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Abstract—The reliable operation of power grid is supported
by energy management systems (EMS) that provide monitoring
and control functionalities. Contingency analysis is a critical ap-
plication of EMS to evaluate the impacts of outages and prepare
for system failures. However, false data injection attacks (FDIAs)
have demonstrated the possibility of compromising sensor mea-
surements and falsifying the estimated power system states. As
a result, FDIAs may mislead system operations and other EMS
applications including contingency analysis and optimal power
flow. In this paper, we assess the effect of FDIAs and demonstrate
that such attacks can affect the resulted number of contingencies.
In order to mitigate the FDIA impact, we propose CHIMERA, a
hybrid attack-resilient state estimation approach that integrates
model-based and data-driven methods. CHIMERA combines the
physical grid information with a Long Short Term Memory
(LSTM)-based deep learning model by considering a static loss of
weighted least square errors and a dynamic loss of the difference
between the temporal variations of the actual and the estimated
active power. Our simulation experiments based on the load data
from New York state demonstrate that CHIMERA can effectively
mitigate 91.74% of the cases in which FDIAs can maliciously
modify the contingencies.

Index Terms—Electric power grid, false data injection attacks,
contingency analysis, hybrid state estimation.

I. INTRODUCTION

In electric power grids, energy management systems (EMS)

provide situational awareness and assist the decision-making.

EMS encompasses hardware/field components at geograph-

ically dispersed locations and telecommunications systems,

as well as software applications at utility control centers,

e.g., state estimation and contingency analysis. Specifically,

the network topology processor within EMS utilizes breaker

status and acquired data from telemetry devices to update

the power system model. The collected measurements and

the updated system model facilitate the state estimator to

determine the current system states. The estimated results

are required by other EMS applications such as contingency

analysis and optimal load flow algorithms. Thus, the accuracy

EMS applications depends on the results of state estimation.

As part of state estimation routines, bad data detection

(BDD) units are used to identify anomalous measurements.

However, it has been shown that false data injection attacks

(FDIAs) can bypass BDD [1]. Undetectable FDIAs under the
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situation of sensor failures could even worsen the estimation

performance [2]. In addition, the conditions of the 2015 attack

on the Ukrainian grid, demonstrated that the threat model of

FDIAs could result in massive blackouts [3].

Contingency analysis is one of the core applications in

EMS which evaluates the impact of the planned or unplanned

problems that occur in the electric grid such as scheduled

maintenance and component failures. Components refer to

generators, transmission lines, transformers, circuit breakers,

etc. According to the North American Electric Reliability

Corporation (NERC), the fundamental criterion of N � 1
(where N refers to the total number of components) requires

that the power system is able to withstand the disruption of one

component outage [4]. Contingency scenarios can be extended

to N � k, which refers to a number of k component failures.

Grid operators rely on contingency analysis to recognize

system overload conditions, rank the severity of the overloaded

components, and isolate them if necessary to prevent cascading

failures. However, the reliability of contingency algorithms

cannot be guaranteed when the system is under FDIAs [5].

To detect the FDIAs, two major detection approaches are

considered [6], model-based and data-driven methods. Model-

based methods leverage system physics and data (e.g., the

grid topology and lines admittance) to estimate states with

methods such as recursive weighted least square and Kalman

filters [7], [8]. In order to determine whether or not an

attack occurs, different tests are applied to the estimation

results such as the large normalized residual [9], and the

cumulative sum test [8]. However, such methods are typically

computationally expensive in terms of processing time and

scalability [10]. On the other hand, despite the benefits of data-

based approaches in terms of short execution times [11], such

techniques require a large set of training data to achieve good

performance. In addition, the rise of learning-based schemes

in many applications is accompanied with important security

challenges: it creates an incentive among adversaries to exploit

potential vulnerabilities of the algorithms [12], [13]. Recent

works illustrated that combining the physics- with data- based

models provides several advantages, especially in terms of

security, as they tightly confine the solution scope and limit

the capability of the adversarial examples [14], [15].

In this paper, we study the impacts of FDIAs and propose

a hybrid, model-based and data-driven, attack-resilient state
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estimator to mitigate the attack impact on the contingency

analysis results. To the best of our knowledge, this paper is

the first study to propose a hybrid estimation approach on how

to mitigate the effect of FDIAs on contingency analysis. Our

contributions are summarized as follows:

We formulate an attack model to bypass state estimation

BDD and cause, via FDIAs, non-critical transmission lines,

i.e., lines not included in the contingency screening, to sur-

pass their power flow limits. We show that the FDIAs impact

can effectively distort the number of system contingencies.

To mitigate the attack impact, we propose CHIMERA1,

a hybrid attack-resilient state estimator. i.e., a physics-

informed estimator constructed based on Long Short Term

Memory (LSTM) networks. It embeds the grid observation

model of power flow equations into neural networks. We

exploit the static and dynamic features of the observation

model to construct spatial-temporal correlations among mea-

surements, and limit how FDIAs against state estimation can

affect subsequent EMS contingency results.

We conduct simulation experiments based on load data from

New York state. The results demonstrate that CHIMERA

can effectively mitigate 91.74% of the attack cases in which

FDIAs can maliciously modify the contingency results.

The rest of this paper is as follows: Section II provides back-

ground information. Section III discusses our attack model,

and Section IV presents the mitigation strategy. Experiments

are shown in Section V. Section VI draws concluding remarks.

II. BACKGROUND

A. State estimation

In the nonlinear (AC) state estimation of power systems,

state variables are determined by phase angles (7) and voltage

magnitudes (V ). For a system with n buses, the states are

x = [72, 73, . . . , 7n, V1, . . . , Vn]
T

, where 71 = 0 is the

reference angle. To maintain full observability of the sys-

tem, m � n measurements are required. Measurements (z)

typically include active power (P ) and reactive power (Q)

measurements. The relationship between states and acquired

measurements, with e being a vector of noises, is as follows:

z = h(x) + e (1)

State estimation is widely solved via iterative techniques

such as the weighted least square method [16], in which the

accuracy of the estimated variables x is calculated via the Eu-

clidean norm of the residual kz�h(x̂)k. For example, the es-

timated states x̂ can be obtained through optimization of J(x̂)
in Eq. (2), where W = diag

�

��2

1
,��2

2
, ,��2

m

 

.There are

different approaches to solve Eq. (2); one such method is

via iteratively solving Eq. (3). To detect whether or not the

state estimation is disturbed by the random noises or attacks,

BDD compares the objective function J(x̂) with a normalized

threshold ' . If J(x̂) < ' , no bad data is detected.

min
x̂

J(x̂) = (z� h(x̂))TW(z� h(x̂)) (2)

1CHIMERA, according to Greek mythology, was a monstrous fire-breathing
hybrid creature composed of several different animals.

HT
kWHk∆x̂k = HT

kW[z� h(x̂k)] (3)

To reduce the computational overhead, linear (DC) state

estimation is often adopted which assumes that transmission

line resistances are negligible, voltage magnitudes are 1 per

unit, and the differences in voltage angles between buses are

small. Thus, the observation model can be linearized:

Pi =
X

j2Ni

Bij(7i � 7j), (4)

and in matrix form P = Hθ, in which P and θ are the vectors

of the active power measurements and the voltage angles

of the buses, respectively. H is the measurement Jacobian

matrix derived from the susceptance matrix B. With the

approximations, the accuracy of the estimation is decreased

while the computation overhead is reduced. The states θ can

be estimated with the following equation:

θ̃ = (HTH)�1HTP (5)

B. Contingency Analysis

Contingency analysis simulates the effects of contin-

gency/outage scenarios and calculates the overload conditions.

However, the computational cost of such “what-if” scenarios

is unrealistic for large-scale and complex power systems. The

computational overhead is proportional to N !/[k!(N � k)!]
for N � k contingencies. Due to the low probability of N � 3
contingencies occurring in different transmission lines in real-

world [17], research works typically focus on N � 1 and

N�2 scenarios [18]. In order to find all power flow constraint

violations under N � 1 and N � 2 scenarios, the linear power

flow approximation is typically utilized [19]. Following such

approach, in this work, the power flows are calculated by

f = YMT
θ, where Y is the branch susceptance matrix, M

is the connection matrix, and θ is the vector of voltage phase

angles. Additionally, f is used to calculate the line outage

distribution factors (LODFs). LODFs determine the power

flow impact on the remaining lines when one or more line

outages are observed in the system. The formulation of single

and double outages can be found in [20].

III. ATTACK MODEL

A. Threat Model

FDIAs have been traditionally demonstrated on how to com-

promise the state estimation [6]. In this paper, we assume that

the attacker does not solely target to falsify the state estimation

but also to manipulate the contingency analysis results [21].

We consider an attacker who can exploit the configuration of

a power system to launch FDIAs by manipulating the sensor

measurements while bypassing BDD. Moreover, the attacker

targets those measurements which could distort the number

of contingencies. The assumptions of the threat model are as

follow:

The attacker has full observation of the topology and con-

figurations of the system, i.e., the attackers could construct

the Jacobian matrix H. Such data can be obtained through

public information or signal reconstruction [22], [23].
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Fig. 1. Illustration of the attack model (attacked variables in red color).

The attacker is aware of the specifics of the state estimation

process, either model-based or data-driven, in order to

carefully craft FDIAs to bypass BDD routines.

The attacker has access to the real-time measurements

of deployed grid sensors, e.g., via eavesdropping on the

communication links. However, due to the limited physical

access or the protection of certain meters, the attacker can

compromise a limited number of measurements [16].

The attacker could perform contingency analysis based on

the estimated results and the power flow constraints of each

line required to ensure an overload condition [18].

B. Mathematical Formulation

Despite BDD mechanisms can detect measurement anoma-

lies, carefully crafted FDIAs can bypass such algorithms. Con-

sider the malicious vector a injected into measurements z, then

the compromised vector can be represented as za = z+a. The

attacked estimated state variables can be written as x̂a = x̂+c,

where c is the vector of the injected and resulted error. A

successful FDIA undetected by the residual-based BDD, as

shown in Eq. (6), can be formed when a = Hc, i.e., if a is a

linear combination of H, for the arbitrary vector c.

krak = kza �H(x̂a)k

= kz+ a�H(x̂+ c)k

= kz+H(x̂+ c)�H(x̂)�H(x̂+ c)k

= kz�H(x̂)k = krk

(6)

Fig. 1 depicts the overall process of the attack model.

The sensor measurements z are compromised by FDIAs

represented by an attack vector a. The estimated states x̂,

as the output of the estimation process, will be altered under

FDIAs. The BDD can detect and remove the significant errors

as bad data, namely J(x̂) above the threshold ' . Otherwise, if

BDD is bypassed due to FDIAs, the malicious states will be

processed to perform contingency analysis. Since the power

flow computation, fa, is affected, the contingency results fa0

will be inaccurate. As a result, system operators will be

misled by the malicious contingency analysis output, and thus,

potential threats to the power system reliability may be posed.

Based on the assumptions of the attacker’s capabilities and

knowledge of the power system topology and data, the attack

model is mathematically formulated as Eq. (7a) - (7g), where

the attacker’s objective is to affect the results of contingency

analysis by FDIAs. In order to achieve that, the attacker

performs contingency analysis to obtain the power flows under

contingency and find the most vulnerable line i which has the

smallest difference between its power flow under contingency

fa

i
0, and its power flow capacity f limit

i . The targeted line

will overload based on the maximization function with an

optimal attack vector a through FDIAs, as shown in Eq.(7a).

An absolute value of fa

i
0 is used here to represent the overflow

observed either with fa

i
0 > f limit

i or �fa

i
0 > f limit

i .

In order for the FDIAs to be stealthy and not being detected,

several constraints represented by Eq. (7b) - (7g) should be

satisfied. In practice, a safety margin fm in the line flow ca-

pacity is reserved to reduce the overload risk. Therefore, only

the line with a power flow below the certain line flow capacity

f limit
i � fm will be considered, as described in (7b). Eq.(7c)

shows that the attacker can compromise certain measurement z

to za by adding an attack vector a. Accordingly, the estimated

state variables x̂ will be deviated to x̂a in (7d). In order

to maintain stealth and bypass the BDD, the injected error

should guarantee that the residual J(x̂a) is within the system

threshold ' , as depicted in (7e). Once the malicious state

variables are utilized to perform power flow computations,

the results fa will be affected since the voltage phase angles

θ̂a in (7f) are part of the deviated estimated variables x̂. The

factor �a to qualify the line overload condition, LODF, will be

utilized to compute the power flows. Taking the compromised

power flow equation at line i (fa

i ), line j (fa

j ) with the LODF,

the power flow of line i under FDIAs with line j during a

outage is derived as fa

i
0 in (7g).

maximize
a

argmin
|fa

i

0|

f limit
i � |fa0

i| (7a)

subject to |fa0

i| < f limit
i � fm (7b)

za = z+ a (7c)

x̂a = x̂+ c (7d)

J(x̂a) < ' (7e)

fa = YMT
θ̂a (7f)

fa

i
0 = �a

ijf
a

j + fa

i (7g)

IV. CHIMERA: HYBRID ATTACK-RESILIENT ESTIMATOR

In order to mitigate the impacts of FDIAs on the state

estimation and the consequential contingency analysis, we

propose CHIMERA, a hybrid attack-resilient state estimator.

CHIMERA is an AC state estimator, which takes active

and reactive power measurements as well as DC-estimated

voltage angles as the input, and provides estimates of voltage

magnitudes and angles of the buses. Given the attack model

presented in Section III and considering that a DC power flow

model is typically used in grid operations [6], we build an

AC hybrid estimator which is resilient to FDIAs affecting

EMS routines. Despite a corrupted DC estimation output

θ̃t, CHIMERA provide accurate state predictions, by taking

advantage of both the observation model Eq. (1) and an

LSTM-based deep learning model. The LSTM network can

capture the temporal correlations between data, and thus,

the errors induced by the attacks can be corrected by the

historical information. Moreover, since the observation model
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can confine the solution space with the physical constraints,

we construct the loss function based on such a model.

In regards to the enhancement of the convergence speed

and the estimation accuracy, we provide the DC estimation

results θ̃ as the input of CHIMERA in addition to the power

measurements (P, Q). Despite the limited accuracy of the DC

estimation results due to the approximations, the DC estimated

voltage angles can directly infer the scope of the true voltage

angles. Thus, even in the presence of FDIAs, we include

the DC estimated voltage angles in the input of CHIMERA

because they can partially represent the states of the power

grid. As a result, the input is formulated as ut = [zt; θ̃t], in

which zt and θ̃t are the vectors of the sensor measurements

and the DC estimated states at time t, respectively.

To capture the spatio-temporal correlations of the observa-

tion model in the presence of benign and malicious data, the

loss function of CHIMERA is composed of two parts: the

static loss and the dynamic loss. In general, to regulate the

accuracy of the estimated states, a typical way is to use the

difference between the observed measurements and the derived

measurements from the observation model Eq. (1) [12], [15],

which is defined as the static loss:

Lstatic = MSE(zt,h(x̂t)), (8)

in which x̂t = [θ̂t; V̂t] is the vector of estimated states

from the model. MSE(x,y) = (1/n)
Pn

i=1
(xi � yi)

2
is the

Mean Squared Error (MSE) between x and y. Nevertheless,

with only Lstatic, the LSTM network cannot totally mitigate

the impacts of FDIAs, especially on contingency analysis.

Although the structure of LSTM can utilize the temporal

correlations of data implicitly, adversarial perturbations in-

cluding FDIAs on such recurrent neural networks have been

proven effective [11]. Therefore, as also shown in Section V,

depending solely on the temporal correlations from LSTM is

insufficient to defend against the attack proposed in Section III.

To better describe the temporal correlations between data, we

further exploit the consistency of the observation model in

the time domain and explicitly augment the loss function with

the dynamic loss, Ldynamic. The dynamic loss measures the

distance between the expected and the actual variations of the

measurements. Given Eq. (4), we have:

Pt �Pt�1 = H(θ̂t � θ̃t�1), (9)

in which θ̂t is the vector of the phase angles estimated by

CHIMERA. Denote ∆Pt = Pt �Pt�1 and ∆P̂t = H(θ̂t �
θ̃t�1). Thus the dynamic loss is defined as:

Ldynamic = MSE(∆Pt,∆P̂t). (10)

The static loss, Lstatic, guarantees that the observation
model is satisfied at each epoch, and the dynamic loss,
Ldynamic, enforces the temporal consistency between the es-
timated states and the system measurements. Given Ldynamic

and Lstatic, the loss function of CHIMERA is defined as:

L = Lstatic + γLdynamic, (11)

where � ÿ 1 is the weight to balance the two terms. Compared

with the loss function directly using the MSE between the

Sensor 
Measurementz௧

�௧
�௧

�௧
�௧

DC state 
estimation

�෨௧
Input�௧ LSTM layers

Full 
connect 

layers
Output states�ො௧

�෠௧
�መ௧

.

.

.

.

.

.

.

.

.

Deep learning modelFalse Data 
Injection Attack

Fig. 2. The architecture of CHIMERA. The variables with red color are the
ones that can be affected by FDIAs.

estimated states and the true states, i.e., L0 = MSE(x̂,x)
(x is the vector of the true states), the proposed loss function

L has several advantages. The true state x is not required

in L. Note that solving x is non-trivial. The weighted least

square method usually utilizes iterative methods to recursively

minimize the residual J(x) in Eq. (2), which is often time-

consuming, especially when the grid size increases. Therefore,

the utilization of Lstatic and Ldynamic can boost timing

performance while estimating the true system states. Besides,

as mentioned in Section II-B, the accuracy of contingency

analysis heavily relies on the accuracy of the estimated vari-

ables. Since Lstatic measures the difference between estimated

and true power flows, Lstatic can enhance the accuracy of

contingency results by enforcing the consistency between the

estimated and true power flows. Unlike other approaches

focusing on FDIA detection, CHIMERA is ‘fertilized’ with the

resilient estimation capability. This ensures that CHIMERA

remains secure against other formulations of FDIAs because

the attack impact will be restrained as long as the accuracy of

the estimation process is guaranteed.

The architecture of CHIMERA is depicted in Fig. 2. To

avoid over-fitting, validation data is utilized to select the most

suitable hyper-parameters for CHIMERA. We run CHIMERA

with different configurations and select the one with the

most accurate estimations on the validation data. The detailed

configuration is explained as follows. CHIMERA is composed

of two LSTM layers and a full connection layer. For each

LSTM layer, the number of the features in the hidden state

is 128 and the length of the sequence is 32. For the loss

function, we set � = 1å 10�3. During the training phase,

a batch of vectors ut with batch size 32 are provided as input.

The outputs from the output layer x̂t are then used to calculate

the loss based on Eq. (11). The weights and the biases of

the model are updated with the gradient of L by the Adam

algorithm [24], through the back-propagation process. Due to

the non-linearity of the observation model in Eq. (1), there

are many local minimums. To approach the global minimum

of L, we train the model with two steps. We first train a

coarse model with a large learning rate 1å 10�3 for 150

iterations. Then the model is fine-tuned for 500 iterations

with small learning rates varying following a triangular cycle,
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which linearly increases from 1å 10�7 to 1å 10�4 and then

decreases back to 1å 10�7.

V. EVALUATION AND SIMULATION RESULTS

A. Experimental Setup

1) Dataset: To examine the impacts of FDIAs on contin-

gency analysis, we compare the number of contingencies and

the overload conditions when the system is operated in normal

conditions and under FDIAs. We conduct the experiment based

on the IEEE 14-bus system and use synthetic data generated

from the load data provided by the New York Independent

System Operator (NYISO). We use NYISO load data from

May 2020 containing the 5-min-interval active powers at each

NY region, with 9030 epochs in total. The synthetic data is

generated according to [14], and due to the unavailability of

reactive power information, we generate the reactive power

data by assuming a constant power factor of 0.8. White Gaus-

sian noises with means of 0 and standard deviations of 0.01

are added to the measurements. We regard the measurements

and the states generated as the ground truth when evaluating

the performance of the estimation model. When executing

contingency analysis, we use the flow limits listed in [25].

2) Deep Learning Models for Evaluation: In addition to

CHIMERA, we train two models for comparison purposes: a

Multilayer Perceptron (MLP) network and the model proposed

in [15]. Since MLP induces limited computational overhead, it

has been widely applied to the power grid [26]. In this paper,

we train a MLP network as the performance baseline. The

MLP is composed of three hidden layers with 128 neurons for

the first two layers and 64 neurons for the last hidden layer. We

use L0 = MSE(x̂,x) as the loss function of MLP. Therefore,

no additional information or system dynamics are leveraged

to defend against FDIAs. We refer to this model as the

baseline MLP and use it to demonstrate the impacts of FDIAs

when no defense is considered. Besides the baseline MLP, we

also utilize for comparison the physics-guided deep learning

network proposed in [15], which encompasses an autoencoder

based on LSTM and uses zt as the input and Lstatic as the

loss function. We refer to this model as LSTMref .

The MLP and LSTMref are trained by following the

same procedure as CHIMERA, i.e., 70% of the data is used

for training, 15% for validation, and 15% for testing. The

training times of the three models, deployed on a computing

platform with an NVIDIA GTX 2048 and an eight-core

Intel(R) Xeon(R) CPU of 2.60 GHz, are summarized in

Table I. Because of the simple network architecture and loss

function, the baseline MLP is trained faster than the other

two models with a total time consumed for training to be

358.75s. CHIMERA makes a trade-off between training speed

and security guarantees. It is trained slower than the other

models, i.e., 1191.96s, because additional computations are

conducted in the calculation of loss functions.

3) Attack Setup: We select the measurements to attack

based on the criticality of buses calculated according to [27].

The buses 1, 2, 3, 4, 5 have the highest criticality. Thus, the

meters on those buses are selected in order for the active power

TABLE I
TRAINING TIME OF THE BASELINE MLP, LSTMref , AND CHIMERA.

Model Coarse train (s) Fine tune (s) Total time (s)

MLP 101.56 257.19 358.75

LSTMref 218.48 889.9 1108.38

CHIMERA 233.09 958.87 1191.96

»

Fig. 3. MAPE of the estimated states from the baseline MLP, LSTMref , and
CHIMERA in the attack-free case.

measurements to be injected with errors. The optimal attack

vector of Eq. (7a) - (7g) is solved by the Adam algorithm with

a learning rate of 1å 10�2. The attack vector is generated for

the measurement vector at each epoch. We observe that more

than 99% of the estimation result residuals from the three

models are smaller than 0.5. Thus, the threshold of J(x̂) is set

as ' = 0.5 in the attack model. We run the attacks for different

values of fm and select fm = 3 based on the magnitudes of the

injected errors. The injected errors have similar magnitudes for

all three models. For each targeted measurement, the injected

errors result in a Mean Absolute Error (MAE) of 0.55 for the

baseline MLP, 0.54 for LSTMref , and 0.54 for CHIMERA.

B. Evaluation of the Estimation Results without Attacks

1) Estimation Accuracy: Denote the vectors of true states

and estimated states at epoch t as xt = [θt;Vt], and x̂t =
[θ̂t; V̂t], respectively. Here θt, θ̂t, Vt and V̂t are the vectors

of the true/estimated angles and magnitudes, respectively. We

use the Mean Absolute Percentage Error (MAPE):

MAPE(x,y) =
1

n

n
X

i=1

�

�

�

�

yi � xi

xi

�

�

�

�

, (12)

as the accuracy evaluation metric of the estimated states,

and define MAPE 7 = MAPE(θt, θ̂t), MAPE V =
MAPE(Vt, V̂t) and MAPE Total = MAPE(xt, x̂t).
The results are summarized in Fig. 3. Since the voltage angles

fluctuate greater than the voltage magnitudes, the MSE of the

angle estimations are larger than the MSE of the magnitude

estimations. All three models achieve satisfiable accuracy with

the average MAPEs of the states to be 1.02% for the baseline

MLP, 1.70% for LSTMref , and 1.76% for CHIMERA.

2) Contingency Analysis Results: Given the estimated

states from the three models, we perform contingency analysis

to reveal the variance of the numbers of N � 1 and N � 2
contingencies in the system. By plugging the estimated states

x̂t into Eq. (1), we obtain the power flows f̂t. The number

of the N � 1 and the N � 2 contingencies at epoch t given
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Fig. 4. The absolute errors of the numbers of (a) N − 1 and (b) N − 2

contingencies given the estimated power flows in the attack-free case.

TABLE II
AVERAGE PERFORMANCE OF THE THREE MODELS AGAINST FDIAS.

Model MAPE V MAPE 7 MAPE Total /a
1

/a
2

MLP 0.27% 0.84% 0.54% 0.35 9.16

LSTMref 0.007% 0.12% 0.06% 0.03 5.75

CHIMERA 0.008% 0.14% 0.07% 0.06 1.70

the estimated power flows f̂t are denoted as N̂1,t and N̂2,t,

respectively. Moreover, the contingency analysis based on the

system measurements zt at each epoch t is executed to obtain

the exact numbers of N � 1 and N � 2 contingencies in the

system, which are denoted as N1,t and N2,t, respectively. N1,t

and N2,t are referred to as the ground truth.

We use the absolute errors between the aforementioned

methods of acquiring the contingency data, indicated with

/1 = |N̂1,t � N1,t| and /2 = |N̂2,t � N2,t|, as the metric

to evaluate the performance of the three models in the attack-

free case. The results are shown in Fig. 4. Because of the

estimation errors, errors are introduced into the contingency

analysis results inevitably. The results demonstrate the benefit

of Lstatic over L0. Although the baseline MLP has the

smallest MSE of state estimations, LSTMref and CHIMERA

achieve better performance because Lstatic can enforce the

consistency between the estimated power flows and the system

measurements. For N � 1 analysis, 68.60% and 69.12% of

N̂1,t are accurately calculated (/1 = 0) for LSTMref and

CHIMERA, respectively, while for the baseline MLP, only

46.50% of N̂1,t are accurately calculated. Besides, for N � 2
analysis N̂2,t, the average /2 equals to 7.14 and 7.80 from

LSTMref and CHIMERA, respectively, while the average /2
for N̂2,t from the baseline MLP is 10.30.

C. Impact of False Data Injection Attacks on Contingencies

The performance of the three models against FDIAs is

summarized in Table II. Overall, LSTMref and CHIMERA

achieve better performance compared with the baseline MLP.

Regarding the impacts of FDIAs on N � 2 contingencies,

CHIMERA shows higher resilience compared to LSTMref .

1) Estimation Accuracy: Denote the estimated states from

attacked measurements as x̂a
t . The impact of the attacks on

the estimated states is assessed based on the MAPE 7a =
MAPE(θ̂t, θ̂

a
t ), MAPE V a = MAPE(V̂t, V̂

a
t ) and

MAPE Totala = MAPE(x̂t, x̂
a
t ). The results are sum-

»

Fig. 5. The impact of the attacks on the estimation accuracy.

marized in Fig. 5. Note that the attacker intends to affect

the contingencies while remaining undetected from the state

estimation. The results verify the stealthiness of our attack

model. We observe that the attacks do not induce large

errors to the estimated states: the changes in the estimated

states are only 0.54%, 0.06% and 0.07% for the baseline

MLP, LSTMref , and CHIMERA, respectively. Despite the

slight distinctions, we can still conclude that LSTMref and

CHIMERA are more resilient to FDIAs due to their network

architecture and the usage of Lstatic.

2) Contingency Analysis Results: Denote the number of the

N�1 and the N�2 contingencies at epoch t given the power

flows estimated from the attacked measurements as N̂a
1,t and

N̂a
2,t. To assess the impacts of the attacks on the contingency

analysis, we use the absolute errors between the number of

contingencies from estimated power flows before and after

attacks, i.e., /a
1
= |N̂a

1,t � N̂1,t| and /a
2
= |N̂a

2,t � N̂2,t|, as the

performance metrics. The results are presented in Fig. 6. If /a
1

or /a
2

are not equal to 0, an attack is considered successful.

Besides, the larger /a
1

or /a
2

are, the larger the impact of the

attack is. We observe that the contingency analysis results

are sensitive to the accuracy of the estimated states. Although

the injected attack vectors have similar magnitudes and only

slightly affect the accuracy of the estimated states, the impacts

of the attacks on the contingency analysis results from the

three models differ a lot. Since no defense is embedded in the

baseline MLP, the performance of the baseline MLP is heavily

degraded. In the N � 1 case, 53.50% of N̂a
1

are changed

(/a
1
6= 0) for the baseline MLP, while the percentage of N̂a

1

changed for LSTMref and CHIMERA are only 31.4% and

22.69%, respectively. The maximum /a
1

is 4 for the baseline

MLP, while it is 1 and 2 for LSTMref and CHIMERA, respec-

tively. In the N�2 case, the average /a
2,t is 9.16 for the baseline

MLP, while the average /a
2,t is 5.75 for LSTMref and 1.70 for

CHIMERA. Moreover, the results from LSTMref show that

using only Lstatic cannot totally defend against FDIAs. On the

other hand, because of the usage of the Ldynamic, the impact

of FDIAs on CHIMERA is significantly limited. Specifically,

64.81% of attacks fail to take effect on CHIMERA, i.e.,

/a
2

= 0, while the percentages for the baseline MLP and

LSTMref are only 7.14% and 22.32%, respectively. Moreover,

91.74% of attacks have limited impacts on CHIMERA, i.e.,

/a
2
< 5, while for the baseline MLP and LSTMref these values

are 48.36% and 79.32%, respectively.
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Fig. 6. The attack impact on (a) N − 1 and (b) N − 2 contingency analysis.

D. Practical Implications and Applications

In terms of real-world applications, CHIMERA can be

implemented at the computing stations of power grid operators

and be part of the EMS. For example, it can be deployed as

an additional application in the EMS by updating the existing

state estimation routines. Thus, CHIMERA does not require

or induce any hardware modifications or overhead. The major

computation cost of CHIMERA is on the training process.

Despite that CHIMERA requires longer training time, it can be

trained offline abd it does not induce additional computational

overhead during runtime. In fact, the times for CHIMERA and

MLP/LSTMref to estimate states are of the same order and ap-

proximately 0.05ms, which are neglectable and do not violate

any real-time requirements [28]. Furthermore, during attacks,

significant enhancement has been achieved by CHIMERA in

estimating the number of N � 2 contingencies. For the IEEE

14-bus system, there can be 190 N � 2 contingencies in total.

Through our experiments, we show that in 91.74% attacks,

CHIMERA can achieve an estimation accuracy more than

97.4% (i.e., /a
2
< 5) for N � 2 contingencies. With such high

accuracy, CHIMERA guarantees the normal operation of the

power grid during the occurrence of FDIAs.

VI. CONCLUSIONS

In this paper, we investigate an attack model intending to

disturb power systems contingencies through FDIAs. We show

that the attack can manipulate contingency analysis accuracy

by slightly increasing the state estimation errors. To mitigate

the effects, we propose CHIMERA, a hybrid attack-resilient

estimator which ensures the accuracy of state estimation and

the resulting contingency analysis. CHIMERA leverages the

dynamic and static features of the power grid observation

model and embeds them into a deep learning model.
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