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ABSTRACT: This paper attempts to enhance our understanding of the causes of Atlantic multidecadal variability (AMV).

Following the literature, we define theAMVas the SST averaged over theNorthAtlantic basin, linearly detrended and low-

pass filtered. There is an ongoing debate about the drivers of theAMV,which include internal variability generated from the

ocean or atmosphere (or both) and external radiative forcing.We test the role of these factors in explaining the time history,

variance, and spatial pattern of the AMV using a 41-member ensemble from a fully coupled version of CESM and a

10-member ensemble of the CESM atmosphere coupled to a slab ocean. The large ensemble allows us to isolate the role of

external forcing versus internal variability, and the model differences allow us to isolate the role of coupled ocean circu-

lation. Both with and without coupled ocean circulation, external forcing explains more than half of the variance of the

observedAMV time series, indicating its important role in simulating the twentieth-century AMVphases. In this model the

net effect of ocean processes is to reduce the variance of the AMV. Dynamical ocean coupling also reduces the ability of

the model to simulate the characteristic spatial pattern of the AMV, but forcing has little impact on the pattern. Historical

forcing improves the time history and variance of the AMV simulation, while the more realistic ocean representation

reduces the variance below that observed and lowers the correlation with observations.

KEYWORDS: Atlantic Ocean; Ocean circulation; Sea surface temperature; General circulation models; Climate vari-

ability; Multidecadal variability

1. Introduction

Atlantic multidecadal variability (AMV; Kerr 2000) has a

significant regional and hemispheric impact on climate, nota-

bly the number of Atlantic hurricanes and precipitation in the

Sahel, northeast Brazil, the central United States, and northern

Europe (Folland et al. 2001; Goldenberg et al. 2001; Knight

et al. 2006; Latif et al. 2007; Sutton and Hodson 2005; Zhang

and Delworth 2006). There is ongoing debate about its causes,

which generally fall into two points of view. One, articulated

most recently in a review paper by Zhang et al. (2019) and the

large number of papers cited therein, is that changes in the

strength of the Atlantic meridional overturning circulation

(AMOC) cause changes in the upper-ocean temperatures.

Another is that the changes observed in the twentieth century

are mostly driven by changes in external forcing (greenhouse

gases, anthropogenic aerosols, and volcanic eruptions), which

set the pace and amplitude of the twentieth-century AMV

(Otterå et al. 2010; Booth et al. 2012; Murphy et al. 2017;

Bellucci et al. 2017; Bellomo et al. 2018; Birkel et al. 2018;

Undorf et al. 2018; Watanabe and Tatebe 2019; Mann et al.

2020). This does not discount atmospheric circulation vari-

ability and the role of stochastic forcing by the dominant mode

of variability in the North Atlantic, the North Atlantic

Oscillation (NAO), on the ocean. The AMV has been de-

scribed as both an upper-ocean thermal response to NAO

forcing, a mechanism that does not require a dynamic ocean

(Clement et al. 2015; Cane et al. 2017), and, in other accounts,

as a lagged response to AMOC variability driven by the NAO

(McCarthy et al. 2015; Delworth and Zeng 2016; Delworth

et al. 2017; Mecking et al. 2014; Wills et al. 2019; O’Reilly et al.

2019), a process that requires dynamic coupling between the

atmosphere and ocean. Klavans et al. (2019) recently argued

that while the latter relationship is evident over a limited re-

gion (i.e., the subpolar gyre) in coupledmodel simulations with

constant forcing, introducing variable external forcing ob-

scures this relationship. In addition, modeling studies have

demonstrated that the AMOC might be forced (Cheng et al.

2013; Tandon and Kushner 2015; Undorf et al. 2018; Menary

et al. 2020).

Most of the arguments for thesemechanisms rely on climate

model simulations. Attribution studies are fairly straightfor-

ward in the case of external forcing: compare a simulation

of Atlantic climate without changes in external forcing

(preindustrial control runs) to those with a best estimate of

radiative forcing over the industrialized period (historical

simulations). The difference is attributed to forcing, but the

forced simulations will also have an unforced component. A

more decisive method for quantifying the role of forcing is

with a large ensemble (Knutson et al. 2013; Kay et al. 2015).

In this approach, a large number of simulations are performed
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with a climate model that is forced with identical external

forcing, but with changes in the initial conditions (Deser et al.

2020). The features of the climate simulation that are com-

mon to all ensemble members (typically as measured by the

ensemble mean) can be attributed to forcing with reasonably

high confidence, and differences among ensemble members

are due to internal climate variability. Using these methods,

previous studies have shown that in CMIP5 models the timing

of the forced shifts in the AMV are consistent with observa-

tions and that there is more variance at multidecadal time

scales with forcing than without (Clement et al. 2015; Murphy

et al. 2017; Bellucci et al. 2017; Bellomo et al. 2018)—with the

important caveat that almost all existing model simulations

underestimate the AMV magnitude. Models may also re-

spond too strongly to external forcing (Kim et al. 2018) leading

to an underestimate of the role of internal variability in the

AMV. Other methods of estimating the relative roles of ex-

ternal forcing and internal variability from a multimodel en-

semble have found that there is an important contribution

from internally generated variability to the AMV (Ting et al.

2009, 2015; Yan et al. 2019), indicating that the specific methods

for extracting the externally forced signal can affect the

interpretation.

Attributing AMV-related changes is much more difficult for

the AMOC. Continuous observations of the AMOC strength

only extend back to 2004, and come from the RAPID array

across 248N (McCarthy et al. 2015). However, it is unclear to

what extent the AMOC signal represents local wind-driven

ocean circulation variability (Zhao and Johns 2014) rather

than internal interhemispheric AMOC variations in heat

transport (Larson et al. 2019). So attributing surface tem-

perature variability to AMOC requires looking for the

signatures of the AMOC in climate models. Some of these

include spatial patterns in surface and subsurface tempera-

ture (Frankignoul et al. 2015; Wills et al. 2016; Zhang 2008),

correlations between AMOC indices and SST (Delworth and

Mann 2000; Danabasoglu et al. 2012; Tandon and Kushner

2015), or correlations between SST and surface fluxes and

salinity (Gulev et al. 2013; O’Reilly et al. 2016; Zhang 2017;

Yan et al. 2019). Many of these relationships have been in-

terpreted to imply an active role for the ocean circulation,

which is then taken as evidence that the ocean circulation is

the main driver or a necessary component to get the correct

SST response to the driver. However, much of this work is

done in coupled models where determining causality can be

problematic, especially when model data are heavily filtered

to extract the low-frequency variability, and this filtering can

impact the interpretation of leads and lags in both models and

observations (Trenary and DelSole 2016; Cane et al. 2017).

Using a simplified model, where causality can be determined

by design, Li et al. (2020) showed that ocean dynamics are re-

quired to produce multidecadal SST variability consistent with

observations, but this analysis was restricted to the extratropical

North Atlantic, and also did not attribute the ocean’s role to

the AMOC.

Herein, we present an experiment designed to isolate the

roles of both external forcing and ocean dynamics on the

AMV. The tools we use to address the causality conundrum are

an existing ensemble of historically forced simulations with a

fully coupled model, the CESM, for the period 1920–2005

(LENS-FC), an existing ensemble of millennium long simula-

tions with the same model (LENS-LME), and simulations for

1920–2005 with a new 10-member ensemble of the same at-

mospheric general circulation model coupled to a motionless

slab ocean (LENS-SOM). Our strategy is to compare the

characteristics of the AMV in the fully coupled model with

those in the slab oceanmodel (SOM) to see how the addition of

the ocean changes the model performance as measured by

comparisons with observations. When we began this investi-

gation, we anticipated answering the following questions:

1) How much of the observed AMV is forced by historical

forcing and how much is internal to the climate system?

2) How is the historically forced response made more realistic

by adding a fully coupled ocean?

3) Howmuchmore internal multidecadal variance is added by

including an ocean?

Questions 2 and 3 are premised on the notion that the fully

coupledmodel simulationswill bemore realistic than those from

the SOM. The SOM lacks ocean dynamics, mixed layer physics,

and a treatment of salinity. Insofar as these are essential for the

AMV (as defined by SST) then the SOM simulations must fall

short of the fully coupled version. By construction, the SOMhas

far less realistic physics so we expected its simulations to be in-

ferior. This expectation was not borne out.

a. Methodology

In this paper, we use the term AMV to denote low-

frequency Atlantic SSTs, regardless of whether it is internal

or forced, since both are present in observations. There are

different ways to calculate the AMV in the literature (e.g., Yan

et al. 2019; Frajka-Williams et al. 2017; Frankignoul et al. 2017;

Knight 2009; Ting et al. 2009). All apply a low-pass filter, al-

though the nature of the filter is not always specified. Most are

detrended. The two most common methods used are those of

Trenberth and Shea (2006) or of Enfield et al. (2001). The

former removes the global SST average from 608S to 608N
while the latter removes a simple linear trend in SST. The

definition used is important since the Trenberth and Shea

(2006) method shows a transition to a negative AMV just after

2010 that has been theorized to be due to a weakening of the

AMOC (Smeed et al. 2014; Robson et al. 2016). The Enfield

definition shows the AMV is still positive (Frajka-Williams

et al. 2017). In Murphy et al. (2017) we found that the

Trenberth and Shea (2006) method removed not just the linear

part of the greenhouse gas forcing but also the changes asso-

ciated with aerosols and volcanic eruptions. Here we are in-

terested in the broader drivers of AMV, both natural and

externally forced, so we adopt the Enfield definition in our

analysis.

b. Model simulations

We perform climate model experiments following the

methodology of the National Center for Atmospheric

Research (NCAR) Community Earth SystemModel (CESM)

Large Ensemble Project (LENS-Fully Coupled or LENS-FC;
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Kay et al. 2015). LENS-FC consists of a 41-member ensemble

of fully coupled climate model simulations that covers the

historical period (1920–2005). Version 1 of CESM includes

the Community AtmosphereModel version 5 (CAM5), which

has updates in the ways it represents aerosol–cloud interac-

tions. In addition to aerosol direct and semidirect effects,

CAM5 simulates aerosol indirect effects, which was not done

in earlier versions of the model (Hurrell et al. 2013). Other

studies (Booth et al. 2012; Bellucci et al. 2017) have argued

that aerosol indirect effects are important for explaining the

time history of the AMV in other models. This experimental

design has the utility of being able to test the impact of in-

ternal variability on the results, which is especially important

in the study of multidecadal variability where observational

records only contain a few phases.

In our new simulations we replace the dynamical oceanmodel

with a slab ocean model (LENS-SOM), where the ocean heat

transport convergence is prescribed as a q-flux. The q-flux is

calculated using output from the last 100 years of a 2200-yr-long

CESM fully coupled preindustrial (PI) control simulation. The

mixed-layer depth is calculated as the average boundary layer

depth from the same PI control run. It varies spatially but not

seasonally. LENS-SOMuses the same dynamic-thermodynamic

sea ice model that is used in the fully coupled model (Bitz et al.

2012; described in more detail at https://www.cesm.ucar.edu/

models/cesm1.1/data8/doc/SOM.pdf). As in the LENS-FC each

ensemble member is forced with the same observed estimates of

historical forcing (i.e., greenhouse gases, tropospheric and

stratospheric aerosols, land use changes, etc.). Each of the 10

members of the LENS-SOM ensemble is created by perturbing

each member’s initial atmospheric state (i.e., temperature is

perturbed at the level of round-off error), as was done in LENS-

FC. This 10-member LENS-SOMensemble is then compared to

the 41-member ensemble from LENS-FC. A comparison of

these two ensembles allows us to isolate the influence of internal

ocean dynamical changes on the AMV.

Note that since all of the members of the LENS-FC en-

semble were forced with the same ocean initial conditions,

internal oceanic variability does not result from differing ocean

states. To explore this effect, we examine the Last Millennium

Ensemble (LENS-LME; Otto-Bliesner et al. 2016), which is a

fully coupled 13-member ensemble of CESM at 28 resolution
that was initialized in 850 CE. Each LME ensemble member

was forced with the same time variant changes in observed

historical forcing, but with small changes in the atmospheric

initial conditions. We also analyze the last 901 years of the

1000-yr-long preindustrial (PI) SOM simulation (PI-SOM) and

the last 1801 years of the 2200-yr-long PI-FC simulation.

c. AMV index

We define the AMV in the classic manner of Enfield et al.

(2001) and Kerr (2000), as the linearly detrended, area-average

SST anomalies over the North Atlantic Ocean. Those early

AMV papers were interested in the AMV for its influence on

climate, including hurricane frequency and landfall, and rain-

fall in North America. Our focus on SST is similarly motivated.

Since we are interested in multidecadal variability, we apply a

10-yr low-pass (LP) Butterworth filter to the data, but we also

show the unfiltered data in our figures below. We also tested

the impact of the filter length on our results. When we speak of

‘‘variance’’ or ‘‘correlation’’ it should be understood to be for

the low-pass data unless it is explicitly stated otherwise. The

SST anomalies are calculated by removing the monthly mean

SST and then averaging over each annual cycle. We define

AMV indices as the average SST in three regions: the AMV

(08–608N, 808W–08), the AMVmid (408–608N, 808W–08), and
the AMVtrop (08–208N, 808W–08). This is done for each

individual ensemble member of the LENS-FC 41-member

ensemble, the LENS-SOM 10-member ensemble, the LENS-

LME 13-member ensemble, and observations. The ensemble

mean (EM) is calculated by first averaging the SST data in each

grid cell over all members of each ensemble and then averaging

over the appropriate regions to obtain the AMV, AMVmid,

and AMVtrop indices. Since they are linear operations, one

gets the same answer if we first average each ensemblemember

spatially and then average over the ensemble members. The

EM is the best estimate of the response to the common external

forcing. We estimate the internal, or unforced, AMV by re-

moving the EM AMV from each individual member. The

difference in the internal AMV in SOM versus the FCmodel is

due to internal ocean dynamics that are absent in SOM. The

difference between the FC and SOMEM values is attributable

to the ocean’s response to forcing, which is absent in SOM.We

will also have need of the mean variance over all ensemble

members, denoted the mean over the ensemble (MOE) vari-

ance. The MOE variance includes the variance due to internal

variability (the departures from the ensemble mean) while the

EM variance does not; it is based on the ensemble mean value

(i.e., the forced response).

In the results below, we test the null hypothesis that the

reported correlation coefficients are equal to zero. When cal-

culating the degrees of freedom for this test we account for the

autocorrelation of the time series; if the time series has N

values, we reduce the degrees of freedom toN/(2L), whereL is

the integral (sum) of the autocorrelation coefficients over 50

lags (Anderson 1942; Dawdy and Matalas 1964; Leith 1973;

Zar 1999). We chose 50 lags because this value is well beyond

the first zero crossing of the autocorrelation in all cases. The p

values and the reduced degrees of freedom (Neff) reported for

the EM correlation coefficients are based on this test. In ad-

dition, we perform two-sample F tests for equal variances on

the time series of the AMV.

d. Estimating variance

We make unbiased estimates of the forced variance s2
F and

the mean internal variance s2
I :

s2
F 5s2

EM 2
(s2

MOE 2s2
EM)

(J2 1)
,

s2
I 5 (s2

MOE 2s2
EM)1

(s2
MOE 2s2

EM)

(J2 1)
,

where J is the ensemble size, s2
MOE is themean variance over all

ensemble members, and s2
EM is the variance of the ensemble

mean (Table 1). These formulas are standard, though usually

phrased in terms of signal and noise rather than forced and
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internal. A short derivation is included in the online supple-

mental material.

e. Observational data

Observed SST is from theNationalOceanic andAtmospheric

Administration (NOAA) Extended Reconstructed Sea Surface

Temperature version 5 (ERSSTv5) (Huang et al. 2017).

ERSSTv5 extends from 1854 to the present; however, we use

the time period 1920–2005 to be consistent with the LENS

simulations. All model data are bilinearly interpolated to

the observational 28 3 28 grid. SST variance in ERSSTv5 is

compared to version 4 of the same dataset (ERSSTv4; Huang

et al. 2015), COBE SST2 data (Hirahara et al. 2014), and the

Hadley Centre Sea Ice and SST dataset version 1.1 (HadISST;

Rayner et al. 2003) for the same time period. We found

minimal differences between versions 4 and 5 of the ERSST

SST variance and thus we do not include ERSSTv4 results in

the graphics.Additionally, the observed, unfiltered variances are

similar among the observed datasets and thus we only show the

ERSSTv5 variance values. Atmospheric data including sea level

pressure (SLP) and surface winds are taken from the NOAA

CIRES twentieth-century reanalysis version 2c, which includes

monthly sea level pressure (SLP) and 1000-hPa wind data

(Compo et al. 2011). We linearly detrend, remove the long-term

mean, and low-pass filter the data (the same postprocessing that

was applied to the SST data) before calculating the regression

coefficients (coefficients are shown in Fig. 5). As discussed in

Deser and Phillips (2017), observations in the North Atlantic

suffer from incomplete and uneven coverage especially prior to

1970, which may impact our results.

2. Results

Figure 1 shows the LP filtered AMV for the three different

regions analyzed. The LENS-FC fails to reproduce the AMV

cool phase evident in the observations in the first decade from

1920 to 1930. LENS-SOM is closer to the observed values es-

pecially in the AMVmid region. We note that the ocean heat

transport in LENS-SOM was calculated based on the 1850 PI

control simulation, which causes the SOM to start out at a

cooler state. Not only does LENS-SOM start out cooler but it

remains cooler over the length of the simulation (see Fig. S1 in

the online supplemental material). All simulations fail to

capture the 1940s warming in one of the observational datasets

(ERSSTv5) but this simulated–observed discrepancy is not

evident in the other observational datasets (COBE SST2 and

HadISST). The absence of volcanic aerosol forcing and in-

creasing trend in both CO2 and solar forcing from the late

1920s to 1960 is thought to contribute to theAMVwarm period

(Birkel et al. 2018). Following this relatively clean (i.e., low

aerosol) period and warm phase of the AMV, a series of strong

volcanic eruptions beginning with Mount Agung in 1963 and

higher anthropogenic aerosol loading are thought to contribute

to the AMV cool phase that lasted from 1960 to the mid-1990s

(Otterå et al. 2010; Wang et al. 2017; Birkel et al. 2018; Booth

et al. 2012; Bellomo et al. 2018; Bellucci et al. 2017; Undorf

et al. 2018; Watanabe and Tatebe 2019; Qin et al. 2020). In the

model simulations the AMV cool period occurs a decade

earlier (in the 1960s) compared to the observed AMV minima

found in the 1970s. These results are similar to the CMIP5

models (Murphy et al. 2017). The post-1990s warming is better

represented in the LENS-SOM ensemble mean compared to

the LENS-FC and LENS-LME, which typically show a leveling

off of the warming or even a cooling beginning near year 2000,

whereas in observations the trend continues upward.

a. AMV phasing

Figure 2 shows the Pearson correlation coefficient between

the observations and each ensemblemember (openmarker) and

the EM (enlarged and filled in marker; this is the forced AMV)

TABLE 1. Statistics of LP filtered Atlantic SSTs from 1930 to 2005 for LENS-SOM, LENS-FC, and observations. Correlations are

Pearson correlation coefficients of the model ensemble with observations. The EM denotes the ensemble mean; it is the best estimate of

the model response to the imposed historical forcing. The label MOE denotes the mean correlation or variance over all ensemble

members. The EM (adjusted) and internal (adjusted) are unbiased estimates of the variances as described in section 1a and derived in the

online supplemental material. The observed values are based on ERSSTv5. The cells that are italicized are our best estimates of the

partitioning between forced and internal variance in the observations, and are uncertain. The statistics are for area averages over AMV

(08–608N), AMVmid (408–608N), and AMVtrop (08–208N).

AMV (08–608N) AMVmid (408–608) AMVtrop (08–208N)

SOM FC OBS SOM FC OBS SOM FC OBS

Correlations

MOE 0.67 0.59 0.55 0.50 0.41 0.29

EM 0.80 0.75 0.79 0.74 0.50 0.48

Variance explained (EM) 64% 56% 62% 55% 25% 23%

Variances (8C2)

MOE 0.038 0.011 0.026 0.120 0.027 0.065 0.028 0.015 0.023

EM (adjusted) 0.025 0.007 0.017 0.051 0.012 0.040 0.018 0.005 0.006

Internal (adjusted) 0.0133 0.004 0.010 0.069 0.015 0.024 0.010 0.009 0.017

Percentage forced 66% 60% 64% 42% 44% 62% 64% 36% 25%

Percentage internal 34% 40% 36% 58% 56% 38% 36% 64% 75%
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for the periods 1920–2005, 1930–2005, 1940–2005, 1950–2005,

and 1960–2005 for both the unfiltered and 10-yr LP filtered

AMV index. While the LENS-FC correlations are typically

lower than LENS-SOM for the full period, they become

closer if the first decade, which is too warm in the LENS-FC, is

removed. For 1930–2005 the LP filtered EM correlation co-

efficients increase to 0.75 in LENS-FC (p , 0.05, Neff 5 5)

and 0.80 in LENS-SOM (p , 0.02, Neff 5 6). The unfiltered

correlation coefficients for the EM are also similar between

the models (0.60 and 0.62 for the FC and SOM, respectively,

p, 0.10). Thus, adding the more realistic physics of an active

ocean that is able to respond to external forcing makes the

model’s simulated time history slightly less like the observed

AMV time series. As expected, we found increasing correlation

coefficients for longer filter lengths and, in general, over time.

The LENS-SOM values remained slightly higher than those for

LENS-FC.

Historical forcing makes the time history of the simulated

AMV more realistic in both ensembles, as evidenced by large

filtered correlations of observations with the EM compared to

the lower correlations generally found in each member. While

the mean correlation coefficients over all ensemble members

are 0.59 for LENS-FC and 0.67 for LENS-SOM, respectively,

the mean correlations between observations and the implied

internal AMV (i.e., the AMV in each ensemble member minus

the EM) are near zero for both models (not shown) as well as

for the LME. This was expected, since on average random

noise is uncorrelated with any signal. We found similar results

in the PI simulations when we calculated the correlation co-

efficients between the observed 1930–2005 LP filtered AMV

and 76-yr chunks of the 1801-yr-long PI-FC simulation (123 r

values) and the 901-yr-long PI-SOM simulation (58 r values)

separated by 14-yr intervals to account for autocorrelation.

The mean correlation coefficients are 20.011 (2s 5 0.621)

and 20.002 (2s 5 0.533), and the maximum correlation coef-

ficients are 0.62 and 0.47, in PI-SOM and PI-FC, respectively.

Thus, the chance that the correlation coefficients in the PI

simulations are equal or greater than the EM is less than 1 in

123 in the FC and less than 1 in 58 in the SOM. This indicates

that internal variability alone is very unlikely to produce a time

history consistent with observations [as previously argued in

Murphy et al. (2017)]. Correlation coefficients are roughly as

high in AMVmid as they are for AMV (Fig. 2b), but are much

lower for AMVtrop (Fig. 2c). It is well known that this region is

influenced from outside the Atlantic, especially by ENSO.

Even models that simulate these physics cannot be expected

FIG. 1. Time series of 10-yr low-pass filtered and detrended (a) AMV (08–608N, 808W–08), (b) AMVmid (408–
608N, 808W–08), and (c) AMVtrop (08–208N, 808W–08) over the historical period from 1920 to 2005. The solid red

line shows the LENS-FC ensemblemean and the LENS-FC ensemble spread is depictedwith light red shading. The

solid blue line shows the LENS-SOM ensemble mean and the LENS-SOM ensemble spread is depicted with light

blue shading. The solid green line shows the LENS-LME ensemble mean and the LENS-LME ensemble spread is

depicted with light green shading. The observed ERSSTv5 (solid black line), observed COBE SST2 (dashed black

line), and observed HadISST (dotted black line) AMV time series are also drawn.
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to duplicate the phasing of the observations. And ENSO-like

low-frequency variability can arise in slab models as well

(Dommenget 2010; Clement et al. 2011).

If we include the entire simulation (1920–2005), the en-

semble mean correlation with observations in the LENS-FC

goes down from 0.75 to 0.59 (p , 0.20, Neff 5 5). Our initial

hypothesis, which we subsequently rejected, was that errors

in the ocean initial conditions (which are the same across all

ensemble members in LENS-FC) degrade the correlation,

but that this effect is essentially removed after discarding the

initial 10 years as model spinup. We rejected it on the basis

of the 13-member Last Millennium Ensemble (LENS-LME;

green markers) that covers the period from 850 to 2005. The

range of correlation values for 1920–2005 within these al-

ternate ensembles are similar to LENS-FC and they all ex-

hibit the same the same warm bias around 1920 (green and

red lines in Fig. 1). This suggests that it was not the particular

initialization of the LENS-FC historical runs, but instead

that the coupled model is too warm in 1920. It is an open

question on what caused the early-twentieth-century cool

phase of the AMV. It has been argued that this unusual cold

coincided with higher volcanic activity in the late nineteenth

and early twentieth centuries (Birkel et al. 2018), and it is

possible that the forcing imposed in themodel underestimates

the true forcing. It is also possible that the cold state in the

early twentieth century was produced by internal processes

in the climate system, such as a strong positive phase of the

NAO (Visbeck et al. 2001; O’Reilly et al. 2019). However,

Bellomo et al. (2018) showed that the none of the LME

members produce the persistent cold phase in the early

twentieth century, suggesting that this cold phase is un-

likely to arise from internal processes. However, there is

the possibility that internal variability in this model is

too weak.

An ensemble size of 10 appears to be large enough to di-

agnose the role of external forcing on AMV phasing. In

Fig. 2d, we analyze the impact of different ensemble sizes in

LENS-SOM, LENS-FC, and LENS-LME on the EM LP fil-

tered correlation coefficients for the period 1930–2005. For

each ensemble size (n) we choose 10 000 random draws with

replacement of n ensemble members to create an ensemble

mean. We do this for 1 to 10 members of LENS-SOM (blue

line), for 1 to 41 members of LENS-FC (red line), and for 1 to

13 members of LENS-LME (green line). The error bars

represent the standard deviation of each ensemble mean

value over the 10 000 random samples. Initially, there is a

FIG. 2. Correlation coefficients between LENS-SOM (left group in each panel), LENS-FC (center group), and

LENS-LME (right group) and the observed 1920–2005 (squares), 1930–2005 (upward-pointing triangles), 1940–

2005 (circles), 1950–2005 (diamonds), and 1960–2005 (downward-pointing triangles) for the unfiltered and

detrended (cyan, magenta, and green) and 10-yr low-pass filtered and detrended (blue, red, dark green) (a) AMV

(08–608N, 808W–08), (b) AMVmid (408–608N, 808W–08), and (c) AMVtrop (08–208N, 808W–08). Each individual

member’s correlation coefficient is shown as an open marker and the ensemble mean (EM) value is shown as an

enlarged and filled in marker. Note that the y-axis limit is different in (c). (d) Correlation coefficients vs ensemble

size n5 1:N, whereN5 10 in LENS-SOM, N5 41 in LENS-FC, andN5 13 in LENS-LME over the period from

1930–2005. The solid line indicates the mean correlation coefficient and the error bars their standard deviation

calculated from 10 000 random samples of size n.
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rapid increase in the ensemble mean correlation coefficient.

More than 90% of the total enhancement in correlation co-

efficient occurs within five members of the full ensemble.

In the 41-member ensemble of LENS-FC, the correlation

coefficient between the EM and the observed AMV is 0.75

(60.016). In the 10-member ensemble of LENS-SOM, the

average EM correlation coefficient is 0.78 (60.031). To better

compare the ensemble values, we examine 10 000 random

selections of 10-member subsets within LENS-FC and LENS-

LME. The average correlation coefficient of these 10 000 10-

member ensembles of LENS-FC is 0.73 (60.033) and in

LENS-LME is 0.70 (60.038). This shows that after neglecting

the first decade in LENS-FC, the forced responses in all the

ensembles are not distinguishable at about the 95% level.

Using the 1920–2005 period, the mean correlation of our

10 000 10-member ensembles is 0.57 (60.044) in LENS-FC

and 0.56 (60.042) in LENS-LME. LENS-SOM has a higher

correlation of 0.73 (60.032).

b. AMV magnitude

We find that the AMV amplitude is reduced when we add an

active ocean. Figure 3 shows that in all three averaging regions,

at all time scales, the North Atlantic SST variance is larger in

LENS-SOM than in LENS-FC.

First, we will discuss the unfiltered data: Outside of the

tropics, in almost all individual cases, the LENS-SOM unfil-

tered SST variance is typically higher than the unfiltered ob-

served (black dashed line; the F test shows significant

difference at the 95% confidence level), while the LENS-FC

unfiltered SST variance is lower than the unfiltered observed

FIG. 3. Unfiltered and detrended (cyan, magenta, green) and 10-yr low-pass filtered and detrended (blue, red,

dark green) (a) AMV (08–608N, 808W–08), (b) AMVmid (408–608N, 808W–08), and (c) AMVtrop (08–208N, 808W–

08) variance for the LENS-SOM (left group in each panel), LENS-FC (center group), and LENS-LME (right

group) over the period 1920–2005 (squares) and 1930–2005 (triangles). Each individualmember’s variance is shown

as an open marker and the ensemble mean (EM) value is shown as an enlarged and filled in marker. The black 3
andwhiskers denotes the 10-yr low-pass filtered and detrended variance of the internal AMV. The internal AMV is

calculated by subtracting the ensemble mean (EM) AMV from each individual member. The observed 10-yr low-

pass filtered variance over the 1930–2005 period is represented by the gray horizontal bar, which represents the

variance calculated from three datasets: the ERSSTv5, COBE SST2, and HadISST. The unfiltered ERSSTv5

variance (1930–2005) is indicated by the horizontal, dashed black line. Note that the y-axis limits vary among (a)–c).

(d) Variance vs ensemble size n5 1:N, where N 5 10 in LENS-SOM, N 5 41 in LENS-FC, and N 5 13 in LENS-

LME over the period from 1930–2005. The solid line indicates the mean correlation coefficient and the error bars

their standard deviation calculated from 10 000 random samples of size n.
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(with the exception of one member in the AMVmid region,

again significantly different at the 95% confidence level)

(Fig. 3). In the tropical region LENS-FC is likely strengthened

by its active dynamics, including influences from ENSO, while

LENS-SOM variance is diminished there by the lack of an

active ocean, which may help to make the two ensembles more

similar to each other. There are some differences between

LENS-LME and LENS-FC variance, particularly in the

tropics. These are the samemodel version but LENS-LME is at

coarser resolution.

It has been argued that that on decadal and longer time

scales, SST variability is driven through changes in oceanic

heat transport (Bjerknes 1964; Buckley et al. 2014; Zhang

2017). Thus, one might expect that with an active ocean,

LENS-FC would have greater low-frequency variability than

the LENS-SOM. This did not occur. On multidecadal time

scales, the LENS-SOM ensemble spread typically overlaps

with the observed SST variance (Fig. 3, gray bar), although the

mean variance over all ensemble members (MOE variance) is

clearly higher for AMV and for AMVmid and only slightly

higher for AMVtrop (see Table 1 for numerical values). In

contrast, the LENS-FC MOE variance is far weaker than ob-

servations in all three regions (Fig. 3 and Table 1). An F test

shows that at the 95% confidence level the LENS-SOM MOE

variance is indistinguishable from the observed variance in the

AMV and AMVtrop but unequal to the observed in the

AMVmid, whereas the LENS-FCMOE variance is unequal to

the observed variance in all three regions (all at the 95%

confidence level). As is true for individual ensemble members,

the EM variance (i.e., the externally forced variance) is far

smaller in LENS-FC than in LENS-SOM; the active ocean

damps the forced response. The mean internal multidecadal

variability (calculated as the MOE variance minus the EM

variance) is also weaker for LENS-FC compared to LENS-

SOM in AMV and AMVmid and about the same in AMVtrop

(values in Table 1). However, as a percentage of the total

variance the internal variance is higher in LENS-FC than in

LENS-SOM in AMV andAMVtrop (see Table 1). Thus, while

the comparison of the two ensembles indicates that the active

ocean damps both forced and internal variability, this damping

is relatively greater for the forced component than for the in-

ternal component. Since the slab ocean is too variable com-

pared with observations some damping from an active ocean is

clearly required, but LENS-FC greatly overdoes it: for AMV

and AMVmid the average LENS-FC ensemble member has

less than half of the observed variance. All of the individual

members show less variance than the observed AMV. The PI

AMV variances are both lower than in the corresponding

historically forced runs (which average 0.014 and 0.006 in the

PI-SOM and PI-FC ensembles, respectively). This indicates

that historical forcing enhances the variance consistent with

Murphy et al. (2017). As in Fig. 2d, in Fig. 3d we show that the

LENS-SOM ensemble is large enough to evaluate the ensem-

ble mean variance relative to the 41-member LENS-FC, so the

difference in variance is due to model physics, and not the

different ensemble size.

We wish to see how much of the total variability is attrib-

utable to multidecadal variability. To do so we examine the

ratio of low-frequency (i.e., 10-yr LP filtered) to total (unfil-

tered) variance in our ensembles and in observations for the

period 1930–2005 (although conclusions are similar to the full

period), as well as for the unforced PI simulations. In obser-

vations, ERSSTv5 and HadISST produce similar ratios (0.62

and 0.64), while COBE SST2 gives a value of 0.72. The mean

ratio over all ensemble members of multidecadal to total var-

iance is 0.54 in LENS-SOM (with a range of: 0.50–0.61) and

0.48 in LENS-FC (with a range of 0.27–0.67). The observations

have a higher percentage of low-frequency variability, but we

cannot say if this results from a stronger response to external

forcing or from greater multidecadal internal variability. If we

remove the forced variability from the models by subtracting

the EM, these ratios are comparable for the two models: 0.31

for the LENS-SOM (with a range of 0.22–0.41) and 0.28 for the

LENS-FC (with a range of 0.14–0.43). The PI ratios are just

slightly higher: 0.37 for PI-SOM and 0.33 for PI-FC. Thus, ei-

ther without forcing or with the forced signal removed, the

model with an active ocean has about the same percentage of

its variability at low frequencies as the model without an active

ocean, indicating that in this model, the ocean has a limited role

in enhancing multidecadal variability of the AMV. An inter-

pretation consistent with these findings is that the low-

frequency variability is just the low-frequency component of

the response to forcing from the NAO, which Wunsch (1999)

and Stephenson et al. (2000) have shown to be indistinguish-

able from white noise. Moreover, we have seen that the AMV

variance is much weaker in the model with an active ocean,

indicating that the strongest effect of the model ocean is to

dampen variability, whether it is forced, total internal, or low-

frequency internal variability. The tendency for the coupled

model to reduce multidecadal variability compared to the

SOM, as evidenced by the wider range in ratios, was unex-

pected and difficult to reconcile with its more complete physics.

Kim et al. (2018) proposed that the weak multidecadal vari-

ability in both theAMVandAMOC inCESMwas due to weak

multidecadal NAO variability driven by deficiencies in the

atmospheric model or the coupling between the model com-

ponents. However, the NAO power spectra are indistinguish-

able between LENS-SOM and LENS-FC, casting doubt that

the atmospheric model is to blame (Fig. S2).

The averaged SST metrics in Fig. 3 show that the absence of

ocean processes produces too much SST variability, while the

net effect of inclusion of ocean processes in this model pro-

duces too little variability. If the model’s AMOC time scale

and magnitude are unlike the real world, this has the potential

to dampen the AMV response since the active ocean will move

warm water northward at the wrong time. This damping role

for the ocean was also found to weaken AMV power in PI

simulations of CESM (Garuba et al. 2018). A net damping may

arise from vertical entrainment of water from beneath the

thermocline (Frankignoul 1985). Efficient vertical turbulent

mixing can thus modulate SSTs anomalies in LENS-FC while

this mechanism, in addition to advection and diffusion, are all

absent in LENS-SOM. However, there is considerable spatial

structure to the differences in simulated variance between

these two models (Fig. 4) and between each model and ob-

servations (Fig. S3). In particular, there are parts of the North
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Atlantic where LENS-FC does simulate more low-frequency

variability than LENS-SOM.Zhang (2017) argued that in some

regions, the effect of ocean dynamics is large enough to over-

come the overall damping effect of ocean mixing. This effect is

missed in metrics that average over large regions of the ocean.

It is difficult to discount the tropical variance in the coupled

simulations as underrepresenting observed variability, as cur-

rent models are known to be deficient in the representation of

known local feedback mechanisms (e.g., Martin et al. 2014).

These deficiencies include feedbacks between low clouds

(Bellomo et al. 2016; Martin et al. 2014), dust aerosols (Evan

et al. 2012; Yuan et al. 2016; Wang et al. 2012), and wind–

evaporation–SST (WES; Amaya et al. 2017) feedback, which

all may play a role by enhancing the model’s temperature re-

sponses and may be resolution dependent. These deficiencies

may prove less fatal in LENS-SOMdue to the absence of ocean

damping, whereas the perhaps realistic damping in LENS-FC

may expose these biases.

c. Partitioning of variance in the observations

Knowing that the LENS-FC has the higher percentage of

variance due to internal variability does not tell us which is

closer to the observed, since we do not know how the observed

variance is divided.We can, however, make an estimate for the

percentage of observed variance that is forced. Suppose we

regress the observed time series on the EM time series for

LENS-SOM—the time series of the forced part of LENS-

SOM. Since the correlation coefficients are 0.80, 0.79, and 0.50

for AMV, AMVmid, and AMVtrop, the observed variance

accounted for is 64%, 62%, and 25%, respectively (based on

r2). This is for the period 1930–2005, a period with strong

forcing from industrial aerosol and greenhouse gas emissions;

other periods would have different percentages as the strength

of external forcing varies in time. If we had regressed on the

LENS-FCEM correlation coefficients (0.75, 0.74, and 0.48; from

Table 1) the percentages would be lower: 56%, 55%, and 23%.

In the models averaging over the ensemble members

strongly reduces the internal variability and gives a good esti-

mate of the part attributable to forcing. However, we have

only a single realization of the observed, so while the numbers

we gave are best estimates of the correlation coefficients of the

models with the observed, they are only estimates, which are

subject to the caveat that internal variability will be different in

each time series (whether observed or from the model). In

Fig. 2 note the range of correlations with single ensemble

members. The spread is larger for LENS-FC and LME than for

LENS-SOM, reflecting the fact that for the latter a larger

percentage of the variance is forced and so common to all

ensemble members. But even for the LENS-SOM the range is

substantial. These differences in ensemble spread introduce

uncertainties, but they do not bias the estimates of the per-

centage of variability due to external forcing either high or low.

On the other hand, these results are biased low because the

observations and forcing are not known accurately and the

model response to the forcing is not completely correct. Hence

even if we had a large ensemble of nature’s response to the

forcing from 1930 to 2005, themean of this ensemble would not

correlate perfectly with the model mean so the explained

variance would not be 100% of the true forced variance. In

sum, we estimate that in the observations roughly two-thirds of

the variance of theAMV is externally forced in recent decades.

This estimate has high uncertainty, and is more likely to be too

low than to be too high.

d. Spatial pattern

Here, we examine the AMV associated SST and atmo-

spheric circulation patterns by plotting the regression of SST,

SLP, and surface winds anomalies on theAMVover the period

1920–2005 in reanalysis/observational data (Fig. 5a), the

LENS-SOM and LENS-FC MOE (Figs. 5b,e), EM (Figs. 5c,f),

and the PI simulation (Figs. 5d,g). As before,MOE denotes the

mean over all ensemble members. Observations include the

impact of both internal and external forcing as do the MOE

panels, while the EM panels show the modeled approximate

response to external forcing alone, and the PI panels show the

pattern associated with internal variability alone. In observa-

tions, when the AMV is positive there is a warming of the

entire basin with a horseshoe-shaped pattern of warming that

wraps around the eastern basin. SLP shows a negative NAO-

like mode over the North Atlantic that involves a weakening of

both the subtropical high (STH) and Icelandic low. Associated

with these pressure changes are weaker trade winds and

weaker westerlies. Calculating the regressions based on the

FIG. 4. Ratio of the log of the annual average (AA) SST variance

between LENS-SOM and LENS-FC from 1930 to 2005. The map

shows the log ratio of the average of all individual ensemble

members, i.e., the value at each grid point is computed in each

ensemble member before averaging. For reference, a log ratio

value of 1 implies that the variance in LENS-SOM is 10 times that

in LENS-FC. Likewise, a log ratio of 21 implies that the variance

in LENS-FC is 10 times than in LENS-SOM.
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1930–2005 period does not change the simulated patterns but

does lead to slight changes in the observed wind pattern, which

is based on the twentieth-century reanalysis data, likely due to

the large uncertainties in the early-twentieth-century wind

observations (Wohland et al. 2019).

Since both the PI-SOM and PI-FC simulations show the

characteristic spatial pattern of the AMV, this is an internal

mode of variability that occurs even without interactive ocean

circulation. It is clear that the SOM is able to simulate this

spatial pattern, but this does not, on its own, exclude a role for

the ocean (e.g., Zhang et al. 2016; Zhang 2017; O’Reilly et al.

2016). Booth et al. (2012) showed a horseshoe pattern of

warming in their forced coupled model, although Watanabe

and Tatebe (2019) showed just a basinwide warming with little

structure. In CESM, the forced horseshoe pattern is evident in

the EM LENS-SOM (Fig. 5c) but not in the EM LENS-FC

(Fig. 5f). The EM LENS-SOM also shows a reduction in the

North Atlantic subtropical high evident in the surface winds

and SLP. The MOE, the mean over all ensemble members,

includes both forced and internal variability. In both models

the MOE show similar patterns although the atmospheric cir-

culation anomalies are stronger in LENS-SOM compared to

LENS-FC (cf. Figs. 5b and 5e). In this model, the forced re-

sponse is much weaker when we include active ocean dynamics

(cf. Figs. 5f and 5c). Air–sea feedbacks discussed earlier likely

play a large role in the model’s tropical AMV pattern.

FIG. 5. (a) Regression of SST (shaded), SLP (contours), and surface winds (vectors) on the standardized AMV index from 1920–2005 in

observations, the mean over all ensemble members (MOE) in (b) LENS-SOM and (e) LENS-FC, the ensemble mean (EM) in (c) LENS-

SOM and (f) LENS-FC, and (d) PI-SOM and (g) PI-FC. All data are detrended and low-pass filtered with a 10-yr Lanczos filter. Units are

K, hPa, and m s21 per unit of standard deviation of the AMV index for SST, SLP, and wind, respectively. SLP is plotted from 20.4 to

0.4 hPa with intervals of 0.05 hPa. Negative pressures are shown as dashed contour lines. Surface winds were interpolated to 1000 hPa. The

reference vector length of 0.3m s21 is plotted in the upper-right corner of each panel.
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To quantify whether the addition of an ocean improves the

spatial pattern of the modeled AMV, we calculate the Pearson

product-moment coefficient of linear correlation (centered pattern

correlation) between the observed (Fig. 5a) and simulated 10-yr LP

filtered regression patterns (SST only) over the period 1920–2005

(Fig. 6). These results show that the pattern of SST changes asso-

ciatedwith theAMVare better simulated in theLENS-SOM(blue

markers) compared to LENS-FC (red markers). All but one

member of the 41-member LEN-FC ensemble (range: 20.21 to

0.76) showspatial correlationvalues less thanall themembers of the

LENS-SOM ensemble (range: 0.68 to 0.84). The MOE and EM

spatial correlations (filled in triangle and circle, respectively) for

LENS-SOMare 0.78 and 0.74; for theLENS-FC the corresponding

values are 0.52 and 0.53. In addition, the PI spatial correlations are

higher in SOM compared to the FC (0.74 vs 0.57). This indicates

that the addition of ocean physics has made the spatial structure of

themodel’s internalmode less realistic, with orwithout forcing. The

difference in the AMV pattern in response to forcing is not an ar-

tifact of the ensemble size, since 10-member LENS-FC subsets

results in the same pattern shown in Fig. 5f. These results are es-

sentially the same whether we use the period 1920–2005 or 1930–

2005 (not shown); unlike the time history, the spatial pattern is

unaffected by the first decade of the simulation.

Overall, our interpretation is that the observed spatial pat-

tern can be thought of as an internal mode of variability.

External forcing has a large influence on its amplitude, but not

its spatial structure except that the forcing for a positive AMV

adds a warming almost everywhere. However, this should be

tested in other models as it may be a model-specific result.

3. Discussion and conclusions

We compared existing ensembles of radiatively forced sim-

ulations with a fully coupled model (LENS-FC and LENS-

LME) to those with the same atmospheric model coupled to a

motionless slab ocean (LENS-SOM). Previous modeling

studies have shown important lead–lag relationships between

the AMOC and North Atlantic SST and therefore the LENS-

FC configuration, with its more complete and realistic physics,

was expected to outperform the LENS-SOM. On the contrary,

we find that adding ocean dynamics, mixed layer physics, and a

treatment of salinity (i.e., coupling the model) renders the

model less able to reproduce the characteristics of the observed

AMV. The slab ocean model better reproduces the observed

historical (1920 or 1930 to 2005) AMV, according to the metric

of correlations with observed SST time history and spatial

pattern. In addition, while the slab oceanmodel SST variance is

too high, the active ocean reduces it to be less than the ob-

served variance. That is, a primary effect of the ocean in this

model is to strongly damp the variance over most of the North

Atlantic (Fig. 4). In addition, while the active model ocean

damps both forced and internal variability, this damping is

relatively greater for the forced component than for the in-

ternal component, resulting in relatively less low-frequency

variability.

Historical forcing makes the simulated AMV more like the

observed AMV. External forcing is not necessary to reproduce

the AMV’s characteristic horseshoe pattern of warming. It is

generated by atmospheric internal variability as shown in PI

simulations in Clement et al. (2015), and again here in Fig. 5.

The model response to external forcing appears as an addition

of an overall warming for positive AMV phases.

To summarize, we return to our original research questions:

d How much of the observed AMV is forced by historical

forcing and how much is internal to the climate system?

We estimate that about 2/3 of the LP filtered variance of the

AMV averaged over the basin can be explained by variable

external forcing, leaving 1/3 for internal ocean and atmo-

spheric variability. This is a best estimate within this model, but

comes with sizable uncertainty.

d How is the historically forced response made more realistic

by adding a fully coupled ocean?

Unfortunately, adding the more realistic physics of an active

ocean does not improve this model’s ability to simulate either

the time history or the spatial pattern of the observed AMV. If

anything, it shows larger biases compared to the same atmo-

sphere coupled to a slab ocean.

d How much more internal multidecadal variance is added by

including an ocean?

Inclusion of ocean processes lowers the overall variability

below observations. Ocean dynamics does not increase the

ratio of multidecadal to total variability, with or without forc-

ing. Without forcing, LENS-FC and LENS-SOM both produce

too little multidecadal variance, evidence that the observed

AMV has a sizable forced component.

While the CESM LENS-FC and LENS-SOM simulations

provide a clear framework for evaluating the roles of external

forcing and ocean circulation on the AMV, there are some

important caveats. There is the question of whether these

FIG. 6. Pattern correlation between the observed and simulated

SST regression patterns (see Fig. 5) for each individual ensemble

member (open circle), the ensemble mean (EM) (filled circle),

mean of all ensemble members (MOE) (filled triangle), and PI

simulation (asterisk) for the LENS-SOM (blue) and LENS-

FC (red).
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results are unique to CESM. In particular, would other climate

models simulate a net damping role for the ocean? Clement

et al. (2015) showed that for PI runs not all models simulate

weaker variability in the coupled than in SOM versions. In the

six CMIP3 models that had sufficiently long simulations with a

SOM, only two (HadGEM and MRI) produced more low-

frequency variability in the SOM than coupled, while two

produced less variability in the SOM versions (GFDL CM2.1

andGISSModelE) and two were about the same, one of which

was NCAR’s CCSM4. These were PI control simulations, so

that analysis did not test the role of the ocean with evolving

forcing. Anthropogenic aerosols may force the ocean circula-

tion in climate models (Cheng et al. 2013; Menary et al. 2020),

although in our analysis there is no evidence that this mecha-

nism helped to improve LENS-FC relative to LENS-SOM.

Perhaps this failure is specific to this model. There is also the

question of how this particular experimental design in this

model relates to other ways of assessing the relative roles of the

ocean, atmosphere, and external forcing, such as those pre-

sented in Garuba et al. (2018), Li et al. (2020), and Patrizio and

Thompson (2021). A more thorough review of these various

methods is clearly called for. It is also important to relate the

mechanisms of the AMV to the impacts. For instance, Klavans

et al. (2020) showed that external forcing was required to ex-

plain the impact of AMV on summertime Florida rainfall,

which was one of the first impacts that motivated the study of

the AMV (Enfield et al. 2001). On the other hand, Qasmi et al.

(2020) argued that ocean-driven turbulent heat fluxes associ-

ated with the AMV were important for simulating the climate

impacts over Europe.

The SOM is not a perfect tool. In existing configurations of the

SOM, an annual mean mixed layer depth is prescribed. Here it

was based on an 1850 PI control simulation of the fully coupled

model. This has the limitation that seasonal variations in the

mixed layer depth, which are large in the North Atlantic and

important for determining the persistence of SST and upper-

ocean heat content variability (Buckley et al. 2019), are not in-

cluded. There is a clear need for a better tool for evaluating the

role of the ocean circulation in climate variability, for example,

by having a version of the SOM that includes an entraining

mixed layer. This would help in deducing the role of vertical

mixing on controlling the magnitude of the AMV variance.

The forced signal in the LENS-SOM explains about 2/3 of

the observed variance, leaving 1/3 unaccounted for. Some of

that is likely due to imperfect knowledge of the forcing and

error in the model response to the forcing. Some is due to in-

ternal, random, atmosphere and ocean ‘‘noise.’’ It is far from

clear how much of this noise is predictable. The challenge for

decadal SST prediction is to 1) properly account for the role of

external forcing in producing persistent changes (e.g.,

Karspeck et al. 2015), 2) determine how much of the internal

signal comes from the atmosphere, which can introduce long

persistence in regions of deep mixed layers (Buckley et al.

2019), and then 3) determine whether what is left offers

meaningful predictability from initialized ocean states.
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