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Coarse-grained atomistic modeling of dislocations
and generalized crystal plasticity
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Abstract Recent developments in generalized continuum modeling methods ranging from coarse-grained atomistics to micromorphic
theory offer potential to make more intimate physical contact with dislocation field problems framed at length scales on the order of
microns. We explore a range of discrete dynamical and continuum mechanics approaches to crystal plasticity that are relevant to
modeling behavior of populations of dislocations. Predictive atomistic and coarse-grained atomistic models are limited in terms of
length and time scales that can be accessed; examples of the latter are discussed in terms of interactions of multiple dislocations in
heterogeneous systems. Generalized continuum models alleviate restrictions to a significant extent in modeling larger scales of
dislocation configurations and reactions, and are useful to consider effects of dislocation configuration on strength at characteristic
length scales of sub-micron and above; these models require a combination of bottomup models and top-down experimental
information to inform parameters and model form. The concurrent atomistic-continuum (CAC) method is extended to model
complex multicomponent alloy systems using an average atom approach. Examples of CAC are presented, along with potential to
assist in informing parameters of a recently developed micropolar crystal plasticity model based on a set of sub-micron dislocation
field problems. Prospects for further developments are discussed.
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The notion of crystalline plasticity modeling pertains to dislocation
phenomena manifesting at length scales from 0.1 nm to hundreds of
micrometer, associated with the evolution of dislocations in crystals
across a range of corresponding length scales, with time scales
ranging from fs to years. In the spirit of the early influence of
Professor A. Cemal Eringen aimed towards the concept of micro-
morphic media [1] and the historical development of generalized
continuum (GC) methods (see e.g., Refs. 2—4, we will focus on
model frameworks that express nonlocal spatial interactions as ul-
timately necessary to model the evolution of dislocation structures.
Several key model constructs have been introduced that provide
support for understanding based on simulations within selective
subdomains of length and time scale. These include fully resolved
atomistic modeling (e.g., molecular dynamics (MD)), coarse-grained
atomistic approaches such as the quasicontinuum (QC) method
[5—8] and concurrent atomistic-continuum (CAC) method [9—22],
microscopic phase field (MPF) models [23—26], discrete dislocation
dynamics (DDD) [27—31], statistical continuum dislocation (SCD)
models [32—49], mesoscopic GC crystal plasticity models of slip
gradient type [50—60], and less well developed and implemented
micromorphic [61—64] and micropolar [65—70]. This work focuses

on the recent advances in coarse-grained atomistics, specifically the
CAC method, in modeling higher numbers of dislocations and
dislocation—obstacle interactions than are accessible to conventional
atomistics. Some examples of CAC are presented for various aspects
of modeling dislocations in crystals. After outlining a recently
developed micropolar crystal plasticity framework and drawing
parallels to nonlocal slip gradient crystal plasticity, the paper closes
with suggestions for overlapping bottom—up CAC and DDD
simulations with micropolar crystal plasticity theory by solving sub-
micron scale dislocation field problems to inform the parameters of
GC crystal plasticity models, which are then applicable to much
higher length and time scales.

Defect structures at various levels of spatial hierarchy control
properties of crystalline materials. Dislocations serve as primary
carriers of plastic deformation and assemble in non-equilibrium,
metastable configurations that constitute dislocation substructure.
Metal plasticity is fundamentally associated with processes of
nucleation, generation, migration, interaction, trapping, and an-
nihilation of dislocations in crystals and polycrystals [71—73]. This
substructure plays a key role in higher length scale (e.g., poly-
crystalline) work hardening, for example. The number of accessible
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Fig. 1. Hierarchy of length scales in crystal plasticity ranging from atomic (resolution of dislocation cores), to configurations of dislocations, patterning at
the mesoscale, and up to multiple grains/phases at the scale of structural applications. The primary length scale gap in modeling and simulation exists in
describing the patterning of dislocations as necessary to bridge discrete simulations at left with continuous field representations at right [74].

dislocation configurations to accommodate deformation decreases as
the length scales of structures (grains, multilayers, etc.) reduce to
hundreds and then tens of nanometers, giving rise to increasingly
important effects of slip gradients in material strengthening, with a
strong influence of the slip system back stress. Figure 1 depicts five
levels of structure hierarchy, ranging from the atomic structure of
lattices and interfaces (atomistics) to migration and interaction of
configurations of dislocation line segments (discrete dislocations),
collective pattern formation of dislocations (dislocation sub-
structure), heterogeneous plastic flow within sets of grains/phases
(polycrystal plasticity), and finally up to the scale of engineering
applications where underlying structure (dislocation structures,
grains and phases) is “smeared” by considering an equivalent
macroscopic set of properties or responses. The minimum length
scale typical of each of these levels is also shown in Fig. 1, and ranges
from interatomic spacing to mean free path for dislocations, to grain
size, and up to characteristic dimensions of components or struc-
tures of interest.

Time scales of interest for processes at each level of structure
hierarchy vary in the dynamic to thermodynamic transition indi-
cated in moving from left to right in Fig. 1. Dynamic atomistic
simulations typically range from picoseconds to nanoseconds, while
large-scale discrete dislocation dynamics simulations can extend to
the order of seconds. At far right in Fig. 1, polycrystal and macro-
scale plasticity models can address time scales relevant to that of
large-scale laboratory specimens or structural applications, i.e.,
ranging from milliseconds to years depending on the applied strain
rate.

Multiscale models of dislocation plasticity are necessary to
simulate various properties/responses of interest over a wide range
of length scales. Goals may differ according to the scales addressed.
The interested reader may consult comprehensive recent in-depth
review by McDowell [73]. Chemical reactions, lattice elasticity, and
defect nucleation are typically governed by atomic scale structure
and energies (defect, surface, etc.), while the elastic stifiness and yield
point of polycrystals involve many grains and or phases. The rate of
material strain hardening is closely related to dimensions and
morphology of the dislocation substructure. Reduced order models
are employed to address phenomena corresponding to scales to the
right in Fig. 1 and reflect cooperative thermodynamics and kinetics
of dislocations in crystals. On the other hand, discrete models that
apply to scales at the left in Fig. 1 are of fully dynamic character or
employ an overdamped dynamical scheme, tracking locations of
individual atoms or defect segments. Degrees-of-freedom (DOF)
necessary to characterize the structure of a fixed volume of material
104 Journal of Micromechanics and Molecular Physics | VOLUME 7
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decrease from left to right in Fig. 1; in so doing, the information
necessary to characterize the dynamical state is discarded in favor of
achieving a reduced order continuum thermodynamic description.
Stochastic response of ensembles of dislocations is recognized as a
hallmark of these intermediate scales or “mesoscales,” motivating
the use of statistical methods to represent material behavior.

The CAC method is a spatial coarse-graining strategy for concurrent
multiscale modeling that was developed as an application of ato-
mistic field theory [9], with a local density function used to connect
this continuum theory to atomistics via multiscale balance equations
[10—13]. CAC employs a two-level structural description of crys-
talline materials [10] that is based on an extension of the lattice
statistical mechanics approaches of Irving and Kirkwood [75, 76].
This leads to a concurrent atomistic-continuum representation of
the conservation laws of mass, momentum, and energy [9, 77, 78];
the reader is referred to a series of papers for details [10, 13, 18, 22].
In particular, the paper by Xu et al. [18] provides details for
addressing quasistatic coarse-grained simulations of dislocations in
crystals, and the recent overview of Chen et al. [11, 12] is a com-
prehensive presentation of the mathematical and implementation
bases for CAC. The dynamic implementation includes full inertial
effects that can address phonon interactions with wavelengths above
the element size, see e.g., Xiong et al. [17, 79, 80] and Pluchino et al.
[81]. Governing equations are listed in the appendix that pertain to
the implementations of CAC employed in this paper.

Since CAC employs a three-dimensional (3D) integral formu-
lation of the governing field equations with a non-local force field,
interelement continuity is not required; dislocations or cracks can
therefore nucleate and propagate as an emergent behavior via sliding
and separation between elements with or without adaptive coarse-
graining [14—17]. CAC does not employ the Cauchy—Born
assumption throughout the coarse-grain domain; dislocations can be
modeled throughout the entire solution domain, whether at full
atomistic resolution or coarse-grained. This sets it apart from fully
concurrent methods that require full atomistic resolution at the
dislocation core, such as QC. In contrast to the QC method, which
has the objective of seeking convergence of the solution to that of the
fully atomistic case for various field problems, CAC differs in its
goals. Increasing the element size in CAC increases the coarse-
graining error systematically by virtue of the process of interpolation
of atomic positions; the benefit of this tradeoff is a reduction of
degrees of freedom due to coarse-graining while still able to model
propagation of dislocations. CAC can be used to obtain such
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information locally in fully resolved regions of interest, while
maintaining acceptable accuracy of the solution of the overall field
problem to support quantitative insights and provide input to cali-
brate higher scale continuum mesoscale models; we shall give some
examples later in this paper. Given inherent epistemic uncertainty in
the interatomic potential(s), such coarse-graining error in mesoscale
problems can be viewed as a systematic function of mesh density,
still serving the purpose of predictive bottom—up simulations of
many body defect interactions. For example, CAC can coarse-grain
atomistics in regions away from certain domains of interest and still
capture long-range fields and interaction stress fields of dislocations,
while preserving high accuracy in fully resolved atomistic regions of
interest. If trends of behavior or collective mechanisms are to be
considered as a function of microstructure or stress state, as is often
the case in DDD, then CAC may offer a more predictive pathway to
support such parametric studies to inform DDD. Coarse-graining
error in CAC can be minimized via adaptive remeshing [20], based
on the level of the relative nodal displacement between elements; in
fact, this is necessary for general field problems to allow dislocation
migration along arbitrary extended slip planes. Such remeshing, if
desired, need not conform to full atomistic resolution, but can
involve simply splitting larger elements into smaller ones, still
containing many atoms per element.

In many other approaches based on domain decomposition or
coarse-graining, so-called “ghost” forces arise from a change of the
underlying continuum formulation and energy summation rules;
these issues do not arise in CAC because the underlying integral
formulation and constitutive framework (i.e., the interatomic po-
tential) are invariant with respect to coarse-graining. CAC has
parallels to peridynamics [82], an integral form nonlocal particle-
based model that adopts more of a mesoscale strategy rather than
building on the underlying interatomic potential of the atomistic
system, see e.g., Sun and Sundararaghavan [83] for a GC smeared
treatment of dislocations in crystal plasticity.

Elements in CAC can contain a varying number of atoms defined
by unit cell multiples, with element boundaries corresponding to
close-packed planes (i.e., slip planes). For FCC crystals, rhombo-
hedral isoparametric elements have been employed in which element
surfaces correspond to octahedral slip planes with the two outer
surface layers (2NN elements) of atoms within each element subject
to different interpolation functions than those used in the element
interior, providing the ability to accommodate stacking faults cor-
responding to partial dislocation migration between elements. The
generalized stacking fault energy curve of full atomistics can be
accurately reproduced even for nearly 10,000 atoms per element
[18], including both the stable and unstable stacking fault energies.
More layers of surface elements can be introduced to accommodate
more spatially extended atomic rearrangements associated with
continued twinning partials or other topological (surface related)
phase transformations, if necessary. CAC implementations for HCP
or BCC crystals characterized by dislocations with more complex
core spreading or dissociation require further advances in terms of
element types that admit these dissociation modes, if necessary.
Otherwise, these processes can always be captured by modeling at
full atomic resolution, while providing approximation in coarse-
grained regions. The number of atoms per element can differ within
the mesh of a given field problem; CAC field solutions can consist of
fully atomistic domains adjacent to coarse-grained domains with
tens to thousands of atoms per element. Dislocations can move
between fully resolved atomistic regions and coarse-grained domains
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along interelement boundaries rather seamlessly [14, 18], preserving
the essential nature of partial dislocations.

An obvious application of CAC, as also the case for the QC method,
is the simulation of dislocation pile-ups at interfaces and progression
of slip transfer reactions as multiple dislocations sequentially react at
the interface (i.e., processes involving transmission, reflection,
absorption and desorption). This is a technologically very important
problem related to the contribution of interface reactions on work
hardening. The same is true for dislocation—obstacle interactions,
whether a given obstacle is encountered by successive dislocations or a
set of dislocations encounter an array (periodic or random) of ob-
stacles. This class of problems is extremely computationally challen-
ging using fully resolved atomistics at length scales large enough to
capture dislocation pile-ups; periodic unit cell simulations with full
atomistics sacrifice reality of randomness and engender potentially high
image forces. Furthermore, if exercised as finite temperature molecular
dynamics, the desired dislocation interactions will be overdriven (far
from equilibrium) and characteristic of shock plasticity rather than the
thermally assisted flow regime. To make contact with experimental
measurements, realistic boundary conditions (e.g., free surfaces) are
often necessary; transmission electron microscopy (TEM) thin foil ob-
servations of dislocation reactions offer one example. Some noteworthy
features of CAC implementation are listed in the following:

(i) The CAC implementation employs weak form 3D continuum
finite element approaches. The interatomic potential is the only
constitutive relation, as in fully resolved atomistics. There is no
need for an artificial interface between the full atomistic and
coarse-grained atomistic domains.

(ii) Dynamic CAC [13-17, 79, 80, 84, 85] is equivalent to MD for
fully atomistic resolution and can simulate complex crystalline
materials and reproduce both acoustic and optical branches of
phonon dynamics due to its incorporation of internal degrees of
freedom. It is useful for coarse-graining of full dynamics,
including polyatomic (multicomponent) materials, for a given
lattice structure. It can be used with or without an ensemble
thermostat, and there are special considerations for treatment of
the coarse-grained contributions to the microkinetic energy. It
can also be employed for finite temperature dislocation mobility
studies, for example, including multicomponent alloys where an
average atom formulation is used in the coarse-grained region
[86]. The finite-temperature quasicontinuum hot-QC method
[87, 88] and coarse-grained molecular dynamics (CGMD)
methods [89, 90] have facilitated coarse-grained multiscale MD
simulations at finite temperature based on a local harmonic ap-
proximation to estimate entropic effects of the atoms not expli-
citly represented in the model. Finite temperature methods for
CAC are in early stages in terms of modeling dislocation field
evolution. Elevated finite temperature simulations for quasi-
static (near equilibrium) and non-equilibrium dynamic con-
ditions, as well as heat transport via modes other than phonons
remain to be fully developed for CAC. Most finite temperature
dynamic CAC applications to date have not considered a ther-
mostat (we will demonstrate one such application for finite
temperature dislocation mobility later in this paper). Detailed
consideration based on statistical mechanics of coarse-grained
kinetic energy at finite temperature have been recently advanced
by Chen et al. [11, 12], and this is an active research area.

(iii) Quasistatic CAC [18-21, 91-94] is a variant in which the
dynamic CAC implementation at very low homologous
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temperature is constrained by quenched dynamics at each time
step, with conjugate gradient or FIRE energy minimization [94]
performed periodically (e.g., every 50 time steps) to ensure that
the system is not overdriven by high rates [18, 19, 73].
Therefore, it can faithfully represent reaction pathways of dis-
locations characteristic of quasistatic, thermally assisted defor-
mation conditions, in spite of the use of ~fs time steps. In other
words, the solution accords with the concept of a sequence of
constrained equilibrium states in internal state variable theory
for nonequilibrium defect evolution [95, 96]. Accessible solu-
tion times are still constrained by the time step required in the
fully atomistic regions, as the Velocity Verlet technique is used
to march forward in time [18].

(iv) In view of (ii) and (iii), CAC provides speedup relative to full
atomistics by virtue of spatial coarse-graining for time-
marching problems, up the order of 1-2 orders of magnitude
depending on the problem.

(v) For true static problems (0 K), energy minimization using CAC
with coarse-graining away from domains with atomic structure
of interest can substantially reduce computational effort
required for energy minimization. This can facilitate, for ex-
ample, application of the nudged elastic band (NEB) method
[97, 98] to compute activation energy of extended defect in-
teractions with obstacles.

Some limitations of current implementations of CAC can also be
noted, many of these already mentioned. First, there are different
ways to address coarse-grained finite temperature implementation of
the governing equations and the microkinetic energy is particularly
challenging in this regard [11, 12]. Second, limitation of element
boundaries to close-packed planes restricts available dislocation
pathways and abrupt changes in element size may artificially impede
dislocations since they move along interelement boundaries; these
issues can be dealt with by adaptive mesh refinement and develop-
ment of new elements with more complete rendering of slip systems.
These limitations are being addressed in an ongoing work. Dislo-
cation cross-slip cannot be modeled accurately, nor twin growth/
thickening, in coarse-grained regions; thus, in regions near interfaces
or obstacles where it is important to accurately model cross-slip,
refined meshes or full atomistic models are required. Finally, while
CAC has been employed to study multiple dislocation pile-ups, for
example, it is not intended as a replacement of DDD, which studies
collective behavior of large dislocation networks and ensembles.

Of course, CAC and QC are not the only atomistic coarse-
graining methods. For example, the early works of Rudd and
Broughton [89, 90] and generalized particle dynamics (GPD)
applied to atomistic systems [99] have been introduced, although
not applied in the context of dislocations in crystals. GPD
would require remapping to full atomistic resolution to address
dislocations, analogous to QC.

The quasistatic implementation of the CAC method [18] is relevant
to modeling dislocation plasticity in that it approximates thermally
assisted dislocation reaction pathways. Use of quenched dynamics
with periodic energy minimization enhances efficiency for problems
with defects by reducing the load on periodic energy minimization.
The quasi-static implementation is considered useful for modeling
physically representative reaction pathways in the potential energy
landscape for thermally assisted dislocation processes since it is not
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overdriven, as typical of MD simulations. Applications to date of the
quasi-static implementation have been limited to monoatomic sys-
tems, while multicomponent systems have been considered in
dynamic CAC applications.

A logical application of CAC is the simulation of dislocation pile-ups
at interfaces in extended domains and progression of slip transfer
reactions as multiple dislocations sequentially encounter an interface
(transmission, reflection, absorption and desorption). Of interest is
whether remnant dislocation debris from prior reactions modify
each successive incoming dislocation reaction, an obvious basis for
work hardening. Without predictive atomistic simulations, intuitive
assertion of mechanisms such as continued build-up of Orowan
loops can dramatically overpredict work hardening in certain cases
and foster incorrect attribution of unit processes. The efficiency of
quasi-static CAC simulations has been exploited by Xu et al. [92] to
simulate dislocation pile-ups with leading screw character against
both (a) a ¥3 coherent twin boundary (CTB) and (b) a £11 STGB in
Ni [92], with the interface represented with a thin “ribbon” of ma-
terial on each side at full atomistic resolution and coarse-grained
elements elsewhere. The size of the simulation domain approaches
that of TEM foil dimensions reported in the literature, with traction-
free boundary conditions applied on the top and bottom surfaces to
realistically model dislocation migration and reactions from exper-
iments as well as the influence of the free surface on modifying
dislocation flux. In such simulations, coarse-grained elements with
thousands of atoms per element are employed everywhere in the
simulation domain (>100nm spatial dimension) except for a
narrow (5—10nm) fully atomistic region along the interface. As an
example, Fig. 2 shows successive encounters of dislocations
impinging on a ¥£3{111} CTB in Ni. Owing to the improved effi-
ciency of such large-scale simulations (by 1—2 orders of magnitude
relative to full atomistic simulation), CAC facilitates parametric
studies of the predictive capabilities of multiple alternative embed-
ded atom method (EAM) interatomic potentials to model successive
pile-up dislocation interactions with X3 interfaces in Ni for thin foil
specimens [92], thereby supporting sensitivity studies to assist in
judging the quality of these empirical potentials. These CAC simu-
lations for Ni were compared to full MD simulations and high-
resolution TEM experiments in Xu et al. [92].

Another recent application of quasi-static CAC by Xu et al. [93]
considers sequential interactions of five incoming dislocations in a
pile-up with fields of obstacles in pure FCC Al to better understand
sequence effects of reaction debris on successive dislocation
reactions, with obvious implications for work hardening.

Figure 3 shows the computational set-up for an array of edge
dislocations impinging on an obstacle with diameter of several nm.
This study explicitly compares the dislocation—obstacle interactions
in distinct cases of an impenetrable precipitate and a void. A uni-
form linear array of obstacles along the incoming dislocation line is
introduced via periodicity in the x-direction. When the obstacle is a
void, all dislocations sequentially shear the void into two hemi-
spheres until the void becomes fully split into two separate pieces
which pose less significant barriers to subsequent dislocation
motion. This bypass mechanism implies that the barrier strength of
a void is dominated by its interaction with the first dislocation in the
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Fig. 2. Snapshots in time of a pile-up of a/2[110] dislocations with
dominant leading screw character successively impinging on a ¥3{111}
CTB in Ni, (b) showing constriction of leading and trailing partial dislo-
cations. Atoms are colored by adaptive common neighbor analysis; red
corresponds to HCP local crystal structure, blue are not coordinated as
either FCC or HCP, and all FCC atoms are deleted. In (c) and (d), three of
the EAM potentials considered in this parametric study predict incorpor-
ation of the dislocation into the interface, with two partial dislocations
gliding on the twin plan in opposite directions. In (e)—(f), the other two
EAM potentials considered predict that the dislocation cross-slips into the
outgoing twinned grain via redissociation into two partials. This same kind
of study of various empirical potentials for extended quasi-static field
problems can be valuable to support selection of a specific EAM potential,
or as an exercise supporting improved machine learning potentials [92].

array and by its size. When the obstacle is an impenetrable pre-
cipitate centered on the glide plane, an alternating process of Oro-
wan and Hirsch looping mechanism occurs from one incoming
dislocation to the next. The first, third, and fifth dislocations leave
behind a shear loop around the precipitate, while the second and
fourth dislocations transform the newly formed Orowan loop into
two prismatic loops, bypassing the precipitate following the Hirsch
looping mechanism. This sequence suggests that after the bypass by
a series of successive dislocations, obstructive debris does not ac-
cumulate around the precipitate, unlike the classical understanding
inferred by a single dislocation/precipitate interaction. Contrary to
prior studies, defects are not created in the dislocations that glide
away from the obstacle. These results suggest reconsideration of
conventional thought regarding the roles of voids and precipitates in
strain hardening and hysteresis behavior under cyclic loading.

The interactions between lattice dislocation pile-ups and semi-
coherent phase boundaries are also of interest as they lead to
emergent properties observed in material systems such as nanola-
minates. Selimov et al. [94] used CAC to study the effects of stress
fields induced by such dislocation pile-ups, generated via nano-
indentation on the misfit dislocation structure of both Ni/Cu and
Cu/Ag semi-coherent {111} interfaces. Critically, as opposed to the
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many full atomistic studies that can be found in the literature
[100—104], model geometries employed here included large inter-
face segments, facilitated by CAC coarse-graining, to allow for non-
homogenous evolution of the misfit dislocation structures. These
investigated interface segments had dimensions of approximately
80 x 40 nm, containing many interface misfit dislocation junctions.
Atomistic model geometries with smaller interface segments, often
containing only a single misfit dislocation junction, generally employ
periodic boundary conditions that impose artificial symmetry on the
interface structure evolution. This can lead to unrealistic predictions
for slip transmission resistance as the local misfit dislocation density
along the lattice dislocation impingement site has been shown to
affect slip transmission [105, 106]. Here, slip transmission refers to
the absorption of a dislocation into the interface and then nuclea-
tion/emission of a different dislocation into the neighboring layer,
generally along the nearest parallel slip plane. These processes are
coupled such that the absorption of the dislocation directly provides
the energy and excess Burgers vector content for nucleation and
emission into the neighboring layer. Work by Selimov et al. [94]
found that the stability of the interface misfit structure depends on
the misfit dislocation spacing. The investigated Ni/Cu interface,
which has a larger misfit dislocation spacing than the Cu/Ag system,
showed large distortion of the interface misfit structure, including
localized expansion/compression of the misfit spacing as shown in
Fig. 4. This asymmetric evolution of the dislocation structure is less
significant for the Cu/Ag interface. As a result of this misfit pattern
distortion, the slip transmission resistance of the Ni/Cu interface is
expected to decrease due to the reduced local misfit dislocation
density as a result of the motion of misfit dislocation junctions away
from lattice dislocation impingement sites. This is expected to be an
important consideration for accurately capturing the evolution of
dislocation structures in multilayered materials. Future studies
which directly link the slip transmission resistance of the interface to
the misfit dislocation density can be used to calibrate reduced order
models for these material systems.

Studies by Xu ef al. [107] on Si/Ge (111) semi-coherent interfaces
using CAC show the effects of misfit dislocation spacing on the slip
transmission resistance of the interface. The CAC models investi-
gated here reduced the degrees of freedom from 1.13 billion in the
equivalent full atomistic model to 39.96 million atoms and nodes in
the CAC model. The three primary (111) interface geometries were
generated with different experimentally observed misfit dislocation
structures but with the same atomic elements and crystal structure in
each phase. As a result, the slip transmission resistance of the var-
ious interface types can be attributed primarily to the differences in
the misfit dislocation structure. Slip transmission is related to the
peak local stress on the lattice dislocation slip plane as shown in
Fig. 5(d). This shear stress is calculated for atoms near the interface
but is resolved to the incoming lattice dislocation slip plane and glide
direction using a new flux formulation for atomic stress [108].
Applied stress drives the lattice dislocation towards the interface
until absorption. Continued loading causes the stress on the inter-
face to increase until the nucleation and emission of a dislocation
into the neighboring layer. This causes a relaxation of the interface
stress. Higher values of peak local stress imply higher activation
energies required to nucleate a dislocation after absorption. Thus,
this metric can be used as a measure for slip transmission resistance.
The interface with the largest resistance to slip transmission had the
highest density of interface misfit dislocations. It was also found that
slip transmission required the absorption of multiple dislocations
into the interface, highlighting the importance of cooperative
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Fig. 3. lllustration (top) of the simulation cell for interactions between five edge dislocations in a planar array and an obstacle (filled black sphere centered
at the red point P with diameter D), which is either a void or an impenetrable precipitate in distinct simulations [93]. An atomistic domain is meshed within
a sphere centered at P with diameter D’ to let the obstacle deform and dislocations evolve at full atomic resolution, while the coarse-grained domain with
3D rhombohedral finite elements is employed elsewhere. Five initially equally spaced edge dislocations in the coarse-grained domain having the same
Burgers vector a/2<110> are placed on the same [111] slip plane. Snapshots (bottom sequence) of the second edge dislocation bypassing an impenetrable
precipitate with D = 5 : 6 nm following the Hirsch looping mechanism. In the first row, atoms on the precipitate surface are rendered in magenta. In the

second row, different dislocations are distinguished by colors [93].

dislocation interactions (Figs. 5(a)—5(c)). Reaction pathways
observed in this work can be used to directly inform allowed dis-
location reactions in DDD models of such material systems. The
rank ordering of interfaces based on slip resistance can furthermore
be used as validation for reduced-order models to ensure that model
forms faithfully reproduce structure/property relations. Study of the
effects of dislocation debris deposited at the interface as a result of
partial slip transmission on subsequent reactions is also important
for the development and calibration of slip-dependent interface
strength evolution terms. These sequential interaction studies are
largely inaccessible to fully resolved atomistic methods due to the
length scales required.

Additional comparisons between CAC simulations and reduced
order models can be achieved via computation in a small neigh-
borhood of relevant continuum quantities from the discrete simu-
lations. Formulations presented by Tucker et al. [109] and
Zimmerman et al. [110] have previously been used to compute
continuum metrics, such as deformation gradient, atomic strain, and
microrotation, which is of relevance to GC theories. Extension of
these formulations to the coarse-grained finite element regions in
CAC should be straightforward. It is also possible to compute dis-
location density on the fly for various slip planes that coincide with
interelement discontinuities from the finite element nodal positions.
Total dislocation density can be computed using the relative position
of FE nodes, and the geometrically necessary dislocation (GND)
density can be computed based on the net Burgers vector over a
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selected Burgers circuit (e.g., given number of elements). These
calculations would be much faster than dislocation density calcu-
lations based on fully atomistic models, such as the dislocation
extraction algorithm (DXA) [111]. This speedup in the coarse-
grained models results both from the reduced number of finite
element nodes compared to the fully resolved atomic positions, and
the richness of information contained in the magnitude of inter-
element discontinuities along slip planes. These topics are being
pursued in an ongoing work.

4.4. Average-atom method for multicomponent systems

The recent development of mean-field or average-atom (A-atom)
EAM interatomic potentials to homogenize multicomponent sys-
tems at varying compositions has presented a promising avenue for
representing bulk alloy properties in CG CAC regions. Average
elastic constants, lattice parameters, and the full generalized stacking
fault energy curve are matched closely by the A-atom representation
[112]. For alloys in which solute strengthening is the primary
mechanism, it is important to capture locally varying strain fluctu-
ations associated with true random solute types. Screw dislocation
mobility calculations [113] shown in Fig. 6 confirm that the locally
varying strain fields associated with heterogeneous solutes in the
lattice are critical in describing dislocation glide behavior and thus
yield strength. Fully A-atom simulations resemble that of pure
metals and show negligible Peierls stress, further illustrating the
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Fig. 4. Position of misfit dislocation junctions along the x-direction for three different indentation steps for (a) Ni/Cu and (b) Cu/Ag. Dashed lines
represent the impingement positions of incoming lattice dislocations generated via nano-indentation. Larger number of indentation steps are associated
with increased proximity of lattice dislocations to the interface and higher magnitudes of induced stress on the interface plane. Incoming lattice dislocation
stress fields cause deformation to the interface misfit patterns for (a) Ni/Cu, as characterized by the movement of misfit dislocation junctions away from
the lattice dislocation impingement position. Arrows indicate the direction of misfit dislocation junction motion. Predictions of slip transmission resistance
based solely on the misfit dislocation density of an ideal interface may overshoot actual values [94].
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Fig. 5. (a)—(c) Atomistic configurations for three different types of Si/Ge semi-coherent interfaces upon their interactions with the first lattice dislocation
originated from Si. ISF: intrinsic stacking fault; PCD: pristine cubic diamond. (d) The local stress for atoms near the interface is plotted with respect to time
for all three types of interfaces. This local stress is the resolved shear stress which drives the lattice dislocation calculated using a new flux formulation for
atomic stress [108]. Peak values relate to the resistance of the interface to slip transmission. The time starts at 20 ps, immediately following the dynamic
relaxation and corresponding to the moment at which shear strain is applied to drive the dislocation motion [107].
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Fig. 6. Dislocation mobility curve comparison computed at full atomistic
resolution using full random and A-atom representation at a fixed com-
position of Fe;oNi;sCris at T = 300K [113].

importance of true solute representations. This finding is also con-
sistent with simulations executed in polycrystalline alloy systems
[114] and other medium entropy alloys [115]. Thus, fully resolved
true random atom types or hybrid potentials in which A-atom in-
teractions with true solutes are fully defined should instead be
applied for simulations probing dislocation mechanisms in solid
solution strengthened alloys.

In light of these observations, CAC simulations were executed
with true multicomponent random solute types and fully resolved
atomistics in a region of interest such as the dislocation glide plane
and core. Away from the critical glide region, coarse-grained CAC
elements are defined using full A-atom types, as shown schemati-
cally in Fig. 7. Employing such a chemical and spatial coarse
graining strategy further decreases the computational cost associated
with energy minimization away from the region of interest due to
the smoothness of the potential energy surface and improves con-
vergence. This is particularly relevant for EAM potentials that define
systems with more than three constituent elements, such as with
medium and high entropy alloys [116]. Molecular statics energy
minimization of the mixed-resolution, mixed-representation model
indicates that there are no spurious stresses associated with the
transition from coarse-grained to atomistic representation and
simultaneously A-atom to true random atoms. This is a significant
improvement over calculations using other domain-decomposition
approaches such as CADD [117] where spurious long-range stresses
manifest at the interface between continuum and atomistic length-
scales. Furthermore, there is no discontinuity in the stress fields
computed in CAC from the true random dislocation core region to
the A-atom CG region. This makes the combined CAC/A-atom
approach a logical application to extended defect length scale
simulations and longer-range stress field interactions due to reduced
computational cost.

4.5. Dislocation mobility

Dislocation mobility laws are very important in DDD simulations,
and A-atom CAC enables the efficient parametric study of funda-
mental dislocation behavior in compositionally complex alloy sys-
tems as a bottom—up approach. Edge dislocation mobilities are
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Fig. 7. Mobility model domain decomposition and ensemble definitions.
Solid blue region denotes free surface boundary conditions. For simulations
of this character, a ~5nm true random atomistic region is typically
employed in the z-dimension [86].

calculated in the FCC FeNiCr ternary system using the Zhou EAM
potential to validate this approach [86]. A-atom/true random hybrid
potentials are derived at three different compositions within the 3XX
range of austenitic stainless steels. Simple velocity-rescaling ap-
proaches [118] are used to control temperature and implement a
constant volume, constant temperature (NVT) ensemble. Mobility
curves showing distinctive solute/phonon drag regions are derived,
and the composition-dependent trends as predicted from solute-
strengthening theory are quantified and closely match the results
from full atomistics. These initial results support the use of A-atom
in future CAC simulations of not only compositionally complex
alloys, but any multicomponent system for which an empirical EAM
potential exists. The application of CAC to extended defect length
scales and heterogeneously distributed obstacle arrays as relevant to
precipitate-strengthened multicomponent alloys is an obvious fur-
ther extension of this approach.

Flow rules that describe thermally activated processes such as the
bypass of individual point defects or chemical short-range order are
employed by crystal plasticity finite element methods to approxi-
mate the underlying microstructural rearrangement at the mesos-
cale. In such approaches, the temperature-dependent flow rule
captures the rate of evolution of dislocation-mediated slip based on
the Kocks—Argon—Ashby form [119, 120], analogous to an
Arrhenius activation process. Similarly, DDD methods may incor-
porate fixed values describing the evolution of dislocation network
structure through cross-slip and bypass [121, 122]. The key pa-
rameter in such inputs is the activation energy barrier, describing the
strain evolution as a function of the applied stress and current
temperature. A number of methods such as the simplified improved
string method [123] the control box method [124], and the NEB
[125] have been developed to quantify the activation energy barrier.
Among these, the NEB method has been most popular due to its
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ease of use and general accessibility (available in public open-source
packages such as LAMMPS [126]. The NEB method calculates a
minimum energy path (MEP) between configurational states in two
local energy minima describing the initial and final state of a unit
process, separated by a saddle point. Displacement continuity and
distance between intermediate “images” along the MEP are enforced
through interconnected spring forces that realize a physically accu-
rate picture of intermediate configurations along the reaction
pathway. Improvements in algorithmic implementation such as
climbing image [102] and free-end [127] variants improve NEB
convergence for processes involving complex transition pathways,
allowing for more precise determination of the saddle point energy.
A transition state with high curvature requires a high density of
images near the saddle point to resolve accurately. This is particu-
larly relevant for stress-assisted, thermally activated processes such
as those of dislocation bypass in FCC metals [128]. Accordingly, the
computational cost of NEB remains high, as each image along the
MEP is effectively an entire independent simulation system that
must undergo constrained energy-minimized (with respect to the
nudging and spring forces).

Such calculations are not limited to atomistic simulations, in fact
the NEB procedure can be directly applied in other reduced order
model forms such as DDD [129] to describe MEP trends at reduced
cost. This requires that the model describes the self and interaction
energies as a function of the dominant kinetic DOF for evolving
attributes of microstructure and a continuous representation of the
reaction pathway. CAC satisfies these requirements and is thus a
suitable candidate for NEB simulations, particularly attractive for
compositionally complex alloys since DOF are reduced significantly
by coarse graining away from regions of interest, e.g., the dislocation
core position and glide planes near critical obstacle bypass reactions.
Simultaneously, the use of A-atom representation in such regions
leads to improved convergence and decreased risk of becoming
trapped in local energy minima [116]. Thus, CAC-NEB is a prom-
ising avenue for further length-scale bridging to mesoscale modeling
techniques. The benchmarking of the combined coarse-grained NEB
and A-atom representation for simple dislocation bypass reactions is
a necessary precursor to applications involving more complex pro-
blems addressed using crystal plasticity.

CAC can be regarded as a continuum method that bridges
between atomistics and DDD since it can address mesoscale dislo-
cation configurations and long-range stress fields, along with
detailed positions of individual dislocation lines. However, unlike
DDD it models partial dislocations naturally and does not require
prescribed rules for dislocation interactions/reactions with other
dislocations, obstacles, or interfaces. Though not emphasized here,
CAC can be used directly to inform nonlocal DDD approaches for
core effects, as well as rules/heuristics for interface reactions and
obstacle bypass.

While the label “crystal plasticity” has typically referred to the
classical local continuum framework outlined by Asaro [130, 131]
that assumes a continuously distributed population of dislocations
moving on close-packed slip systems within a crystalline lattice, a
more general perspective is warranted to address the spectrum of
scales shown in Fig. 1. Atomistics and CG atomistic methods focus
on the scales to the left in Fig. 1, while DDD models focus more on
the mid-left up through dislocation substructures. GC models
attempt to describe key effects of dislocation configuration in terms
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of low order attributes of substructure and extend upward to length
scales to the right in Fig. 1; as such, they are useful for addressing
initial-boundary value problems of dislocation plasticity in
engineering.

It is instructive to consider what kind of overlap may reasonably
be expected between length and time scale regimes between GC
crystal plasticity models from top—down and bottom—up methods
such as CG atomistics and more mesoscopic DDD. We desire to
exploit such overlap to inform GC model parameter calibration by
comparison to bottom—up methods. Bottom—up simulations have a
large number of degrees of freedom to represent individual atoms
(atomistics), collection of atoms (CG-atomistics), dislocations as
distinct phase fields (microscopic phase field MPF models [23—25,
132] at atomic scale resolution, or discrete dislocation lines (DDD).
In bottom—up atomistic or MPF models, dislocations emerge as
lattice defects from atomic scale lattice rearrangement, -either
resolved at lattice spacing or via smeared gradient phase represen-
tations. Fully emergent dislocation processes (e.g., nucleation/gen-
eration) and interactions (long-range as well as short-range
rearrangement reactions) can be modeled.

We consider DDD [27—31] to be appropriately described as a
class of mesoscopic bottom—up model in which dislocation lines are
introduced as objects embedded within a linear elastic continuum
manifold. They are subject to prescribed source, interaction and
cross-slip algorithms, propagate and interact, requiring assignment
of mobility relations, junction strengths, and kinetics of thermally
activated processes. As distinguished from bottom—up CG atomistic
models that can reach to atomic scale and extend to moderate but
limited mesoscales, they are not predictive in terms of atomic scale
reactions. For example, CAC can model dislocation sources, unit
processes of dislocation reactions with other dislocation and ob-
stacles, junctions, and dislocation mobilities in a predictive, bot-
tom—up manner to inform DDD. In DDD, Green’s functions are
employed to superimpose the stress fields associated with long-range
dislocation interactions with the applied stress to compute the
driving force on each segment, subject to overdamped conditions in
a constitutive force—segment velocity relationship. Non-singular,
non-local dislocation core effects on short-range dislocation inter-
actions have been included [133] which improves the description of
short-range interactions. The DDD method has received significant
investment and is therefore maturing in terms of codes that support
mesoscopic simulations, e.g., ParaDiS code [134, 135], and the
microMegas code described by Devincre et al. [136]. Such codes can
be used to study dislocation substructure formation processes that
were heretofore inaccessible, see e.g., Ref. 137.

SCD models offer reduced order continuum descriptions com-
pared to DDD by formulating the governing equations in terms of a
statistical representation of the population/distribution of dislo-
cations [32—49]. These models are more general in addressing
statistical descriptions of dislocation densities than reduced order
GC models and provide understanding similar to that gained from
DDD.

All of these bottom—up methods are computationally intensive
and largely unsuitable for large domains and/or long times necessary
to support engineering analysis of structures or even polycrystalline
or extended multiphase microstructures, etc. On the other hand, we
can consider top—down, reduced order mesoscopic GC crystal
plasticity models for this purpose. Early non-local or micromorphic
GC models of elasticity and plasticity were not framed explicitly in
the context of crystal plasticity and trace back half a century
[138—141]. Advances towards addressing plasticity of crystalline
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materials and dislocation patterning progressed after 1980
[142—144]. In the 1990s, as a first-order approach, GC crystal
plasticity models adopted the lattice curvature induced by GNDs as
the key to enrichment to capture size effects. Early models of strain
gradient type [145—148] embedded the effects of strain gradients
into scalar strength terms. In more recent works, slip system back
stress was linked directly to slip gradients in crystal plasticity and
manifests specimen configuration, loading configuration, size and
boundary effects. Second gradient (plastic strain gradient or slip
gradient) crystal plasticity models regularize the influence of strain
gradients on the material work hardening behavior [50—60]. These
models are applicable to micron length scale problems such as nano-
indentation, torsion and bending of small specimens, and particle
strengthening of dislocations. Being reduced order models, they can
also be applied to much higher length scales, e.g., microstructure
involving multiple grains/phases, although they are considerably
more computationally intensive than standard local crystal plasticity
models. Such models involve tracking slip system shears or shearing
rates as additional variables to facilitate numerical estimation of slip
gradients related to GND densities.

GC crystal plasticity models of strain gradient, micropolar and
micromorphic type have advanced substantially and have been
framed with a more complete basis over the past 20 years. In such
models, complete distributions of dislocation lines are not tracked
nor can they be extracted. GC crystal plasticity models have limi-
tations on length and time scales only by virtue of computational
complexity relative to local continuum theory owing to additional
degrees of freedom. For purposes of the present discussion, we
consider two classes of GC crystal plasticity models

e Plastic strain gradient (slip gradient) crystal plasticity theory, with
focus on the standard generalized thermodynamic formulation of
slip gradient theory proposed by Gurtin [51] as the canonical
exemplar.

e Micromorphic crystal plasticity, with focus on a more simplified
micropolar theory as a subset [66, 70, 149].

Owing to close parallels (with some differences) of these two fra-
meworks [68, 70], in the next section we outline a model for
micropolar crystal plasticity to serve as a basis for overlapping
bottom—up and top—down GC models in concluding remarks.

The linkages between the micromorphic continuum and metal
plasticity were recognized very early by Claus and Eringen [150] and
Eringen and Claus [138]. We may choose to include both micro-
rotations and stretch of director vectors associated with the lattice to
pursue a so-called micromorphic description of crystal plasticity
[64], or only the microrotations (so-called micropolar crystal plas-
ticity). Significant advances in interpreting Cosserat crystal plasticity
[151, 152] led to more complete micropolar crystal plasticity models
[66—70] and micromorphic [61—64, 153] models framed as non-
local extensions of crystal plasticity. Micropolar theory has the ad-
vantage that it does not require gradient or curl operations on the
plastic deformation. Micropolar crystal plasticity [66, 70]is capable
of predicting scale- and dislocation configuration-dependent me-
chanical behavior in single crystals [67, 69], maintains the “stan-
dard” treatment of elastic-plastic thermodynamics within the
context of a higher order work-conjugate thermodynamic approach,
requires fewer nodal DOF than slip gradient-based approaches to
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crystal plasticity, and allows the use of standard C°-continuous
shape functions to incorporate rotation of the lattice director vector.
Relatively simple physically-based micropolar crystal plasticity
models can capture sub-micron size effects in plasticity via incor-
poration of elastic torsion-curvature and an evolution equation for
the plastic torsion-curvature, expressing a yield potential or flow rule
as a combined, single function of the resolved slip system shear
stress and couple-stresses conjugate to GNDs of screw and edge
type. For this reason, the micropolar model receives emphasis here.
In these models, dislocation evolution distinguishes between GNDs
and statistically stored dislocations (SSDs), and the slip system back
stress is naturally related to the skew symmetric part of the Cauchy
stress. Mayeur and McDowell [68] demonstrated close parallels
between the structure of micropolar crystal plasticity presented here
and Gurtin’s slip gradient model [51], apart from differences in
identification of energetic and dissipative length scales and de-
compositions of stress and inelastic strain. Higher order boundary
conditions differ as well, and Forest et al. [64] argue that micro-
morphic crystal plasticity can provide more flexibility in this regard
since the micropolar theory neglects microstretch.

We next summarize the structure of micropolar crystal plasticity
within the context of linearized kinematics, both for simplicity of
presentation and because the model can be applied in this regime to
overlap with bottom—up simulations to facilitate parameter esti-
mation. For the most part, we follow the model framework set forth
in complete detail by Mayeur et al. [70]. In the following, overbars
indicate micropolar kinematic quantities. In the case of linearized
kinematics, the displacement gradient is split into elastic distortion
and plastic distortion

uV = H=H¢+HP. (1)

Identifying the distortion components in this case with respective
micropolar elastic and plastic strains gives

E=uV-® =c°teP=c°+ (W' —®)+&P, 2)
R=¢V=Fr+R" (3)

The three components of microrotation vector ¢ are considered as
additional degrees of freedom in the micropolar model, augmenting
three displacement degrees of freedom. Here, w¢ is the lattice ro-
tation associated with the micropolar elastic strain and @ is the 2nd
rank microrotation tensor with components expressed in terms of its
dual vector QE , ie., <i>,j = —ejik qz_')k, where the permutation tensor
components are identified as ey. While Mayeur et al. [70] have
outlined the context of finite strain kinematics and anisotropic lattice
elasticity, for simplicity we present here the stress—strain relation for
the special case of isotropic linear elasticity

o = Atr(2°)1 + 2p sym(g€) + 2p, skw(g°€), (4)

where A and ¢ have their usual interpretation as Lamé constants, the
latter as shear modulus. This relation can be expressed in terms of
the standard symmetric small elastic strain tensor €°¢ as

o = Atr(e®)1 + 2ue® + 2u.(we — @). (5)

The couple stress—elastic torsion lattice-curvature relation is given
by

m = atr(K°)1 + 25 sym(K°¢) + 2y skw(k°®). (6)

In this formulation, the Cauchy stress is non-symmetric. Non-
standard micropolar elastic constants (i.e., not found in classical
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local isotropic linear elasticity) include p, o, 3 and . The non-
classical elastic constant, i, serves as an internal penalty constraint
used to force the lattice rotation to closely approximate the ro-
tational part of the elastic distortion, leading to the identification of
the micropolar torsion-curvature with the lattice torsion-curvature

skw(®) =skw(H = @) =w* — P = 0= ®. (7)
This facilitates a direct connection between GNDs and associated
scale effects within this framework, as well as direct parallels with
slip gradient crystal plasticity. It should be borne in mind that the
ratio u./p should be large (~ factor of 10) but not infinite; other-
wise, nonsymmetric Cauchy stress would be precluded, and this
component of stress directly gives rise to slip system back stress that
is critical in modeling size effects.

Elastic (energetic) length scales can be defined as £,; = \/0/p,
Ly =+/B/p and f; = +/v/u, and introduce micropolar effects
associated with elastic torsion-curvature (effectively coupled in
elastic-plastic flow slip gradients via the decomposition in Eq. (2)).

The conjugacy of m — K augments the stress—strain conjugacy
found in standard thermodynamics. The thermodynamically con-
sistent framework is laid out in Mayeur et al. [70]. In the absence of
body forces and couples, balance of both linear and angular
momentum must be satisfied

V.ol =0, (8)
V-ml—e:o0=0. 9)

We further assume that the micropolar plastic strain rate is the
plastic distortion rate

(10)

p .
= Z %% @ n.
o

The micropolar plastic strain rate includes both the symmetric and
skew-symmetric parts of the plastic distortion rate.

In this model, as per Forest et al. [154], we assign evolution
equations for the plastic torsion-curvature that relate directly to the
rate of evolution of edge and screw GNDs

- ¥ 90
@3 [rre e, )

- 1
<s ® 8" — EI>]
with specific constitutive assignment of edge and screw GND terms,
respectively, given by
.a o a QD%

=— and o= =,
0G,L bL“l 06,6 bLg\

(12)

where L% and L, are so-called plastic length scales associated with
edge and screw dislocations, respectively. They control the initial
rate of hardening associated with the back stress. After Arsenlis and
Parks [34], the total GND density and its rate are given by

=/(0,1)* + (0& )% (13)

)
QR

. 1 . .
06 =—c(081061+08:065)- (14)

G
In two-dimensional (2D) plane strain problems involving only
geometrically necessary edge dislocations, screw dislocations play no
role and so only L is relevant. We assume generalized normality
and its unconditional satisfaction of the strong form of the
Clausius—Duhem 2nd law inequality, adopting a flow potential or
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yield function for each slip system of the form

F¢=7%—(rg +1r%) <0, (15)

where

= Il + L+ /L (16)
and r§ and r® are the slip system level initial and evolving athermal
threshold stress components, respectively.

The effective shear stress and resolved couple stresses for edge and
screw dislocation populations are given by

Ter =01 (s*@n?), (17)
7l =m: (t*®s7), (18)
o =m: <s“®s“—%l>. (19)
It follows from generalized normality that
Z o OF  nd ¥ = Z o O )

We adopt a power law for the viscoplastic multiplier to express
the shearing rates and GND densities driving the plastic torsion-
curvature on all slip systems as

pon(CTEE
sb‘i:xo(ﬁa_(gr(‘zﬂu)))mﬂf/ﬁ, (22)
PR F

Here, g* is a viscous drag stress, and the athermal threshold stress is

given by
= cipb /Z hedol,

where ,Q? is the SSD density ascribed to slip system 3, and h®’ are
hardening coefficients. As pointed out by Mayeur et al. [70], prior
comparisons to DDD simulations have shown that by assigning
a priori dependence of r* on GND density in micropolar theory
significantly overestimates the strengthening, likely owing to the
natural incorporation of back stress into 7% via 7, as discussed
shortly. This differs substantially from the approach taken in GC
plasticity models that attribute enhanced hardening effects of GNDs
to the evolving threshold stress r*. In our view, it will not be possible
to faithfully model dislocation phenomena in nanostructured mul-
tilayers and other similar systems with this latter kind of GC
approach.

In this framework, as also the case for slip gradient theories, effects
of initial threshold slip system yield strength, r§, are not expressed in
terms of GND densities and may depend on the initial dislocation
source distribution as well as obstacles and interfaces that impede
slip. Rys et al. [153] included GND dependence in the initial CRSS of
slip systems in a micromorphic crystal plasticity model. The role of
the stress gradient on dislocation nucleation was first addressed by
Miller and Acharya [155]. Chakravarthy and Curtin [156] con-
tributed to understanding the effects of the stress gradient on yield
stress for dislocation interaction with obstacles using discrete

(24)
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dislocation theory and formalized the approach in GC plasticity. The
concept was later applied to modeling of fracture using DDD [157].
GC crystal plasticity models that include both stress and strain
gradient effects have been introduced [158, 159]. It is understood
that stress gradients manifest size effects of initial yield stress due to
pile-ups at barriers, while strain gradients manifest size effects in
work hardening associated with GND configurations, so it would be
presumed that an initial GND state would have existed via, prior
deformation or thermomechanical processing. In comparison to
DDD solutions for micron scale field problems, we have found r§ to
correlate with a mean free path length for the initial configuration of
GNDs [69], but do not expect this to be a general result.

SSD density corresponds to the component of dislocation density
having no net Burgers vector over a given volume/Burgers circuit,
and its evolution relations are distinct from that of GND densities.
For example, we can follow the approach of Mecking and Kocks
[160]

. 1/1 o
s = | 7g — 0§ )X (25)
b \I*
where y, is the dislocation annihilation distance, and the mean free
path given by

(RS- (26)

[ aveg
Jé)

with K as an average dislocation junction strength with interaction
matrix a®’. The plastic multiplier is given by

-0 . . .
A= W 100 + 15 (27)

As mentione% by Mayeur et al. [70], the evolution of SSD density is
driven by A rather than slip system shearing rates 7* alone,
resulting in scale dependent isotropic hardening that was found to
better mimic DDD simulations.

The effective shear stress is given by

Teg =8*-0-n%=s% [sym(o) + skw(o)] - n®. (28)

Alternatively, this can be written as

Ta =T"—Th, (29)

7% =% sym(o)-n® and
1 30
Tg:—s“-skw(o-)-n“:—Et“-(V-mT). (30)

The slip system back stress therefore emerges naturally as the skew
symmetric Cauchy stress resolved onto the slip system; it is sub-
tracted in Eq. (29) from the classical resolved shear stress based on
the symmetric part of Cauchy stress. In Eq. (30), t* = s® x n%, and
the last term arises from balance of angular momentum in the
absence of body couples. The slip system back stress is directly
linked to lattice torsion-curvature gradients, taken in conjunction
with Nye’s relation [161]; this is in direct analogy to Gurtin’s slip
gradient theory [51].
Compatibility in this case of linearized kinematics is given by

curl(uV) = 0. (31)
The dislocation density tensor a is defined by
a = —curl(H®) = curl(HP) (32)
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and can be related to slip gradients via

=1 04 b @t +0b.b" @5, (33)
o

where the slip gradients projected onto the glide directions are
defined as

1 1
—= and %o = ZV'y“ -t (34)

0GL == V"8t
As mentioned earlier, the lattice torsion-curvature relations in
micropolar theory not only depend on the tensor ¢, but also involve
the elastic lattice torsion-curvature, the last term on the RHS in the
expression

k=—al + %tr(a)l + [curl(e®)]T. (35)

We note that the first two terms on the RHS in Eq. (35) are classical
terms that arise in slip gradient theory [161, 162]. The elastic tor-
sion-curvature is added within the micropolar framework and is
assigned as a state variable in the thermodynamic free energy.
Additional Neumann and/or Dirichlet microboundary conditions
must be specified for the microtraction vector M associated with

couple stress m and the dual vector for microrotation, ¢
M=m-n=M"on dR,,, (36)
¢ =¢" onIR;. (37)

In many problems, a microhard condition ¢ = 0 can be applied, or
one can simply assert continuity of fields of microrotation across
domains or periodic boundaries, depending on the problem. Both
slip gradient plasticity (dislocation flux) and micromorphic plasticity
theory have more generality in this regard, but nonetheless physical
interpretations of higher order boundary conditions remains a
challenge for these GC crystal plasticity models; hence, minimization
of complexity is desirable. We remark that dislocation flux relations
for interfaces are challenging not only for GC models, but even for
bottom—up DDD models; recent progress is being made in coupling
information from atomistics to inform dislocation—grain boundary
interactions [163], but this is a very high dimensionality problem
that likely will require application of data science methods to
advance significantly. Moreover, as discussed earlier, even atomistic
models are not immune to uncertainty in their prediction of dislo-
cation reactions at interfaces owing to multiple issues such as free
volume, changes of electronic structure owing to disorder and free
volume, empiricism in potentials, etc.

We next briefly highlight the application of the foregoing micropolar
crystal plasticity framework to 2D plane strain dislocation field in-
itial-boundary value problems that facilitate direct comparison
with DDD simulations. Along these lines, Mayeur and McDowell
[66, 67, 69] have shown that micropolar crystal plasticity can
effectively mimic DDD type solutions for bending of single crystal
thin films, simple shear of constrained thin films, and particle
strengthening, respectively. The micropolar model was indepen-
dently calibrated for each boundary value problem by fitting to both
average (e.g., stress—strain curves) and microscopic (e.g., dislocation
density distributions) deformation behavior. It was demonstrated in
an early work [149] that fitting to multiple aspects of the
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deformation behavior is necessary to obtain a unique set of micro-
polar constitutive parameters. Across all applications for single
crystal Al, the linear elasticity is idealized as isotropic with a shear
modulus and Poisson’s ratio of 26.3 GPa and 0.33, respectively. The
couple modulus 4, is assigned as 263 GPa for all cases, a factor of 10
greater than p. The Burgers vector is fixed in magnitude at 0.25 nm.
Drag stress ¢ and inverse rate sensitivity m are fixed at 5 MPa and
20, respectively, for all applications. Effectively, parametric simu-
lations are conducted to consider couple stress constants and GND
related parameters £, L, = L, along with the initial threshold
stress r, to correlate micropolar theory with DDD simulations. For
some problems, the hardening matrix h*’ (along with initial SSD
density) and dislocation interaction matrix a%’ are employed, while
for others only GNDs are assumed to exist. The interested reader can
refer to Refs. 66, 67, 69 and 70 for more details.

An example of the application of micropolar crystal plasticity to
shear of a 1-um thick constrained thin film of single crystal
aluminum is shown in Fig. 8. The film is oriented for symmetric slip
with thickness, H =1 um. Only edge dislocations are considered

CG atomistic modeling of dislocations and generalized crystal plasticity

[67]. The upper and lower surfaces are constrained against vertical
displacement, impenetrable to dislocations in the DDD simulations,
and treated with microhard boundary conditions in the micropolar
model. The fits and are in good agreement with the discrete dislo-
cation results. Fit 1 uses slightly higher threshold hardening (mean
free path coefficient K; = 16.67 versus K, = 18.18), whereas fit 2
has a larger contribution from gradient kinematic hardening
(¢, = 15nm versus £, = 10 nm for fit 1). The plastic length scales of
both fits were assumed as 45nm. The hardening and interaction
matrices for SSD effects were assumed to follow the simple form
h*? = g*8 = %% Comparison of the shear strain distributions
shown in Fig. 8 shows relatively close agreement with DD simu-
lations of Shu et al. [164] as well.

Simulations of a submicron-scale particle reinforced aluminum
matrix system subjected to 2D shear were conducted by Mayeur and
McDowell [69] and are further illustrative of the capabilities of the
micropolar model to mimic DDD. Here, comparisons are made with
the DDD simulations of Yefimov et al. [165]. The periodic unit cell
shown in Fig. 9 consists of stiff elastic (¢ = 192.4 GPa and v = 0.33)
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Fig. 8. (a) Geometry and boundary conditions for finite element analysis of planar double slip under imposed shear I" of a constrained thin film using
micropolar finite element simulations (simple single criterion strength model) for H = 1 um. Results for simulated shear strain distributions in solid lines
across the cross section (b) are compared with (dashed lines) discrete dislocation modeling results [164] as a function of imposed simple shear, and (c) the
micropolar simulations of average shear stress response as a function of the imposed shear T" (solid lines) are compared with the discrete dislocation

results (jerky trajectory) [67].
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Fig. 9. Periodic unit cell (x, direction) for geometry and slip system
configuration for the aluminum matrix—particle reinforced system in
constrained shear [70].

particles arranged within a ductile single crystal. Single slip occurs in
the x; direction. The elastic and plastic length scales are assigned as
125 nm. A range of cell sizes H = 0.5C, C, and 2C are considered,
where C =4000b = 1 um, since b= 0.25nm for the aluminum
matrix. Two cases are considered, labeled as Material I and Material
II; they have the same particle area fraction, but Material I has
square particles with Wy = Hy = 0.416H, providing a direct path-
way for unobstructed slip. Material II has rectangular particles with
2W; = Hy = 0.588H, resulting in blockage of slip. The micropolar
elastic constants (i, and () for the inclusion and matrix phases are
set equal as just one particular choice that simplifies the simulation.
SSDs are excluded in the micropolar simulations, and accordingly no
related hardening due to SSDs is incurred, nor can slip system in-
teractions occur. The initial dislocation density was set to zero. For
the DDD simulations, dislocation sources were randomly distributed
and source strengths were determined by randomly sampling from a
Gaussian distribution with a mean nucleation strength of 50 MPa
and a standard deviation of 10 MPa.

The system is subjected to simple shear through displacement
boundary conditions applied to top and bottom surfaces, and these
surfaces are assumed to be couple stress traction free. Periodic
boundary conditions are enforced on displacements and micro-
rotation at the left and right surfaces. The average overall shear
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stress—strain response of the unit cell is shown in Fig. 10(a).
We clearly observe the blocking effect of the particles resulting in
strain hardening for Material II and essentially perfectly plastic
behavior for Material I, with its unlimited mean free path for slip in
the x; direction. The strengthening in Material II is governed by the
development of back stress, as evidenced by the pronounced Bau-
schinger effect, while unloading is essentially elastic for Material I.
The average stress—strain curves predicted by the micropolar model
(solid lines in Fig. 10(a) are in good agreement with the discrete
dislocation results during forward loading; however, the Bauschinger
effect for Material II is significantly overstated, perhaps owing to
differences in details of the DDD and micropolar models, as well as
the assigned equality of higher order constants at the parti-
cle—matrix interface. As pointed out by Mayeur et al. [70], it is
assumed that the lattice rotations at the matrix—particle interface are
equal and therefore the finite element nodes along the
matrix—particle interface are shared between the two materials. This
represents a different boundary condition than what is enforced at
the matrix—particle interface in the DDD simulation, one of the
continuity of displacement and zero slip at the vertical parti-
cle—matrix interfaces. The micropolar constants in each phase can
be modified to explore improvement in correlation by modifying
microrotation across the interface. It is also remarked that the
micromorphic crystal plasticity formulation has yet more DOF in
specifying these interface conditions owing to the inclusion of
microstretch along with microrotation, see e.g., Refs. 64 and 153.

Figure 10(b) shows the average shear stress—strain curves for
Material II for three different unit cell sizes. We found that it was
necessary to use different r, values to obtain good agreement with
the discrete dislocation results; the calibrated values of r, for the
three cases (13, 21 and 30 MPa, respectively) show strong correlation
with a standard Hall—Petch relation for r, based on the initial mean
free slip length for each case. Cumulative plastic slip and dislocation
density also compare well between the micropolar and DDD
simulations [70].

We note that the micropolar crystal plasticity simulations outlined
here have considered 2D deformation for submicron-scale problems
with simple boundary conditions for which size effects are pro-
nounced. Of course, the 2D case is a simplification to facilitate
comparison with DDD, focusing on edge dislocation populations of
GNDs. The reader will note that a significant fraction of the struc-
ture of the micropolar crystal plasticity parallels advanced
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Fig. 10. Average shear stress—strain response for (a) Materials | and Il for H = C and (b) Material Il with variable slip threshold for different particle
spacings for the same particle area fraction. Dashed lines represent discrete dislocation results [165] and solid lines are micropolar results [70].
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dislocation density-based crystal plasticity approaches of local type,
with many parameters in common. The total number of such
common parameters is limited and most can be informed to lie
within some reasonable range on a physical basis. For this reason,
such approaches are preferred over more abstract reduced order
frameworks. However, the number of parameters associated with the
additional DOF of these GC crystal plasticity models increases as we
move to 3D problems. The foregoing 2D plane strain comparisons
between DDD and micropolar crystal plasticity have assumed iso-
tropic linear elasticity, a single elastic length scale ¢, = ¢,, = {3, and
a single plastic length scale L, = L since screw dislocations need
not be considered. Moreover, all make the estimate y;. ~ 10 u. The
primary parameters involved in fitting DDD simulations in such
cases are the set {r,, K, /,,L,}. This enables traditional parametric
study of parameter sensitivity and identification of higher order
parameters. In the 3D case of micropolar crystal plasticity for iso-
tropic linear elasticity, these include

e Elastic length scales: £,; = \/0/p, by = /B/p and €3 = \/v/ 1

e Plastic length scales: LY and L¢
e Couple modulus: s,

Clearly, the 3D case requires a more complete set; moreover, con-
sideration of anisotropic elasticity for crystals would increase the
number of elastic constants (and associated length scales) con-
siderably. Accordingly, extension to 3D can appear daunting.
However, the attractive feature of micropolar crystal plasticity
remains that only three additional DOF (microrotation vector) need
be considered, and these are subject to ordinary FE interpolation
schemes. There is no need to evaluate slip gradient or curl oper-
ations. Moreover, the micromorphic crystal plasticity theory adds
only the microstretches. One must then ask whether the machinery
of slip gradient plasticity leads to far superior specification of
interface and interface boundary conditions than these GC models.
The answer is not certain in all cases.

In the next section, we suggest a methodology that may preserve
some of the desirable aspects of the micropolar crystal plasticity
model framework, building on parameter estimation by comparison
with DDD simulations considered to this point, and extending in
some fundamental ways via CG atomistics. Moreover, inference-
based data science methods can be exploited to assist in estimation
of higher order micropolar model parameters, interface conditions,
and boundary conditions. Similar comments would apply, of course,
to the estimation of additional parameters related to slip gradient
models.

Parameter identification/estimation and interpretation of higher
order boundary conditions is one of the challenges of thermo-
dynamically consistent GC crystal plasticity models, including
micromorphic and micropolar crystal plasticity, since they involve
additional DOF and additional boundary conditions that may lack
clear physical interpretation. However, it should be borne in mind
that any nonlocal GC model leads to such complications. Moreover,
atomistic simulations and DDD simulations have similar limitations
in terms of applying boundary conditions that seek to faithfully
represent physical experiments. In the micropolar model, elastic
(energetic) material length scales are introduced via the couple stress
elastic constants and plastic (dissipative) length scales are introduced
in the flow rule. We may distinguish characteristic elastic length
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scales associated with dilatation and shear relative to lattice orien-
tation even for isotropic linear elasticity, unlike slip gradient theory.
Moreover, screw and edge dislocations in micropolar theory have
distinct characteristic length scales in affecting lattice torsion-cur-
vature. These length scales can potentially be estimated via cali-
bration to bottom—up models (CAC) that has long-range field
interactions and full (elastic and plastic) lattice curvature. That being
said, elastic and plastic length scales that normalize micropolar
elastic constants and slip gradient terms may depend on specific
initial-boundary value problems of interest, since these models are of
reduced order nature and do not have the capability to distinguish
between higher order spatial statistics of dislocation configurations.
It is unrealistic to think of them as material constants or fixed
parameters. Accordingly, a similar strategy can be pursued wherein a
number of different experimental configurations with associated
strain gradients can be considered, e.g., torsion of thin wires [145,
147], nanoindentation [148], specimens with various notch radii,
etc., to establish parameter estimates that relate to applications of
interest. Without such top—down information, avenues for param-
eter estimation are limited.

It should be borne in mind that GC crystal plasticity theories of
slip gradient type or micropolar/micromorphic type are by defi-
nition limited to low order representations of higher order spatial
statistics of dislocations and to linearization of lattice hyperelasticity.
A bottom—up CG atomistic model such as CAC is useful to inform
the mesoscale micropolar model for the following reasons:

e The underlying elastic potential is hyperelastic (solely based on
the interatomic potential) and the kinematics are general; hence,
CG atomistic simulations can be employed to estimate micropolar
elastic constants and length scales using simulations that impose
lattice curvature. This is similar to ideas set forth by Luscher et al.
[166] to estimate elastic constants in GC models for defected
media subjected to higher order deformation modes (e.g., twist
and gradient stretching). As a result, the estimation of elastic
length scales can be systematically approached by considering
distinct higher order deformation modes that solicit different re-
spective modes of lattice curvature. This can also be performed via
application of CG atomistics to lattices with pre-assigned GNDs
and associated plastic curvature. As elastic length scales are typically
smaller than plastic length scales, this can also engender some
understanding of how these scales may evolve as a function of GND
density. Since the elastic length scales reckoned for the micropolar
model based on comparison to DDD have been on the order of tens
to a few hundred nm, presumably CG atomistic simulations can be
conducted that are sufficiently large to explore them, as well as
degree of coupling with pre-existing GND arrays. Since elastic
curvature is a consideration only for micromophic and micropolar
theories, it can be considered as an aspect that is distinct from slip
gradient theories. It may be interesting to consider implications.

e Plastic length scales can be explored for somewhat higher domain
sizes, also using comparisons to DDD simulations.

e Couple stress at mesoscales in such a model can be explored on
the basis of both near core interactions of dislocations in close
proximity (short-range) and long-range polarity of stress field
interactions of sub-populations with different net Burgers vector.
The former might have consequence at higher dislocation density.
It is directly related to elastic lattice torsion-curvature and is
relieved/accommodated by plastic curvature. It may be the case
that the micropolar curvature-related length scales for low and
high GND densities differ in ways that could be explored via
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extended atomistics. These capabilities of CG atomistics resonate
with the micropolar framework.

e No assumptions are made in CAC regarding dislocation junction
strengths, generation of dislocations from sources, or work
hardening parameters.

Bottom—up DDD simulations are useful in complementary manner
to inform the mesoscale micropolar model

e DDD simulations can consider larger mesoscales (e.g., up to a few
microns) encompassing substantial populations of dislocations,
including both SSDs and GNDs.

e DDD simulations can more reasonably reflect finite temperature
dislocation mobility and thermally-assisted dislocation generation
and junction formation-breaking aspects, albeit by necessity
resorting to certain ad hoc representations of these processes/
mechanisms. Hence, certain slip system kinetics parameters of
GC crystal plasticity models can potentially receive useful infor-
mation. Of course, experiments are the typical benchmark for
informing kinetics.

e Back stress acting on populations of dislocations can be computed
via sorting out of long-and short-range elastic interactions of
dislocations, so its prominent role in field problems involving
dominance of GNDs can be assessed and used to inform
micropolar models. In this way, plastic length scales affect
strengthening for different characteristic classes of problems (e.g.,
multilayers, particle reinforcement, polycrystals, etc.) that can be
considered.

e The dependence of the initial slip yield strength on dislocation
mean free path and source spacing can be readily investigated by
initial assignment of dislocations and sources, which is much
easier to explore parametrically using DDD than CG-atomistics.

Finally, we comment that it is unlikely that the kinds of manual
comparisons we have outlined in the 2D micropolar-DDD param-
eter studies will be the desired methodology as we move into the
future. Use of data science (e.g., machine learning (ML)) techniques
to fuse information from top—down experiments with these bot-
tom—up models to inform GC crystal plasticity models in the pre-
sence of uncertainty is essential. In contrast to historical pathways,
we do not over-emphasize the input from physical experiments, as
their interpretation often effectively involves adoption of a reduced
order model used to interpret their results, as well as uncertainty
arising from imposed boundary conditions, measurement error,
limitations on spatial and temporal resolution, etc. Moreover,
physical experiments are costly. The highest utility experiments will
include limited bulk specimens with more emphasis on in situ
measurement methods that target highly uncertain model infor-
mation/parameters, details of behavior at material interfaces or at
other boundaries, full field information, etc. There is one con-
temporary line of argument that by resolving experimental
measurements to scales approaching tens of nanometer and storing
enormous amounts of information concerning evolution of GND
density, etc., it may be possible to inform GC crystal plasticity
models directly. While this could be true to some extent, the in-
terpretation of these experimental data relies on model assumptions
similar to those made in DDD and further exploits temporal and
spatial averaging, either explicitly or implicitly. It is challenging to
see a clear path forward to distinguish experiments involving elastic
and plastic lattice torsion-curvature, given the expense associated
with very different in situ experimental protocols to explore con-
sideration of additional DOF in GC models; the relatively lower
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costs of CG atomistics and DDD might argue for their utility in
forming the “backbone” of assessment of model form and parameter
uncertainty in GC crystal plasticity models.

Naturally, physical experiments are preferred for their support of
kinetics of nonequilibrium processes and estimate of the first-order
model parameters, as has been exploited extensively in the past for
local crystal plasticity models. Moreover, physical experiments have
a way of shedding light on the efficacy of certain simplifying but
erroneous assumptions that can be made in GC models, such as
assigning elastic and plastic length scales summarily as “material
constants” independent of the initial-boundary value problem.

We close this section with a brief set of suggestions for estimating
parameters in GC crystal plasticity models based on reconciliation of
bottom—up input from CG-atomistics and DDD simulations, as
well as physical experiments, using micropolar crystal plasticity as a
reference framework for GC models. We refer to experiments as
“top—down” even if they resolve measurement of certain quantities
at fine scale, since they are focused on (potentially) full field ob-
servations of selected field quantities and do not attempt to measure
all discrete attributes (as in atomistics or CG atomistics or DDD
simulations). This work highlights specific CG atomistics methods
that extend to dislocation field problems and can address lower
mesoscales of applicability of GC crystal plasticity models, over-
lapping with DDD models at the mesoscale; we trust that it may
inspire future works in both estimation of parameters and forms of
GC crystal plasticity models to improve their prospects for incor-
poration in toolkits of engineering analyses. The suggestions are as
follows:

(1) Submicron-scale field problems dominated by GND effects are
key to linking scale parameters of micropolar theory with bot-
tom-up CAC and DDD model results. Field problems with
dimension of the order of 1 um with dislocations and hetero-
geneity that induce lattice curvature of both elastic and plastic
nature are desirable. Reduction of ambiguity of boundary con-
ditions and interface conditions is desirable (e.g., impenetrable
boundaries and periodic boundaries). Examples may be found
in prior DDD simulations and include

(i) Plastic flow between plane parallel plates with various
widths

(ii) Torsional plastic flow of a constrained disk between par-
allel elastic plates

(iii) Matrix flow through an array of periodic and non-periodic
elastic phases with impenetrable interfaces, both 2D and
3D

(iv) Indentation of a frictionless rigid surface (e.g., cone and
sphere) on a deformable half space

(2) Uniaxial experimental data for elasticity and crystal plasticity of
single crystals, when available, or of polycrystals, can assist with
more standard crystal plasticity model parameter estimation,
including kinetics and strain hardening beyond the dominate
GND strengthening regime.

(3) ML approaches such as Gaussian process regression (GPR) with
Bayesian inference and uncertainty estimation for surrogate
models and for calibration of model parameters [167-169] can
be used to consider information more objectively from bottom-
up modeling methods in assessing likelihood of parameter
estimates based on multiple sources of information. In moving
from 2D to 3D simulations to support more complete parameter
estimates for GC crystal plasticity models, the additional
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parameter fitting/estimation can become overwhelmingly too
complex to be undertaken based on human intuition. Limited
traditional regression approaches are unlikely to yield useful
estimates of pareto-optimal parameter sets for each type of
application.

(4) Top-down experimental information can be fused with the
bottom-up information, either via their incorporation in GPR
or other ML scheme, or via some kind of weighted bottom-up
and top-down strategy that considers uncertainty of infor-
mation; either bottom-up information can be assigned weighted
preference owing to less mesoscale uncertainty, or the notion of
an interscale discrepancy layer can be introduced intended to
capture any aspects of missing physics [170].

It is our view that the fusion of information from bottom—up
model simulations with top—down experiments using advanced data
science strategies will form the basis of a foundational and perhaps
transformational advance in the understanding, quantification,
identification, and application of GC crystal plasticity models in the
coming decade. Much progress has been made in this regard just in
the past 15 years owing only to high performance computing, largely
absent contributions from advanced data science tools. With the
addition of ML approaches, for example, new kinds of hierarchical
multiscale parameter estimation schemes will emerge in the next
decade. It is possible we will see the emergence of “smart” modeling
platforms that learn to distinguish among model forms and par-
ameters for different classes of characteristic modeling problems.
Although this manuscript does not attempt to foray deeply into the
realm of data science, some recent works give some insight into
possible future directions for GC crystal plasticity models. A bold
proposition is to use ML as an engine for “data-driven compu-
tational mechanics,” with the goal to learn and then augment or
supplant solvers for field problems, provided constraints are added
to minimize error associated with the governing balance equations
of physics [171]. Such approaches may be highly effective for gov-
erning equations adjoined with simple constitutive models, such as
those commonly employed in linear and nonlinear elastic structural
mechanics. Capuano and Rimoli [172] demonstrated that the error
in solving even simple truss problems using this kind of data-driven
approach may be reduced substantially by enforcing frame indif-
ference as a constraint in ML, along with shape functions and his-
tory dependence, resulting in so-called smart finite elements. In
more recent work, Logarzo et al. [173] demonstrated another prong
to such a strategy by developing smart constitutive laws based on
ML, that are trained by the kinds of information that we have often
used to evaluate constitutive laws and fit parameters that can be used
in lieu of traditional constitutive models to insert directly into finite
elements codes as material subroutines. For history dependent
continua such as metals, and for purposes of modeling behavior of
microstructures/mesostructures, such an approach likely requires
additional constraints associated with the physics of dislocations.
Such data science strategies might excel at recognizing patterning of
dislocations and considering configurations of net Burgers vector
that give rise to GND strengthening, for example. A significant
challenge for such approaches will lie in enforcing or framing
thermodynamically consistent formulations (with proper work
conjugacy of generalized forces and fluxes) and faithful
input—output relations for chemo-thermomechanical coupling and
multiphysics. It will be interesting to see if viable methodologies
for size-dependent and microstructure-sensitive ML GC crystal
plasticity will emerge in the coming decades.
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In our view, potentially even more transformation may be the
development of viable physics-constrained ML approaches [174]
that could serve as GC crystal plasticity models, considering various
model simulations and experimental information in the training
process. Perhaps they will provide a superior means to objectively
negotiate tradeoffs of the value of information from various models
and experimental data by considering uncertainty of various sorts in
ways that humans, intrinsically predisposed to certain viewpoints
and biases, are less able to exercise, even with the introduction of
quantitative methods to estimate model parameters. Certainly, the
notion that a deep learning strategy can result in a model that is
much broader than any single framework (i.e., model form gener-
alization) is attractive. On the other hand, at this stage one can only
speculate regarding the potential of smart GC crystal plasticity
models. It will be interesting to consider what the role of GC models
might be, either as an intermediate step towards such trends in
modeling, or by serving as a skeletal generalized framework on
which to constrain the training of such data-driven tools. The reader
will note that we have placed particular emphasis on bottom—up
models to inform mesoscale modeling, performed within the fra-
mework of GC models. Experimental information has not been
heavily involved in this process, serving more as a constraint on
fitting constitutive models framed at mesoscales. It is possible that
smart GC models based mainly on experimental information
(including very large in situ datasets) will offer purely interpolative
(and necessarily limited) capabilities, while those infused with a
range of bottom—up model information may have somewhat
broader applicability owing to the wider range of parameter space
that can be explored.

In this paper, we have provided an overview of the CAC method and
its application to a wide range of coarse-grained atomistic simu-
lations of dislocations in crystals. A reduced order GC crystal
plasticity approach making use of micropolar theory inspired by
Eringen’s early work is outlined for 2D plane strain problems, and a
possible strategy for combined use of CAC and DDD to inform
model parameters is described for submicron-scale field problems.
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The CAC method is a coarse-grained atomistics approach based on
the two-level basis + lattice description of crystalline materials, i.e., a
crystal is discrete at the atomic level, but continuous at the lattice
level. The original Irving and Kirkwood approach [75, 76] was
extended by Hardy [175] to calculate continuous local densities from
discrete particles in a many-body system

a(z,t) = iA(r,p)é(Rk -2z). (A1)
P

Here, the §-function serves as the localization function that links any
dynamic function in phase space A(r,p) to an equivalent local
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density function in real space a(z,t). Chen [9] extended this to a
system containing N; unit cells and N, atoms per unit cell. The
ensemble-averaged local density function can then be given in
physical space as

N, N,—1
a(x,y,t) <2 ZA rk@vkg

where vectors X, y, respectively, denote the large- and small-scale
location variations in physical space, vector r denotes the location of
the unit cell, and Ary, denotes the position of atoms in that unit cell.
Expressing Eq. (A.2) in terms of the per unit cell volume V of cell k
located at x

N /N,
a(x,t) = Z <ZA ke, vk£)> Oy (x — 1) Za x,t). (A.3)
k=1

=1

—ry)oly — Ark5)>7 (A2)

The contribution of the ath atom to a(x, f) in a volume element of
Vo(V =3, V,) can be further defined as

N N,
= ZZA("knge)év(x — ri)ove(y — Arg)

k=1 =1
=a(x,y,t).
The delta functions serve as box functions, which are defined on the

specific unit cell and are zero elsewhere; similarly, they are defined for
the target atom in the unit cell and are zero elsewhere

(A4)

1 (1 ifx—r,eV,
— =— i A.
by(x—ry) V{O ifx—r, ¢V, (A-5)
_ (1 ify—ArgeV, orf{=q,
braly — Arie) = {O ify—Ar &V oré#a. (A.6)

Chen et al. [128] defines a(x,y,t) as an atomic-scale local density
function. Averaging over discrete time stepping intervals At as in
typical MD simulations, the equations for local contribution to mass
density, momentum density, and energy density become

N, N, B
= Z Z mkfév(x

_rk)SVa(y_ Arkf): (A'7)
k=1 &=1
PaVal Zzﬂmg"kg&/ (x =)oy (y — Arge),  (A8)
Zi:( mgka—i—@kf)b ( —rk)
1 é=1
X Byaly — AFyg). (A9)

Here, 8y, 0y, are the averages of &y, 8y, respectively, over the time
interval At. @y is the site potential energy which can be computed, for
instance, using an empirical interatomic potential. Time evolution of
conserved quantities can then be expressed in terms of a lattice-level
flux J; and atomic-scale flux J, as

0 B ,
g =~ fpecrxo s
1
5 B By mds,
V]I ov,

Here, n is the outward unit normal vector, and 9V, 9V, are the unit
cell and internal dividing surfaces, shown schematically in Fig. A.1.
Flux J, does not cross the surface OV.

(A.10)
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J1
1%

Fig. A.1. Schematic showing the division between external unit cell flux
and internal unit cell flux.

The integral form of Eq. (A.8) for conservation of mass can be
given as

Zimkt

151

Na _ o
+ ;;mkﬂsv(x - rk)E(SVa(y — Ary)

1
S “n ds
V#avpav "

19} _
Epa(xa t) = (X —r)bye(y — Ary)

1
- _# pa(va - V) -n ds,, (A’ll)
V JJ av,
where v = 9x/0t and v, = p,/p,. Stated more succinctly
dp
B: ==V, (puV) — qu (P AVy). (A.12)
Similarly for linear momentum
8 U.VU.
% =V, (ta — PV ® (V+ Ava))
+vya' (Ta_paAvu®(V+ Avq)) +fext- (A.13)

where f . is an external force field, and ¢, and 7, are the momentum
flux through OV and 9V, respectively. Energy flux is then written as

I(pyea)

ot =V, (qa + ta(v + Ava) - Vpae(x)

+vya'(i(1+7-(1’ (V+ AV“) -
+fext ) (V + Ava)7

Avdpﬂe(l)
(A.14)

where q,, and j, are the heat flux vectors through 0V and 9V, re-

spectively. By substituting the conservation equations into the linear
momentum equation, we arrive at the governing equation of CAC

. in ex 1 in
pult = £ +£2°00) + 5, fp et
v

1 kin
+ — # To dSy,
Vu ov, o o,

where t5 and 75" denote the kinetic stresses.

(A.15)
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The development of the CAC governing law, presented in previous
section, follows Chen et al. [128]. The primary difference in this
work results from the method of solution. The finite element im-
plementation in this work extends the work of Xu et al. [18] to allow
for multiple internal unit cell DOF. The finite element method can
be used to solve equation (A.15), with the weak (Galerkin) form over
an element,

/// Sr}(paua - i?t - ZXt —fg:)dV =0.
Ve

Here, S, represents the FE shape function, f* is the internal force
density contribution of ath atom, £ is the external body force field
acting on the oth atom, and f I'is the force associated with tem-
perature. When using energy minimization to approximate quasi-
static conditions or quenched dynamics that drive the temperature
to zero in conditions without external body forces, this governing
equation takes the simplified form

/// S?](/)(l.uﬂ - iam)dvz 0.
Ve

Much of previous published work using CAC utilizes trilinear shape
functions of the form

(A.16)

(A.17)

1
Snzg(liX)(lﬂ:n)(liO7 (AIS)
where x, 17 and ( are natural coordinates. Within an element, the
displacement vector of the ath atom at position x can be interpolated
from the nodal positions

ﬁa(xv t) = Sf(x)Uf(x(t)v

where S;¢(x) denotes the value of the shape function of node ¢ at
position X and Uy, () denotes the displacement of the ath atom at
node &. Equation (A.17) can then be split into two parts. The first
part can be converted to the matrix form

/ / / S, (X)pySe(X)Ugy (£)dV = MR
Ve

Here, R** is a 3 X N, matrix representing the nodal displacements
at time ¢, with the number of nodes per element being Ny, and M is
the Nppe X Nype mass matrix

M= /// S,(X)pySe (x)dV

In the previous expression the shape function terms, S,(X) and
S¢(x), are 1 X Ny, vectors. The second term in the equation can be
replaced by a quadrature with the form

Nige
/ / / S,f AV = WSy o
v, m

Here, w),, represents the quadrature weight in terms of the force
density for the ath atom, Nj,. is the number of integration points per
element, S, is a 1 x N, matrix containing the shape function
values for each node at the quadrature point position, and f,, is a
1 x 3 vector representing the internal force density at the quadrature
point for the ath atom. While the integration point can be any
material point within the finite element, defining the quadrature
points for the oth atom as actual atoms allows for a more

(A.19)

(A.20)

(A.21)

(A.22)
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straightforward calculation with the quadrature force being related
to the atomic force via

Fro

f;m = m (A23)

Here, F#* is defined as the atomic force vector for the ath atom at
the integration point unit cell and 2/ is the volume of the uth
integration point. Combining expressions (A.20), (A.22) and (A.23)
into (A.17) leads to

ane
MR =" w,S,F'" =0 (A.24)
I
with a new quadrature weight term
!
w
w, = Q—f (A.25)

Numerous choices of quadrature points, p, and weights, Wy, are
possible; however, it is required that the summation of weights
equals the number of unit cells per element. Integration points must
be carefully selected as the local force density function/can be a
highly non-linear function of x. Furthermore, the local force density
can have large degrees of variation within a finite element, as the
element surface is more sensitive to external influence than interior
atoms. This variation can be seen, for instance, in the case in which a
dislocation propagates between finite element discontinuities. The
variation of force/energy density fields is contained primarily within
a few layers of unit cells near the surface of the finite elements. Unit
cells within the finite element interior have mostly homogenous
force/energy densities. Overcoming this can be done, as proposed by
Xu et al. [18], by splitting the finite element region into subregions
which are assumed to have quasi-constant local force densities
except at the boundary between subregions. The governing equation
of CAC then takes the form

Nope  Nips

MR =3 "> " w8, Fr =0, (A.26)
Yoo

where N, is the number of subregions per element and N, is the

number of integration points in each subregion. Further notes on
this splitting of finite elements into subregions are found in Ref. 18.
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