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A B S T R A C T   

The carbon dioxide (CO2)-based demand-controlled ventilation (DCV) has attracted prompt attention from the 
Heating, Ventilation, and Air-Conditioning (HVAC) industry since its very first invention. Since then, it has been 
penetrating from simple single-zone systems to complex system configurations in commercial buildings. While 
there has accumulated a large number of research on DCV applications, the most recent review paper on this 
topic was dated back to 2001 and inevitably missed a lot of recent revolutionary technologies. Therefore, to 
understand the opportunities and challenges associated with the CO2-based DCV, this study presents a timely 
review on the revolutions of the CO2-based DCV in commercial buildings, with a focus on the literature published 
in the last two decades. This paper is mainly centered on the trends and fundamental updates of the CO2-based 
DCV, with a particular focus on the nexus of the indoor CO2 concentration and ventilation “demands”. First, the 
changes in building energy codes and standards related to the CO2-based DCV are reviewed. Second, the trends of 
paper distribution and the topic keywords are identified through the bibliographic analysis. Third, the funda
mental updates regarding the indoor CO2 concentration are presented. The correlations between the CO2 and its 
influencing factors are discussed, and the CO2 concentration spatial distribution in different scenarios is sum
marized. Fourth, the role of CO2 in ventilation control is clarified. The correlation studies of the CO2 concen
tration and various ventilation “demands” are reviewed, and the impacts of the CO2-based DCV on indoor air 
quality are presented.   

1. Introduction 

The carbon dioxide (CO2)-based demand-controlled ventilation 
(DCV), which is defined as a smart energy-efficiency measure [1] that 
varies the rate at which the outdoor air is delivered to the zone to 
respond to the actual ventilation “demands” (needs), has received 
increasing attention from the heating, ventilation, and air-conditioning 
(HVAC) industry since decades ago. In the CO2-based DCV, the CO2 
concentration is used as a proxy to indicate the indoor air quality (IAQ) 
[2], based on which the ventilation rate is dynamically reset; hence the 
building energy consumption for heating and cooling could be saved 
while an acceptable IAQ is also maintained. One of the earliest studies of 
the CO2-based DCV took place in an office building in Helsinki, Finland, 
in 1982 [3]; since then, we have seen the deployment of this technology 
in hundreds of thousands of buildings across the world. Meanwhile, the 
technology itself has also gone through a lot of profound changes and 

evolutions [4]. 
There have been several comprehensive literature reviews [4,5] and 

guidelines [6,7] on the topic of CO2-based DCV between 2001 and 2007. 
While these publications provided helpful guidance on the technology 
and application, they suffered from some limitations and have not 
incorporated the latest development and application of CO2-based DCV 
since then. 

1.1. Previous related literature reviews and guidelines 

Table 1 presents the summary of the previous related literature re
views and guidelines. A National Institute of Standards and Technology 
(NIST) report prepared by Emmerich and Persily [4] in 2001 was the 
first of its kind review paper to elaborate on the application of the 
CO2-based DCV technology. Several aspects were covered in this report, 
e.g., the rationale of using the CO2 concentration as a metric for building 
ventilation, an analysis of several simulation-based and field-testing 
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case studies of DCV, and the updated technologies for CO2 concentration 
sensing. Besides, the authors also proposed a preliminary guideline for 
the CO2-based DCV application, in which the best practice and 
remaining issues of DCV were pointed out. In spite of the unique tech
nical merits and contributions offered by this 2001 report, there is a 
need to have fresh reviews of the CO2-based DCV because many tech
nological breakthroughs and innovations achieved in the recent two 
decades were not included (e.g., better understanding of CO2 and 
ventilation demands, novel control strategies, and sensor technologies). 
Considering that several significant changes regarding the minimum 
ventilation rate were adopted by building energy codes and standards 
after 2001 (as noted in Section 2), the energy savings potential reported 
in Ref. [4] may be outdated and needs to be refreshed. 

Apte [5] conducted a review on the background and progress of the 
DCV technology in 2005. The market penetration and acceptance of the 
DCV technology were analyzed in the context of its benefits and limi
tations. However, the various types of DCV strategies were not dis
cussed. Besides, the energy savings benefitting from DCV applications 
were not quantified. 

Murphy [6] summarized the best practice of implementing the 

CO2-based DCV in a 2005 report. The code-compliant requirements for 
dynamic reset of outdoor air were discussed in detail within the context 
of The American Society of Heating, Refrigerating and Air-Conditioning 
Engineers (ASHRAE) Standard 62.1–2004. Several practical tips on the 
appropriate usage of various sensors (including both occupancy and CO2 
sensors) for the implementation of DCV control were recommended. 

In a design brief published in 2007 [7], several issues concerning the 
DCV control were discussed from the perspective of engineering 
implementation. An overview of the ventilation requirements for 
different building types in various codes and standards (e.g., ASHRAE 
Standard 62.1, California Title 24, etc.) was presented. Besides, other 
topics such as the practical design and application of DCV, the estimated 
energy savings of this technology, the points to be noted in commis
sioning and simulation, and the various CO2 sensors for DCV application 
were also discussed. 

In summary, to the authors’ best knowledge, all the available reviews 
on the CO2-based DCV were published a decade ago and have been 
outdated in terms of relevant building energy codes, standards, and case 
studies. Considering the significant standard changes in ventilation re
quirements and the tremendous research and industry efforts directed 
towards the enhancement of CO2-based DCV in the last two decades, 
there is a practical and compelling need for an updated comprehensive 
literature review to update the fundamentals of the CO2-based DCV, 
quantify the energy savings benefitting from the recent progress, and 
identify the new challenges to enable the optimal implementation and 
operation of CO2-based DCV in commercial buildings. 

1.2. Scope and objective 

This paper aims at providing a holistic review on the background and 
technological progress of the CO2-based DCV in the last two decades, 
with a focus on the relationship between CO2 and ventilation “demands” 
in commercial buildings. The main body of the reviewed literatures was 
published in the last two decades to feature the state of the art. 

In detail, this paper provides the updated background and progresses 
for the following topics:  

• The changes of building energy codes and standards (Section 2) 

Nomenclature 

Symbol 
AD DuBois surface area, m2 

Az zone area, m2 

Coa outdoor CO2 concentration, ppm. 
Css steady-state indoor CO2 concentration, ppm. 
Cz indoor CO2 concentration, ppm. 
G indoor CO2 generation rate per person, L/(s•p) 
M physical activity level, met. 
Pz number of people in the zone, p. 
Ra area-based component of the ventilation rate 
Rp the people-based component of the ventilation rate 
V zone volume, L. 
V
bz breathing zone required ventilation rate, L/s 
V
bz-P population component of the breathing zone outdoor 

airflow, L/s 
V
bz-A area component of the breathing zone outdoor airflow, L/s 
Vz zone ventilation rate, L/s 

Abbreviation 
ACH Air Change Rate Per Hour 
AHU Air Handling Unit 
ANSI American National Standards Institute 

ASHRAE American Society of Heating, Refrigerating and Air- 
Conditioning Engineers 

BAS Building Automation System 
BMR Basal Metabolic Rate 
CO2 Carbon Dioxide. 
DCV Demand-Controlled Ventilation 
HVAC Heating, Ventilating, And Air-Conditioning 
IAQ Indoor Air Quality 
IAQP Indoor Air Quality Procedure 
ICC International Code Council 
IES Illuminating Engineering Society 
IMC International Mechanical Code 
NIST National Institute of Standards and Technology 
NO2 Nitrogen Dioxide. 
RQ Respiratory Quotient 
RV Room Volume 
tTHM trihalomethanes 
TVOC Total Volatile Organic Compounds 
USGBC U.S. Green Building Council 
VAV Variable Air Volume 
VOC Volatile Organic Compounds 
VRP Ventilation Rate Procedure  

Table 1 
Summary of covered topics in previous related literature reviews and guidelines.  

Reference Year Covered Topics 

[4] 2001  • Standard evolution related to DCV  
• DCV considering the non-occupant pollutants  
• Summary of control strategies  
• DCV best application conditions  
• DCV and indoor humidity condition 

[5] 2005  • Standard evolution related to DCV  
• Control strategy issues  
• Sensor related topic 

[6] 2005  • DCV best application conditions  
• Summary of control strategies 

[7] 2007  • Standard evolution related to DCV  
• DCV implementation and commissioning  
• Energy modeling of DCV systems  
• Energy savings from DCV  
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• The trends of research related to CO2-based DCV (Section 3).  
• The appropriate indoor CO2 concentration level in the context of 

standard updates and technological enhancements (Section 4).  
• The ventilation “demands” that the CO2-based DCV fulfils (Section 

5).  
• The impact of the CO2-based DCV on IAQ (Section 6). 

Various stakeholders are expected to benefit from the review, such as 
the researchers, designers, engineers, control contractors, building fa
cility managers, and policymakers, whose work is involved with the 
building ventilation system, indoor air quality, and/or CO2-based DCV 
controls. 

2. Changes of building energy codes and standards related to 
CO2-based DCV 

Fig. 1 depicts the timeline of the exemplary changes of building 
energy codes and standards related to the CO2-based DCV in the last few 
decades. The building energy codes and ventilation standards depicted 
in Fig. 1 include the ANSI/ASHRAE Standard 62.1 Ventilation for 
Acceptable Indoor Air Quality (known as Standard 62 Ventilation for 
Acceptable Indoor Air Quality before 2004; hereinafter ASHRAE Stan
dard 62.1 or ASHRAE Standard 62) [8], the ANSI/ASHRAE Standard 
90.1 Energy Standard for Buildings Except Low Rise Residential Build
ings (hereinafter as ASHRAE Standard 90.1) [9], the ANSI/ASH
RAE/ICC/USGBC/IES 189.1 Standard for the Design of 
High-Performance Green Buildings (hereinafter referred to as ASHRAE 
Standard 189.1) [10], the California Building Energy Efficiency Stan
dards for Residential and Nonresidential Buildings Title 24 (hereinafter 
California Title 24) [11], and the International Mechanical Code 
(hereinafter IMC) [12]. It is noted that although the exemplary building 
energy codes and standards shown in Fig. 1 are widely used in North 
America, standards and building energy codes in other regions all over 
the world are also reviewed, including international building energy 
standard ISO 17772 [13], European building energy standard EN 16798 
[14], Australian ventilation standard AS1668.2 [15], Indian IAQ stan
dard ISHRAE 10001 [16], etc. The recommended CO2 concentration 
levels are specified in these standards or associated annexes to evaluate 
perceived air quality. In the informative annexes, ISO 17772 [13] and 
EN 16798 [14] provide specific limiting concentrations (i.e., CO2 

concentration above outdoor level) for four IAQ categories (category I: 
550 ppm; category II: 800 ppm; category III: 1350 ppm; category IV: >
1350 ppm). Comparatively, the recommended CO2 level for category I 
according to ISHRAE 10001 is stricter with the concentration of 350 
ppm higher than outdoor air CO2. AS 1668.2 [15] recommends typical 
CO2 setpoints are 600–800 ppm and should be selected based on the 
ambient level of the site and the enclosure characteristics [17]. 

Despite the many detailed updates as shown in Fig. 1, the following 
issues are especially worth to be noted:  

• Firstly, the recommendations of the CO2 concentration limit in 
different standards have led to some misunderstanding about the role 
of CO2 in CO2-based DCV. The CO2 concentration started to be used 
as a metric for ventilation by the ASHRAE Standard 62 in 1981. Since 
then, the CO2 concentration limit for the building ventilation control 
had gone through several revisions and was completely deleted from 
the ASHRAE Standard 62 in 1999. This leads some practitioners to 
erroneously refer a fixed CO2 concentration limit to ASHRAE 62.1 
[8]. In the meantime, CO2 concentration limit of 1000 ppm is 
commonly recommended in different countries standards for the 
management of generic IAQ concerns and sick building syndrome 
symptoms [18–20]. However, it is noted that these recommended 
values are generally provided without sufficient rationales [21]. In 
the recently released ASHRAE position document on indoor CO2 
[21], it explicitly advised that CO2 concentration is not a good in
dicator for general IAQ, at best an indicator of outdoor air ventilation 
rate per person. 

The above examples have shown a lack of understanding about the 
connection between the indoor CO2 concentration, ventilation, and in
door air quality while using the CO2 concentration as a control variable. 
Therefore, in this review, we would like to summarize and clarify similar 
fundamental updates regarding the CO2-based DCV. 

• Secondly, the building energy codes and standards started recom
mending or mandating the DCV for certain circumstances in 1999, 
which indicates that the DCV is not only a research topic but also a 
practical and prominent engineering application. For instance, 
ASHRAE Standard 90.1 has mandated the DCV system for densely 
occupied spaces and required the DCV system to comply with 

Fig. 1. Timeline of the exemplary standard changes regarding the CO2-based DCV.  
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ASHRAE Standard 62.1 since its 1999 version. The DCV has also been 
adopted by California Title 24 for high-density applications during 
low-occupancy periods since 2001.  

• Thirdly, it is noted that with the building codes and standards being 
updated regularly, more specific and detailed guidance on the 
implementation of the CO2-based DCV tends to be added. For 
example, while the earliest versions only set requirements for the 
CO2 limit, the recent versions in some building codes and standard 
addenda started to also include the guidance on the accuracy level, 
placement, and calibration frequency of the CO2 sensors. Neverthe
less, the guidance is still far from enough to achieve the optimal 
implementation and performance of the CO2-based DCV technology 
[4]. For instance, little guidance was presented on how to select the 
suitable CO2-based DCV control strategies. 

3. Publication collection and thematic analysis 

The literatures were collected in the following procedure. First, 
Google Scholar and Scopus by Elsevier were used as the search engine to 
find the literatures published in English. The keywords for the search 
were {CO2 or occupan*} and {demand control* ventilat*}. To highlight 
the latest progress, the literatures were restricted to be published after 
2000. This yielded a total of 1,098 items in the first place. Then, the 
literatures in the pool were carefully and manually filtered by removing 
the irrelevant items falling outside of the working scope. For instance, 
there exist some significant progresses for CO2-based DCV in residential 
buildings [22–25] in the last decade. However, these papers were 
deemed irrelevant from this review and thus dropped from the list since 
our focus is more on commercial buildings. This pruning procedure 
finally yielded 138 papers of interest. The types of the collected items 
include the journal article, conference paper, project report, thesis, book 
section, and patent. 

To reveal the trends in research, the 138 research papers collected for 
this study (published after 2000) and the research works analyzed in the 
previous review papers [4,5] (mainly published before 2000) were 
carefully reviewed and compared in terms of the publication date and 
type (e.g., journal articles, conference papers, reports, etc.). The results 
are visualized in Fig. 2. It is noted that there was a small peak between 
1991 and 2000. After 2000, there continues an increasing trend for the 
relevant papers. The number of publications surged in the last three 
years probably because the occupant-based controls for the building 
HVAC systems and healthy building operations gradually gained more 
attention from the researchers and practitioners. 

A word cloud analysis of the publication titles is presented in Fig. 3. A 
stemming and lemmatization method [26] was used to remove the 
redundant words and stop words. The top 20 words with the highest 
frequencies are listed in the left column, with the frequency number 
annotated right after the word. The unique words that only appear in 
one column are marked in bold (e.g., “ASHRAE” in Prior 2000 column, 

and “performance” in Post 2000 column). The numbers next to the Post 
2000 column indicate the absolute change in the rankings of the word in 
Post 2000 column, with the blue upward arrow indicating a ranking rise, 
and a red downward arrow indicating a ranking drop. 

The unique words in the post-2000 column turn out to be “perfor
mance,” “monitoring,” “low,” “HVAC,” “smart” and “optimization.” The 
words in the post-2000 column that have a significant move-up (larger 
than 3) are the “occupancy,” “simulation” and the words that do not 
appear in the prior-2000 column (e.g., “monitoring,” “low”-cost). What 
could be safely inferred from the word cloud analysis is that the research 
trend diversified after 2000, with the practitioners starting to pay 
attention to computational “simulation,” “performance” evaluation, 
system “monitoring”, development of “low”-cost sensors, “smart” 
“HVAC” control strategy, and “optimization” of energy and ventilation 
performance. In addition, “occupancy” has become a central point in the 
CO2-based DCV, which is aligned with occupant-centric building design 
and operation in the last decades [27]. 

The bibliometrics tool VOSviewer [28] was used to further analyze 
the keywords and identify the associated relationship for the collected 
studies. Fig. 4 depicts the keyword mining results based on the biblio
graphic data. The size of the circle represents the occurrence frequency 
of each keyword while the distance between the circles reflects the 
co-occurrence probability. Based on a built-in algorithm of VOSviewer, 
the keywords are clustered into several groups with each group being 
colored differently. The keywords in the same group (with the same 
color) tends to be more co-related and share a relevant topic. For 
example, the keywords in the red group belongs to the topic regarding 
the field study and sensors while the keywords in the light-blue group 
are related to the occupancy. The top ten frequent keywords identified 
from the analysis are “CO2”, “Demand-controlled ventilation”, “indoor 
air quality”, “control strategy”, “energy saving”, “ventilation rate”, 
“simulation”, “field study”, “CO2 sensor”, and “occupancy estimation”. 

The structure of the following content is based on the results of 
keyword identification. Since the CO2-based DCV is literally defined as 
the ventilation control strategy that responds to the real-time ventilation 
“demands” inferred from the indoor “CO2” concentration, this paper lays 
its emphasis on the key fundamental components of the DCV, i.e., CO2 
concentration and ventilation demand. 85 research papers that are 
pertinent to these topics (out of 138 papers collected for the biblio
graphic analysis) are reviewed in detail in the following sections. For 
those who are interested in research papers before 2000, please refer to 
the references [4,5]. 

To be specific, Section 4 discusses the fundamental basics regarding 
the indoor CO2 concentration, e.g., the influencing factors of the indoor 
CO2 concentration, and the CO2 concentration spatial distribution under 
different scenarios. Section 5 focuses on whether and how the CO2 could 
be used as an indicator of the IAQ and Section 6 discusses the impact of 
the CO2-based DCV on the IAQ. 

Fig. 2. Distribution of the existing work related to CO2-based DCV prior to 2000 and post 2000.  
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4. Indoor CO2 concentration and its influencing factors 

The CO2 concentration of a single zone could be generally computed 
from a simplified mass balance equation as shown in Eq. (1), where Cz, 
Coa, Pz, G, Vz, and V represent the indoor CO2 concentration (ppm), 
outdoor CO2 concentration (ppm), number of people, indoor CO2 gen
eration rate per person (L/(s⋅person)), ventilation rate (L/s), and zone 
volume (L) respectively. Solving Eq. (1) would yield to Eq. (2), where Css 

is the steady-state indoor CO2 concentration (ppm). Based on Eq. (2), Css 
could be further calculated by Eq. (3). 

V
dCz(t)

dt
= Pz⋅G + Vz⋅Coa − Vz⋅Cz(t), (1)  

Cz(t) = Css + (Cz(0) − Css) e−
Vz
V t, (2)  

Css = Coa +
106G
Vz/Pz

, (3) 

It is noted that Eq. (1) is only applicable under specific circumstances 
and following assumptions: (1) the supply airflow is well-mixed with the 

Fig. 3. Word clouds of the publication titles (a) before 2000 (b) after 2000.  
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indoor air; (2) the building occupants are the only invariant CO2 pro
duction source and the indoor CO2 is diluted only by the ventilation; (3) 
the infiltration (exfiltration) airflow and the airflow between the adja
cent zones (when applicable) are neglectable; (4) the outdoor CO2 
concentration is constant. (5) the influence of the zone temperature on 
the CO2 concentration is neglectable. 

Recently, Persily et al. [29] proposed a metric based on the venti
lation rate per person to estimate the indoor CO2 concentrations in 
different ventilated space types at a given time, which was derived from 
Eqs. (2) and (3). An online tool [30] was developed to calculate both the 
steady-state CO2 concentration, and the dynamic CO2 concentration at 
the other time interval based on the space-specific inputs such as the 
ventilation rate per person, space geometry, and the occupancy ac
cording to ASHRAE Standard 62.1–2019 [9]. 

As presented in Eqs. (1)–(3), the indoor CO2 concentration is closely 
related to the ventilation rate, occupant number, and CO2 generation 
rate per person. These relationships are further discussed respectively in 
Sections 4.1-4.3. However, when it comes to the real operation in 
commercial buildings, other factors such as the transient nature of air
flows inside the building, multi-zone layout, different ventilation 
schemes, and dynamic and stochastic occupant behaviors also deliver an 
influence on indoor CO2 concentration distributions [31]. The issues 
related to the CO2 concentration spatial distribution are detailed in 
Section 4.4. 

4.1. Ventilation rate 

As described in Eq. (3), the indoor CO2 concentration is related to the 
ventilation rate per person. For example, in an office space, the steady- 
state CO2 concentration of 1000 ppm corresponds to the design per- 
person ventilation rate of 8.5 L/(s⋅p) assuming that the outdoor air 

CO2 concentration is 400 ppm and the CO2 generation rate per person is 
0.3 L/(min⋅person). However, it is noted that the ventilation rate per 
person usually changes with the zone occupancy and space type per 
requested by the updated ASHRAE Standard 62.1 ventilation rate pro
cedure (VRP). The VRP prescribes minimum zone-level OA rates for 
different building space types and procedures to find system-level OA 
intake rates. Starting from ASHRAE Standard 62.1–2004, the minimum 
ventilation rate is calculated as the sum of the occupant- and area- 
related components (as shown in Eq. (4)). This leads to the issue that 
the relationship between the zone occupant number and the corre
sponding steady-state CO2 concentration is nonlinear. Therefore, the use 
of a fixed CO2 setpoint may not comply with the VRP [32], considering 
that the zone occupancy is usually dynamic in practice. In addition, the 
standard stipulates that different space types should have different 
design per-person ventilation rates, and thus the steady-state CO2 con
centration will be quite different from 1000 ppm [33]. The curve in 
Fig. 5, which is derived from Eq. (3), depicts the relationship between 
the per-person ventilation rate in different spaces and the steady-state 
CO2 concentration. For a meeting room that is designed based on the 
updated ASHRAE Standard 62.1 VRP, the fixed CO2 setpoint control of 
1000 ppm would lead to the under-ventilation during the low occupancy 
period but over-ventilation under the design occupancy. 

Vbz = Vbz−P + Vbz−A = RpPz + RaAz , (4)  

where Vbz is the breathing zone required ventilation rate; Vbz−P and 
Vbz−A are occupant- and area-related components. Rp is the people-based 
component of the ventilation rate; Ra is the area-based component of the 
ventilation rate; Pz is the number of occupants in the zone and Az is the 
zone area. 

As noted, the steady-state CO2 assumption is often invalid in real 

Fig. 4. Results of the keyword mining analysis based on the studies published after 2000.  
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building operations due to the dynamic supply airflow rate and occupant 
behaviors. As a result, the actual ventilation rate of a particular zone in a 
multi-zone ventilation system might not satisfy the code requirement. 
The problem of over-ventilation or under-ventilation is mostly owing to 
the potential air balancing issues between the zone terminals (e.g., 
improper zone terminal damper control). Zhao [34] compared several 
different outdoor airflow control sequences of a multi-zone VAV system 
in a laboratory setting. The results suggested that although some of the 
control sequences could meet the outdoor airflow rate requirement at 
the system level, the problem of over-ventilation and under-ventilation 
happened frequently at the zone level regardless of the control strategies 
for the system-level outdoor airflow. Different model-based air-
balancing methods were thus studied to realize more accurate airflow 
controls. Jing et al. [35] developed a physical model for the airflow 
network using Bayesian linear regression. This model was used to con
trol the VAV damper position without causing an uneven distribution of 
the outdoor air. Cui et al. [36] built a data-driven model for the duct 
branch system to control the damper’s angle based on the desired 
airflow rate. The proposed black model did not require detailed duct 
fitting information as its input. An experiment was conducted in a DCV 
system to verify the simulation results. The results showed that the 
proposed method could effectively alleviate over-ventilation problem. 

Although the relationship between the indoor CO2 concentration and 
ventilation rate is complicated in real building operations, many studies 
published in the last two decades still used CO2 as a trace gas to estimate 
the ventilation rate and evaluate the ventilation performance. Chan 
et al. [37] used the steady-state method to estimate the per-person 
ventilation rate based on the daily maximum CO2 concentration 
(measured in an interval of 15 min) for a multi-zone system with 94 
classrooms in California, USA. The estimation results demonstrated that 
the 25 classrooms with CO2-based DCV had good ventilation perfor
mances compared to the non-DCV systems. Oliveira et al. [38] estimated 
the ventilation rate of a single test room using the CO2 concentration 
decay method. The results were in a good agreement with the air change 
rate (ACH) tests, with a coefficient of variation of 16.5% for an average 
ACH value of 0.55/h. Batterman et al. [39] reviewed different methods 
to determine the ventilation rate based on CO2 sensing in classroom 
buildings. Four methods with relevant applications, including the 
steady-state, transient mass balance, build-up, and decay methods, were 
summarized. Their result suggested that if the accurate occupancy in
formation was available, the transient mass balance method would 
provide the most accurate ventilation rate estimation compared to other 
methods. However, if the occupancy measurement was not available, 
the CO2 concentration trends should be carefully examined to determine 
whether the steady-state or build-up method should be selected. Since 
different sources of uncertainties affect the estimation accuracy, Kabir
ikopaei [40] assessed the error propagation for three different methods, 

steady-state, build-up, and decay methods, in classroom buildings. The 
study shows that the steady-state method has the least uncertainty 
among the three methods. Considering different sources of uncertainties 
(e.g., measurement uncertainties), Hou et al. [41] applied Bayesian 
Markov Chain Monte Carlo method to estimate the ventilation rate using 
CO2 sensors in school buildings. Macarulla et al. [42] used the stochastic 
differential equations based on the CO2 mass balance to obtain the 
ventilation flow rates in a room by introducing uncertainty elements. 

4.2. Occupancy level 

Many studies have proven a strong correlation between the indoor 
CO2 concentration and occupancy level. Meanwhile, they also pointed 
out that there could be a time delay for the change in CO2 concentration 
with regard to the occupancy change. In practice, this time delay typi
cally depends on the zone volume, zone airflow characteristics, and the 
relative distance of a CO2 sensor and the CO2 sources [43–48]. Meyn 
et al. [47] reported an average lag of 10–20 min for the CO2 concen
tration change following an increase in occupancy among all the zones 
in a multi-zone office building. In contrast, Rahman et al. [49] saw a 
time delay of 30–45 min for six ventilation schemes, e.g., on-off control 
and proportional control. The time delay of the change in CO2 concen
tration is mainly due to the CO2 dispersion time rather than the sensor 
response time [49]. In a simulation-based study, Lu et al. [50] found that 
the lag of the change in CO2 concentration is more evident in the space 
with a highly dynamic occupancy profile due to the diffusion and mixing 
mechanics of CO2. Franco et al. [44] demonstrated the correlation be
tween the CO2 concentration and occupancy profiles through a synthetic 
variable defined as the zone volume available per person from the 
experimental data in classrooms. 

Due to the potential correlation, numerous studies have been pro
posed to investigate estimating the zone occupancy using the CO2 
measurement, considering that the zone occupancy is a necessary input 
for some of the DCV control strategies. As one of the earliest studies, Ke 
et al. [51] determined the zone occupancy using both transient form and 
steady-state form of the CO2 mass balance equation to facilitate building 
ventilation controls. The results showed that the transient equation 
followed the actual occupancy precisely with a time lag of approxi
mately 3 min while the steady-state equation produced enormous errors. 
Using similar transient CO2 mass balance equations, Calì et al. [52] 
conducted a CO2-based occupancy estimation in two office buildings 
and one residential building. The predicted occupant number was 
imprecise with an average accuracy of 69% and the highest accuracy of 
80.6% in the experiment, while the predicted occupancy presence was 
mostly accurate (i.e., the average accuracy of 88% and the highest ac
curacy of 95.8%). The results also suggested that the estimation was 
highly dependent on the input parameters such as the airflow rate 
through windows/inner doors/infiltration, and the outdoor CO2 con
centration. Similar approaches (i.e., the steady-state and transient mass 
balance equations) were also adopted by other studies [53–55]. 

Considering the significant uncertainties of some critical parameters 
such as the infiltration rate, Wolf et al. [56] proposed a stochastic dif
ferential method to estimate the room occupancy. This method is unique 
because a noise term was added to the mass balance equation to address 
the uncertainties of the infiltration airflow rate, inter-zonal ventilation 
airflow rate, and the sensor errors. Pantazaras et al. [57] constructed a 
CO2 state-space model using the system identification method to esti
mate room occupancy. In spite of the innovation, the results of this 
method, however, showed that the state-space model had a worse per
formance compared to the transient physical-based model if the training 
data was limited. Jorissen [58] developed a detailed multi-zone airflow 
model in Modelica to estimate the zone occupancy with CO2 sensor 
readings. Some uncertain parameters (e.g., the per person CO2 genera
tion rate) were tuned to make sure that the estimated occupancy 
matched the measured occupancy as closely as possible. 

Apart from the aforementioned physical-based methods, the data- 

Fig. 5. Relationship of the per-person ventilation rate based on ASHRAE 
62.1–2019 VRP [9] and corresponding steady-state CO2 concentration. 
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driven approaches were also widely studied to estimate room occu
pancy. For instance, Basu et al. [59] predicted the 15-min average 
occupant number in large classrooms as a function of indoor CO2 con
centration using the ensemble least squares regression. In the pre
processing stage, the task-driven sparse non-negative matrix 
factorization was used to denoise the CO2 data for learning a 
non-negative low-dimensional representation. The proposed method 
estimated the exact occupant number with an accuracy level of only 
15%. Alam et al. [60] developed a dynamic neural network model for 
the occupancy estimation. The estimation accuracy, which was evalu
ated with the normalized root mean square error (NRMSE), varied be
tween 4% and 23%. The results suggested that the accuracy was heavily 
dependent on the frequency of the occupancy variations. Besides, the 
system factors such as the data sampling interval and sensor accuracy 
would also influence the estimation accuracy. Arief-Ang et al. [61] 
proposed several decomposition-based algorithms with a zero pattern 
adjustment to estimate the occupancy number using a single CO2 sensor. 
This method was tested in an academic staff room with up to 4 occupants 
and a cinema theatre with up to 300 occupants. The testing results 
suggested that the proposed method had a high average accuracy level 
of approximately 90% for the low occupancy case compared to a modest 
average accuracy level of approximately 50% for the high occupancy 
case. Szczurek et al. [62] predicted the occupant number using a 
k-Nearest Neighbors (k-NN) algorithm from 60-min long segment 
datasets of CO2 concentration. The results showed that the occupant 
number could be successfully determined with an accuracy level of 98% 
and a mean error of 0.5 person. However, how this method was per
formed in the case with a large occupant number, or a lower data 
sampling rate (less than 60 min) was not introduced. Taheri et al. [63] 
estimated the occupancy number using the predicted CO2 concentration 
by the Multilayer Perceptron algorithm. Rahman et al. [64] explored a 
Bayesian Markov Chain Monte Carlo algorithm to recognize the number 

and distribution of occupants in a multi-room office building using in
door CO2 concentrations. The presented inference-based approach did 
not require a large amount of data for model training in advance; 
instead, it only relied on a single type of environmental measurement, i. 
e., the indoor CO2 concentration, for prediction. The results of a para
metric study showed that the prior probabilities of input parameters 
such as the supply airflow rate, activity level of occupants, and outdoor 
CO2 concentration all had an impact on the estimation accuracy, but the 
effects of these factors were not as significant as that of the uncertainty 
level of the CO2 reading. The estimated occupancy conformed to the 
actual occupancy within a modest range (i.e., 43.5%) due to the fluc
tuations and uncertainty in CO2 measurements and time delays in the 
dynamic Bayesian process [49]. 

While all of the studies reviewed above only used the CO2 concen
tration as a sole predictor for the occupancy presence/occupant number, 
some recent studies started to investigate taking advantage of multiple 
environmental sensors, including CO2 sensors, to serve this purpose. 
Meyn et al. [47] developed novel sensor fusion algorithms to further 
enhance the accuracy of occupancy estimation based on the information 
collected from the passive infrared (PIR) sensors and the digital video 
cameras, along with the CO2 sensors. The results showed that the 
average accuracy of occupant counting could be increased from 30% to 
79% with this algorithm. For the occupancy presence scenario, the 
sensor fusion algorithm based on motion detection and CO2 measure
ments could enable the prediction accuracy to be improved from 54% to 
98% [55]. 

Table 2 lists a summary of the case studies which investigated pre
dicting the building occupancy based on CO2 sensing. In general, the 
performances of these methods were relatively modest, rendering a huge 
potential for improvement. For the physical-based approaches, the 
estimated occupancy from the steady-state method had a significant 
delay, which led to a serious underestimation/overestimation for the 

Table 2 
Summary of the occupancy estimation studies using CO2 sensing.  

Reference Year Approach Building Type Simulation/ 
Experiment 

Estimation Accuracy Maximum 
occupancy 

Occupancy 
estimation 
interval 

[51] 1997 Physical-based (transient, steady- 
state mass balance equations) 

Office/ 
Conference room 

Simulation Transient: Track well with the 
occupancy changes with a small time 
lag of 3 min; 

15/50 per 15 min 

Steady-state: Large underestimation 
(up to 12.9 per⋅h) and overestimation 
(up to 6.3 per⋅h) 

[47] 2009 Data-driven (Kalman-filter, sensor 
fusion of CO2, motion, and video 
sensing) 

Multi-zone office 
buildings 

Experiment Mean accuracy building level: 89% 20 per 10 min 
Mean accuracy zone level: 79% 

[52] 2014 Physical-based (transient mass 
balance equations) 

Office/ 
Residential 
building room 

Experiment Mean accuracy: 69%; Up to 80.6% 2 per Don’t know 

[59] 2015 Data-driven (Ensemble Least 
Square Regression with data 
denoise pre-processing) 

Classroom Experiment Accuracy: 15% 42 per 15 min 

[58] 2017 Physical-based (detailed multi- 
zone airflow model) 

Office Experiment Qualitatively the occupancy 
estimation agrees well with the 
measured values. 

16 per Continuous 

[60] 2017 Data-driven (artificial neural 
network) 

Office Simulation Normalized root mean square errors 
vary in 4%–23% 

8 per 1 min 

[61] 2017 Data-driven (decomposition-based 
method) 

Staff room/ 
Theatre 

Experiment Mean accuracy for staff room: 90%; 4/300 per 1 min 
Mean accuracy for theatre: 50%; 

[62] 2018 Data-driven (k-Nearest Neighbors 
classification) 

Classroom Experiment Mean accuracy: 98%; mean error: 0.15 
per. 

9 per 60 min 

[49,64] 2018 Data-driven (Bayesian Markov 
chain Monte Carlo algorithm) 

Office Experiment Mean accuracy: 33%–45% 6 per 3 min 

[53,57] 2018 Physical-based (transient mass 
balance equations); 

Theatre Experiment Root mean square error for physical- 
based method: 12 per 

300 per Don’t know 

Grey-box (CO2 state-space model) Root mean square error for grey-box 
method: 18 per 

[56] 2019 Grey-box (stochastic differential 
equations based on mass balance) 

Office Experiment Root mean square error: 0.72 per 4 per 5 min  
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occupant number in a given space. In contrast, the transient methods 
could enhance the prediction accuracy under the condition where the 
uncertain parameters were properly determined. Multiple data-driven 
algorithms were investigated in the case studies, but it was found that 
the prediction accuracy was generally subject to the size of the dataset, 
as well as its sampling interval, occupancy profile, and uncertainty level 
of the CO2 sensor. So far, there lacks a generalized method to estimate 
the occupant number with high accuracy for different scenarios. It is also 
noted that although some specific studies [62] could achieve an esti
mation accuracy as high as 98%, its estimation interval, however, was 
60 min, which was far from satisfactory. Such a coarse interval made it 
nearly impossible to integrate this method into actual control 
applications. 

4.3. CO2 generation rate 

The CO2 generation rate from occupants in buildings is calculated 
using Eq. (5), which is related to the occupants’ body size and their 
activity level. The CO2 generation rate, for an average size (AD = 1.8 m2) 
sedentary (M = 1 met) adult with a respiratory quotient (RQ) of 0.83, is 
about 0.005 L/s. 

G =
0.00276AD⋅M⋅RQ

0.23RQ + 0.77
(5)  

where G is the CO2 generation rate per person in L/(s⋅p); AD is the 
DuBois surface area in m2; M is the physical activity level in met. RQ is 
the respiratory quotient, which is the ratio of the volumetric CO2 gen
eration rate to the rate at which oxygen is consumed. 

In the last decades, several new approaches have been proposed for 
estimating the CO2 generation rate with detailed inputs. Tajima et al. 
[65] developed some equations based on the Japanese subjects’ exhaled 
breath data, with factors such as the occupant’s height, weight, gender, 
age, and physical activities being taken into account. Persily et al. [66, 
67] proposed a new method for estimating the CO2 generation rate with 
a thorough consideration of the impacts of the occupant characteristics. 
The method is derived from the principles of human metabolism and 
energy expenditure [30]. The considered factors include sex, age, 
height, weight, body size (body mass), fitness level, diet composition, 
etc., many of which were not considered in Eq. (5). Eq. (6) from Persily 
et al. [67] is a general form and Eq. (7) shows a special scenario under an 
air pressure P of 101 kPa and a temperature T of 273 K. This method has 
been described and integrated into the informative appendix ab to 
ASHRAE 62.1–2019 [8] but still pending a public review. 

G = 0.000211⋅RQ⋅BMR⋅M⋅
T
P

, (6)  

G = 0.000484⋅BMR⋅M , (7)  

where BMR is the basal metabolic rate of the individual, which typically 
constitutes 45%–70% of the daily energy expenditure and is primarily a 
function of age, sex, body size, and body composition. In order to 
facilitate the use of these equations, Persily et al. [67] summarized the 
CO2 generation rates of several typical space types in buildings as shown 
in Table 3. This table uses the default occupancy levels and outdoor air 
ventilation rates from ASHRAE Standard 62.1–2019 [8], and assumes 
air change rates for a dwelling, and met values from compendium [68]. 

As depicted in Fig. 6, the CO2 generation rates are compared between 
the newly proposed NIST method and the method currently adopted by 
the ASHRAE [69] for different metabolism levels. ASHRAE Standard 
62.1 currently uses a value of 0.0084 cfm/(met⋅p) to estimate the gen
eration rate of CO2. As shown in Fig. 6, the discrepancies between the 
two estimations vary significantly with the space type and metabolism 
level. The smallest difference is 0.85% for occupants in the lobby with a 
1.4 metabolism rate while the largest difference exceeds 68% for oc
cupants in a child’s bedroom with a 2.0 metabolism rate. The values 
marked in italics in Table 3 are the cases with the smallest difference for 
a given space type between this new NIST approach and the ASHRAE 
method. Most of these smallest differences are less than 10% and are for 
the cases with a metabolism rate of 1, which is a typical value used in 
building applications. For the common space types in buildings such as 
office, conference room, lecture classroom, and residence, the discrep
ancies are 0.95%, 0.95%, 6.00%, and 0.95% with a metabolism rate of 
1.2, 1.0, 1.0, and 1.0, respectively, which indicates the ASHRAE method 
is acceptable for these cases. These metabolism rate values are 

Table 3 
The Comparison of the CO2 generation rates calculated from the new NIST method and the current method adopted by ASHRAE [67].  

Space type Average CO2 generation rate (NIST) Percentage differences between the CO2 generation rates currently adopted by the ASHRAE handbook 
(0.0084 cfm/(p⋅met) 

L/(s⋅p) cfm/p Met 

1.0 1.2 1.4 1.6 2.0 

Office 0.0048 0.0102 21.14% 0.95% −13.47% −24.29% −39.43% 
Conference room 0.004 0.0085 0.95% −15.87% −27.89% −36.90% −49.52% 
Educational (5–8 y) 0.003 0.0064 −24.29% −36.90% −45.92% −52.68% −62.14% 
Lecture classroom 0.0042 0.0089 6.00% −11.67% −24.29% −33.75% −47.00% 
Lecture hall, fixed seats 0.0041 0.0087 3.48% −13.77% −26.09% −35.33% −48.26% 
Lobby 0.0055 0.0117 38.81% 15.67% −0.85% −13.24% −30.60% 
Auditorium seating area 0.0048 0.0102 21.14% 0.95% −13.47% −24.29% −39.43% 
Residence 0.004 0.0085 0.95% −15.87% −27.89% −36.90% −49.52% 
Adult bedroom 0.0036 0.0076 −9.14% −24.29% −35.10% −43.21% −54.57% 
Child’s bedroom 0.0025 0.0053 −36.90% −47.42% −54.93% −60.57% −68.45% 

Note: This table is calculated at 273 K and 101 kPa for the selected spaces of interest. 

Fig. 6. The Comparison of the CO2 generation rates calculated from the new 
NIST method and the current method adopted by ASHRAE [67]. 
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commonly used for both building CO2-based simulations and modelling. 
A recent study showed that the per-person CO2 generation rate was 

greater for the occupants doing cognitive tasks than those with relaxed 
activities [70]. This implies that the alternative method could also 
consider the psychological factors while determining the CO2 generation 
rate. 

4.4. CO2 concentration spatial distribution 

One limitation of Eqs. (1)–(3) is that they could only be applied to the 
well-mixed assumption. However, in reality, the actual indoor CO2 
concentration is usually unevenly distributed in the space under the 
mixed ventilation mode. This could be due to multiple factors such as the 
dynamic occupant movement and uneven air distribution, which could 
be caused by the diffuser location, thermal plumes, and temperature 
gradients. A good understanding of the indoor CO2 concentration spatial 
distribution could provide helpful guidance on the optimal CO2 sensor 
location. 

However, only limited studies on this topic were reviewed in the 
NIST review paper [4]. Ruud et al. [71] conducted a test in the con
ference room. The results revealed that the CO2 reading from the 
wall-mounted CO2 sensors was nearly identical to the CO2 concentra
tions measured at the room exhaust. However, the wall-mounted sensor 
reading was observed to have a shorter delay compared to the mea
surement of the exhaust air. The well-mixed CO2 distribution in this 
study was achieved possibly because the design supply airflow rate as 
enforced by the building code was much higher 30 years ago. Another 
study [72] concluded that a good mixing could be achieved in the room 
with closed doors, and therefore the sensor location was not critical. But 
the testing was carried out in a residential room; hence the conclusion 
was less referenceable for the commercial DCV applications. 

Over the last twenty years, simulation and field tests have been 
conducted to study the CO2 concentration spatial distribution under 
different ventilation schemes. For the mixed ventilation (i.e. ventilation 
from ceiling diffuser), Mui et al. [73] measured the CO2 concentration at 
12 different locations in an office room with a VAV system. The room 
CO2 concentration was controlled below a fixed setpoint. The results 
showed that 75% of the 12 locations had an acceptable CO2 concen
tration, i.e., controlled below the setpoints. The largest deviation from 
the average CO2 concentrations measured at the 12 locations at all 
sampling times was 24.8%. Fisk et al. [74] evaluated the spatial vari
ability of CO2 concentrations within six meeting rooms in a commercial 
building. The maximum CO2 concentration deviations from the space 
average at different spots are 14.7%, 6.9%, 4.0%, 7.8%, 3.8%, and 
13.9%, respectively for six different meeting rooms. The results also 
suggested that the measurement at return-air grilles may be preferred to 
the measurement at wall-mounted locations because the CO2 concen
trations at return grilles did not vary much. Rackes [75] studied the 
spatial variation of CO2 concentration in a typical office setting using the 
CONTAM simulation. The results suggested that the spatial variation 
was not large in the case study; hence the authors stated that improving 
the CO2 sensors accuracy is perhaps more important than capturing the 
spatial distribution. Instead of using the zonal model as Rackes [75] did 
with CONTAM, Pei et al. [76,77] used the Computational Fluid Dynamic 
(CFD) tool to study the spatial distribution of CO2 in a building with the 
DCV system. In this study, multiple influencing factors such as the 
ventilation system (displacement vs. mixing), air change rate, and 
occupant densities were considered in the simulation. For the mixed 
ventilation, the horizontal and vertical CO2 distributions were fairly 
uniform, while for the displacement ventilation, the CO2 stratification 
was obvious with the high occupancy scenario. Melikov [78] measured 
the CO2 concentration in a meeting room at both the room exhaust and 
locations near the occupants. A difference of 20% was found in the 
average CO2 concentration. A testing conducted by Pantelic et al. [79] 
showed that the concentration surrounding a single occupant was 
around 200–500 ppm higher than the background CO2 concentration. 

We also conducted field testing in a large office room located on the 
campus of an American university during July 27th and August 7th, 
2020. Due to the Coronavirus disease 2019 (COVID-19) pandemic, the 
occupancy density of the office was extremely low (approximately 4 
people for an area of 210 m2). The CO2 concentrations at various loca
tions were collected from four ExTech CO210 sensors (i.e., Sensor 2, 5, 
and 7), three HOBO MX1102A sensors (i.e., Sensor 1, 3, 4, and 7), and 
two CO2 sensors installed at the return vent with readings available from 
the building automation system (BAS). The ExTech CO210 sensor has a 
detection range between 0 and 9,999 ppm, with an accuracy level of ±
(5% of reading + 50) ppm and resolution of 1 ppm; while the HOBO 
MX1102 sensor has a detection range between 0 and 5000 ppm, with an 
accuracy level of ± (5% of reading + 50) ppm and resolution of 1 ppm. 
All the sensors were calibrated before deployment. The layout of the 
office room, locations of the CO2 sensors and supply/return vents, and 
the CO2 measurement results were presented in Fig. 7. As shown, the 
CO2 concentration was highly unevenly distributed depending on the 
location of the sensor. On August 5th, 2020, the percentage difference of 
the maximum and minimum CO2 concentration could vary from 6% to 
24%. 

Table 4 summarizes some studies of investigations on the indoor 
spatial variability of CO2 concentration. It is concluded that the CO2 
distribution is closely related to the ventilation control scheme, occu
pancy level, and air change rate per hour (ACH). As summarized from 
the case studies, for the mixed ventilation, the CO2 concentration de
viation from the space average or between the measurement points was 
generally smaller than 20% under a higher ACH, except for the space 
that was closely prominent to the occupants. Non-uniform spatial dis
tribution of CO2 was mostly observed for the cases with a low ACH and/ 
or large room volume. Several studies [4,73,74,76,77,80] indicated that 
the CO2 concentration near the exhaust grille (or return vent) could 
represent the breathing zone concentration with a reasonable accuracy. 
For the displacement ventilation, a vertical CO2 stratification was highly 
likely to occur, with the dividing height highly sensitive to the occu
pancy level. The CO2 concentration at the intake of the return/exhaust 
duct was much higher than that of the breathing zone for this type of 
ventilation scheme. 

5. The nexus of CO2 concentration and ventilation demands 

In this section, the potential of using CO2 as an indicator for different 
ventilation “demands” is discussed. Section 5.1 elaborates on why and 
how the CO2 concentration could serve as an indicator to control the 
odor under a certain level due to its proven correlation with the bio
effluents. Section 5.2 reviews the correlation studies of CO2 concentra
tion with the other common indoor contaminants besides the 
bioeffluents. 

5.1. Bioeffluent 

Bioeffluent, which is the byproduct of human metabolism, is the 
most primary “demand” in the CO2-based ventilation controls. In as 
early as the mid-1800s, Pettenkofer [83] first discovered that the bio
effluents generated by occupants could cause IAQ issues in the indoor 
space. In a recent study, Zhang et al. [84] conducted comparative ex
periments and concluded that the moderate concentration of bio
effluents, but not sure whether CO2, was the actual cause of deleterious 
effects on occupants during typical indoor exposures. In one experiment, 
the exposure of occupants to a high CO2 concentration at or below 3000 
ppm did not exert significant effects on perceived air quality, acute 
health symptoms, or cognitive performance. In contrast, in another 
comparative experiment, a much higher bioeffluent concentration and 
CO2 concentration (over 3,000 ppm), which were resulted from a 
reduced ventilation rate, had significantly deteriorated the perceived air 
quality, aroused acute health symptoms, and worsened the cognitive 
performance. It is noted that currently there is a controversy on whether 
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the CO2 itself should be considered a pollutant that affects human 
cognitive performance and decision making at a certain concentration 
level [85–87]. Some studies [87–90] find effects of higher CO2 con
centrations (between 1000 and 5000 ppm) on the cognitive performance 
while other studies [91–93], where confounding factors were 
controlled, find no effects on this outcome. Considering CO2 is 
commonly associated with other bioeffluents that may have effects on 
health, it is challenging to verify whether CO2 itself is directly respon
sible for the health effects [19,94]. 

The criterion for per-person ventilation rate required in ASHRAE 
Standards 62.1 is mainly based on the perception of the odor with an 
80% occupancy satisfaction [43]. Many sources have indicated that a 
ventilation rate of about 7.5 L/s per person could control the human 
body odor effectively, such that 80% of the occupants would find it 
acceptable [4,18,95]. When the outdoor CO2 concentration is 400 ppm, 
the odor acceptability level corresponds to an equivalent steady-state 
CO2 concentration of 1050 ppm, which is commonly used as a control 
limit. 

As the most primary “ventilation demand”, the bioeffluents can be 
indirectly controlled by the CO2 concentration owing to the assumption 
that the CO2 generation rate is roughly proportional to the odor gener
ation rate. Lin et al. [43] evaluated the validity of this underlying 

assumption through a comprehensive literature review. The conclusion 
was that this relationship is valid and independent of the level of 
physical activities and the steady-state assumption [18]. Based on this 
correlation, the indoor CO2 concentration can be used as a signifier or a 
proxy to maintain an acceptable bioeffluent concentration in a 
CO2-based DCV. As mentioned in Section 4.2, the steady-state CO2 
equation is often used to estimate the zone occupancy in CO2-based DCV 
strategies. Although the actual system is usually not operated at 
steady-state and the CO2 concentration generally lags behind the change 
in actual occupant number, the steady-state equation is effective to 
calculate the required OA flow rate to maintain an acceptable level of 
bioeffluent concentration. In other words, while the required airflow 
based on the steady-state equation does not exactly track the source 
strength of bioeffluents due to transient effects, it generally guarantees 
an acceptable bioeffluent concentration [96,97]. On the contrary, for the 
ventilation reset strategies from direct occupant counting sensing tech
nologies [98] (known as occupancy-centric control (OCC) [99]), the 
ventilation performance regarding the bioeffluent concentration still 
largely unknown, although these strategies react to the occupancy level 
faster. For example, when people just stay in a room for a short period, 
the bioeffluent concentration or CO2 concertation may not be varied 
much, which will not trigger any HVAC system reaction in CO2-based 

Fig. 7. (a) The layout of the office room and the locations of the CO2 sensors and supply/return vents; (b) The hourly CO2 distributions of four selected sensors on a 
given day; (c) The boxplots of the hourly CO2 concentrations of the nine sensors for ten days. 
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DCV. However, if the OCC does not consider the delay, the HVAC system 
with OCC will act differently. 

5.2. Other contaminants 

The relationship between the concentrations of CO2 and other con
taminants mainly depends on whether the sources of the other con
taminants are occupant-related [4]. In other words, the indoor CO2 
concentration may not provide any useful information on the concen
trations of occupant-independent sources. Many recent studies have 
investigated this limitation on the use of CO2-based DCV for such a 
purpose. 

Table 5 summarizes the relationship between the CO2 concentrations 
and other contaminants obtained through the field studies. The con
taminants being investigated included the volatile organic compounds 
(VOC), nitrogen dioxide (NO2), radon, PM2.5 (particles less than 2.5 μm 
in diameter), and trihalomethanes (tTHM). Szczurek et al. [100] 

measured the CO2 concentrations and total volatile organic compounds 
(TVOCs) in a university classroom. A correlation analysis was conducted 
to examine the relationship in a timespan of one day and 30 min. The 
results showed that there were no obvious or constant relationships 
between CO2 concentrations and TVOCs for both scenarios, which 
indicated that the CO2 concentration could not convey any information 
about the TVOCs. Nevertheless, Han et al. [55] found a strong connec
tion between the CO2 measurements and the volatile organic compound 
(VOC) concentrations from several tests in an office building where the 
occupancy-based ventilation control was deployed. Although this 
finding might be case-specific, it showed a potential to reduce the need 
for expensive VOC monitoring equipment in terms of IAQ control during 
a regular building operation. Afroz et al. [101] also reported that the 
VOC concentrations measured in several university library rooms 
largely followed the trend of CO2 concentration in a one-year field study. 
The possible reason for these two studies with a confirmed correlation of 
CO2 and VOC is that the VOC concentration is implicitly associated with 

Table 4 
Summary of the indoor CO2 concentration spatial distribution.  

Reference Year Simulation 
/Experiment 

Ventilation Scheme Building type Occupancy Profile Room Volume (RV)/Ventilation 
Rate/Air Change Rate Per Hour 

CO2 Concentration 
Deviationsa 

[73] 2005 Experiment Mixed ventilation 
(MV) 

Office room High occupancy density ACH = 0.6–1/h 24.8% 

[74] 2010 Experiment Mixed ventilation Six meeting 
rooms 

High occupancy density RV = 46–160 m3 3.8–14.7% 

[81] 2010 Experiment Mixed ventilation Experimental 
chamber 

4 m2/per RV = 17.75 m3; 3.3–5.7% 
ACH = 0.72–1.61/h 

[75] 2017 Simulation Mixed ventilation Four office rooms 22 m2/per ACH = 1.5–5/h 4–13% 
[38] 2019 Experiment Natural ventilation Experimental 

chamber 
Don’t know RV = 32.4 m3 Within 10% 

ACH = 0.55% 
[76,77] 2019 Simulation Mixed ventilation; Office room Low/high occupancy 

density (18/3.6 m2/per) 
RV = 55 m3; DV: 7–20% 

Displacement 
ventilation 

ACH = 2.5,5/h MV: 2–5% 

[78] 2019 Experiment Mixed ventilation Meeting room High occupancy density (2 
m2/per) 

RV = 50 m3; 19.5% 
ACH = 4/h 

[82] 2020 Experiment Natural ventilation Office room Don’t know ACH is small 50% 
[79] 2020 Experiment Mixed ventilation Office room One person in the room RV = 77 m3; 31–77% 

ACH = 4/h 
N/A 2020 Experiment Mechanical 

ventilation 
Office room Low occupancy density (due 

to COVID19) 
ACH = 0.25–0.4/h 6%–24%  

a Please be noted that there currently lacks a scientific and validated index to measure the uneven CO2 concentration spatial distribution. The case studies sum
marized in this table used different indexes to quantify the spatial variability (e.g., CO2 concentration deviations from the space average, CO2 concentration deviations 
between different measurement points, etc.); hence the results should only be considered a qualified reference and could not be used for a quantified apples-to-apples 
comparison. 

Table 5 
Summary of the relationship of indoor CO2 concentration and other contaminants in field studies.  

Contaminant 
Type 

Reference Year Building Type Measurement 
Period 

Data 
Interval 

Correlation Statement 

VOC/TVOC [100] 2015 University 
classroom 

9 days in winter 30 min; 1 
day 

• The co-variation of CO2 and TVOCs measurements conveyed different in
formation about IAQ as a function of time. 

[55] 2020 Office 7 a.m.-5 pm in 3 
days 

1 min  • A strong link between CO2 measurements and VOC concentration profiles 
was found in several tests. 

[101] 2020 University library 1 year 5 min  • The VOC concentration largely follows the trend of CO2 concentration 
despite the fact that concentration levels are not the same.  

• A reasonable positive relationship exists in different zones. 
[102] 2020 Office 6 months 1 h  • A weak positive correlation was seen between CO2 and TVOCs. 

NO2 [102] 2020 Office room 6 months 1 h  • This relationship between increased ventilation and higher ingress of NO2 

can be observed.  
• A weak negative correlation was seen between CO2 and NO2. 

tTHM [103] 2020 Swimming 
facility 

Occupied hours in 
7 days 

20 min  • A statistically significant relationship was found between the two (Pearson’s 
correlation equals to 0.38), but this relationship is far from linear. 

Radon [111] 2004 Lecture theatre 1 day 30 min  • An inverse relationship between CO2 and radon is seen when CO2-based 
DCV is deployed. 

[112] 2020 University 
classroom 

1 day 30 min  • A weak negative relationship between CO2 and radon was identified. 

Particles [113] 2020 Primary school 
classroom 

1 day 30 s  • No statistical relationship between CO2 and PM2.5 was seen on the 
observation day.  
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occupancy level, e.g., through the usage of VOC-originated products. 
Stamp et al. [102] conducted long-term IAQ monitoring in an office 
building and observed a weak positive correlation between CO2 and 
TVOCs. Apart from the correlation with VOCs/TVOCs, the relationship 
of the indoor CO2 concentrations of and NO2 was also investigated in 
this research. A weak negative relationship was identified due to the 
ingress of the NO2 from the outdoor with increased ventilation. Nitter 
et al. [103] investigated the correlation between the CO2 concentration 
and trihalomethanes (tTHM) concentration in a swimming pool facility. 
A statistically significant relationship was found between the two con
centrations (Pearson’s correlation equals 0.38), but this relationship was 
far from linear. 

Besides, the indoor CO2 concentration was also used as a proxy for 
the infection risk of COVID-19 and other respiratory diseases in the in
door space [104–106]. In these studies, the indoor CO2 concentration 
acted as an indicator of rebreathed fraction of indoor air (i.e., the frac
tion of inhaled air that was exhaled by someone else in the space). 
However, there are a few assumptions for using this correlation due to 
the distinct characteristic of the CO2 and virus-latent aerosols [107]. For 
example, the pathogen particle is more likely to lose infectivity in 
aerosols, while CO2 is only lost to ventilation. In addition, the 
virus-containing particles are only emitted by the infected person while 
everyone emits CO2. Based on some HVAC operation guidelines during 
the COVID-19 pandemic [108–110], the CO2-based DCV system are 
recommended to be disabled during an epidemic [108,109] or overruled 
to force the ventilation system to operate at full speed (e.g., reset the CO2 
setpoint to 400 ppm [110]). 

6. The impacts of the CO2-based DCV on IAQ 

In Section 6.1, how the CO2-based DCV impacts the concentration of 
the indoor air contaminants, as well as the selection of an appropriate 
sensor fusion algorithm, is discussed. Section 6.2 talks about the impact 
of CO2-based DCV on indoor humidity control. 

6.1. Indoor air contaminants 

Although the CO2 concentration is not a good indicator for the major 
indoor contaminants that are unrelated to the occupants, the impacts of 
the DCV on these contaminants were investigated in both simulation- 
based studies and field tests. Table 6 shows a summary of the CO2- 
based DCV impact on the indoor air contaminants. 

Rackes [114] investigated the impact of DCV on different indoor air 
contaminants through a Monta Carlo simulation across six cities in the 
U.S. office buildings. The inputs to the IAQ model (e.g., emission rate, 
infiltration rate, etc.) were randomly selected from the distributions that 
characterize real U.S. offices. The results showed that the DCV had a 
minor influence on ozone or particles due to the large non-ventilation 
loss mechanisms. However, the DCV had a significant impact on 
VOCs, especially in colder climates, due to a lower average infiltration 
rate. De Jonge et al. [115] investigated the impact of a DCV system on 
the indoor VOC levels in an apartment using the dynamic VOC model in 
CONTAM [116]. The simulation results showed the total yearly dose of 
exposure to VOC was 10% higher in the DCV case than that of the 
conventional ventilation case. 

Gram et al. [113] field investigated the impact of DCV on indoor 
contaminants in a primary school. The field measurements showed that 
the concentration of formaldehyde exceeded the limit recommended in 
guidelines during lunchtime and non-operating hours. The formalde
hyde level only came to a normal range when the ventilation airflow rate 
was increased, which indicated that the formaldehyde was generated 
indoors. The formaldehyde concentration was thus recommended as a 
marker for DCV control along with the CO2 concentration to ensure that 
the occupant-generated and non-occupant-generated pollutants could 
both be controlled simultaneously. Besides, the PM2.5 level measured in 
the classrooms was mostly very low. No correlations between the indoor 
PM2.5 level and ventilation airflow rate were found, except for a period 
with an unusually high outdoor PM2.5 level. Therefore, it is not rec
ommended to involve the PM2.5 sensor for DCV control in primary 
schools if the outdoor PM2.5 level is low. Another field study in a uni
versity auditorium [117] revealed that the increase in PM10 and TVOC 
concentrations was insignificant when the ventilation rate was reduced 
to 50% of the design level. However, considering that the ventilation 
rate could be reduced to an even smaller value in a DCV application, 
whether this conclusion would still be true under the extremely 
low-ventilation scenario is yet to be verified. 

6.2. Humidity 

Some studies also look into the impact of the DCV on the indoor 
humidity level. Schibuola et al. [119] checked the relative humidity 
level in a university library with a CO2-based DCV system in Venice, 
Italy. The results suggested that the DCV only had a small negative 
impact on the indoor humidity level. During the whole-year monitoring, 

Table 6 
Summary of the DCV impact on the indoor air contaminants.  

Contaminant 
Type 

Reference Year Building Type Simulation/ 
Field Test 

Impacts 

Formaldehyde [113] 2020 Primary school classroom Field test  • Formaldehyde concentration exceeds the guideline limit outside the 
operating hours or within the operating hours during lunchtime. 

VOC/TVOC [118] 2003 Office, classroom, conference room, 
lecture hall, fast food restaurant 

Simulation  • The indoor VOC levels increased by a factor of two to three, but the absolute 
concentrations were still relatively low based on the assumed emission 
rates. 

[114] 2013 Office Simulation  • TVOC daytime means increased by 7–10% and peaks increased by 10–14%, 
depending on the city. 

[115] 2019 Apartment Simulation  • The total yearly dose of exposure of the simulated VOC is 10% higher than 
the conventional ventilation system. 

[117] 2020 University auditorium Field test  • The increase of TVOC concentrations is insignificant when the ventilation 
rate is reduced from 100% to 50%. 

Particles [113] 2020 Primary school classroom Field test  • No significant impacts were seen on the PM2.5 and its concentration in the 
classrooms is mostly very low 

[114] 2013 Office Simulation  • In most cases, implementing DCV uniformly decreases PM2.5 and PM10 
daytime means and peaks, with median decreases of about 3–4%. 

[117] 2020 University auditorium Field test  • The increase of PM10 concentrations is insignificant when the ventilation 
rate is reduced from 100% to 50%. 

Ozone [114] 2013 Office Simulation  • The impact on the ozone concentration differences is small and no more 
than 5 ppb at the median level for either peak or mean.  
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the indoor relative humidity level fell in the range of 40–60% for 97% of 
the time in summer and for 90% of the time during winter. In contrast, a 
field study carried out in Minnesota, U.S., showed an improvement in 
the indoor humidity control achieved by the CO2-based DCV by 
analyzing the BAS data and conducting a survey on occupant’s per
spectives on the indoor humidity [120]. Generally, in the climate zone 
where outdoor air plays a dominant effect on the indoor relative hu
midity (i.e., driving the relative humidity down in winter and up in 
summer), reducing the outdoor airflow rate could moderate its impact 
on the indoor humidity level. 

7. Concluding remarks and future directions 

This review covers important and urgent topics regarding the nexus 
of the indoor CO2 concentration and ventilation “demands” underlying 
the CO2-based DCV in commercial buildings, but also identifies many 
limitations with potential improvement suggestions for further research. 
The conclusions and future directions are summarized in the following 
sections. 

7.1. Conclusion remarks 

This paper first gives a direct overview of how this technology in
volves. The changes of building codes and standards related to CO2- 
based DCV in the last forty years were presented. In addition, a biblio
metrics analysis was conducted to identify the major working scope as 
well as the research trends at different times. The top ten topics in the 
last two decades are “CO2,” “Demand-controlled ventilation,” “indoor 
air quality,” “control strategy,” “energy saving,” “ventilation rate,” 
“simulation,” “field study,” “CO2 sensor” and “occupancy estimation.” 

In Section 4, we reviewed the publications regarding the funda
mental updates for the indoor “CO2” concentration. The relationship of 
the indoor CO2 concentration and its major influencing factors such as 
ventilation rate, occupant CO2 generation rate, and occupancy level are 
discussed. The characteristic of CO2 concentration spatial distributions 
in different scenarios is summarized. The major takeaways are sum
marized as follows, and these fundamental updates are critical for 
developing the CO2-based DCV in commercial buildings. 

• After the version of ASHRAE Standard 62.1–2004 VRP, the ventila
tion rate per person changes with the building occupancy, which 
leads to the corresponding steady-state CO2 concentration having a 
nonlinear correlation with the number of occupants. Therefore, 
using a fixed CO2 setpoint may not be code compliant for the VRP 
since it could only satisfy the requirements at a single occupancy 
level.  

• Whether the required ventilation rate could be achieved for terminal 
zones in the multi-zone systems depends on the zone terminal local 
airflow controls.  

• The ventilation rates could be estimated based on CO2 sensing using 
different methods, including the steady-state, transient mass bal
ance, build-up, decay, and Bayesian inference methods. Different 
methods have distinctive application scenarios and existing studies 
have provided certain guidance on how to select the method. For 
example, the steady-state method should only be applied after the 
CO2 levels reached an equilibrium concentration. The transient mass 
balance method needs accurate occupancy information. The build-up 
method requires a stepwise increase in occupancy and is always 
sensitive to the selection of time period. In order to accurately esti
mate the ventilation rates from CO2 sensing, one needs to carefully 
evaluate the CO2 and occupancy data fidelity (such as availability, 
interval, noise), and then select the appropriate estimation methods 
based on the applicable conditions.  

• Apart from the physical-based methods, the data-driven methods and 
grey-box methods are developed to estimate the occupant number 
from the CO2 sensing. However, there are no generalized methods to 

estimate the occupancy number with high accuracy for different 
scenarios.  

• New approaches for estimating the occupant CO2 generation rate 
were proposed. The new NIST approach is promising, which con
siders more influencing factors, including sex, age, height, weight, 
body size (body mass), fitness level, diet composition. In addition, 
the input parameters such as body size are easy to estimate than the 
body area in the old approach. A comparison of the new NIST 
approach and conventional ASHRAE method is presented. The dis
crepancies between the new and ASHRAE methods are minor for the 
common space types in buildings such as office, conference room, 
lecture classroom, and residence.  

• The uneven distribution of CO2 concentration in space has been 
noted in many case studies. This issue is usually related to room 
geometry, ventilation scheme, occupancy level, and air change rate. 
For the mixed ventilation mode, the CO2 concentration deviation 
from the space average or between the measurement points is 
generally less than 20% under a higher ACH except for the area 
closely prominent to the occupants. Non-uniform spatial distribu
tions of CO2 were observed with low airflow rates and large room 
volumes 

In Section 5, we reviewed the publications on whether CO2 could 
represent all the ventilation “demands.” The salient conclusions are 
listed as follows: 

• The bioeffluents can be indirectly controlled by the CO2 concentra
tion owing to the assumption that the CO2 generation rate is roughly 
proportional to the odor generation rate. The main purpose of CO2- 
based DCV is to maintain the bioeffluent concentration using CO2 
concentration as an indicator. Despite the relatively low prediction 
of physical-based steady-state models, the steady-state equation is 
often used in CO2-based DCV strategies and an acceptable level of 
bioeffluent concentration could be achieved.  

• While indoor CO2 concentrations are associated with the perception 
of human bioeffluents and the level of acceptance of their odors, they 
do not provide an overall indication of IAQ, especially for the cases 
where the major indoor contaminants are unrelated to the occupants. 
As noted by the recently released ASHRAE position document on 
indoor CO2 [21], CO2 is not a good indicator of IAQ, nor any other 
concentration. The correlation statements of the CO2 concentration 
and contaminants are summarized in Table 5. In particular, the 
impact of the DCV on the volatile organic compounds (VOC) con
centration is large. Due to the bioeffluents emitted by humans and 
the other VOCs from human activities, VOC sensors might be 
correlated with the occupancy while containing the information 
from the non-occupant contaminant sources. Therefore, the sensor 
fusion of CO2 and VOC sensors might be a promising direction for 
addressing this limitation. The sensor fusion hardware and software 
need to be developed for optimizing IAQ levels [121]. Another 
research question arising from this is how much energy saving could 
be reduced by further controlling those non-occupant related con
taminants. Preliminary work has been done for the residential 
buildings [122,123], but the answers for the commercial buildings 
are largely unknown. 

In Section 6, we summarized the impacts of the CO2-based DCV on 
the IAQ. The key takeaways are outlined as follows:  

• The impacts of DCV on different containments are different. The 
impact on the VOC/TVOC is larger than the particles and ozone, 
probably due to the large non-ventilation loss mechanisms of the 
latter.  

• The impact of DCV on the humidity level seems not obvious from the 
existing case studies. 
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7.2. Future directions  

• Compared to the VRP, the fixed setpoint CO2-DCV could result in 
over-ventilation when the zone occupancy is high and under- 
ventilation when the zone occupancy is low. Further investigations 
should be conducted to study whether non-compliance with the 
standard in different occupancy levels leads to potential side effects 
(e.g., energy waste, IAQ and health related issues) using the fixed 
setpoint CO2-DCV.  

• Although the ventilation rate could be estimated from CO2 sensing 
with different approaches, it is noted that most of the existing 
methods do not consider the uncertainties such as the measurement 
errors and CO2 generation rate. Therefore, future work should be 
conducted to facilitate a better understanding of the uncertainties 
associated with different estimation methods and develop novel 
estimation methods that are robust under different sources of 
uncertainties.  

• The uneven CO2 distribution increases the uncertainties in the design 
and operation of the CO2-based DCV. Considering that only a limited 
number of CO2 sensors will be installed per zone in practice due to 
the cost, there is a need for more in-depth research to provide 
detailed guidance of optimal CO2 sensor locations in different sce
narios. Experiments should be conducted to assess the potential 
impacts from this uncertainty on the operation of the CO2-based 
DCV.  

• The ventilation reset control strategies from direct people counting 
sensing technologies have been a research hotspot recently. 
Although these strategies could react to the dynamic occupancy 
faster than the CO2-based DCV strategies and bring potential energy 
savings, the ventilation performance (e.g., maintaining an accept
able bioeffluent level) is still largely unknown. There exist limited 
comparative studies between the CO2-based DCV strategies and the 
DCV strategies from people counting using other sources. Future 
research needs to compare the energy-saving potential and ventila
tion performance of DCV using these two types of sensing 
technologies.  

• It is still no clear how CO2 itself is linked with health effects at low 
concentration levels. Although some studies show CO2 might not be 
the direct pollutant causing the deleterious effects on occupants, this 
topic is still controversial in the literature and requires additional 
fundamental research. Confounding factors should be measured or 
controlled to identify whether CO2 itself is directly responsible for 
the health effects [19]. 

7.3. Next step 

DCV control and operation strategies, associated sensor technologies 
(e.g., CO2 sensor, airflow sensor), and performance evaluation are also 
critical topics in CO2-based DCV as identified from keyword mining in 
Section 3. In an ongoing work [124], we have extended our review to 
CO2-based DCV control strategies with a focus on:  

• Advancements in sensing technologies.  
• Summary of CO2-based DCV control and operation strategies and 

case studies with better performances.  
• A holistic performance evaluation of the state-of-the-art CO2-based 

DCV technology. 
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