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In this paper, we present QUAIL, a lightweight discontinuous Galerkin solver written in Python. The
aim of this code is to serve not only as a teaching tool for newcomers to the rapidly growing field,
but also as a prototyping platform for testing algorithms, physical models, and other features in the
discontinuous Galerkin framework. Code readability, modularity, and ease of use are emphasized.
Currently, QUAIL solves first- and second-order partial differential equations on 1D and 2D unstructured
meshes. A variety of time stepping schemes, quadrature rules, basis types, equation sets, and other
features are included. The structure and capabilities of the code, as well as representative examples
involving propagation of a 2D isentropic vortex and a 2D Riemann problem with a gravity source term,
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1. Motivation and significance

Numerical solutions to partial differential equations are rel-
evant to many areas of science and engineering, including fluid
dynamics, solid mechanics, electrodynamics, and astrophysics.
A variety of numerical methods, such as finite difference and
finite volume schemes, can be used to discretize the governing
equations describing these problems. In recent years, high-order
discontinuous Galerkin (DG) methods have gained considerable
interest [4,5]. These methods combine aspects of classical fi-
nite volume and finite element schemes. The global solution
is approximated using piecewise discontinuous polynomials, re-
sulting in multiple degrees of freedom per element. Discontinu-
ities between elements are accounted for with numerical flux
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functions. Benefits of DG schemes include high-order accuracy
(typically defined as greater than second-order), desirable dissi-
pation and dispersion properties, geometric flexibility, and suit-
ability for hp-adaptation, where h refers to the mesh and p
refers to the order of accuracy. In addition, DG methods can
achieve very good scalability and efficiency on high-performance
computing systems. Encouraging performance has been demon-
strated in aerodynamics [6,7], multiphase flows [8,9], plasma
physics [10,11], astrophysics [12,13], and solid mechanics [14,15].
However, DG schemes and related high-order methods, such as
flux reconstruction [16] and spectral difference schemes [17,18],
are generally less robust and more memory-intensive than low-
order schemes. Furthermore, curved meshes, often required for
these high-order methods, are difficult to generate, and nontrivial
extensions can be required to account for additional physics.
These factors currently hinder widespread use of DG schemes for
industrial applications.
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Another difficulty associated with DG schemes is that they
are considered more complicated to learn and implement than
conventional low-order methods [19]. This barrier to entry can
not only discourage engineers and scientists from entering the
field, but also impede progress in both implementation and algo-
rithmic development. Reliable learning resources can help lower
this barrier. Good textbooks are available that describe the theory
and application of DG schemes [5,20]. There are also a handful of
open-source codes on DG and related high-order methods [21-
26]. However, these are typically large, production-level codes,
which can be overwhelming for newcomers and difficult to set up
and run. The textbook by Hesthaven and Warburton [5] includes
a well-known set of routines written in MATLAB and C++, but it
can be difficult to add new features in a modular fashion.

In this paper, we present QUAIL, a lightweight DG code de-
signed to address the above issues. The code is written in Python
because it is open-source (unlike MATLAB), well-documented,
suited for object-oriented programming, growing in popularity,
and easier to read and use than lower-level languages such as C,
C++, and Fortran. The primary objective of QUAIL is to serve as
a teaching and prototyping tool. To support this goal, we focus
on code modularity, clarity, and straightforward setup and usage.
The simplicity of QUAIL allows users to easily peruse, understand,
and add to the code without the intricacies of large codebases.

The remainder of this paper is organized as follows. Section 2
provides a brief overview of the discretization. Section 3 describes
the software architecture and functionalities, followed by an illus-
trative example consisting of the propagation of a 2D isentropic
vortex. The final two sections comprise a discussion of the impact
of this code and concluding remarks, respectively.

2. Mathematical background

QuAIL solves linear and nonlinear systems of PDEs of the
following form:

dwU+V-F=S, (1)

where U is the vector of state variables, F is the flux, and S
is the source term. For brevity, this section assumes first-order
PDEs, although QUAIL can also solve second-order PDEs. Let £2
denote the computational domain, which is partitioned into N,
non-overlapping discrete elements such that 2 = UQ’;Qe. 082,
is the boundary of element £2,. The approximation to the global
solution, U, ~ U, can be expanded as

Uy = @), U8, )

where Uj is the local discrete solution,

Np
Ui(x,t) =) Uy (t)gn(X). (3)
n=1

U:(t) is the nth vector of basis coefficients, and ¢, is the nth
basis polynomial. Common choices for the basis include Lagrange
polynomials and Legendre polynomials. The nominal order of
accuracy in space for smooth solutions is p + 1, where p is the
order of the polynomial approximation.

To solve for the local discrete solution, we require U}, to satisfy

PO ULAR+ | ¢V -FUR = | ¢nSUL)IS2
Qe e e

.

(4)

Inserting Eq. (3) into the first term in Eq. (4) allows us to write

Np Np
PndUGd2 = " dUS(t) / Pndnd2 = dUF(M,,,
e n=1 e n=1

(5)
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where Mf, = fge Pm@ndS$2 represents the element-local mass
matrix.

Integration by parts is performed on the second term in Eq. (4),
yielding

8a¥ FURR = [ V4, FU})A2
e e

+ ¢mF(USH, USRI, (6)
992
where 7 is the outward-pointing unit normal vector, (-)* and (-)~
denqge interior and exterior information on 952, respectively,
and F is the numerical flux function.
Combining Egs. (4), (5), and (6) gives the following semidis-
crete form:

Np
> dU(eMg, = / V- F(US)AR2
n=1 2e

o~

- ¢mF(USH, US™ R)dT

082

+ | $uS(US)dL2. (7)
$2e
The time derivative on the LHS can be treated using classical
explicit time stepping schemes. The integrals are evaluated using
numerical quadrature. Additional details on the discretization can
be found in the documentation (Code metadata), as well as in
Ref. [5].

3. Software description

QuAIL uses an object-oriented programming paradigm to
achieve flexibility. Therefore, when a new feature is implemented,
it is simple to inherit and build on existing class structures.
Readability is attained by employing a Pythonic coding style and
extensively using Python docstrings and comments. All math-
ematical operations are performed using the popular NumPy
library [1], which enhances performance by utilizing fully vec-
torized array operations. For modularity, QUAIL is split into five
Python packages, each responsible for encapsulating different
aspects of the DG solution procedure. This software architecture
is depicted in the diagram in Fig. 1, with specific capabilities listed
in Table 1. A brief description of each package is given below:

e The meshing package handles the generation of the com-
putational mesh and its data structures. High-order curved
elements are supported. Built-in routines are provided to
generate 1D and 2D regular meshes with quadrilateral and
triangular elements. Periodicity can be imposed on user-
specified boundaries as well. This package can also import
meshes from the open-source meshing software GMmsH [27],
which can generate curved unstructured meshes for com-
plex geometries.

e The numerics package is responsible for the available
numerical methods. These include various choices of quadra-
ture rules for evaluating integrals, basis functions for the so-
lution and geometric approximation, time-stepping schemes,
and limiters and artificial viscosity for stabilization. The
quadrature rules and basis types support segments in 1D
and triangles and quadrilaterals in 2D, and there are both
nodal and hierarchic bases available for all of these shapes.
A Gauss-Lobatto collocated scheme, in which the solu-
tion nodes and the quadrature points are the same, is also
included.
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Fig. 1. Software architecture diagram depicting the tasks performed by each package, as well as the overall flow of the code.

e The physics package includes the equation sets and cor-
responding physical models. It contains the definitions of
fluxes, initial conditions, boundary conditions, and source
terms. Supported equation sets include constant scalar ad-
vection, the inviscid Burgers equation, and the compressible
Euler equations. We have also recently added the capability
to handle second-order PDEs such as the scalar advection—
diffusion and compressible Navier-Stokes equations, which
is undergoing further development.

e The solver package combines physics-related information
stored in physics with the numerical algorithms in numer-
ics to update the solution at each time step. The solution
can be computed with not only the standard DG discretiza-
tion, but also the ADERDG scheme [28,29], which is a space-
time predictor-corrector method that allows for high-order
accuracy in both space and time while maintaining robust-
ness with stiff source terms.

e The processing package performs tasks on the solution
data, such as computing error and generating visualiza-
tions, including 1D line plots, 2D contour plots, line probes,
and animations. Matplotlib [2] subroutines are employed to
allow for easy setup, implementation, and modification.

Solution data files for processing and simulation restarts are
saved using the pickle module, which is part of the Python
standard library. Simple subroutines allow for easy reading and
writing of data. Entire Python objects can be saved with one
line of code, a major advantage of this module. Another user-
friendly feature of QuAIL is the option to define custom functions
to perform case-specific data processing at each time step. These
custom functions are written outside of the source code and
therefore do not require a full understanding of the codebase,
allowing for simple implementation. Also included is built-in
support for continuous integration and a testing infrastructure
that encompasses both functional and unit tests.

A suite of test cases can be found in the repository. These in-
clude a 1D damping sine wave, 2D advection of a Gaussian pulse,
the Sod shock tube problem, a moving shockwave, steady flow
over a bump, the steady inviscid Taylor-Green vortex [30], and
others. The illustrative examples in Section 4 are also available.

Additional learning tools are included in QUAIL. For example,
the basis functions for segments, quadrilaterals, and triangles
can be visualized, as shown in Fig. 2. Furthermore, dissipation
and dispersion analysis for various polynomial orders can be
performed. To illustrate, the dissipation and dispersion relations
for p = 1 to p = 7 with an upwind flux are given in Fig. 3. More
information on this analysis can be found in Ref. [5].

4. Illustrative examples
4.1. Isentropic vortex propagation

To illustrate the functionality of QUAIL, we present the nu-
merical solution of a propagating isentropic vortex governed by
the compressible Euler equations. This is a classical case for
testing the order of accuracy of higher-order schemes. The in-
put deck relies on Python dictionaries to prescribe solver and
physics parameters, allowing for easy simulation setup. These
input dictionaries are organized as follows: TimeStepping, Nu-
merics, Mesh, Physics, InitialCondition, ExactSolution,
BoundaryConditions, SourceTerms, Output, and Restart.
Default parameters located in src/defaultparams.py allow
users to modify only the necessary parameters for each individual
case. Since Python scripts are used as input files, any Python
functionality can be employed directly in the input deck. The
input file for this case is shown below.

# Input deck for the setup of a
# propagating isentropic wvortex
TimeStepping = {

"FinalTime" : 1.0,

"CFL" : 0.1,

"TimeStepper" : "LSRK4",

}

Numerics = {

"SolutionOrder" : 3,
"SolutionBasis" "LagrangeTri",

}

Mesh = {
"ElementShape"
"NumElemsX" : 16,
"NumElemsY" : 16,
"xmin" : -5.,

"Triangle",
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Fig. 2. Sample basis functions for (a) segments and (b) quadrilaterals.

"xmax" : 5.,
"ymin" : -5.,
"ymax" : 5.,
}
Physics = {
"Type" : "Euler",
"ConvFluxNumerical" : "Roe",
"GasConstant" : 1.,
}
InitialCondition = {
"Function" "IsentropicVortex",
}
ExactSolution = InitialCondition.copy()
d =1
"BCType" : "StateAll",
"Function" "IsentropicVortex",
}
BoundaryConditions = {
"x1" . d,
"x2" . d,
"yl "o d,
nyoro:od,
}

The initial conditions are based on the work of Yu et al. [31],
where velocity and temperature perturbations are superposed
onto a uniform flow. The domain is a square of size [—5, 5] x
[—5, 5]. The exact solution corresponds to advection of the isen-
tropic vortex at constant velocity. Fig. 4 shows density contours
at a final time of one second on two different meshes: a ¢ =
1 triangular mesh (Fig. 4(a)), where q refers to the order of
the geometry approximation, and a curved q = 2 quadrilateral
mesh (Fig. 4(c)). After the simulation is completed, the solver
(optionally) searches for a post-processing script in the working
directory. With the tools detailed in Section 3, users can create
contour and line plots such as those in Fig. 4. The post-processing
script for this case is as follows:

import processing.post as post

import processing.plot as plot

import processing.readwritedatafiles as
readwritedatafiles

# Read data file

fname = "Data_final.pkl"

solver = readwritedatafiles.read_data_file(fname)

# Unpack

mesh = solver.mesh

physics = solver.physics

# Compute L2 error

post.get_error (mesh, physics, solver, "Density")
# Plot density contour
plot.prepare_plot(linewidth=0.1)

plot.plot_solution(mesh, physics, solver, "Density",
legend_label="DG", include_mesh=True, regular_2D
=True)

plot.save_figure(file_name=’vortex’, file_type=’pdf’
)
plot.show_plot ()

This script reads in a pickle data file, unpacks the relevant
objects from the solver, computes the L,-error of density, and
plots the density contour. This data can then be used to construct
convergence plots such as that in Fig. 4(d), which shows that the
expected convergence rate is obtained. Additional information on
how to construct input files and post-processing scripts, including
representative examples, can be found in the QUAIL repository
(Code metadata).

4.2. 2D Riemann problem with gravity source term

QuAIL’s object-oriented framework makes adding source terms
and numerical algorithms straightforward. Here, we illustrate the
use of these functionalities by simulating a 2D Riemann problem
with a gravity source term governed by the compressible Euler
equations. As done in Ref. [32], the case is set up on a 2 x 2
domain with the following initial conditions:

(7,-1,0,0.2),
(7,1,0,0.2),

x <1,
x> 1,

(p,u,v,P) = : (8)
where p is the density, u and v are the x- and y-components
of the velocity, respectively, and P is the pressure. The source
term is given as § = [0, 0, —pg, —pvg]’, with g = 1. Under
these conditions, both pressure and density can approach non-
physical negative values. To improve robustness, we employ the
positivity-preserving limiter by Zhang and Shu [33]. The polyno-
mial order is p = 1. In Fig. 5, we show numerical results of the
Riemann problem at t = 0.6 s, which are comparable to those in
the literature [32].

5. Impact

Although DG methods are increasing in popularity, the barrier
of entry remains high since they are generally more complicated
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Table 1
Current set of features implemented in Quail.
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Basis and Geometry

Shape Segment Triangle Quadrilateral
Nodal Basis Lagrange Lagrange Lagrange
Modal Basis Legendre Legendre H1 Hierarchic [34]

Quadrature Rules Gauss-Legendre,

Gauss-Lobatto

Gauss-Legendre,
Dunavant [35]

Gauss-Legendre,
Gauss-Lobatto

Stabilization

Time-steppers

Positivity-Preserving Limiter [33]

Forward Euler

WENO Limiter [36] RK4
Artificial Viscosity LSRK4 [37]
Solvers SSPRK3 [38]
DG ADER [39]
ADERDG [39] Strang [40]
Physics Simpler [41]
Scalar advection-diffusion
Burgers’ Equation
Euler/Navier-Stokes Equations
0
2.00 /
4.5
4.0 1
L1751 4.0
3.5 7
1.50 1 3.5
. 3.0 1
1.25 A 3.0
25 2.5 1
=1.00 4
20 207
0-751 1.5 1.5
0.50 1.0 1.0
0.25 1 0.5 0.5
0.0
0.00 0.01
0.0 0.5 1.0 1.5 2.0 . . T

xT

(a) Density contours

0.00 025 050 075 1.00 125 150 1.75 200
T

(b) Density line slice

Fig. 5. Numerical solution for the 2D Riemann problem with a gravity source term. (a) Density contours at t = 0.6 s on 25,600 quadrilateral elements. (b) Line
slice at y = 1.7875 comparing the numerical solution of a 6400 element case (blue symbols) to the 25,600 element case (solid black line). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

than conventional low-order numerical schemes, like finite vol-
ume and finite difference methods, and there are comparatively
fewer learning resources. To help address this issue, QUAIL aims
to facilitate learning for students, scientists, and engineers eager
to enter the field. Key implementation details that are not readily
discussed in the literature are made clear with this lightweight,
user-friendly code. The simplicity of QUAIL, contrasted with the
complexity of large-scale codebases, makes it more digestible to
newcomers who desire hands-on access to DG schemes.

This simplicity, along with modularity and Python as the lan-
guage of choice, makes QUAIL also conducive to rapid prototyping.
Physical models can be easily incorporated to assess the perfor-
mance of DG schemes in new contexts. In addition, novel features
and methods can be quickly implemented, tested, and applied to
model problems before being added to production codes. This can
accelerate the process of algorithmic development. The extensive
use of vectorized NumPy operations [1] enables simulations of a
wide range of 1D and 2D configurations of relevant physical scale
and resolution. Links to video tutorials provided in the repository
(Code metadata) further illustrate how to use QUAIL and add cer-
tain features, such as boundary conditions, in a straightforward
manner.

6. Conclusions

QualL is a lightweight discontinuous Galerkin code written in
Python. It is designed for teaching and prototyping without the
unwieldy intricacies of production codes. Code clarity, modular-
ity, and ease of use are major focuses. Currently, QUAIL solves
1D and 2D first- and second-order partial differential equations.
The software architecture and functionalities are discussed. Isen-
tropic vortex propagation and a 2D Riemann problem with a
gravity source term governed by the Euler equations are used
as illustrative examples. QUAIL can impact the community by
reducing the barrier of entry for newcomers and accelerating
algorithmic developments. Future work will entail incorporation
of new features, such as additional limiters, equation sets, and
numerical schemes.
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