

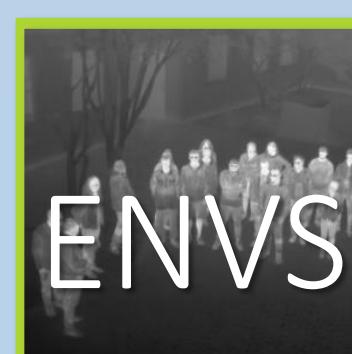
LEARNING
RESOURCES

Interdisciplinary Access to Geographic Information Science: Peer Teaching in Higher Education

Natalie R. Copeland, Amber R. Ignatius, Jeff Turk

Lewis F. Rogers Institute for Environmental & Spatial Analysis, University of North Georgia, Hall, GA 30566

Value of Geospatial Education


Access to geospatial knowledge in higher education requires broad inclusion of **spatial concepts** in courses **across multiple disciplines**. Geospatial competency is required to meet the needs of a rapidly globalized world and is a vital component of modern science education. Geospatial education provides students with proficiency interpreting quantitative and qualitative information and exposes students to technical concepts such as spatial analytics and data management. Despite these numerous benefits, incorporating geospatial concepts and hands-on geographic information systems (GIS) experiences within course curriculum can be a challenge for educators.

The objective of this project is to **support inclusion of geospatial activities within a variety of interdisciplinary higher education courses**.

Pedagogical Approach

- **Open educational resources** (OER) support reuse and increase access.
- Student leaders facilitate GIS exercises within courses through **peer teaching** and encourage non-science majors to thoughtfully engage with spatial concepts.
- Interactive, **experiential learning** exercises explore geospatial topics through **practical applications**.

TARGET SUBJECT AREAS FOR GEOSPATIAL LEARNING:

GEOSPATIAL
TECHNOLOGYGEOSPATIAL
ENGINEERINGENVIRONMENTAL
SCIENCE

GEOLOGY

GEOGRAPHY

ENVIRONMENTAL
STUDIES

Methods: GIS Interactive Experiences

In Fall 2021, upper level undergraduate students presented custom **geospatial exercises** in nine introductory courses. **Customized GIS exercises** used hands-on activities, short lecture, and worksheets to explore a key study through a geospatial approach. Current modules include precision agriculture, deforestation, and wildfire analysis.

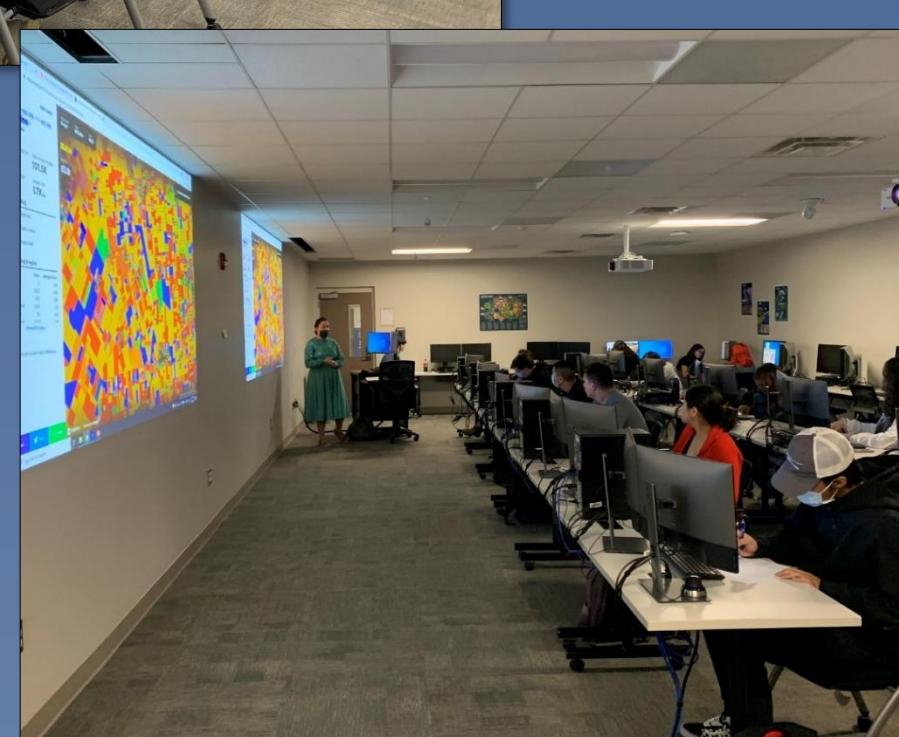
To create enriching short interactions, our team developed custom GIS exercises focused on individual topics. Overly complex websites can intimidate new users and distract from focused learning. Proprietary software and lengthy lab exercises are difficult to integrate within a course schedule. To support focused learning, we used simple web apps, worksheets and engaging presentations.

LEARNING
RESOURCES

Peer-Teaching Framework

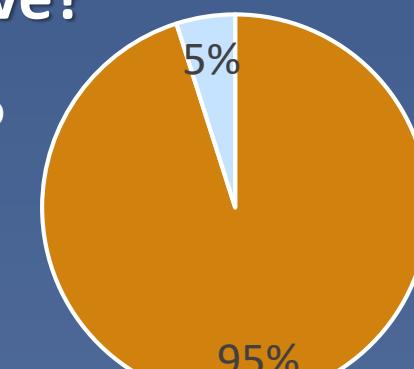
Peer-Teaching Benefits:

- student-led **peer teaching** encourages multilevel learning
- introductory-level students are interested in learning from advanced students
- **student leaders share their own research**
- student teachers gain **confidence**, leadership, and public speaking proficiency


Strategies for Success:

- **train** peer-teachers ahead of time
- generate a detailed **presentation schedule** to guide learning
- **scaffold** learning modules: guided presentation followed by independent, hands-on learning & worksheets
- **applied examples** increase awareness of geographic theory through practical uses.
- emphasize **local connections** and **place-based** analysis.
- **anonymous survey** for student feedback

Student Survey Responses (n=61)

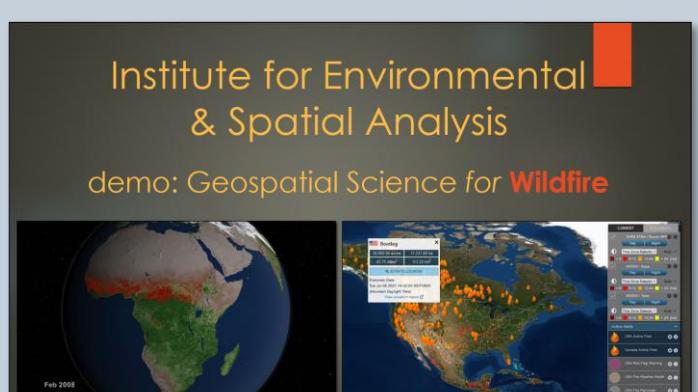

Professor	Course	# of Students
Caldwell	Env Studies & Sustainability	10
Caldwell	Env Studies & Sustainability	8
O'Sullivan	Env Studies & Sustainability	23
O'Sullivan	Env Studies & Sustainability	8
Sun	Intro to Physical Geography	24
Sun	Intro to Physical Geography	24
Sun	Intro to Human Geography	28
Ignatius	Intro to Physical Geography	24
Ignatius	World Regional Geography	19
TOTAL		168


Was today's session informative?

■ yes

□ no

What is your major?


What was the most interesting thing you learned today?

Lessons Learned

We note that peer-teaching is not a substitute for expert-led instruction by faculty. However, science-based educational literature and preliminary findings indicate student-led teaching serves as a beneficial method of engagement and a complement to traditional classrooms.

Future modules will include exploration of local land cover change, coastal erosion, environmental justice, and climate change impacts. **Future outreach** will include high schools, non-traditional students, and the general public. Lastly, we will continue to track whether this effort assists with recruitment to our B.S. program and certificates.

References

Cortright, R.N., Collins, H.L., DiCarlo, S.E. 2005. Peer instruction enhanced meaningful learning: ability to solve novel problems. *Advances in Physiology Education*. 29:2, 107-111. DOI: 10.1152/advan.00060.2004

Crouch, C.H., Mazur, E. 2001. Peer Instruction: Ten years of experience and results. *American Journal of Physics*. 69, 970-977. DOI: 10.1119/1.1374249

Giuliodori, M.J., Lujan, H.L., DiCarlo, S.E. 2006. Peer instruction enhanced student performance on qualitative problem-solving questions. *Advances in Physiology Education*. 30:4, 168-173. DOI: 10.1152/advan.00013.2006

Lasry, N., Mazur, E., Watkins, J. 2008. Peer instruction: From Harvard to the two-year college. *American Journal of Physics*, 76(11), 1066-1069. DOI: 10.1119/1.2978182

Lasry, N., Charles, E., Whittaker, C. 2016. Effective variations of peer instruction: The effects of peer discussions, committing to an answer, and reaching a consensus. *American Journal of Physics*, 84(8), 639-645. DOI: 10.1119/1.4955150

Linton, D. L., Farmer, J. K., Peterson, E. 2014. Is peer interaction necessary for optimal active learning? *CBE Life Sciences Education*, 13(2), 243-252. DOI: 10.1187/cbe.13-10-0201

Nielsen, K.L., Hansen-Nygård, G., Stav, J.B. 2012. Investigating peer instruction: How the initial voting session affects students' experiences of group discussion. *ISRN Education*, 2012, article 290157. DOI: 10.5402/2012/290157

Porter, L., Bailey-Lee, C., Simon, B. 2013. Halving fail rates using peer instruction: A study of four computer science courses. In *SIGCSE '13: Proceedings of the 44th ACM technical symposium on computer science education*. (pp. 177-182). New York: ACM Press.

Rao, S. P., DiCarlo, S. E. 2000. Peer instruction improves performance on quizzes. *Advances in Physiological Education*. 24, 51-55. DOI: 10.1152/advan.2000.24.1.51

Tullis, J.G., Goldstone, R.L. 2020. Why does peer instruction benefit student learning?. *Cognitive Research*. 5, 15. DOI: 10.1186/s41235-020-00218-5

Versteeg, M., van Blankenstein, F. M., Putter, H., Steendijk, P. 2019. Peer instruction improves comprehension and transfer of physiological concepts: A randomized comparison with self-explanation. *Advances in Health Sciences Education*. 24, 151-165. DOI: 10.1007/s10459-018-9858-6. DOI: 10.1007/s10459-018-9858-6

Acknowledgements

National Science Foundation Advanced Technological Education Program Award #1700568