM : Mθ̌′

X ×̃Grθ̌
′′

G,v →MX,v

is equivariant with respect to generic-Hecke modifications away from v by Lemma A.4.7. Mean-
while these modifications act transitively on the stratum M

η̌
X,v. Therefore we deduce that the

fibers of (A.6) over all points in M
η̌
X,v are isomorphic to one another. Let this fiber dimension

be denoted d.
We have a special point {tη̌} = Yη̌,η̌v → M

η̌
X,v by Corollary 5.5.6. We deduce from Proposi-

tion 5.5.5 that the preimage of Yη̌v under the map (A.6) has a stratification by

Yη̌−ν̌,θ̌
′
×̃(Sν̌ ∩Grθ̌

′′

G )

where ν̌ runs over the weights of V θ̌
′′
. Therefore

(A.7) d ≤ max
ν̌

(dimYη̌−ν̌,θ̌
′
+ ⟨ρG, ν̌ − θ̌′′⟩).
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A.5.4. Passage to Zastava model. By Corollary 3.5.2, it suffices to prove Proposition A.5.2 after
base change to the Zastava model. Consider the fiber product diagram

Z?,λ̌,θ̌′,θ̌′′ Yλ̌

Mθ̌′

X ×̃Grθ̌
′′

G,C MX
actM

which is the analog of (5.11) where we allow v ∈ |C| to vary. We pull back along this diagram
for all λ̌ large enough. The corresponding diagram for strata is given by (5.11). We ∗-pullback
with a shift by the fiber dimension of Yλ̌ → MX . With this shift, the discussion of §A.5.1

implies that LΘ̌′,η̌
glob goes to a complex

L?,λ̌,θ̌′,θ̌′′

flag ∈ Dbc(Z
?,λ̌,θ̌′,θ̌′′),

which lives in usual cohomological degrees ≤ −dim(Z?,λ̌,θ̌′,θ̌′′), and the inequality is strict unless

θ̌′ = 0 and θ̌′′ = θ̌. The usual cohomology sheaves of L?,λ̌,θ̌′,θ̌′′

flag are local systems.
To prove Proposition A.5.2 it is enough, by the definition of the perverse t-structure, to prove

the following:

Lemma A.5.5. Let θ̌′, θ̌′′, η̌, λ̌, d be as above. Then we have

−dim(Z?,λ̌,θ̌′,θ̌′′) + 2d ≤ −dimYλ̌,η̌

and the inequality is strict if θ̌′ = 0 and θ̌′′ ̸= η̌.

Note that the statement of the lemma has nothing to do with θ̌.

Proof. By §5.3, we may assume that cX• = ND. Now it makes sense to talk about len(λ̌) for

λ̌ ⪰ 0, cf. §5.4. By Lemma 6.2.1 and Corollary 6.2.2, we have that dimYλ̌,η̌ = len(λ̌− η̌) + 1.

For ν̌ a weight of V θ̌
′′
, we have dimYη̌−ν̌,θ̌

′ ≤ 1
2 (dimYη̌−ν̌,θ̌

′ −1) by Proposition 6.1.1, unless

η̌ = ν̌. If θ̌′ = 0, then dimYη̌−ν̌,0 = len(η̌− ν̌). Otherwise dimYη̌−ν̌,θ̌
′
= len(η̌− ν̌)+ 1. We also

have ⟨ρG, ν̌ − θ̌′′⟩ = 1
2 len(ν̌ − θ̌

′′). Therefore (A.7) implies that

(A.8) d ≤ 1

2
len(η̌ − θ̌′ − θ̌′′)

and the inequality is strict if θ̌′ = 0 and η̌ is not a weight of V θ̌
′′
.

In the case θ̌′ = 0 and η̌ is a weight of V θ̌
′′
not equal to θ̌′′, we claim the inequality (A.8) above

is still strict. Indeed, equality can only hold if η̌ = ν̌ and an open subvariety of Y0,0 ×̃(Sη̌∩Grθ̌
′′

G )
is sent to the special point tη̌ under (A.6). However we know from Lemma 5.5.11 that every

irreducible component of Sη̌ ∩Grθ̌
′′

G generically maps to the stratum Mθ̌′′

G . Thus if η̌ ̸= θ̌′′, the
inequality (A.8) is strict.

Thus to prove the lemma it suffices to show that

len(λ̌− θ̌′ − θ̌′′) + 1 = len(η̌ − θ̌′ − θ̌′′) + len(λ̌− η̌) + 1 ≤ dim(Z?,λ̌,θ̌′,θ̌′′).

Proposition 5.5.5 (twisted by C) implies that Z?,λ̌,θ̌′,θ̌′′ has a stratification by

Yλ̌−ν̌,θ̌
′
×̃(Sν̌ ∩Grθ̌

′′
) ×̃C,

where ν̌ ranges over weights of V θ̌
′′
(in particular, ν̌ ≥ θ̌′′). By Corollary 3.5.2(ii), if Yλ̌−ν̌,θ̌

′

maps to a connected component M of Mθ̌′

X , then Yλ̌−θ̌
′′,θ̌′ must map to the same connected
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component. Therefore Z?,λ̌,θ̌′,θ̌′′ is irreducible with dense open stratum Yλ̌−θ̌
′′,θ̌′×C. Therefore

dimZ?,λ̌,θ̌′,θ̌′′ = dim(Yλ̌−θ̌
′′,θ̌′) + 1 ≥ len(λ̌− θ̌′ − θ̌′′) + 1, as desired. □

This completes the proof of Theorem 5.1.5.
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