
RESEARCH ARTICLE ENGINEERING

Ensembles of realistic power distribution networks
Rounak Meyura,1, Anil Vullikantia,b, Samarth Swarupa, Henning S. Mortveita, Virgilio Centenoc, Arun Phadkec, H. Vincent Poord,1 ,
and Madhav V. Marathea,b,1

Contributed by H. Vincent Poor; received April 5, 2022; accepted September 12, 2022; reviewed by Peter Sauer and Anna Scaglione

The power grid is going through significant changes with the introduction of renewable
energy sources and the incorporation of smart grid technologies. These rapid advance-
ments necessitate new models and analyses to keep up with the various emergent
phenomena they induce. A major prerequisite of such work is the acquisition of
well-constructed and accurate network datasets for the power grid infrastructure. In
this paper, we propose a robust, scalable framework to synthesize power distribu-
tion networks that resemble their physical counterparts for a given region. We use
openly available information about interdependent road and building infrastructures
to construct the networks. In contrast to prior work based on network statistics, we
incorporate engineering and economic constraints to create the networks. Additionally,
we provide a framework to create ensembles of power distribution networks to generate
multiple possible instances of the network for a given region.The comprehensive dataset
consists of nodes with attributes, such as geocoordinates; type of node (residence,
transformer, or substation); and edges with attributes, such as geometry, type of line
(feeder lines, primary or secondary), and line parameters. For validation, we provide
detailed comparisons of the generated networks with actual distribution networks. The
generated datasets represent realistic test systems (as compared with standard test cases
published by Institute of Electrical and Electronics Engineers (IEEE)) that can be used
by network scientists to analyze complex events in power grids and to perform detailed
sensitivity and statistical analyses over ensembles of networks.

synthetic networks | digital twin | power distribution networks |mixed integer programming |
ensemble of networks

A reliable power grid constitutes the backbone of a nation’s economy, providing vital
support to various sectors of society and other civil infrastructures. Power distribution
networks are created in a bottom-up fashion connecting small clusters of residential loads
to distribution substations, thereby electrifying the entire community. These bear a struc-
tural resemblance to other common networked infrastructures, such as transportation,
communication, water, and gas networks, and are often interdependent in their operations
(1). One may use these resemblances and interdependencies to infer one network from
available data about these other networks.

Over the past decade, power engineers have aimed to enhance the resilience of power
systems through incorporation of distributed energy resources (DERs) by deploying
advanced metering and monitoring infrastructures (2) and by performing system vul-
nerability and criticality assessments, thus reinforcing cybersecurity (3). Furthermore,
spatiotemporally variable consumer load demands, such as electric vehicles (EVs), along
with an evolving trend toward a distributed operation of the power grid have posed new
challenges to system planners and operators (4). Network scientists have emphasized
the importance of realistic power network models for accurate analysis as opposed to
stylized statistical models (5–7). In order to address these challenges, there is a pressing
need for openly available data containing realistic grid topologies along with available
geographic information. For example, in the context of power grid expansion planning,
the current grid information in conjunction with geographical knowledge of wind maps
and solar trajectories can aid in optimized power grid expansion while introducing DERs
in the grid (8). Similarly, for system vulnerability analysis, a geographic correlation of
grid information with cyclone/hurricane paths can help us identify critical sections in
the network and raise preparedness levels for natural disasters (9). Further, a detailed
knowledge about individual residential load usage and consumer behavior can help address
policy-level questions. Examples of such problems include identifying the impact of EV
adoption and DER penetration on the current power grid infrastructure as the society
moves toward net-zero emission (10, 11).

Simulation-based frameworks capable of performing spatiotemporally resolved simu-
lations can be utilized to analyze the impact of such evolving trends and analyze system
vulnerability. Such assessments are useful to system planners aiming to make decisions
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about infrastructure development and to operators while han-
dling emergency system conditions. A common drawback of this
simulation-based approach is that it requires detailed information
regarding the power network and associated components, such
as locations and capacities of generation, load demands, and
line parameters (12–15). Furthermore, since the majority of grid
infrastructure advancements are being done at the low-voltage
(LV) distribution level, a high-resolution analysis of the power dis-
tribution systems is important. This necessitates a comprehensive
knowledge of customer energy use profiles, customer behavior,
and most importantly, the distribution network topology that
connects them. Most such data are, at best, partially available but
more typically, are not available at all due to their proprietary
nature (16). The lack of such openly available detailed real-world
data has been identified as a significant hurdle for conducting
research in smart grid technology (17). In recent years, there has
been an increased interest in generating synthetic power network
data to address this issue.The synthetic data are not the real-world
data; rather, they are generated by mathematical models operating
on openly available information and are designed to ensure the
generated data are similar to the real-world data, thus allowing
them to be used as a proxy for the actual data. Some examples of
synthetic power grid data include synthetic transmission networks
(18–21), synthetic distribution networks (22–25), and synthetic
residential customer energy usage data (26–28).

In this work, we focus on constructing a modular framework
for generating synthetic power distribution networks: that is, net-
works connecting individual residential customers to the distribu-
tion substations. We present a first-principles approach, where we
generate an optimal synthetic distribution network connecting all
residences in a given geographic region to the high-voltage (HV)
substations through medium-voltage (MV) and LV networks. We
use the example of Montgomery County of southwest Virginia
(United States) to create the synthetic power distribution net-
works, consider all residences and HV substations within the state
boundary, and connect them through the synthetic distribution
network.

In this context, there are two critical questions. 1) Are the cre-
ated networks the only feasible networks connecting the residences
and substations? 2) How similar are the created synthetic networks
and the actual power distribution networks?

To tackle the first problem, we present a methodology for
generating an ensemble of feasible synthetic power distribution
networks for a given region. In the literature related to modeling
real-world networks, statistical physics has been used to learn
significant structural patterns from an ensemble of networks (29)
and thereby, to help in network reconstruction from incomplete
data. In recent years, statistical aspects of the power networks
have drawn the attention of the scientific community for similar
reasons. A dataset spanning 70 years for the electric power grid
of Hungary has been studied (30) for small-world and scale-
free properties. Due to a lack of real-world power distribution
data, ensembles of distribution networks, which have significant
resemblance to actual networks, can suffice for a detailed statistical
analysis.

The generated synthetic networks require detailed validation
before they can be used as a substitute for actual networks for var-
ious applications. To this end, the networks need to be compared
against actual distribution networks in terms of their structural
properties as well as their power engineering attributes (31).
Hence, the second problem deals with the comparison of synthetic
and actual networks using suitable metrics meaningful to power
distribution networks, which follow a particular structure. In
this work, we have compared the created synthetic networks for

the town of Blacksburg (in Montgomery County of southwest
Virginia, United States) against actual networks obtained from
a power company operating in the same region. In addition to
comparing standard graph attributes, such as degree and hop dis-
tributions, we compute the difference in geometries between the
actual and synthetic networks and provide a measure of deviation.

Our contributions include 1) a holistic modular framework to
create synthetic power distribution networks that satisfy structural
and power engineering constraints along with an accurate rep-
resentation of residential load demand profiles, 2) a method to
create an ensemble of networks by generating multiple feasible
networks for a given region, and 3) an open dataset consisting of
ensembles of distribution networks for Montgomery County of
southwest Virginia (United States).This dataset is unique in terms
of both size and details. The geographically embedded networks,
along with the detailed residential customer usage data, become
suitable tools for system-wide planning studies and for addressing
policy-level questions.

Related Work

In recent years, a substantial amount of work has gone into creat-
ing synthetic HV transmission networks (18, 19) or combinations
of transmission and distribution networks (32, 33). The primary
focus of these papers is to model the transmission grid with a high
level of resemblance to the actual grid.

For distribution networks, Schweitzer et al. (24) were one
of the first to analyze real power distribution networks, learn
statistical distributions of network attributes from an extensive
dataset of actual distribution networks in the Netherlands, and
create synthetic networks that preserve these attributes. The refer-
ence network model (RNM) framework (22, 23, 34) and some
of its variants (35, 36) have proposed heuristics to generate
synthetic distribution networks that satisfy structural and power
engineering constraints. These heuristics include clustering load
groups to identify feeders (21, 23), identifying substation loca-
tions from cluster centroids (22, 23), and constructing networks
using a minimum spanning tree algorithm (22, 34, 35). Most of
these papers do not use individual residence locations and have
populated the created synthetic networks with random residences
or aggregated loads to zip code centers. Some of these works
used a top-down approach, where feeder networks are generated
and followed by populating with random loads (21, 35). In
ref. 37, the authors use generative adversarial networks (GANs)
to create synthetic power networks. However, the approach is
inherently data intensive and requires a large number of sam-
ples for training, making it practically challenging to use. Here,
we propose a rigorous mathematical framework that provides
optimality guarantees on the quality of networks created. The
ensemble of synthetic networks created can potentially be used to
train GANs.

The RNM (22, 23) is an important heuristic-based planning
tool for efficient investment options in distribution grid planning.
It uses OpenStreetMap (OSM) and relevant geographic data to
create distribution networks in a given region. The comparison of
networks generated by the RNM with actual power distribution
networks shows that the real and synthetic networks are quite
similar (31). However, the methods used to compare such net-
works were somewhat ad hoc. In contrast, in ref. 24, the authors
performed a statistical fit of the distributions of network attributes
and performed a numerical comparison, yielding a more rigorous
approach to measuring network similarity. The RNM framework
uses four independent layers (namely logical, topological, electri-
cal, and continuity of supply) to assign constraints while creating

2 of 9 https://doi.org/10.1073/pnas.2205772119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

U
N

IV
 O

F 
V

IR
G

IN
IA

 o
n 

O
ct

ob
er

 2
6,

 2
02

2 
fr

om
 IP

 a
dd

re
ss

 1
99

.1
11

.2
26

.0
.

https://doi.org/10.1073/pnas.2205772119


the networks. Although this approach is natural, the set of con-
straints is not mathematically well defined to the extent that it can
be reproduced. For instance, the framework uses a set of heuristics
to satisfy the constraints, which does not always guarantee a
feasible solution. Furthermore, several steps in the heuristic-based
method involve user-defined parameters, which lead to multiple
possible networks for different choices. Furthermore, these papers
do not consider the creation of ensembles of networks.We present
a summary of previous results in SI Appendix, Table S1.

Recent works (26, 38) have provided detailed synthetic
residential demand models along with household geographic
footprints. We create synthetic distribution networks connecting
substations to these individual residence locations. Our methods
differ from the earlier works in the following ways. 1) Instead
of populating with imaginary demand profiles, we have used
behavior-based consumer load modeling, which results in an
accurate representation of household load demand profiles.
2) Unlike other heuristic-based approaches, the structural and
power engineering constraints are mathematically well defined,
which makes the framework reproducible for creating other
networks with similar constraints. 3) We use actual substation
locations obtained from ref. 39, and the optimal feeder locations
are identified as an output of our optimization framework. 4)
We propose a method to create an ensemble of realistic power
networks.

A wide variety of graph comparison methods have been studied
in the literature. Tantardini et al. (40) analyze multiple graph
comparison methods, which include comparing whole graphs as
well as small portions of the graph known as motifs. Several
methods for assessing structural similarities of graphs have also
been studied (41, 42). However, none of the comparison meth-
ods consider the node and edge geometries of the graphs. Edit
distance, or evaluating the minimum number of edit operations
to reach from one network to the other, has been widely used to
compare networks having structural properties (43–45). Among
these works, Riba et al. (45) have usedHausdorff distance between
nodes in the network to compare network geometries. Morer
et al. (46) include edge geometry–based comparison and propose
an “efficiency” metric to measure the distance of a network
(where edges have nonstraight-line geometries between nodes)
from its most optimal version (where each edge has a straight-line
geometry).

Methods
Datasets Used. We use open-source, publicly available information regarding
several infrastructures to generate the synthetic distribution networks (more
details are presented in SI Appendix, Table S3): 1) road network data from OSM
(47), 2) geographic locations of HV (greater than 33 kV) substations fromdatasets
published by Energy Information Administration (EIA) (39), and 3) residential
electric power demand information developed in earlier work from our research
group (26). We also obtained actual power distribution networks for the town of
Blacksburg to validate the synthetic networks.

Approach. Algorithm1 summarizes the stepswe use in the paper. The synthetic
distribution networks are constructed in two steps using a bottom-up approach.
First, we identify local pole-top transformers along the road network and connect
the residential buildings to them to create the LV (208 to 480 V) secondary
network (Step 1). Thereafter, we use the road network as a proxy to construct the
MV (6 to 11 kV) primary network connecting the local transformers placed along
roads to the substations (Step 2). To construct the ensemble of synthetic networks,
we propose aMarkov chain starting from the already created network to a variant
network, which is also a feasible distribution network (Step 3). Finally, we add
attributes to nodes and edges in each network (Step 4) to create an ensemble
of synthetic power distribution networks. Several aspects of the first two and last
steps are similar to the approach taken in earlier papers. The difference is in the
specifics of problem formulation and the resulting algorithmic approach. The
third step that creates the ensemble of networks has largely not been explored
in the context of distribution networks. Fig. 1 shows the proposed framework for
constructing and validating ensembles of realistic power distribution networks.

Algorithm 1 Create ensemble of synthetic networks
Input Set of residences H, set of substations S, road network GR (VR,ER),
required ensemble size N
Step 1: Construct LV secondary network.

a: Map residences to nearest road network link.
b: Connect residences to local transformers along road link.

Step 2: Construct MV primary network.
a: Map local transformers to nearest substation.
b: Use road network as proxy to connect transformers to substation.

Step 3: Construct an ensemble of networks.
a: Construct Markov ChainM to create a variant from an existing network.
b: RunM to create N variant networks.

Step 4: Add additional attributes to nodes and edges of each network in the
ensemble as follows.
a: Assign one of the three phases (A,B,C) to each residence.
b: Assign a distribution line type to each edge.

Output Ensemble of N attributed networks.

Fig. 1. Proposed framework for constructing ensembles of realistic power distribution networks. The framework uses the input datasets and constructs an
ensemble of networks using the steps detailed in Algorithm. The created networks are validated against actual power distribution networks.
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Step 1. Constructing Secondary Networks. We extract residence and road
network data for the geographic region. Let H be the set of residences and
GR (VR,ER) be the road network graph. We evaluate a many-to-one mapping
FM : H→ ER such that each residence h ∈H is mapped to the nearest
road network link e ∈ ER. The inverse mapping F−1

M defined by F−1
M (e) =

{h ∈H;FM (h) = e}provides the set of residences assigned to each road link
e ∈ ER.

The secondary network creation problem (denoted by Psec) is defined for
each road link e ∈ ER. We provide more details for Psec in SI Appendix. The
objective is to identify local transformers VT (e) along the link and connect
them to the assigned residences F−1

M (e), thereby constructing the secondary
distribution network GS (e) with node set VS (e) =VT (e) ∪F−1

M (e) and
edgesES(e). We impose structural constraints to connect residences in chains,
ensuring the tree network structure so that the created networks mimic their
physical counterpart.

Problem 1 (Psec Construction). Given a road link e ∈ ER with a set of resi-
dencesF−1

M (e) assigned to it, construct an optimal forest of trees,GS(e), rooted
at points (local transformers) along the link and connecting the residences.

The problem Psec is modeled as a mixed integer linear program (MILP), which
usually requires exponential computation time. We use different heuristics to
reduce the number of binary variables, which in turn, reduce the overall time
complexity. A formal problem statement for the problem has been provided in
SI Appendix along with our approach to solve it. The secondary network creation
process can be executed simultaneously for different road links e ∈ ER in the
geographic region. In our framework, we execute the task sequentially for all
edges in a county, with the entire sequence performed simultaneously for dif-
ferent counties. The secondary network generated for the region is

GS =
⋃
e∈ER

GS(e) =
⋃
e∈ER

Psec

(
e,F−1

M (e)
)
.

Step 2. Constructing Primary Networks. The secondary network results in
local transformer nodesVT =

⋃
e∈ER

VT(e) along the road network links. The
goal of the primary network construction is to connect these transformers to
the set of substation nodes S using the road network as proxy. First, we define
a many-to-one mapping FV : VT → S based on a Voronoi partitioning. The
details of this mapping are provided in SI Appendix. We are interested in the
inverse mappingF−1

V (s) = {t ∈VT ;FV (t) = s}, which assigns a group of
transformers to each substation node.

The primary network creation problem (denoted by Pprim) is defined for
each substation node s ∈ S, and the goal is to create a minimum-length pri-
mary network GP (s) connecting substation node s to the mapped transform-
ers F−1

V (s) using road network GR as proxy, such that the following set of
structural and operational constraints is valid. 1) The network should be a tree
rooted at the substation, 2) all transformer nodes are to be connected, and
3) all nodes should have acceptable voltages (based on American National Stan-
dards Institute [ANSI] standards between 0.95 and 1.05 per unit [pu]) when the
residential customers are consuming average hourly loads.

Problem 2 (Pprim Construction). Given a substation s ∈ S with an assigned
set of local transformer nodesF−1

V (s), construct a tree networkGP (s) using the
road network GR as a proxy that connects all local transformers while ensuring
acceptable node voltages by power engineering standards.

We formulate an MILP to solve the problemPprim, which might take exponential
computation time.A formal problemstatement for the samehasbeenprovided in
SI Appendix.Wedonot use any heuristic to reduce the computational complexity,
which is determined by the size of the underlying road network (used as the
proxy). On many occasions, we terminate the optimization program reaching
an optimal solution in order to reduce the running time. This has resulted in
the constructed network being a near-optimal solution but with an acceptable
optimality gap of 0 to 5%. In our framework, we execute the task of primary
network creation simultaneously for all the substations in the geographic region.
The created primary networkGP for the entire region is

GP =
⋃
s∈S

GP (s) =
⋃
s∈S

Pprim

(
s,F−1

V (s)
)
.

Step 3. Constructing Ensembles of Networks. In this section, we address
the problem of creating multiple realizations of the distribution network that
connects the residences to substations. Albeit that the modification of user-
defined parameters in Psec and Pprim can produce different realizations of syn-
thetic networks, the procedure is computationally expensive since optimization
problems of similar order need to be solved. We propose a methodology that
uses the already created (near)-optimal primary network for a region and creates
an ensemble of synthetic networks by reconnecting the transformer nodes in a
differentmanner from the (near)-optimal primary network whilemaintaining the
structural and power engineering operational constraints. Thereafter, we connect
the residences in the same way as in the optimal secondary network. Thus,
we construct an ensemble of networks where each network is a combination
of a variant primary network and the optimal secondary network (solution of
Psec). The variant primary networks are “feasible” (but not necessarily “optimal”)
solutions ofPprim.

Problem 3. Given a near-optimal primary network G0
P := (V0,E0) con-

structed using the underlying road network graph GR := (VR,ER), construct
N variants of the primary network G1

P , · · · ,GN
P by identifying respective

edge sets E1, · · · ,EN ⊆ ER such that the networks are feasible solutions of
Pprim.

We consider the ensemble of networks generation problem for each substation s
and the mapped transformer nodesF−1

V (s). LetFfeas denote the set of feasible
solutions of Pprim

(
s,F−1

V (s)
)
. From here on, we omit the dependency on s

in our notation. We design a Markov chain M to create variant networks with
each state denoting a feasible realization of the network Gt

P ∈ Ffeas. The steps
involved in transitioning from the primary networkGt

P := (Vt ,Et) toGt+1
P :=

(Vt+1,Et+1) are described below.
Let Frstr(e) = {G := (V,E) ∈ Ffeas : e �∈ E}. If Frstr(e) �= ∅, we select

a random edge e ∈ Et to be deleted with probability 1/|Et| and then, pick
Gt+1

P := (Vt+1,Et+1) ∈ Frstr(e) uniformly at random; else,Gt+1
P = Gt

P . The
ensemble of synthetic power distribution networks for the region is

E := GS

⋃{
G

t
P : t = 1, . . . , N

}
.

Step 4. Postprocessing of Networks. The final step of our framework involves
the addition of attributes and labels to nodes and edges to each network in
the ensemble. We compute the required distribution line ratings for each edge
in the network. We assign a suitable type of distribution line from the cata-
log of distribution lines (48) and add edge attributes accordingly. We include
positive sequence impedance (resistance and reactance) for each edge in the
network. Additionally,we use a framework to assign one of the three phases (A, B,
or C) to each residence in the network. The phase assignment ensures that
the three phases are balanced at each substation feeder. We add the assigned
phase as a node attribute to the network. The details of this step have been
provided in SI Appendix. The node and edge attributes are listed in SI Appendix,
Table S8.

Although we have assigned one of the three phases to each residence in
the network, we do not consider three phase circuits with different transformer
configurations (wye and delta). Therefore,we limit the created synthetic networks
with only positive sequence impedance. To this end, such networks can be useful
in performing studies involving balanced loads across three phases.

Results: Synthetic Network Attributes

Degree, Hop, and Reach Distribution. In this section, we com-
pare the statistical attributes of the synthetic distribution net-
works created for rural and urban areas. The degree of a node
in a network denotes the number of edges connected to it. The
degree distribution gives an idea about the connectivity within
the network.The “hop” of a node from the substation (root) node
is defined as the number of edges between them. Hence, the “hop
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Fig. 2. Plots showing degree distribution (Left), hop distribution (Center), and reach distribution (Right) in rural and urban areas. Colors depict network
attributes of urban vs. rural areas. The degree and hop distribution are similar for both rural and urban regions. The reach distribution of urban networks
peaks at small value since the distribution network nodes are more closely placed to the substation than rural areas.

distribution” provides an idea about the radial layout of nodes
around the root substation node. Finally, we define “reach” of
a node as the length of the network (in miles) connecting it to
the substation. The associated “reach distribution” of a network
becomes a relevant statistic in the context of networks with
associated geographic attributes since it provides a distance metric
to the hop distribution.

Fig. 2 shows a comparison of degree, hop, and reach distribu-
tions in urban and rural distribution networks. We observe that
the degree and hop distributions are fairly similar. However, the
reach distribution differs for rural and urban areas. In the case of
urban areas, we notice that a majority of nodes are located very
close to the substation, whereas rural areas are often characterized
by long-length network edges. This observation is also consistent
with the distribution of residences in urban and rural regions,
where rural regions have more widely spread out residences than
urban areas.

Network Motifs. Network motifs are interesting subgraphs that
build up the entire network. Network motifs have been used as
a metric to understand network resilience in earlier work (49).
We focus our attention to small-size subgraphs with at most four
nodes. Since the created distribution networks are tree graphs,
we are interested in two types of network motifs: 1) four-node
path and 2) four-node star. Fig. 3 shows the number of four-
node motifs in the synthetic distribution networks. The two
colors show the results for urban and rural networks separately.
The star motifs are higher for urban networks as compared with
rural networks of similar size. This can be explained from the
observation in degree distribution, where we notice that urban

networks have higher fractions of nodes with degree 4. A single
node with degree 4 results in

(
4
3

)
= 4 counts of four-node star

motifs.

Features in Ensemble of Networks. We create ensembles of
distribution networks for Montgomery County in southwest
Virginia. The entire network within Montgomery County is
composed of 19 subnetworks (each fed by a different substation).
We create an ensemble of 20 networks for each subnetwork and
study the variation in network attributes over the ensembles.
We plot the variation in degree, hop, and reach distributions
in Fig. 4. The error bar shows the extent of variation in the
ensemble. Fig. 5 shows variation in four-node path and star motif
counts for the networks in each ensemble. The bar plots show the
motif counts for each ensemble of networks, and the error bars
(on top of each bar) depict the variation over the ensemble. We
observe that the variation of network features over each ensemble
is not significant. This shows that the networks are fairly close
to each other, and each of them can be considered as a digital
twin of the actual network. Thus, our framework is capable
of creating an ensemble of synthetic distribution networks,
which are statistically equivalent to each other. In order to
create statistically different networks, the Markov chain in Step 3
needs to be altered—deleting multiple random edges instead
of one.

In general, an “ensemble” of networks consists of multiple
structurally different networks that connect the same set of res-
idences to the substation. Each synthetic network in the ensemble
is a feasible network (has a tree structure and satisfies power
engineering constraints) but is not the optimal-length network.

Fig. 3. Plots showing the number of four-node paths (Left) and four-node star motifs (Right) as a function of network size (measured as the number of nodes
in the network). Colors depict motif numbers in urban vs. rural areas. Urban distribution networks have a larger number of star motifs than rural networks. In
contrast, the path motif count does not differ significantly across rural and urban areas. Urban networks are often larger than rural networks as measured by
the number of nodes due to the larger population size.
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Fig. 4. Plots showing variation in degree distribution (Left), hop distribution (Center), and reach distribution (Right) for the ensemble of distribution networks
created for Montgomery County of southwest Virginia. The error bars in the bar plots show the variation over the networks in the ensemble.

Therefore, we can consider it as a single random realization of the
actual network.This allows us to perform analysis on an ensemble
of networks instead of a single network and thereby, capture the
deviation arising due to the different network structure in the
ensemble.

Validation

In the earlier section, we presented the proposed framework to cre-
ate synthetic distribution networks for a
geographic region. The aim is to create networks that resemble
their actual physical counterparts. We obtained real-world power
distribution networks for the town of Blacksburg in southwest
Virginia from a distribution company to validate the created
networks. This network has been incrementally built over a long
period of time with a close dependency on the population growth
in the region. In contrast, our proposed framework uses the
current population information with no consideration of any
historical data. The created synthetic networks are optimal in
terms of economic and engineering perspectives. Therefore, it
is expected that there would be structural differences between
the networks. Furthermore, the comparison methods need to be
relevant in the context of distribution networks with associated
geographic attributes.

This section compares the generated synthetic networks with
the actual distribution network based on various operational,
statistical, and structural attributes. The operational validation

ensures that we observe similar node voltages and edge flows
in both networks. This makes the networks suitable to be used
by the scientific community to aid in their research. The meth-
ods to compare statistical attributes help us compare the over-
all connectivity properties of the networks. The comparison of
structural attributes involving node and edge geometries enables
us to validate the created synthetic networks on a much higher
resolution. The results of the comparison show that the created
networks bear a significant amount of resemblance to the actual
networks.

Operational Validation. We compare voltages at the residences
when they are connected to the actual and synthetic networks
in Fig. 6, Left. We term this validation as operational validation,
where the basic idea is that if we substitute the actual network with
the synthetic network, we should see minimal voltage differences
at the residences connected to either network. Here, the black
dashed line denotes the identity line (exact same voltages), and
green lines signify ±0.4% deviation from the identity line. We
observe that themajority of residence voltages in the synthetic net-
work remain within this ±0.4% regulation. We also compare the
edge flows in the two networks through the histogram in Fig. 6,
Right, which also bear a significant resemblance. We performed
statistical fit of the flow distributions, and the Kullback–Leibler
(KL) divergence is 0.15.

Statistical Validation. The created networks are expected
to have similar graph attributes to the actual network. We

Fig. 5. Plots showing variation in the number of four-node path motifs (Left) and the number of four-node star motifs (Right) for the ensembles of distribution
networks created for Montgomery County of southwest Virginia. Results are shown for 19 ensembles of varying size in the county fed by different substations.
Each ensemble consists of 20 networks. The error bars in the bar plots show the variation over the networks in each ensemble.
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Fig. 6. Plots comparing the residential node voltages (Left) and edge power flows (Right) for actual and synthetic networks. The majority of residence voltages
in the synthetic network are within±0.4% voltage regulation of the voltages in the actual network. The edge flows in both networks follow similar distributions,
with a computed KL divergence of 0.15.

focus on basic graph attributes, such as degree and hop
distributions, and also, the newly defined reach distribution.
Fig. 7 compares the synthetic and actual networks for the town of
Blacksburg in southwest Virginia in terms of these statistical
attributes. We use the KL divergence to compare each pair
of distributions. KL-divergence values for various structural
measures are as follows: 1) degree distributions: 0.0208; 2) hop
distribution: 0.0323; and 3) reach distribution: 0.0096.The small
KL-divergence values indicate that the real and synthetic networks
are structurally very similar.

Structural Validation. One of the important aspects of our work
is that the created synthetic networks have a geographic attribute
associated with them. Therefore, we need to include network
comparison methods that incorporate the geographic embedding
while measuring the deviation. In this paper, we use a metric
for geometry comparison (i.e., how the edge geometries in the
networks deviate from each other). Due to the unavailability of
actual network information for the entire region, we propose an
effective way to compare the structural attributes of the networks.
We divide the entire geographic region into multiple rectangular
grid cells and perform comparison in each cell separately. In
this way, we can omit the cells for which network data are
missing.

We compare the Hausdorff distance between the edge geome-
tries of the two networks in each rectangular grid cell. Let Pact and
Psyn represent the set of points representing the geometries of the
actual and synthetic networks. We define the Hausdorff distance
between networks Gact and Gsyn for a rectangular grid cell as

DCELL
H

(
Gact,Gsyn

)
:= max

x∈Pact
min
y∈Psyn

dist(x , y).

The above metric of geometry comparison allows us to measure
a degree of proximity for edge geometries that are nonoverlapping
yet close to each other. Fig. 8 shows the edge geometry comparison
between actual and synthetic networks for uniform rectangular
grid partitions of two different resolutions. Note that network
geometries in certain regions show a significant deviation when
compared with low resolution, while comparing with a higher grid
resolution shows a small deviation. This shows that the networks
are fairly close to each other.

Case Study: Impact of Photovoltaic Penetration

We now present a representative study where we analyze the
impact of photovoltaic (PV) penetration on the system node
voltages. We compare the PV penetration in multiple levels of the
network (MV primary network or LV secondary network). We
consider the following two cases: 1) PV penetration in the LV net-
work, where PV generators are installed on residence rooftops, and
2) PV penetration in the MV network, where a single PV gener-
ator is installed at a location in the MV network. In the first case,
we randomly identify a group of residences (for example, 50% of
all residences) and assign PV generation to them.The penetration
level indicates the rating of the PV generation installed on these
residences. For the latter case, a single-node PV penetration
represents a “solar farm,” which is connected to the distribution
grid, and the penetration level indicates the PV generation rating
as a fraction of the total load.

We perform the comparison on two different synthetic feeders:
urban and rural. An urban distribution network is characterized
with shorter lines as compared with rural networks where remote
nodes are connected by long lines. Fig. 9 compares the impact of

Fig. 7. Plots comparing the degree distribution (Left), hop distribution (Center), and reach distribution (Right) of actual and synthetic distribution networks for
the town of Blacksburg in southwest Virginia. The degree and hop distributions are fairly close to each other, which signifies their resemblance. The reach
distribution differs between the networks because of the difference in the way each of them is created.
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Fig. 8. Plots showing Hausdorff distance–based geometry comparison of actual and synthetic networks for the town of Blacksburg in southwest Virginia. The
geometry comparison is performed for grid cells with two different resolutions: low resolution of 5× 5 grid cells (Left) and high resolution of 7× 7 grid cells
(Right). The color in each grid cell denotes the magnitude of deviation in meters. Grid cells with no available actual network data are shaded with black dots.

LV-level and MV-level PV penetration for two networks. Here,
we focus on the percentage of nodes that face overvoltage issues
due to different levels of PV penetration. We observe that for
either case, the percentage of nodes with overvoltage increases
with higher penetration level. Further, we see that LV-level PV
generation is less likely to cause overvoltage issues as compared
with a single-node MV-level PV integration. Additionally, in
the case of rural feeders, the percentage of nodes experiencing
severe overvoltage (around 1.05 pu, which is the extreme limit of
acceptable overvoltage) is higher as compared with urban feeder
networks. Therefore, an optimal placement of PV generators is
required for the rural feeders so that they do not suffer from
overvoltage issues.

Discussion and Limitations

Although the synthetic power distribution network dataset pro-
duced by our framework is comprehensive, it is not without its
limitations. In this work, we generate networks with only positive
sequence parameters. The ensemble of synthetic networks can
be used as a tool for performing planning studies or addressing
system-wide policy-level questions. We can also perform short
circuit analysis with symmetrical three-phase faults.

However, distribution systems are networks of mixed phase
order and mixed network configuration. They are usually three
phases in the primary network, and the secondary network con-
sists of mixed single- and three-phase circuits. We have provided a
framework in SI Appendix to partition the residences into three
phases and thereby, create a three-phase network. A complete
three-phase network requires the inclusion of zero sequence line
parameters and transformer configurations (wye–wye, delta–wye,
wye–delta, and delta–delta). Therefore, in their current version,
these networks might not be suitable to be used for performing
dynamic stability analysis or studying detailed transient responses
to power grid contingencies.

Further, shunt compensation is used in the primaries for main-
taining voltage level within engineering standards. These are com-
posed of capacitor banks, which elevate voltage level along the
network. Hence, they can be optimally placed in the network to
avoid severe undervoltage issues at remotely located residences.
We can consider critical sections of the network and design nec-
essary shunt compensation to maintain a high degree of reliability
of the network. Additionally, the proposed framework creates a
network to connect only the residential buildings in a geographic
region. In order to connect heavy load centers, networked sec-
ondaries with pad-mounted transformers are used in some large

Fig. 9. Plots showing the impact of PV penetration in rural and urban networks. Colors depict the percentages of nodes with various levels of overvoltages.
Shaded and nonshaded bars denote MV- and LV-level penetration, respectively. LV-level penetration is less likely to cause severe overvoltages as compared with
MV-level penetration. PV penetration in rural networks is more likely to cause overvoltage issues (greater than 1.05 pu).
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urban areas.These additions can be made to our existing synthetic
networks and would be a direction for future research.

Data,Materials, and Software Availability. All study data are included in the
article and/or SI Appendix.
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