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ABSTRACT

Consider the problem of training robustly capable agents. One ap-
proach is to generate a diverse collection of agent polices. Training
can then be viewed as a quality diversity (QD) optimization prob-
lem, where we search for a collection of performant policies that
are diverse with respect to quantified behavior. Recent work shows
that differentiable quality diversity (DQD) algorithms greatly accel-
erate QD optimization when exact gradients are available. However,
agent policies typically assume that the environment is not differ-
entiable. To apply DQD algorithms to training agent policies, we
must approximate gradients for performance and behavior. We pro-
pose two variants of the current state-of-the-art DQD algorithm
that compute gradients via approximation methods common in
reinforcement learning (RL). We evaluate our approach on four sim-
ulated locomotion tasks. One variant achieves results comparable
to the current state-of-the-art in combining QD and RL, while the
other performs comparably in two locomotion tasks. These results
provide insight into the limitations of current DQD algorithms in
domains where gradients must be approximated. Source code is
available at https://github.com/icaros-usc/dqd-rl
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Figure 1: We develop two RL variants of the CMA-MEGA al-
gorithm. Similar to CMA-MEGA, the variants sample gradi-
ent coefficients ¢ and branch around a solution point ¢*. We
evaluate each branched solution ¢; as part of a policy Ty, and
insert ¢ into the archive. We then update ¢* and N (p,X)
to maximize archive improvement. Our RL variants differ
from CMA-MEGA by approximating gradients with ES and
TD3, since exact gradients are unavailable in RL settings.

1 INTRODUCTION

We focus on the problem of extending differentiable quality diver-
sity (DQD) to reinforcement learning (RL) domains. We propose
to approximate gradients for the objective and measure functions,
resulting in two variants of the DQD algorithm CMA-MEGA [19].

Consider a half-cheetah agent (Fig. 2) trained for locomotion,
where the agent must continue walking forward even when one
foot is damaged. If we frame this challenge as an RL problem, two
approaches to design a robustly capable agent would be to (1) de-
sign a reward function and (2) apply domain randomization [47, 58].
However, prior work [8, 29] suggests that designing such a reward
function is difficult, while domain randomization may require man-
ually selecting hundreds of environment parameters [44, 47].

As an alternative approach, consider that we have intuition on
what behaviors would be useful for adapting to damage. For in-
stance, we can measure how often each foot is used during training,
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and we can pre-train a collection of policies that are diverse in how
the agent uses its feet. When one of the agent’s feet is damaged
during deployment, the agent can adapt to the damage by selecting
a policy that did not move the damaged foot during training [9, 13].

Pre-training such a collection of policies may be viewed as a
quality diversity (QD) optimization problem [9, 13, 40, 49]. Formally,
QD assumes an objective function f and one or more measure
functions m. The goal of QD is to find solutions satisfying all output
combinations of m, i.e. moving different combinations of feet, while
maximizing each solution’s f, i.e. walking forward quickly. Most
QD algorithms treat f and m as black boxes, but recent work [19]
proposes differentiable quality diversity (DQD), which assumes f
and m are differentiable functions with exact gradient information.
QD algorithms have been applied to procedural content generation
[25], robotics [13, 40], aerodynamic shape design [22], and scenario
generation in human-robot interaction [17, 18].

The recently proposed DQD algorithm CMA-MEGA [19] outper-
forms QD algorithms by orders of magnitude when exact gradients
are available, such as when searching the latent space of a genera-
tive model. However, RL problems like the half-cheetah lack these
gradients because the environment is typically non-differentiable,
thus limiting the applicability of DQD. To address this limitation, we
draw inspiration from how evolution strategies (ES) [1, 39, 51, 60]
and deep RL actor-critic methods [21, 38, 53, 54] optimize a reward
objective by approximating gradients for gradient descent. Our key
insight is to approximate objective and measure gradients for DQD
algorithms by adapting ES and actor-critic methods.

Our work makes three contributions. (1) We formalize the prob-
lem of quality diversity for reinforcement learning (QD-RL) and
reduce it to an instance of DQD. (2) We develop two QD-RL vari-
ants of the DQD algorithm CMA-MEGA, where each algorithm
approximates objective and measure gradients with a different com-
bination of ES and actor-critic methods. (3) We benchmark our
variants on four PyBullet locomotion tasks from QDGym [15, 42].
One variant performs comparably (in terms of QD score; Sec. 5.1.3)
to the state-of-the-art PGA-MAP-Elites [43] in two tasks. The other
variant achieves comparable QD score with PGA-MAP-Elites in all
tasks! but is less efficient than PGA-MAP-Elites in two tasks.

These results contrast with prior work [19] where CMA-MEGA
vastly outperforms a DQD algorithm inspired by PGA-MAP-Elites
on benchmark functions where gradient information is available.
Overall, we shed light on the limitations of CMA-MEGA in QD
domains where the main challenge comes from optimizing the
objective rather than from exploring measure space. At the same
time, since we decouple gradient estimates from QD optimization,
our work opens a path for future research that would benefit from
independent improvements to either DQD or RL.

2 PROBLEM STATEMENT
2.1 Quality Diversity (QD)

We adopt the definition of QD from prior work [19]. For a solution
vector ¢ € R”, QD considers an objective function f(¢) and k

!We note that the performance of the CMA-MEGA is worse than PGA-MAP-Elites
in two of the tasks, albeit within variance. We consider it likely that additional runs
would result in PGA-MAP-Elites performing significantly better in these tasks. We
leave further evaluation for future work.
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Figure 2: A half-cheetah agent executing two walking poli-
cies. In the top row, the agent walks on its back foot while
tapping the ground with its front foot. In the bottom row, the
agent walks on its front foot while jerking its back foot. Val-
ues below each row show the percentage of time each foot
contacts the ground (each foot is measured individually, so
values do not sum to 100%). With these policies, the agent
could continue walking even if one foot is damaged.

measures? m;(¢) € R (for i € 1..k) or, as a joint measure, m(¢) €
RX. These measures form a k-dimensional measure space X. For
every x € X, the QD objective is to find solution ¢ such that
m(¢) = x and f(¢) is maximized. Since X is continuous, it would
require infinite memory to solve the QD problem, so algorithms in
the MAP-Elites family [13, 40] discretize X by forming a tesselation
Y consisting of M cells. Thus, we relax the QD problem to one of
searching for an archive A consisting of M elites ¢;, one for each
cell in Y. Then, the QD objective is to maximize the performance

f(¢i) of all elites:

M
max i 1
pax ) () 1)
2.1.1 Differentiable Quality Diversity (DQD). In DQD, we assume
f and m are first-order differentiable. We denote the objective
gradient as Vf(¢), or abbreviated as V f, and the measure gradients
as Vm(¢) or V.

2.2 Quality Diversity for Reinforcement
Learning (QD-RL)

We define QD-RL as an instance of the QD problem in which each
solution ¢ parameterizes an RL policy 7. Then, the objective f(¢)
is the expected discounted return of 7, and the measures m(¢)
are functions of 4. Formally, drawing on the Markov Decision
Process (MDP) formulation [55], we represent QD-RL as a tuple
(S, U, p,r,y,m). On discrete timesteps ¢ in an episode of interac-
tion, an agent observes state s € S and takes action a € U accord-
ing to a policy 74 (als). The agent then receives scalar reward r (s, a)
and observes next state s’ € S according to s’ ~ p(:|s,a). Each
episode thus has a trajectory & = {so, ao, s1, a1, .., sT }, where T is the
number of timesteps in the episode, and the probability that policy

7 takes trajectory £is pgy (£) = p(so) [112) 7w (arlso)p(sestlse. ar).

2Prior work refers to measure function outputs as “behavior characteristics,” “behavior
descriptors,” or “feature descriptors”
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Now, we define the expected discounted return of policy 7y as

T
Z yir(se, at)}
=0

where the discount factor y € (0, 1) trades off between short- and
long-term rewards. Finally, we quantify the behavior of policy 74
via a k-dimensional measure function m(¢).

F(®) =Eep, @

22.1 QD-RL as an instance of DQD. We reduce QD-RL to a DQD
problem. Since the exact gradients V f and Vm usually do not exist
in QD-RL, we must instead approximate them.

3 BACKGROUND

3.1 Single-Objective Reinforcement Learning

We review algorithms which train a policy to maximize a single ob-
jective, i.e. f(¢) in Eq. 2, with the goal of applying these algorithms’
gradient approximations to DQD in Sec. 4.

3.1.1  Evolution strategies (ES). ES [4] is a class of evolutionary
algorithms which optimizes the objective by sampling a population
of solutions and moving the population towards areas of higher
performance. Natural Evolution Strategies (NES) [60, 61] is a type of
ES which updates the sampling distribution of solutions by taking
steps on distribution parameters in the direction of the natural
gradient [2]. For example, with a Gaussian sampling distribution,
each iteration of an NES would compute natural gradients to update
the mean p and covariance X.

We consider an NES-inspired algorithm [51] which has demon-
strated success in RL domains. This algorithm, which we refer to
as OpenAlI-ES, samples A¢s solutions from an isotropic Gaussian
but only computes a gradient step for the mean ¢. Each solution
sampled by OpenAI-ES is represented as ¢ + o€;, where o is the
fixed standard deviation of the Gaussian and €; ~ N (0, I). Once
these solutions are evaluated, OpenAI-ES estimates the gradient as

A’(:’S
V@) = fg+oee ©
esO i3
OpenAlI-ES then passes this estimate to an Adam optimizer [32]
which outputs a gradient ascent step for ¢. To make the estimate
more accurate, OpenAI-ES further includes techniques such as mir-
ror sampling and rank normalization [5, 26, 60].

3.1.2  Actor-critic methods. While ES treats the objective as a black
box, actor-critic methods leverage the MDP structure of the objec-
tive, i.e. the fact that f(¢) is a sum of Markovian values. We are
most interested in Twin Delayed Deep Deterministic policy gradient
(TD3) [21], an off-policy actor-critic method. TD3 maintains (1) an
actor consisting of the policy 74 and (2) a critic consisting of state-
action value functions Qg, (s, a) and Qg, (s, a) which differ only in
random initialization. Through interactions in the environment, the
actor generates experience which is stored in a replay buffer 8. This
experience is sampled to train Qg, and Qg,. Simultaneously, the
actor improves by maximizing Qg, via gradient ascent (Qg, is only
used during critic training). Specifically, for an objective f” which
is based on the critic and approximates f, TD3 estimates a gradient
Vf’(¢) and passes it to an Adam optimizer. Notably, TD3 never
updates network weights directly, instead accumulating weights
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into target networks g, Qg;» Qp; via an exponentially weighted
moving average with update rate 7.

3.2 Quality Diversity Algorithms

3.2.1 MAP-Elites extensions for QD-RL. One of the simplest QD
algorithms is MAP-Elites [13, 40]. MAP-Elites creates an archive
A by tesselating the measure space X into a grid of evenly-sized
cells. Then, it draws A initial solutions from a multivariate Gaussian
N (¢o, oI) centered at some ¢. Next, for each sampled solution ¢,
MAP-Elites computes f(¢) and m(¢) and inserts ¢ into A. In sub-
sequent iterations, MAP-Elites randomly selects A solutions from
A and adds Gaussian noise, i.e. solution ¢ becomes ¢ + N (0, o).
Solutions are placed into cells based on their measures; if a solution
has higher f than the solution currently in the cell, it replaces that
solution. Once inserted into (A, solutions are known as elites.

Due to the high dimensionality of neural network parameters,
direct policy optimization with MAP-Elites has not proven effective
in QD-RL [9], although indirect encodings have been shown to
scale to large policy networks [23, 50]. For direct search, several
extensions merge MAP-Elites with actor-critic methods and ES. For
instance, Policy Gradient Assisted MAP-Elites (PGA-MAP-Elites)
[43] combines MAP-Elites with TD3. Each iteration, PGA-MAP-
Elites evaluates A solutions for insertion into the archive. ’% of
these are created by selecting random solutions from the archive
and taking gradient ascent steps with a TD3 critic. The other %
solutions are created with a directional variation operator [59]
which selects two solutions ¢; and ¢, from the archive and creates
anew one according to ¢’ = ¢1 + o1 N(0,I) + o2(p2 — p1)N (0, 1).
Finally, PGA-MAP-Elites maintains a “greedy actor” which provides
actions when training the critics (identically to the actor in TD3).
Every iteration, PGA-MAP-Elites inserts this greedy actor into the
archive. PGA-MAP-Elites achieves state-of-the-art performance on
locomotion tasks in the QDGym benchmark [42].

Another MAP-Elites extension is ME-ES [9], which combines
MAP-Elites with an OpenAI-ES optimizer. In the “explore-exploit”
variant, ME-ES alternates between two phases. In the “exploit”
phase, ME-ES restarts OpenAI-ES at a mean ¢ and optimizes the
objective for k iterations, inserting the current ¢ into the archive
in each iteration. In the “explore” phase, ME-ES repeats this pro-
cess, but OpenAI-ES instead optimizes for novelty, where novelty
is the distance in measure space from a new solution to previously
encountered solutions. ME-ES also has an “exploit” variant and an
“explore” variant, which each execute only one type of phase.

Our work is related to ME-ES in that we also adapt OpenAI-ES,
but instead of alternating between following a novelty gradient and
objective gradient, we compute all objective and measure gradients
and allow a CMA-ES [28] instance to decide which gradients to fol-
low by sampling gradient coefficients from a multivariate Gaussian
updated over time (Sec. 3.2.2). We include MAP-Elites, PGA-MAP-
Elites, and ME-ES as baselines in our experiments. Refer to Fig. 3
for a diagram which compares these algorithms to our approach.

3.2.2  Covariance Matrix Adaptation MAP-Elites via a Gradient Ar-
borescence (CMA-MEGA). We directly extend CMA-MEGA [19] to
address QD-RL. CMA-MEGA is a DQD algorithm based on the
QD algorithm CMA-ME [20]. The intuition behind CMA-MEGA
is that if we knew which direction the current solution point ¢*
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should move in objective-measure space, then we could calculate
that change in search space via a linear combination of objective
and measure gradients. From CMA-ME, we know a good direction
is one that results in the largest archive improvement.

Each iteration, CMA-MEGA first calculates objective and mea-
sure gradients for a solution point ¢*. Next, it generates A new solu-
tions by sampling gradient coefficients ¢ ~ N (g, X) and computing
¢ — ¢ +coVf(9") +Z’;:1 cjVmj(¢*). CMA-MEGA inserts these
solutions into the archive and computes their improvement, A. A
is defined as f(¢’) if ¢” populates a new cell, and f(¢’) - f(¢%)
if ¢’ improves an existing cell (replaces a previous solution ¢’8).
After CMA-MEGA inserts the solutions, it ranks them by A. If a
solution populates a new cell, its A always ranks higher than that
of a solution which only improves an existing cell. CMA-MEGA
then moves the solution point ¢* towards the largest archive im-
provement, but also adapts the distribution NV (g, X) towards better
gradient coefficients by the same ranking. By leveraging gradient
information, CMA-MEGA solves QD benchmarks with orders of
magnitude fewer solution evaluations than previous QD algorithms.

3.2.3 Beyond MAP-Elites. Several QD-RL algorithms have been
developed outside the MAP-Elites family. NS-ES [11] builds on
Novelty Search (NS) [35, 36], a family of QD algorithms which
add solutions to an unstructured archive only if they are far away
from existing archive solutions in measure space. Using OpenAl-
ES, NS-ES concurrently optimizes several agents for novelty. Its
variants NSR-ES and NSRA-ES optimize for a linear combination of
novelty and objective. Meanwhile, the QD-RL algorithm [7] (distinct
from the QD-RL problem we define) maintains an archive with all
past solutions and optimizes agents along a Pareto front of the
objective and novelty. Finally, Diversity via Determinants (DvD)
[46] leverages a kernel method to maintain diversity in a population
of solutions. As NS-ES, QD-RL, and DvD do not output a MAP-
Elites grid archive, we leave their investigation for future work.

3.3 Diversity in Reinforcement Learning

Here we distinguish QD-RL from prior work which also applies
diversity to RL. One area of work is in latent- and goal-conditioned
policies. For latent-conditioned policy 74 (als, z) [16, 33, 37] or goal-
conditioned policy 7y (als, 9) [3, 52], varying the latent variable z
or goal g results in different behaviors, e.g. different walking gaits
or walking to a different location. While QD-RL also seeks a range
of behaviors, the measures m(¢) are computed after evaluating
¢, rather than before the evaluation. In general, QD-RL focuses on
finding a variety of policies for a single task, rather than attempting
to solve a variety of tasks with a single conditioned policy.
Another area of work combines evolutionary and actor-critic
algorithms to solve single-objective hard-exploration problems
[10, 30,31, 48, 56]. In these methods, an evolutionary algorithm such
as cross-entropy method [14] facilitates exploration by generating
a diverse population of policies, while an actor-critic algorithm
such as TD3 trains high-performing policies with this population’s
environment experience. QD-RL differs from these methods in that
it views diversity as a component of the output, while these meth-
ods view diversity as a means for environment exploration. Hence,
QD-RL measures policy behavior via a measure function and col-
lects diverse policies in an archive. In contrast, these RL exploration
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How are solutions generated?

Mutate solutions that are
currently in the archive.

How are archive solutions
modified?

Maintain an evolution strategy
separate from the archive.

How are gradients combined when
generating new solutions?

Genetic algorithm
operator

Take multiple Maintain gradient
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with TD3. instance

Take an objective

gradient or novelty

gradient step with
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with OpenAI-ES.
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Approximate
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with TD3.

CMA-MEGA (ES) CMA-MEGA (TD3, ES)

Figure 3: Diagram of MAP-Elites extensions for QD-RL,
showing how our CMA-MEGA variants differ from other
OD-RL algorithms.

methods assume that trajectory diversity, rather than targeting spe-
cific behavioral diversity, is enough to drive exploration to discover
a single optimal policy.

4 APPROXIMATING GRADIENTS FOR DOQD

Since DQD algorithms require exact objective and measure gradi-
ents, we cannot directly apply CMA-MEGA to QD-RL. To address
this limitation, we replace exact gradients with gradient approxi-
mations (Sec. 4.1) and develop two CMA-MEGA variants (Sec. 4.2).

4.1 Approximating Objective and Measure
Gradients

We adapt gradient approximations from ES and actor-critic methods.
Since the objective has an MDP structure, we estimate objective
gradients V f with ES and actor-critic methods. Since the measures
are black boxes, we estimate measure gradients Vm with ES.

4.1.1 Approximating objective gradients with ES and actor-critic
methods. We estimate objective gradients with two methods. First,
we treat the objective as a black box and estimate its gradient with
a black box method, namely the OpenAI-ES gradient estimate in
Eq. 3. Since OpenAI-ES performs well in RL domains [34, 45, 51],
we believe this estimate is suitable for approximating gradients for
CMA-MEGA in QD-RL settings. Importantly, this estimate requires
environment interaction by evaluating Aes solutions.

Since the objective has a well-defined structure, i.e. it is a sum
of rewards from an MDP (Eq. 2), we also estimate its gradient with
an actor-critic method, TD3. TD3 is well-suited for this purpose
because it efficiently estimates objective gradients for the multiple
policies that CMA-MEGA and other QD-RL algorithms generate.
In particular, once the critic is trained, TD3 can provide a gradient
estimate for any policy without additional environment interaction.

Among actor-critic methods, we select TD3 since it achieves high
performance while optimizing primarily for the RL objective. Prior
work [21] shows that TD3 outperforms on-policy actor-critic meth-
ods [53, 54]. While the off-policy Soft Actor-Critic [27] algorithm
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can outperform TD3, it optimizes a maximum-entropy objective
designed to encourage exploration. In our work, we explore by
finding policies with different measures. Thus, we leave for future
work the problem of integrating QD-RL with the action diversity
encouraged by entropy maximization.

4.1.2  Approximating measure gradients with ES. Since measures do
not have special properties such as an MDP structure (Sec. 2.2), we
only estimate their gradient with black box methods. Thus, similar
to the objective, we approximate each measure’s gradient Vm; with
the OpenAI-ES gradient estimate, replacing f with m; in Eq. 3.

Since the OpenAlI-ES gradient estimate requires additional envi-
ronment interaction, all of our CMA-MEGA variants require envi-
ronment interaction to estimate gradients. However, the environ-
ment interaction required to estimate measure gradients remains
constant even as the number of measures increases, since we can
reuse the same Ag solutions to estimate each Vm;.

In problems where the measures have an MDP structure similar
to the objective, it may be feasible to estimate each Vm; with its
own TD3 instance. In the environments in our work (Sec. 5.1), each
measure is non-Markovian since it calculates the proportion of
time a walking agent’s foot spends on the ground. This calculation
depends on the entire agent trajectory rather than on one state.

4.2 CMA-MEGA Variants

Our choice of gradient approximations leads to two CMA-MEGA
variants. CMA-MEGA (ES) approximates objective and measure
gradients with OpenAI-ES, while CMA-MEGA (TD3, ES) approx-
imates the objective gradient with TD3 and measure gradients with
OpenAI-ES. Fig. 1 shows an overview of both algorithms, and Algo-
rithm 1 shows their pseudocode. As CMA-MEGA (TD3, ES) builds
on CMA-MEGA (ES), we present only CMA-MEGA (TD3, ES) and
highlight lines that CMA-MEGA (TD3, ES) additionally executes.

Identically to CMA-MEGA, the two variants maintain three pri-
mary components: a solution point ¢*, a multivariate Gaussian
distribution N (g, X) for sampling gradient coefficients, and a MAP-
Elites archive A for storing solutions. We initialize the archive and
solution point on line 3, and we initialize the coefficient distribution
as part of a CMA-ES instance on line 4.3

In the main loop (line 6), we follow the workflow shown in Fig.
1. First, after evaluating ¢* and inserting it into the archive (line
7-8), we approximate its gradients with either ES or TD3 (line 9-10).
This gradient approximation forms the key difference between our
variants and the original CMA-MEGA algorithm [19].

Next, we branch from ¢* to create solutions ¢; by sampling c;
from the coefficient distribution and computing perturbations V;
(line 13-15). We then evaluate each ¢/ and insert it into the archive
(line 16-17).

Finally, we update the solution point and the coefficient distribu-
tion’s CMA-ES instance by forming an improvement ranking based
on the improvement A; (Sec. 3.2.2; line 19-21). Importantly, since we
rank based on improvement, this update enables the CMA-MEGA
variants to maximize the QD objective (Eq. 1) [19].

3We set the CMA-ES batch size A’ slightly lower than the total batch size A (line 2).
While CMA-MEGA (ES) and CMA-MEGA (TD3, ES) both evaluate A solutions each
iteration, one evaluation is reserved for ¢* (line 7). In CMA-MEGA (TD3, ES), one
more evaluation is reserved for the greedy actor (line 26).
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Algorithm 1: CMA-MEGA (ES) and CMA-MEGA (TD3,
ES). Highlighted portions are only executed in CMA-
MEGA (TD3, ES). Adapted from CMA-MEGA [19]. Refer to
Appendix A for functions whose names are in SMALL_CAPs.

1 CMA-MEGA variants (evaluate, ¢, N, A, 0g: 1, Aes, Oe):

Input: Function evaluate which executes a policy ¢ and
outputs objective f(¢) and measures m(¢),
initial solution ¢, desired iterations N, batch
size A, initial CMA-ES step size oy, learning rate
1, ES batch size A¢s, ES standard deviation o,

Result: Generates NA solutions, storing elites in an

archive A
2 Me—A-1-1
3 Initialize empty archive A, solution point ¢* « ¢

Initialize CMA-ES with population A’, resulting in
p =0,% = g4l and internal CMA-ES parameters p

5 8, Q¢,, Qo Ty Qg{, Qgé, Mg, IntTIALIZE_TD3()
6 for iter — 1..N do
7 f(¢%).m(¢") — evaluate(¢*)
8 UPDATE_ARCHIVE(A, ¢*, f(¢*), m(¢"))
9 Vi(¢*), Vm(¢*) < ES_GRADIENTS(¢", Aes, 0¢)
Vf(¢*) < TD3_GRADIENT(¢*, Qp,, B)
Normalize Vf(¢*) and Vm(¢*) to be unit vectors
fori «— 1.1 do

ci~N(pX)

Vi —cioVI(¢") + 25 i jVm;(97)

¢ — ¢"+V;

f(@)),m’ (¢]) — evaluate(¢])

A; < UPDATE_ARCHIVE(A, ¢;, f (¢]), m(¢;))
end
Rank Ci, V,’ by Ai
Adapt CMA-ES parameters p, X, p based on

rankings of ¢;

P — P* + ’72?:1 WiVianki] // wi is part of p
if there is no change in A then

Restart CMA-ES with g = 0,% = 041

Set ¢* to a randomly selected elite from A

10
11
12
13
14
15
16
17
18
19

20

21
22
23
24
end

f(@q).m(9q) « evaluate(gq)
UPDATE_ARCHIVE(A, ¢g, f (¢q), m(¢q))

Add experience from all calls to evaluate into 8
TRAIN_TD3(Q91, g, Ty Qg{, Q%’ g, B)

end

25

26

27

28

29

30

Our CMA-MEGA variants have two additional components. First,
we check if no solutions were inserted into the archive at the end
of the iteration, which would indicate that we should reset the
coefficient distribution and the solution point (line 22-24). Second,
in the case of CMA-MEGA (TD3, ES), we manage a TD3 instance
similar to how PGA-MAP-Elites does (Sec. 3.2.1). This TD3 instance
consists of a replay buffer B, critic networks Qg, and Qg,, a greedy
actor g, , and target networks Qg{, Qgé, g, (all initialized on line
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5). At the end of each iteration, we use the greedy actor to train the
critics, and we also insert it into the archive (line 26-29).

5 EXPERIMENTS

We compare our two proposed CMA-MEGA variants (CMA-MEGA
(ES), CMA-MEGA (TD3, ES)) with three baselines (PGA-MAP-Elites,
ME-ES, MAP-Elites) in four locomotion tasks. We implement MAP-
Elites as described in Sec. 3.2.1, and we select the explore-exploit
variant for ME-ES since it has performed at least as well as both
the explore variant and the exploit variant in several domains [9].

5.1 Evaluation Domains

5.1.1 QDGym. We evaluate our algorithms in four locomotion
environments from QDGym [42], a library built on PyBullet Gym
[12, 15] and OpenAI Gym [6]. Appendix C lists all environment
details. In each environment, the QD algorithm outputs an archive
of walking policies for a simulated agent. The agent is primarily
rewarded for its forward speed. There are also reward shaping [41]
signals, such as a punishment for applying higher joint torques,
intended to guide policy optimization. The measures compute the
proportion of time (number of timesteps divided by total timesteps
in an episode) that each of the agent’s feet contacts the ground.
QDGym is challenging because the objective in each environ-
ment does not “align” with the measures, in that finding policies
with different measures (i.e. exploring the archive) does not neces-
sarily lead to optimization of the objective. While it may be trivial
to fill the archive with low-performing policies which stand in place
and lift the feet up and down to achieve different measures, the
agents’ complexity (high degrees of freedom) makes it difficult to
learn a high-performing policy for each value of the measures.

5.1.2  Hyperparameters. Each agent’s policy is a neural network
which takes in states and outputs actions. There are two hidden
layers of 128 nodes, and the hidden and output layers have tanh
activation. We initialize weights with Xavier initialization [24].

For the archive, we tesselate each environment’s measure space
into a grid of evenly-sized cells (see Table 6 for grid dimensions).
Each measure is bound to the range [0, 1], the min and max pro-
portion of time that one foot can contact the ground.

Each algorithm evaluates 1 million solutions in the environment.
Due to computational limits, we evaluate each solution once instead
of averaging multiple episodes, so each algorithm runs 1 million
episodes total. Refer to Appendix B for further hyperparameters.

5.1.3  Metrics. Our primary metric is QD score [49], which provides
a holistic view of algorithm performance. QD score is the sum of the
objective values of all elites in the archive, i.e. Z?ﬁ 1 Lgsexistsf (@i)s
where M is the number of archive cells. We note that the contribu-
tion of a cell to the QD score is 0 if the cell is unoccupied. We set
the objective f to be the expected undiscounted return, i.e. we set
y=1inEq. 2.

Since objectives may be negative, an algorithm’s QD score may
be penalized when adding a new solution. To prevent this, we
define a minimum objective in each environment by taking the
lowest objective value that was inserted into the archive in any
experiment in that environment. We subtract this minimum from
every solution, such that every solution that was inserted into an
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QD Ant QD Half-Cheetah QD Hopper QD Walker

2 S N S|

Figure 4: QDGym locomotion environments [42].

archive has an objective value of at least 0. Thus, we use QD score
defined as ¥, 1, exists(f(¢i) — min objective). We also define
a maximum objective equivalent to each environment’s “reward
threshold” in PyBullet Gym. This threshold is the objective value at
which an agent is considered to have successfully learned to walk.

We report two metrics in addition to QD score. Archive coverage,
the proportion of cells for which the algorithm found an elite,
gauges how well the QD algorithm explores measure space, and
best performance, the highest objective of any elite in the archive,
gauges how well the QD algorithm exploits the objective.

5.2 Experimental Design

We follow a between-groups design, where the two independent
variables are environment (QD Ant, QD Half-Cheetah, QD Hopper,
QD Walker) and algorithm (CMA-MEGA (ES), CMA-MEGA (TD3,
ES), PGA-MAP-Elites, ME-ES, MAP-Elites). The dependent variable
is the QD score. In each environment, we run each algorithm for 5
trials with different random seeds and test three hypotheses:

H1: CMA-MEGA (ES) will outperform all baselines (PGA-MAP-
Elites, ME-ES, MAP-Elites).

H2: CMA-MEGA (TD3, ES) will outperform all baselines.

H3: CMA-MEGA (TD3, ES) will outperform CMA-MEGA (ES).

H1 and H2 are based on prior work [19] which showed that in
QD benchmark domains, CMA-MEGA outperforms algorithms that
do not leverage both objective and measure gradients. H3 is based
on results [45] which suggest that actor-critic methods outperform
ES in PyBullet Gym. Thus, we expect the TD3 objective gradient to
be more accurate than the ES objective gradient, leading to more
efficient traversal of objective-measure space and higher QD score.

5.3 Implementation

We implement all QD algorithms with the pyribs library [57] except
for ME-ES, which we adapt from the authors’ implementation. We
run each experiment with 100 CPUs on a high-performance cluster.
We allocate one NVIDIA Tesla P100 GPU to algorithms that train
TD3 (CMA-MEGA (TD3, ES) and PGA-MAP-Elites). Depending on
the algorithm and environment, each experiment lasts 4-20 hours;
refer to Table 12, Appendix E for mean runtimes. We have released
our source code at https://github.com/icaros-usc/dqd-rl

6 RESULTS

We ran 5 trials of each algorithm in each environment. In each
trial, we allocated 1 million evaluations and recorded the QD score,
archive coverage, and best performance. Fig. 5 plots these met-
rics, and Appendix E lists final values of all metrics. Appendix G
shows example heatmaps and histograms of each archive, and the
supplemental material contains videos of generated agents.
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Figure 5: Plots of QD score, archive coverage, and best performance for the 5 algorithms in our experiments in all 4 environ-
ments from QDGym. The x-axis in all plots is the number of solutions evaluated. Solid lines show the mean over 5 trials, and

shaded regions show the standard error of the mean.

6.1 Analysis

To test our hypotheses, we conducted a two-way ANOVA which
examined the effect of algorithm and environment on the QD score.
We note that the ANOVA requires QD scores to have the same scale,
but each environment’s QD score has a different scale by default.
Thus, for this analysis, we normalized QD scores by dividing by
each environment’s maximum QD score, defined as grid cells * (max
objective - min objective) (see Appendix C for these quantities).

We found a statistically significant interaction between algo-
rithm and environment on QD score, F(12,80) = 16.82,p < 0.001.
Simple main effects analysis indicated that the algorithm had a
significant effect on QD score in each environment, so we ran pair-
wise comparisons (two-sided t-tests) with Bonferroni corrections
(Appendix F). Our results are as follows:

H1: There is no significant difference in QD score between CMA-
MEGA (ES) and PGA-MAP-Elites in QD Ant and QD Half-Cheetah,
but in QD Hopper and QD Walker, CMA-MEGA (ES) attains signif-
icantly lower QD score than PGA-MAP-Elites. CMA-MEGA (ES)
achieves significantly higher QD score than ME-ES in all environ-
ments except QD Hopper, where there is no significant difference.
There is no significant difference between CMA-MEGA (ES) and
MAP-Elites in all domains except QD Hopper, where CMA-MEGA
(ES) attains significantly lower QD score.

H2: In all environments, there is no significant difference in
QD score between CMA-MEGA (TD3, ES) and PGA-MAP-Elites.
CMA-MEGA (TD3, ES) achieves significantly higher QD score than

ME-ES in all environments. CMA-MEGA (TD3, ES) achieves signif-
icantly higher QD score than MAP-Elites in QD Half-Cheetah and
Walker, with no significant difference in QD Ant and QD Hopper.

H3: CMA-MEGA (TD3, ES) achieves significantly higher QD
score than CMA-MEGA (ES) in QD Hopper and QD Walker, but
there is no significant difference in QD Ant and QD Half-Cheetah.

6.2 Discussion

We discuss how the CMA-MEGA variants differ from the baselines
(Sec. 6.2.1-6.2.4) and how they differ from each other (Sec. 6.2.5).

6.2.1 PGA-MAP-Elites and objective-measure space exploration. Of
the CMA-MEGA variants, CMA-MEGA (TD3, ES) performed the
closest to PGA-MAP-Elites, with no significant QD score difference
in any environment. This result differs from prior work [19] in QD
benchmark domains, where CMA-MEGA outperformed OG-MAP-
Elites, a baseline DQD algorithm inspired by PGA-MAP-Elites.

We attribute this difference to the difficulty of exploring objective-
measure space in the benchmark domains. For example, the linear
projection benchmark domain is designed to be “distorted” [20].
Values in the center of its measure space are easy to obtain with ran-
dom sampling, while values at the edges are unlikely to be sampled.
Hence, high QD score arises from exploring measure space and
filling the archive. Since CMA-MEGA adapts its sampling distribu-
tion, it is able to perform this exploration, while OG-MAP-Elites
remains “stuck” in the center of the measure space.

In contrast, as discussed in Sec. 5.1.1, it is relatively easy to fill
the archive in QDGym. We see this empirically: in all environments,
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all algorithms achieve nearly 100% archive coverage, usually within
the first 250k evaluations (Fig. 5). Hence, the best QD score is
achieved by increasing the objective value of solutions after filling
the archive. PGA-MAP-Elites achieves this by optimizing half of
its generated solutions with respect to its TD3 critic. The genetic
operator likely further enhances the efficacy of this optimization,
by taking previously-optimized solutions and combining them to
obtain high-performing solutions in other parts of the archive.

On the other hand, the CMA-MEGA variants place less emphasis
on maximizing the performance of each solution, compared to PGA-
MAP-Elites: in each trial, PGA-MAP-Elites takes 5 million objective
gradient steps with respect to its TD3 critic, while the CMA-MEGA
variants only compute 5k objective gradients, because they dedicate
a large part of the evaluation to estimating the measure gradients.
This difference suggests a possible extension to CMA-MEGA (TD3,
ES) in which solutions are optimized with respect to the TD3 critic
before being evaluated in the environment.

6.2.2 PGA-MAP-Elites and optimization efficiency. While there was
no significant difference in the final QD scores of CMA-MEGA
(TD3, ES) and PGA-MAP-Elites, CMA-MEGA (TD3, ES) was less
efficient than PGA-MAP-Elites in some environments. For instance,
in QD Hopper, PGA-MAP-Elites reached 1.5M QD score after 100k
evaluations, but CMA-MEGA (TD3, ES) required 400k evaluations.
We can quantify optimization efficiency with QD score AUC,
the area under the curve (AUC) of the QD score plot. For a QD
algorithm which executes N iterations and evaluates A solutions
per iteration, we define QD score AUC as a Riemann sum:
N

QD score AUC = Z(/l % QD score at iteration i) (4)

i=1

After computing QD score AUC, we ran statistical analysis similar
to Sec. 6.1 and found CMA-MEGA (TD3, ES) had significantly lower
QD score AUC than PGA-MAP-Elites in QD Ant and QD Hopper.
There was no significant difference in QD Half-Cheetah and QD
Walker. As such, while CMA-MEGA (TD3, ES) obtained comparable
final QD scores to PGA-MAP-Elites in all tasks, it was less efficient
at achieving those scores in QD Ant and QD Hopper.

6.2.3 ME-ES and archive insertions. With one exception (CMA-
MEGA (ES) in QD Hopper), both CMA-MEGA variants achieved
significantly higher QD score than ME-ES in all environments. We
attribute this result to the number of solutions each algorithm in-
serts into the archive. Each iteration, ME-ES evaluates 200 solutions
(Appendix B) but only inserts one into the archive, for a total of 5000
solutions inserted during each run. Given that each archive has at
least 1000 cells, ME-ES has, on average, 5 opportunities to insert
a solution that improves each cell. In contrast, the CMA-MEGA
variants have 100 times more insertions. Though the CMA-MEGA
variants evaluate 200 solutions per iteration, they insert 100 of these
into the archive. This totals to 500k insertions per run, allowing the
CMA-MEGA variants to gradually improve archive cells.

6.2.4 MAP-Elites and robustness. In most cases, both CMA-MEGA
variants had significantly higher QD score than MAP-Elites or no
significant difference, but in QD Hopper, MAP-Elites achieved sig-
nificantly higher QD score than CMA-MEGA (ES). However, we
found that MAP-Elites solutions were less robust (see Appendix D).
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6.2.5 CMA-MEGA variants and gradient estimates. In QD Hopper
and QD Walker, CMA-MEGA (TD3, ES) had significantly higher
QD score than CMA-MEGA (ES). One potential explanation is that
PyBullet Gym (and hence QDGym) augments rewards with reward
shaping signals intended to promote optimal solutions for deep RL
algorithms. In prior work [45], these signals led PPO [54] to train
successful walking agents, while they led OpenAI-ES into local
optima. For instance, OpenAlI-ES trained agents which stood still
so as to maximize only the reward signal for staying upright.

Due to these signals, TD3’s objective gradient seems more useful
than that of OpenAI-ES in QD Hopper and QD Walker. In fact, the
algorithms which performed best in QD Hopper and QD Walker
were ones that calculated objective gradients with TD3, i.e. PGA-
MAP-Elites and CMA-MEGA (TD3, ES).

Prior work [45] found that rewards could be tailored for ES, such
that OpenAI-ES outperformed PPO. Extensions of our work could
investigate whether there is a similar effect for QD algorithms,
where tailoring the reward leads CMA-MEGA (ES) to outperform
PGA-MAP-Elites and CMA-MEGA (TD3, ES).

7 CONCLUSION

To extend DQD to RL settings, we adapted gradient approximations
from actor-critic methods and ES. By integrating these approxima-
tions with CMA-MEGA, we proposed two novel variants that we
evaluated on four locomotion tasks from QDGym. CMA-MEGA
(TD3, ES) performed comparably to the state-of-the-art PGA-MAP-
Elites in all tasks but was less efficient in two of the tasks. CMA-
MEGA (ES) performed comparably in two tasks.

Our results contrast prior work [19] where CMA-MEGA out-
performed a baseline algorithm inspired by PGA-MAP-Elites in
QD benchmark domains. The difference seems to be that difficulty
in the benchmarks arises from a hard-to-explore measure space,
whereas difficulty in QDGym arises from an objective which re-
quires rigorous optimization. As such, future work could formalize
the notions of “exploration difficulty” of a measure space and “op-
timization difficulty” of an objective and evaluate algorithms in
benchmarks that cover a spectrum of these metrics.

For practitioners looking to apply DQD in RL settings, we recom-
mend estimating objective gradients with an off-policy actor-critic
method such as TD3 instead of with an ES. Due to the difficulty
of modern control benchmarks, it is important to efficiently opti-
mize the objective — TD3 benefits over ES since it can compute the
objective gradient without further environment interaction. Fur-
thermore, reward signals in these benchmarks are designed for deep
RL methods, making TD3 gradients more useful than ES gradients.

By reducing QD-RL to DQD, we have decoupled QD-RL into
DQD optimization and RL gradient approximations. In the future,
we envision algorithms which benefit from advances in either more
efficient DQD or more accurate RL gradient approximations.
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