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Abstract
Recent research suggests the widespread existence of the signal-to-noise paradox in seasonal-to-decadal climate predictions. 
The essence of the paradox is that the signal-to-noise ratio in models can be unrealistically small and models may make better 
predictions of the observations than they predict themselves. The paradox highlights a potentially serious issue with model 
predictions as previous studies may underestimate the limit of predictability. The focus of this paper is two-fold: the first 
objective is to re-examine decadal predictability from the lens of the signal-to-noise paradox in the context of CMIP5 models. 
We demonstrate that decadal predictability is generally underestimated in CMIP5 models possibly due to the existence of the 
signal-to-noise paradox. Models underestimate decadal predictability in regions where it is likely for the paradox to exist, 
especially over the Tropical Atlantic Ocean and Tropical Indian Ocean and eddy-rich regions, including the Gulf Stream, 
Kuroshio Current, and Southern Ocean. The second objective follows from the results of the first, attempting to determine 
if this underestimate of decadal predictability is, at least partially, due to missing ocean mesoscale processes and features in 
CMIP5 models. A suite of coupled model experiments is performed with eddying and eddy-parameterized ocean component. 
Compared with eddy-parameterized models, the paradox is less likely to exist in eddying models, particularly over eddy-
rich regions. These also happen to be regions where increased decadal predictability is identified. We hypothesize that this 
enhanced predictability is due to the enhanced vertical connectivity in the ocean. The presence of mesoscale ocean features 
and associated vertical connectivity significantly influence decadal variability, predictability, and the signal-to-noise paradox.
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1  Introduction

There is a continuously growing demand for decadal climate 
predictions. Making skillful decadal predictions has poten-
tial benefits in terms of supporting decision-making pro-
cesses in agriculture, energy and water management among 
other sectors (e.g., Kirtman et al. 2013; Kushnir et al. 2019; 
Merryfield et al. 2020). While seasonal climate prediction 
has matured into regular operational forecasts (e.g., Kirtman 
et al. 2014), forecasting the climate over decades has proven 
more challenging (Keenlyside et al. 2008; Meehl et al. 2014; 
Zhang and Kirtman 2019a).

One of the significant challenges in decadal prediction 
and often overlooked in previous studies is the so-called 

“signal-to-noise paradox” (e.g., Scaife et al. 2014; Siegert 
et al. 2016; Smith et al. 2019; Zhang and Kirtman 2019b). 
The essence of the paradox is that the signal-to-noise ratio 
estimated in climate models can be too small. Specifically, 
models seem to be better at predicting observations than 
predicting themselves as the model ensemble mean forecasts 
are better correlated with observations than with individual 
ensemble members. Scaife et al. (2014) first discussed the 
signal-to-noise paradox in seasonal prediction of the win-
ter North Atlantic Oscillation (NAO) index, and subse-
quently, a growing list of examples in different atmospheric 
and climate models has emerged (Scaife and Smith 2018). 
For example, Zhang and Kirtman (2019b, hereafter ZK19) 
developed a simple Markov model framework and provided 
a comprehensive assessment of the NAO index indicating 
the widespread existence of the signal-to-noise paradox in 
coupled models from the fifth Coupled Model Intercom-
parison Project (CMIP5). The Markov model framework 
can easily reproduce the signal-to-noise paradox, which is 

 *	 Wei Zhang 
	 wei.zhang@rsmas.miami.edu

1	 Rosenstiel School of Marine and Atmospheric Science, 
University of Miami, Miami, USA

http://orcid.org/0000-0001-7179-5697
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-020-05621-8&domain=pdf


	 W. Zhang et al.

1 3

dependent on the magnitude of the persistence and noise 
variance. Smith et al. (2019) used multi-model decadal hind-
casts from seven state-of-the-art coupled climate models 
with a total of 71 ensemble members suggesting the exist-
ence of the signal-to-noise paradox in decadal predictions. 
One of the key points highlighted in the Smith et al. (2019; 
2020) papers was that model-based estimates of decadal 
predictability might actually be an underestimate, as previ-
ous studies could have mispresented the noise, or underesti-
mated the magnitude of the predictable signal due to limited 
ensemble size.

The specific examples of the paradox and the associated 
model errors noted above suggest that model based estimates 
of climate predictability may seriously underestimate the 
limit of predictability. As we begin to understand the mecha-
nisms for the paradox, predictability estimates also need to 
be revisited. Where and to what extent is the paradox leading 
to substantial underestimates of the limit of predictability? 
The first goal of the paper is to re-examine decadal predict-
ability from the lens of the signal-to-noise paradox in the 
context of the CMIP5 models. We also attempt to understand 
if and how model initialization and external forcing con-
tribute to the signal-to-noise paradox. Different from Smith 
et al. (2019), who investigated the signal-to-noise para-
dox from initialized decadal hindcasts from seven CMIP5 
models, our study examines the paradox from a diagnostic 
perspective using thirty CMIP5 uninitialized historical and 
preindustrial control simulations. Instead of estimating dec-
adal prediction skill, we examine decadal potential predict-
ability (a diagnostic method to estimate predictability; Boer 
2004) for both observations and CMIP5 models. Based on 
the Markov model framework in ZK19, we determine the 
widespread existence of the signal-to-noise paradox that 
applies to CMIP5 uninitialized simulations (focusing on dec-
adal timescales), suggesting that the paradox is not due to 
problems with model initialization processes. Comparisons 
of the paradox between historical and preindustrial control 
simulations imply the potential impact of external forcing 
on the signal-to-noise paradox and decadal predictability.

The second goal of the paper follows from the results 
of the first. Essentially, the results from the first goal show 
that the CMIP5 models seriously underestimate the limit of 
decadal predictability, and models seem to underestimate 
decadal predictability in regions where it is likely for the 
paradox to exist. Specifically, we find that models underes-
timated decadal SST predictability, particularly in the Gulf 
Stream, Kuroshio Current, Southern Ocean and other eddy-
rich regions, where the signal-to-noise paradox occurs. The 
underestimation of decadal predictability over eddy-rich 
regions in models suggests the importance of ocean model 
resolution or mesoscale ocean features in decadal SST pre-
dictability and the signal-to-noise paradox. Therefore, we 
hypothesize in this second goal that this underestimate of 

decadal SST predictability is, at least in part, due to miss-
ing ocean mesoscale processes and features in the CMIP5 
models. Again, the results are presented in the context of the 
signal-to-noise paradox.

With the above in mind, there have been several studies 
examining the mechanisms for the paradox. For example, 
the signal-to-noise paradox has been attributed to a lack of 
persistence (Strommen and Palmer 2019; Zhang and Kirt-
man 2019b), weak extratropical air-sea coupling (Scaife 
and Smith 2018), stratospheric initialization (O’Reilly et al. 
2019), and underestimated eddy feedbacks due to low atmos-
pheric model resolution (Scaife et al. 2019). Little to no 
research, however, has asked how mesoscale ocean features 
affect the signal-to-noise paradox and associated estimate 
of decadal predictability. The role of ocean mesoscale pro-
cesses is of particular interest since several previous stud-
ies have suggested that decadal SST variability in coupled 
models is improved when ocean mesoscale features and pro-
cesses are correctly represented (e.g., He et al. 2018; Infanti 
and Kirtman 2019; Kim et al. 2018; Samanta et al. 2018; 
Kirtman et al. 2012, 2017; Siqueira and Kirtman 2016; 
Zhang and Kirtman 2019a; among others). As shown by 
Kirtman et al. (2017), for example, mesoscale ocean features 
can substantially influence large-scale climate variability, 
air-sea interactions, and predictability. Particularly in the 
North Atlantic region, a more realistic mean-state climate 
and improved representation of ocean–atmosphere coupling 
and decadal SST variability around the Gulf Stream region 
have been detected with eddying Global Coupled Models 
(GCMs; Siqueira and Kirtman 2016). Given the importance 
of eddies on low-frequency variability and ocean–atmos-
phere coupling, the lack of ocean eddy resolution in current 
coupled models (e.g., eddy-parameterized models used in 
CMIP5) can potentially affect the estimates of decadal cli-
mate predictability.

In addition to the overall representation of decadal vari-
ability, the second goal of this study is motivated by the 
hypothesis that low-resolution eddy-parameterized GCMs 
may misrepresent or even lack the vertical communication 
in the subsurface to the deeper ocean, contributing to a lack 
of persistence in models and thus the signal-to-noise para-
dox. The underestimated vertical communication between 
the deep ocean and surface processes in CMIP5 models 
compared to observations has been recently explored by 
Kravtsov (2020). Kravtsov (2020) introduced an updated 
linear energy-balance model considering the heat exchange 
between ocean mixed layer and thermocline in the Atlan-
tic and Pacific oceans. By fitting the observed and CMIP5 
model-simulated SST with the energy-balance model, 
Kravtsov (2020) identified stronger vertical communication 
between the deep ocean and surface processes in observa-
tions than CMIP5 models, contributing to a larger frac-
tion of predictable variability at decadal timescales. This 



Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and…

1 3

significant difference in decadal potential predictability 
between observations and CMIP5 models, as suggested by 
Kravtsov (2020), may lead to the signal-to-noise paradox.

In this study, we first examine the decadal potential pre-
dictability in observations and CMIP5 models from a diag-
nostic perspective, i.e., the first goal. Again, through the lens 
of the signal-to-noise paradox we use the Markov model 
framework developed in ZK19 to diagnose predictability. 
In terms of the second goal, distinct from Kravtsov (2020) 
who estimated the coupling parameters between thermocline 
and mixed layer in the energy-balance model, we perform a 
suite of model experiments with and without eddying ocean 
component, again through the lens of the paradox. We argue 
that high-resolution models with better represented ocean 
mesoscale features have stronger vertical connectivity in the 
subsurface to the deeper ocean than low-resolution mod-
els, which may potentially, or at least partially eliminate the 
signal-to-noise issue and thus improve predictability over 
decadal timescales.

2 � Data and method

2.1 � Observations, reanalysis datasets, and CMIP5 
models

Three observational monthly sea surface temperature (SST) 
datasets are used in this study; namely, the National Oce-
anic and Atmospheric Administration (NOAA) Extended 
Reconstructed SST version‐5 (ERSST; Huang et al. 2017) 
on 2°× 2° grids for 1854-present, the Hadley Center Global 
Sea Ice and SST data set (HadISST; Rayner et al. 2003) from 
1870 to 2017 with a spatial resolution of 1° ×1°, and the 
Centennial Observation‐Based Estimates of SST version‐2 
(COBE; Hirahara et al. 2014) from 1850 to 2017 on the 
same grid as HadISST data. Monthly mean sea level pres-
sure (SLP) data are obtained from three resources, including 
two 20th century reanalysis datasets from the NOAA (20CR; 
2°×2°; 1871–2012; Compo et al. 2011) and the European 
Centre for Medium‐Range Weather Forecasts (ERA20C; 1 ×
1°; 1900–2010; Poli et al. 2016), as well as the Hadley Cen-
tre’s Mean SLP data (HadSLP; 5 ×5°; 1850–2004; Allan and 
Ansell 2006). Here we simply consider reanalysis datasets 
as supplement to observations.

Both the historical (HIST, the first ensemble member) and 
the preindustrial control (PI) simulations of thirty CMIP5 
models are used in this study to compare with observa-
tions (Table 1). We only use the first realization (r1i1p1) 
of each CMIP5 model to equally weight each model in the 
multi-model mean estimates. The HIST simulations are 
simulations of recent past climate (1850–2005) forced by 
changing conditions, while the PI simulations are preindus-
trial coupled ocean–atmosphere control simulations with 

non-evolving preindustrial conditions (Taylor et al. 2012). 
Variability in the PI simulations is generated only through 
interactions internal to the coupled system, while variability 
in the HIST simulations is also due to natural and anthropo-
genic forcing (Murphy et al. 2017).

2.2 � CCSM4 model experiments

A suite of model experiments is performed with the National 
Center for Atmospheric Research Community Climate Sys-
tem Model Version 4 (CCSM4; see overview in Gent et al. 
2011). CCSM4 is a state-of-the-art global coupled model 
composed of four component models, namely, the Com-
munity Atmosphere Model version 4 (CAM4), the Paral-
lel Ocean Program version 2 (POP2), the Community Land 
Model version 4 (CLM4), the Community Ice Code version 
4 (CICE4), and the coupling infrastructure version 7 (CPL7) 
(Gent et al., 2011). In the low-resolution eddy-parameter-
ized experiment (hereafter referred to as LR), we use 1° 
CAM4 and CLM4 coupled to the POP2 and CICE4 with the 
nominal 1° horizonal resolution. The zonal resolution of the 
POP2 and CICE4 is 1.125°globally while the meridional res-
olution increases from 0.27° around the equator to 0.54° at 
33°N/S and is constant at high latitudes. We conduct the LR 
CCSM4 experiment with present-day forcing (e.g., green-
house gas concentrations for 1990) for 500 years. The LR 
simulation was initialized as a “cold-start”, that is an ocean 
at rest and was spin-up for 200 years. Different from the LR 
experiment, we employ a 0.5° CAM4 and CLM4 coupled 
to the nominal 0.1° horizonal resolution of the POP2 and 
CICE4 in the high-resolution eddying experiment (hereaf-
ter referred as HR). We first perform a 155-year standard 
control simulation with the same greenhouse gas concen-
trations as in the LR experiment, and the first 100 years of 
the simulation are taken as spin-up and are discarded in the 
analysis. Restarting from the first experiment with small per-
turbations, we run two other experiments for 70 years, each 
with the first 20 years taken as spin-up periods (see details of 
HR initialization and configuration in Kirtman et al. 2012). 
In total, we analyze here 155 years of HR simulations and 
300 years of LR simulations.

2.3 � Markov model framework

The Markov model framework is extensively described in 
ZK19 and has proven useful to determine the existence 
of the signal-to-noise paradox. The design of the Markov 
model framework starts from a linear signal-plus-noise 
model assuming that the future state forecasts depend lin-
early on the current state predictor and a stochastic noise 
term. The observations and models can be simulated with a 
statistical Markov chain model:
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where {O} is the observation, and {M} is the model fore-
casts initialized with observations and perturbed with dif-
ferent noise realizations { Pi } (i = 1, 2, 3, …). � and � are 
estimated as the lag-1 autocorrelation coefficients implying 

(1)On+1 = �On + N

(2)Mn+1
i

= �On + Pi

(3)M̄n+1 = 𝛽On + P̄

the persistence of the system. N and P are simply modeled 
as white-noise processes (see also Kirtman et al. 2005). { M } 
and { P } are model ensemble mean forecasts and ensemble 
mean noise. Following the procedure in ZK19, we can ana-
lytically derive the correlation between the model ensemble 
mean forecasts and observations (corr(M, O)) and the cor-
relation between the model ensemble mean forecasts and 
individual ensemble members (corr(M,Mi)), and thus the 
ratio of squared correlation (RSC):

Table 1   CMIP5 models used in this study

PI accounts for the preindustrial control simulations. We use historical simulations of CMIP5 models from 1870 to 2005. The CMIP5 model out-
puts and associated descriptions can be found in the CMIP5 archive (http://cmip-pcmdi​.llnl.gov/cmip5​). Atmospheric and ocean grids indicate 
horizonal resolution for each model. Ocean grids show approximate values as resolution may vary with different latitudes and longitudes. Note 
that in this study, we only use the last 200 years of PI for each model to estimate decadal predictability

Models Atmos-
pheric grid 
(Lat × Lon)

Ocean grid 
(Lat × Lon)

PI length (years) Data/modeling institute

ACCESS1‐0 1.3° × 1.9° 1° × 1° 500 Commonwealth Scientific and Industrial Research Organization and 
Bureau of Meteorology (Australia)ACCESS1‐3

BCC‐CSM1‐1 2.8° × 2.8° 1° × 1° 500 China Meteorological Administration
BCC‐CSM1‐1‐m 1.1° × 1.1° 400
BNU‐ESM 2.8° × 2.8° 1° × 1° 559 Beijing Normal University
CanESM2 2.8° × 2.8° 0.9° × 1.4° 996 Canadian Centre for Climate Modeling and Analysis
CCSM4 0.9° × 1.3° 0.6° × 1.1° 1051 National Center for Atmospheric Research
CESM1‐BGC 500
CESM1‐CAM5 319
CESM1‐FASTCHEM 222
CMCC‐CM 0.8° × 0.8° 1.9° × 2.0° 330 Centro Euro‐Mediterraneo per I Cambiamenti Climatici
CMCC‐CMS 3.7° × 3.7° 500
CNRM‐CM5 1.4° × 1.4° 0.8° × 1.0° 850 Centre National de Recherches Meteorologiques and Centre Europeen 

de Recherche et Formation Avancees en Calcul Scientifique
CSIRO‐Mk3‐6‐0 1.9° × 1.9° 0.9° × 1.9° 500 Australian Commonwealth Scientific and Industrial Research Organi-

zation and Queensland Climate Change Centre of Excellence
GFDL‐CM3 2.0° × 2.5° 1.0° × 1.0° 500 Geophysical Fluid Dynamics Laboratory
GFDL‐ESM2G
GFDL‐ESM2M
GISS‐E2‐H‐CC 2.0° × 2.5° 1.0° × 1.0° 251 Goddard Institute for Space Studies
GISS‐E2‐R‐CC
HadGEM2‐CC 1.2° × 1.9° 1.0° × 1.0° 240 Met Office Hadley Centre
HadGEM2‐ES 576
inmcm4 1.5° × 2.0° 0.4° × 0.8° 500 Institute for Numerical Mathematics
IPSL‐CM5A‐LR 1.9° × 3.8° 1.9° × 2.0° 1000 Institut Pierre‐Simon Laplace
IPSL‐CM5B‐LR
IPSL‐CM5A‐MR 1.3° × 2.5° 1.4° × 1.6° 300
MPI‐ESM‐LR 1.9° × 1.9° 1.5° × 1.5° 1000 Max Planck Institute for Meteorology
MPI‐ESM-P
MPI‐ESM‐MR 0.4° × 0.4° 1156
NorESM1‐ME 1.9° × 2.5° 0.6° × 1.1° 252 Norwegian Climate Centre
NorESM1‐M 501

http://cmip-pcmdi.llnl.gov/cmip5
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where �2

N
 and �2

P
 are noise variance for the observation and 

model ensemble members, which can be estimated as the 
total variance in observations and model forecasts multiplied 
by a factor of 1 − �2 and 1 − �2 , respectively. Based on Scaife 
and Smith (2018), there can be a signal-to-noise paradox 
when the RSC is greater than 1.0. So Eq. (4) becomes,

Distinct from ZK19, who applied the Markov model 
framework to the monthly NAO index, this study further 
examines the signal-to-noise paradox, especially in SST 
fields based on CMIP5 HIST and PI simulations with a focus 
on decadal timescales.

3 � Results and discussion

3.1 � Underestimated decadal climate predictability 
in CMIP5 models

Decadal climate predictability is quantified using the poten-
tial predictability variance ratio (Boer 2004; Zhang et al. 
2017), which indicates the relative intensity of decadal vari-
ability and provides an efficient approach to estimate decadal 
predictability from a diagnostic perspective. As suggested 
by Boer (2004), the total climate variability ( �2

Tot
 ) can be 

decomposed into a low-frequency component ( �2

Lf
 ) that may 

be potentially predictable and a high-frequency unpredict-
able noise component ( �2

Err
 ). This approach assumes that the 

slower potentially predictable component is independent 
from the noise term ( �2

Lf
= �2

Tot
− �2

Err
 ). Therefore, decadal 

potential predictability can be defined as the ratio of dec-
adal-scale variability with respect to the total variability 
( �2

Lf
∕�2

Tot
× 100% ). In this study, we extract decadal-scale 

climate variability by applying a 5-year low-pass Butter-
worth filter, after subtracting the annual cycle and linearly 
detrending the monthly time series from each observation 
and model simulation. The observational mean (based on 
ERSSTv5, COBE-SST2, and HadISST) and multi-model 
mean estimates (based on thirty CMIP5 HIST simulations) 
of decadal SST predictability are shown in Fig. 1a, b. Note 
that SST in model simulations is obtained by masking all the 
non-ocean regions of surface temperature, and for each 
observation and model simulation, SST is bilinearly inter-
polated to multiple 2° × 2° grids before analysis. In observa-
tions, considerable ocean regions display high values of 
decadal SST predictability such as the North Atlantic, 

(4)RSC =
corr2

(

M̄,O
)

corr2
(

M̄,Mi

) =
𝛼2𝛽2𝜎2

N
+ 𝛼2

(

1 − 𝛼2
)

𝜎2

P

𝛽2𝜎2

N

(5)
𝛼2

𝜎2

N

>
𝛽2

𝜎2

P

Western Pacific, Tropical Indian Ocean, and Southern 
Ocean, which is generally consistent with several earlier 
studies (e.g., Ding et al. 2016; Zhang and Kirtman 2019a). 
Meanwhile, low values of decadal SST predictability are 
detected over the Eastern Tropical Pacific, with values rang-
ing from 25 to 60% gradually increasing westward, implying 
that decadal climate in this region may be still potentially 
predictable to some extent, though the Eastern Tropical 
Pacific is dominated by the El Niño-Southern Oscillation 
(ENSO) at interannual timescales. Uncertainty remains in 
the long-term predictability over the Eastern Tropical Pacific 
region (e.g., Gonzalez and Goddard 2016; Kirtman and 
Schopf 1998; Kravtsov 2012; Newman 2007), and as sug-
gested by Wittenberg et al. (2014), for example, the ENSO 
potential predictability is lost after the 3–4 year range in the 
absence of external forcing. Compared with observational 
estimates, we find much lower values of decadal SST pre-
dictability for the CMIP5 multi-model mean estimates, 
except for some regions such as the Northeastern Pacific and 
subpolar North Atlantic (Fig. 1b). High decadal SST predict-
ability in the subpolar North Atlantic is consistent with the 
results based on observations, where decadal SST variability 
is significantly impacted by internal atmospheric noise and 
subsurface ocean dynamics (e.g., Boer 2004; Robson et al. 
2018; Wouters et al. 2013; Yan et al. 2018; Zhang and Kirt-
man 2019a; among others). Figure 1c shows the observa-
tional and CMIP5 multi-model estimates of decadal SST 
predictability averaged over six different ocean regions, 
namely, the North Atlantic (NA; 20°–65° N, 80°–0° W), 
North Pacific (NP; 20°–60° N, 120° E–120° W), Eastern 
Tropical Pacific (ETP; 10° S–10° N, 180°–85° W), Tropical 
Atlantic (TA; 15° S–15° N, 80°–0° W), Tropical Indian (TI; 
15° S–25° N, 40°–100° E), and Southern Ocean (SO; 
65°–40° S, 0°–360° E). The observational estimates show 
higher decadal SST predictability than most of the CMIP5 
models except in the North Pacific; that is, decadal SST pre-
dictability is generally underestimated in CMIP5 models. 
The spatial distribution of decadal SST predictability based 
on CMIP5 models in the North Pacific is substantially dif-
ferent from those based on observational estimates, with 
larger values concentrated in the subpolar gyre, despite that 
the mean estimates in models and observations are some-
what comparable. Notably, there is significant inconsistency 
among different observational estimates in the Tropical 
Indian and the Southern Ocean; also, thirty CMIP5 models 
used here show better agreement with each other in the 
North Atlantic and North Pacific (based on larger percentage 
values) than other regions.

The impact of linear detrending is assessed in Fig. 2, 
which shows decadal SST predictability without detrending 
and with the regression-detrending method following Ting 
et al. (2009) by regressing out the global mean SST warming 
trend. Similar spatial patterns of decadal SST predictability 
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is found with the different detrending methods and even 
without detrending, supporting our argument of the under-
estimated decadal SST predictability in CMIP5 models.

Figure 3 is the same as Fig. 1 but for decadal SLP pre-
dictability. The observations and reanalysis data (ERA20C, 
20CR, and HadSLP) present higher values of decadal SLP 
predictability than almost all the CMIP5 models, indicat-
ing that CMIP5 models also underestimate the observed 
decadal SLP predictability. Figure 3c shows regionally 
averaged decadal SLP predictability for each observation 
and CMIP5 model in different ocean regions, namely, NA, 
NP, ETP, TA, TI, and SO. In all the ocean regions, CMIP5 
models present substantially lower values of decadal SLP 
predictability than those based on observational SLP esti-
mates. The underestimated decadal predictability in mod-
els is not merely due to the underestimate of decadal-scale 
SST and SLP variance in CMIP5 models. For example, 
the variance can be comparable or even higher than the 
observed variance estimate in substantial regions (Fig. 4). 

The results shown here suggest that the CMIP5 models 
largely underestimate the decadal predictability, but not 
necessarily the decadal variance. Even though the simu-
lated decadal variance is large, its fractional contribution 
to the total variance is much smaller than in observations, 
meaning that the simulated non-decadal variance is much 
larger than in observations.

Wang et  al. (2015) diagnose the leading Empirical 
Orthogonal Function (EOF) modes of SST on monthly 
and decadal timescales and argue that both CMIP3 and 
CMIP5 models fail to capture accurately the spatial struc-
ture compared with observational estimates of SST vari-
ability. The striking disagreement in SST variability and 
predictability among observational estimates and CMIP5 
models may stem from the ocean–atmosphere coupling 
(Li et al. 2013; Sun et al. 2015), ocean dynamics (Kirtman 
et al. 2012), and intrinsic model errors (Gupta et al. 2013; 
Richter 2015), which requires further investigation.

Fig. 1   Decadal SST predictability based on observations and CMIP5 
models. a Observational mean estimates based on three observa-
tional SST datasets. We calculate decadal SST predictability for 
each observational dataset and then take the average as the obser-
vational mean estimates. b Multi-model mean estimates based on 
30 CMIP5 historical simulations. c Estimates of Decadal SST pre-
dictability for each observational dataset and CMIP5 model aver-
aged over six different ocean regions, namely, the North Atlantic 
(NA; 20°–65° N, 80°–0° W), North Pacific (NP; 20°–60° N, 120° 

E–120° W), Eastern Tropical Pacific (ETP; 10° S-10° N, 180–85° 
W), Tropical Atlantic (TA; 15° S–15° N, 80°–0° W), Tropical Indian 
(TI; 15°S-25°N, 40–100°E), and Southern Ocean (SO; 65°–40° S, 
0°–360° E). HadISST = Hadley Centre Sea Ice and Sea Surface Tem-
perature. ERSST = Extended Reconstructed Sea Surface Tempera-
ture. COBE-SST = Centennial in  situ Observation-Based Estimates. 
OBSM = observational mean estimates. CMIP5 = Coupled Model 
Intercomparison Project 5. MMM = Multi-model Mean estimates
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3.2 � Signal‑to‑noise paradox in decadal climate 
predictability

Recent research reveals the widespread existence of the 
signal-to-noise paradox in climate models. Here we ask 
is the underestimated decadal predictability in CMIP5 
models related to the signal-to-noise paradox? Figure 5 
encapsulates the relationship between the paradox and 
predictability. First, Fig. 5a shows the difference in dec-
adal SST predictability between observations (Fig. 1a) 
and CMIP5 HIST simulations (Fig. 1b), which is indica-
tive of the underestimation in CMIP5 models. Based on 
the Markov model framework (see Sect. 2), the chance 
of existence for the signal-to-noise paradox based on 
thirty CMIP5 HIST simulations is examined in the low-
pass filtered SST field (Fig. 5b). Each SST observation 
and model simulation is detrended and normalized before 
analysis. We first compute the RSC values of global SST 
for each CMIP5 model based on the method introduced in 
Sect. 2. The paradox is present when the RSC values are 
greater than 1.0 at any spatial grid for each model. Here 
we apply the likelihood chart used in the Fifth Assessment 
Report of the United Nations Intergovernmental Panel on 

Climate Change (IPCC 2014): very likely 90–100%, likely 
66–90%, about as likely as not 33–66%, unlikely 10–33%, 
and very unlikely 0–10%. The chance of existence for the 
paradox is then determined by considering all the thirty 
CMIP5 models; for example, if over 90% of thirty mod-
els present RSC values greater than 1.0 (or a paradox) 
in a region, this region will be considered “very likely” 
for the paradox to exist. The patterns in the possibility 
of the existence of the signal-to-noise paradox (Fig. 5b) 
are somewhat consistent with those in Fig. 5a, implying 
a possible relationship between the underestimated dec-
adal SST predictability and the signal-to-noise paradox. 
Models are likely to underestimate decadal predictabil-
ity in regions where it is likely to have a signal-to-noise 
paradox, especially around the Tropical Atlantic and the 
Tropical Indian Ocean and eddy-rich regions, including 
the Gulf Stream, the Kuroshio Current, and the Southern 
Ocean. We note that considerable regions show inconsist-
ency between Fig. 5a and b such as the mid-latitude North 
Atlantic, subtropical Northwest Pacific, and eastern tropi-
cal Pacific. The signal-to-noise paradox (Fig. 5b) is deter-
mined by the Markov model framework, which is devel-
oped based on the hypothesis that the lack of persistence 

Fig. 2   Impact of linear detrending on decadal SST predictability. a 
Observational mean estimates of decadal SST predictability without 
any detrending. b Observational mean estimates of decadal SST pre-
dictability using the regression-detrending method (regressing out the 

global mean warming trend). c Multi-model mean estimates of dec-
adal SST predictability without any detrending. d Multi-model mean 
estimates of decadal SST predictability using the regression-detrend-
ing method
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leads to the paradox. Predictability can be highly related 
to persistence, but high persistence is not always indica-
tive of larger predictability. Uncertainty remains in the 
simple Markov model as the lack of persistence may not 

be the only factor contributing to the signal-to-noise para-
dox (e.g., O’Reilly et al. 2019; Scaife et al. 2019) and the 
underestimated decadal predictability.

Fig. 3   Same as Fig. 1 but for decadal SLP predictability. a Observa-
tional mean estimates based on three observational SLP datasets. (b) 
Multi-model mean estimates based on 30 CMIP5 historical simula-
tions. c Estimates of decadal SLP predictability for each observa-
tional dataset and CMIP5 model averaged over six different ocean 

regions (same as in Fig. 1c). 20CR = NOAA-CIRES-DOE Twentieth 
Century Reanalysis. ERA-20C = ECMWF’s Astmospheric Reanalysis 
of the Twentieth Century. HadSLP = Hadley Centre’s Mean Sea Level 
Pressure

Fig. 4   Variance ratio between observations and CMIP5 models for a 
decadal SST variability and b decadal SLP variability. SST in models 
is obtained by masking all the non-ocean regions of surface tempera-

ture. Low ratio of decadal SST variance between models and observa-
tions in polar regions is significantly affected by sea ice temperature
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This relationship between the paradox and predictabil-
ity is further supported by the ratio of squared correlation 
over six ocean areas (same as Fig. 1c) estimated for each 
model in CMIP5 (Fig. 6). The regional mean SST index 
for each ocean region is created and then assessed with the 
ratio of squared correlation for each model. There would 
be a signal-to-noise paradox when the ratio of squared cor-
relation is higher than 1.0 (Eq. 4). Here we show that the 
signal-to-noise paradox is very likely to occur in extratropi-
cal regions (e.g., the North Atlantic), the Tropical Atlantic 
and the Southern Ocean; meanwhile, only about half of the 
CMIP5 models used in this study indicate a paradox in the 
North and Eastern Tropical Pacific. The results in Fig. 6 are 
in good agreement with decadal SST predictability esti-
mates for regional averages based on three observational 
datasets and 30 CMIP5 models in Fig. 1c. For example, 
ratios of squared correlation for CMIP5 models are gener-
ally greater than 1.0 in the North Atlantic (Fig. 6a), where 
decadal predictability of SST is underestimated by most of 
CMIP5 models (Fig. 1c). The distributions for the chance of 

occurrence of the signal-to-noise paradox in this study show 
some consistency with several previous studies (Eade et al. 
2014; Smith et al. 2019); for instance, Eade et al. (2014) 
show the distribution of the signal-to-noise paradox in sur-
face air temperature by the ratio of predictable component 
based on a multi-model ensemble of decadal hindcasts from 
the Met Office decadal prediction system (DePreSys; Knight 
et al. 2014) and four CMIP5 models.

The impact of external forcing on decadal SST predict-
ability and the signal-to-noise paradox is also examined 
here (Fig. 5c, d). Figure 5c displays the difference of dec-
adal SST predictability between thirty CMIP5 HIST and PI 
simulations, with the latter having constant external forcing. 
Allowing for model drift, we only use the last 200 years of 
PI simulations to compute decadal SST predictability (Cal-
culation 1). Some CMIP5 PI simulations may have short 
time records less than 500 years. Therefore, we recalculated 
decadal SST predictability based on selected models with 
simulation length over 500 years (Calculation 2). The results 
suggested no significant difference between Calculation 1 

Fig. 5   Existence of the signal-to-noise paradox in CMIP5 mod-
els and the impact of external forcing. a Difference of decadal SST 
predictability between observations and CMIP5 historical simula-
tions. b Chance of existence for the signal-to-noise paradox based on 
30 CMIP5 historical simulations. Each SST simulation is detrended 
and normalized before analysis. The existence of the signal-to-noise 

paradox is estimated based on the Markov model framework. c Dif-
ference of decadal SST predictability between CMIP5 historical and 
pre-industrial control simulations, suggesting the impact of external 
forcing. d Chance of existence for the signal-to-noise paradox based 
on 30 CMIP5 pre-industrial control simulations
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and 2. The most noticeable difference between CMIP5 HIST 
and PI simulations appears in the tropics such as the Tropi-
cal Atlantic and the Tropical Indian Ocean as larger decadal 
SST predictability is found in these regions, accompanied by 
a higher chance of the signal-to-noise paradox. Parts of west-
ern tropical Pacific and North Atlantic are also influenced 
by external forcing, where the chance of existence for the 
paradox is high for both HIST and PI simulations. Consist-
ent with previous studies (e.g., Goddard et al. 2013; Guemas 
et al. 2013; Meehl et al. 2014), the Tropical Indian ocean 
stands out as the area significantly affected by the externally 
forced variability, which is shown to be much larger than the 
internally generated variability in both uninitialized simula-
tions and initialized decadal hindcasts. We hypothesize that 
CMIP5 models underestimate the externally forced trend 
in the Tropical Indian ocean, though we cannot exclude the 
role of internal dynamics and any other associated factors in 
decadal predictability.

The Tropical Atlantic is another region of emerging interest 
in near-term climate predictability, where external forcing acts 
as an important factor driving decadal variability (Yeager and 
Robson 2017). The Tropical Atlantic has long been considered 
as a region with significant SST bias and poor upper ocean 
thermal structure and limited decadal predictability (Harlaß 
et al. 2018; Patricola et al. 2012; Xu et al. 2014). Shaffry et al. 

(2017) utilized a high-resolution eddying GCM (ocean model 
resolution 1/3° × 1/3°) and showed improved decadal predic-
tion skills compared with low-resolution models, especially 
over the Tropical Atlantic region, pointing toward the impor-
tance of model resolution, in addition to external forcing.

Furthermore, the coexistence of the underestimated dec-
adal SST predictability and the high chance of occurrence 
for the signal-to-noise paradox in eddy-rich regions is sug-
gestive of the lack of ocean model resolution in CMIP5 mod-
els. This is because all the coupled models in CMIP5 use 
eddy parameterized ocean models that may have weak verti-
cal connectivity between ocean mixed layer and thermocline 
(Kravtsov 2020). The role of mesoscale ocean eddies and 
fronts in climate variability, air-sea interaction, and predict-
ability, particularly in the western boundary regions has been 
highlighted in previous work (Bryan et al. 2010; Kirtman 
et al. 2012; Minobe et al. 2008; Siqueira and Kirtman 2016), 
and is a potential source of decadal predictability that has 
not been fully accounted for or leveraged.

3.3 � Advancing decadal predictability 
from an eddying GCM

The following is based on the hypothesis that the presence of 
ocean mesoscale processes and features and the associated 

Fig. 6   Ratio of squared correlation estimated based on the Markov 
model framework for 30 CMIP5 models (historical simulations) in six 
different ocean regions: a NA: North Atlantic, b NP: North Pacific, c 
ETP: Eastern Tropical Pacific, d TA: Tropical Atlantic, e TI: Tropical 

Indian, and f SO: Southern Ocean. The percentage in each panel is 
computed as the number of models with RSC values greater than 1.0 
divided by thirty



Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and…

1 3

vertical connectivity affects decadal variability, predictabil-
ity, and the signal-to-noise paradox. Specifically, coupled 
models with an eddying ocean component may, at least par-
tially, reduce the signal-to-noise issue and thus improve dec-
adal-scale climate predictability. The enhanced predictability 
we argue, is in part, due to the enhanced vertical connectiv-
ity in the ocean. This enhanced vertical connectivity allows 
the deeper ocean to more efficiently communicate with the 
surface, which, given the slower sub-surface time-scales, 
leads to longer surface predictability. To test this argument, 
we perform a suite of model experiments using CCSM4 with 
HR (eddying; 0.1° ×0.1°) and LR (eddy-parameterized; 1° ×
1°) ocean component models. The details of the CCSM4 
model setup and experiment design have been provided in 
Sect. 2, which are generally consistent with Kirtman et al. 
(2017), but here we employ a much longer LR simulation.

Figure 7 encapsulates how better represented ocean 
mesoscales affect decadal predictability estimates. In par-
ticular, Fig. 7a, b shows the global distributions of decadal 
SST potential predictability based on CCSM4 HR and the 
ratio of decadal SST predictability between HR and LR 

simulations, respectively. In the HR simulations, we find 
a higher decadal SST predictability in eddy-rich regions 
such as the Gulf Stream and Kuroshio Current systems, 
Tropical Atlantic, and Southern Ocean, where decadal SST 
variability is also increased (Fig. 7c). Perhaps surprising 
is that we also detect higher decadal SST predictability in 
HR over the Tropical Indian region, suggesting the strong 
influence of mesoscale ocean features on decadal SST pre-
dictability in addition to the impact of external forcing 
(e.g., Guemas et al. 2013; Meehl et al. 2014). Another 
possible explanation is better represented ocean fronts and 
mesoscale eddies in the North Atlantic in HR are forc-
ing basin-wide modes, enhancing decadal variability in 
the tropics. As suggested by Hameed et al. (2018), Gulf 
Stream variability in the decadal band is related to both 
the Atlantic Meridional Mode and North Atlantic Oscil-
lation. Compared with HR, LR has substantially broader 
and more diffuse western boundary currents leading to 
underestimated covariability between Gulf Stream and 
Tropical Atlantic (Hameed et al. 2018). We also note that 
decadal SST variability is remarkably elevated with HR 

Fig. 7   Decadal SST predictability using CCSM4 models and the 
effect of ocean model resolutions. a Decadal SST predictability based 
on HR CCSM4. Ratio of HR and LR CCSM4 in terms of b decadal 

SST predictability, c decadal SST variability, and d the persistence 
of decadal SST variability. The persistence of the system is estimated 
as the lag-1 year autocorrelation of 5-year low-pass filtered SST data
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over western and eastern boundary current regions in the 
extratropics (Fig. 7c).

Table 2 provides regionally averaged decadal SST pre-
dictability for CCSM4 LR and HR models in different ocean 
regions. In many ocean regions, we detect increased decadal 
SST predictability with the global mean HR/LR predictabil-
ity ratio of 1.1. In the meanwhile, there are considerable 
regions such as the Eastern Tropical Pacific, Northern North 
Atlantic, as well as parts of the Southern Ocean showing 
reduced decadal predictability in HR. In the Northern North 
Atlantic, for example, both the LR and HR simulations show 
relatively higher decadal SST predictability than other ocean 
regions (Fig. 7a and Table 2), which is closely related with 
the persistence of ocean heat content (OHC) variability 
(Buckley et al. 2019; Foukal and Lozier 2018; Klavans et al. 
2019; Robson et al. 2012; Yeager and Robson 2017), which 
some studies have related to the Atlantic Meridional Over-
turning Circulation (AMOC; Latif et al. 2006; Yan et al. 
2018; Zhang 2017; Zhang and Zhang, 2015). The inclusion 
of mesoscale ocean features in HR results in greater dec-
adal variability in the North Atlantic SST, but without a 
substantial increase in decadal predictability, except in the 
Gulf Stream and its extension. In particular, we find even 
decreased decadal predictability (or persistence) with HR in 
the Northern North Atlantic, with the HR/LR predictability 
(or persistence) ratio of 0.9 (Table 2).

The spatial patterns and area-averaged values of the HR/
LR persistence ratio are included in Fig. 7d and Table 2. 
The persistence of the system is estimated as the lag-1 year 

autocorrelation of 5-year low-pass filtered SST data. We 
compute the HR/LR persistence ratio because of the lack 
of persistence in models can contribute to the signal-to-
noise paradox (see also Eq. 5 in Sect. 2.3). A comparison of 
the persistence characteristics between HR and LR models 
indicates the possibility of the paradox’s existence. Note 
that we cannot directly compare the persistence of CCSM4 
model simulations (control simulations) with observational 
estimates. So the results solely based on the persistence 
characteristics can lead to considerable uncertainty. As 
shown in Table 2, we find that many regions with higher 
decadal predictability in HR than LR are accompanied with 
longer persistence and vice versa. We speculate that in these 
regions (larger predictability and persistence in HR than 
LR), there is a smaller chance for the paradox to exist in 
HR than LR. Uncertainty remains in regions such as parts 
of the Southern Ocean and Eastern Tropical Pacific, show-
ing significant inconsistency between decadal predictability 
and persistence. For example, this predictability-persistence 
inconsistency in the Eastern Tropical Pacific is possibly due 
to different decadal ENSO variability in the simulations, as 
shown in Fig. 7c, decadal variance in HR is much lower than 
LR. Although HR shows longer persistence in the Eastern 
Tropical Pacific, the noise variance may be larger than LR, 
contributing to a higher chance for the paradox to exist in 
HR (Eq. 5 in Sect. 2.3).

As noted earlier, we hypothesize on these decadal time-
scales (5–10 years) the enhanced vertical connectivity in the 
HR simulation compared to the LR simulation is a possible 
explanation for the longer limits of predictability (Buckley 
et al. 2019). We demonstrate this point by first taking a close 
look at the decadal predictability ratio of SST and subsurface 
ocean temperature averaged over 200–700 m depth (TEMP) 
in CCSM4 HR and LR models as well as the area-averaged 
values of SST/TEMP predictability ratio in different ocean 
regions (Fig. 8). In LR, decadal TEMP predictability is 
substantially higher than decadal SST predictability (except 
for parts of the Tropical Indian Ocean and Eastern Tropical 
Pacific; see Fig. 8b), while many regions in HR show com-
parable decadal SST and TEMP predictability (Fig. 8a). As 
shown in Fig. 8c, SST/TEMP decadal predictability ratio 
in HR is much closer to 1.0 than LR. We speculate that the 
difference between decadal SST and TEMP predictability 
in LR results from the lack of vertical connectivity. That is, 
a lack of vertical connectivity suggests that deeper ocean 
processes that tend to occur on longer timescales are not 
contributing to the SST variability, and thus the decadal pre-
dictability is lower.

Figure 9 shows the lead-lag correlations of SST anoma-
lies (SSTA) and OHC at different depths over the Northern 
North Atlantic, Gulf Stream, Eastern Tropical Atlantic, and 
Eastern Tropical Pacific, where large differences between 
LR and HR decadal SST predictability are situated (see 

Table 2   Regionally averaged decadal SST predictability for CCSM4 
LR and HR models and HR/LR persistence ratio

HR/LR predictability (persistence) ratio is defined as HR predictabil-
ity (persistence) divided by LR predictability (persistence)
NA North Atlantic (20°–65° N, 80°–0° W), NNA Northern North 
Atlantic (47°–52° N, 60°–45° W), GS Gulf Stream (32°–45° N; 80°–
45° W), NP North Pacific (20°–60° N, 120° E–120° W), ETP Eastern 
Tropical Pacific (5° S–5° N, 120°–90° W), TA Tropical Atlantic (15° 
S–15° N, 80°–0° W), TI Tropical Indian (15° S–25° N, 40°–100° E), 
SO Southern Ocean (65°–40° S, 0°–360° E)

Region Decadal SST pre-
dictability (%)

HR/LR predict-
ability ratio

HR/LR 
persistence 
ratio

LR HR

NA 57.2 61.6 1.1 1.3
NNA 60.6 52.8 0.9 0.9
GS 48.9 63.6 1.3 2.3
NP 54.5 56.6 1.0 1.0
ETP 20.7 18.1 0.9 1.5
TA 38.5 47.5 1.2 1.3
TI 31.8 35.2 1.1 1.2
SO 48.5 53.0 1.1 1.7
Global Mean 47.7 51.0 1.1 1.3
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Fig. 7b). For shallow depth integrals of 100 m and 200 m, 
both LR and HR models show OHC anomalies highly cor-
related with SSTA, especially in the Gulf Stream (Fig. 9c, 
d). However, for deeper depth integrals, such as to 400 and 
700 m, the OHC anomalies get progressively less correlated 
with the SSTA in the LR model, especially in the Northern 
North Atlantic (Fig. 9a, b) and Eastern Tropical Atlantic 
(Fig. 9e, f), indicating evident differences with HR, which 
maintains a consistent vertical structure. Notably, LR has 
OHC leading SST up to a year over the Eastern Tropical 
Pacific (Fig. 9g, h), which can contribute to a higher decadal 
SST predictability in LR than HR (Fig. 7b). Of particular 
interest is the Northern North Atlantic, where HR seems 
to have more vertical connectivity (Fig. 9a, b) but shorter 
decadal SST predictability (Table 2). So we speculate that 
the reduced predictability in HR cannot be simply explained 
by vertical connectivity, other factors such as different mean 
state model bias (e.g., Kirtman et al., 2017), and telecon-
nection patterns (i.e., the effect of ENSO on mid-latitude 
climate) between HR and LR may contribute to the predict-
ability reduction.

To underscore the results in Fig. 9, i,e., the enhanced 
vertical connectivity associated with ocean mesoscale 

features and processes, we show the vertical correlation 
between SSTA and subsurface ocean temperature anoma-
lies (Fig. 10) and the instantaneous correlation (zero-lag 
cross-correlation) between the 400 m OHC anomalies and 
surface heat flux anomalies (Fig. 11). Figure 10 shows 
the vertical correlation between SSTA and thermocline 
ocean temperature averaged over 200–500 m (upper ther-
mocline; Fig. 10a, b) and 700–1000 m (deeper thermo-
cline; Fig. 10c, d), as well as the difference of vertical 
correlation coefficients (absolute values) between HR and 
LR (Fig. 10e, f). We note that there is a strong vertical 
connection between SST and upper thermocline in many 
regions in both HR (Fig. 10a) and LR (Fig. 10b), such as 
the Northern North Atlantic, Gulf Stream, Eastern Tropi-
cal Pacific, and the Southern Ocean. For example, the 
vertical correlation coefficients in the Gulf Stream and 
its extension regions reach the maximum values of about 
0.8 for both HR and LR simulations. Note that HR shows 
stronger vertical connections in part of the Northern North 
Atlantic compared with LR, with an area-averaged differ-
ence around 0.21. Different from LR, this strong verti-
cal connectivity in HR persists in the deeper thermocline 
(Fig. 10c) albeit weaker than in the upper thermocline 

Fig. 8   SST/TEMP decadal predictability ratio for a CCSM4 HR 
and b LR models. c Regionally averaged values in different ocean 
regions, including NA, NNA, GS, NP, ETP, TA, TI, and SO (same 
as regions in Fig.  7). TEMP decadal predictability is computed as 

decadal predictability of subsurface ocean temperature averaged over 
200–700 m depth. The black reference line at 1.0 in c implies compa-
rable values of decadal SST and TEMP predictability
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(Fig. 10a), except for the Eastern Tropical Pacific where 
both HR and LR show very weak or no vertical connectiv-
ity in the deeper thermocline (Fig. 10c, d). In the North 
Atlantic, for instance, the area-averaged vertical correla-
tions in the upper thermocline in HR and LR are 0.38 
and 0.32, respectively. The North Atlantic area-averaged 
vertical correlation coefficient in the lower thermocline 
slightly decreases to 0.22 in HR, but in LR, the vertical 
correlation is almost missing. The difference of vertical 
correlation coefficients (absolute values) between HR and 
LR (Fig. 10e, f) suggests that HR has more robust verti-
cal connectivity, especially over eddy-rich regions (i.e., 
Gulf Stream, Kuroshio Current, and the Southern Ocean) 
that may contribute to larger decadal SST predictability 
and the smaller chance for the existence of the paradox 
than LR (Fig. 7b, d). HR has reduced vertical connectiv-
ity in the upper thermocline of Northern North Atlantic, 
which may provide some hints for the decreased decadal 
SST predictability (Table 2). However, larger vertical 

correlation values are detected in HR in the deeper ther-
mocline (Fig. 10e, f). 

Figure 11 shows the correlation between the surface net 
heat flux anomalies and OHC anomalies for HR and LR, 
as well as the difference of correlation coefficients (abso-
lute values) between HR and LR. The results are generally 
consistent with Buckley et al. (2019). The correlations in 
frontal ocean zones and eddy rich regions in HR (Fig. 11a) 
are stronger than LR (Fig. 11a). Further, in LR, there are 
widespread regions of negative correlations in the Gulf 
Stream and Kuroshio subtropical recirculation gyres, 
subtropical North and South Pacific, and Southern Ocean 
(Fig. 11b). This reversal is difficult to detect or appears 
only in isolated regions of HR, notably in the Pacific warm 
pool and the sub-Antarctic zone of deep mixed layers. 
Though uncertainty remains, HR has higher correlation 
values between ocean heat content and net heat flux than 
LR, particularly over the Gulf Stream, Kuroshio Current, 

Fig. 9   Lagged  cross-correlation between SSTA and OHC anomalies 
for depths of integration to 100, 200, 400 and 700 m in (a, b) North-
ern North Atlantic (47°–52° N, 60°–45° W), c, d Gulf Stream (32°–
45° N; 80°–45° W), e, f Eastern Tropical Atlantic (20° S–10° N; 15° 
W–15° E), and g, h Eastern Tropical Pacific (5° S–5° N, 120°–90° 
W). The left panels (a, c, e, g) are based on HR while the right panels 

are based on LR. Negative (positive) years indicate the SSTA leading 
(lagging) the OHC anomalies for lags between −2 and 2  years. All 
variables are 5-year low-pass filtered. The one-tailed (95%) signifi-
cance threshold for the cross-correlation is depicted by the hatched 
area and estimated using the non-parametric random phase method 
(Ebisuzaki 1997)
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and the Southern Ocean, consistent with results based on 
SST-TEMP relationships. Only a slight increase of verti-
cal correlation in HR (about 0.1), however, is detected 
over the Tropical Indian and Tropical Atlantic Ocean, as 
shown in Fig. 11c. It is found that HR generally displays 
a higher correlation of OHC and net heat flux in eddy-
rich regions, where higher decadal SST predictability and 
reduced signal-to-noise paradox are also shown (Fig. 7b).

4 � Summary

To understand the underlying mechanisms for the signal-
to-noise paradox, we focus on two main questions: (i) 
where and to what extent is the paradox leading to sub-
stantial underestimates of the limit of predictability? (ii) Is 
this underestimate of predictability and associated signal-
to-noise paradox related to the representation of ocean 

Fig. 10   Vertical correlation between SSTA and subsurface ocean 
temperature anomalies averaged over (a, b) the upper 200–500  m 
and c, d the upper 700–1000  m. e, f Difference of vertical correla-
tion coefficients (absolute values) between HR and LR models: e dif-
ference between a and b; f difference between c and d. a and c are 

for HR and b and d are for LR. Vertical correlation coefficients are 
estimated as simultaneous correlation between SSTA and subsurface 
ocean temperature anomalies. All the data are linearly detrended and 
5-year low-pass filtered
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mesoscale processes and features? To address the first 
question, we re-examine decadal predictability in CMIP5 
models from the signal-to-noise paradox’s perspective. We 
first compare decadal predictability of SST and SLP in 
observations and CMIP5 models, showing that decadal 
predictability estimates based on models are generally 
underestimated, particularly in the Tropical Atlantic, Trop-
ical Indian ocean, and many eddy-rich regions. The distri-
bution of the signal-to-noise paradox in the SST fields of 
CMIP5 models is presented following the Markov model 
framework in Zhang and Kirtman (2019b). The difference 

between observed and model-simulated decadal predict-
ability is closely associated with the signal-to-noise para-
dox. Models are likely to underestimate decadal predict-
ability in regions where it is likely for the signal-to-noise 
paradox to exist. Note that some regions fail to satisfy 
these predictability-paradox relationships, which requires 
further investigation. We also examined this question in 
the context of so-called historical climate simulations 
and pre-industrial control runs. For example, the Tropi-
cal Indian and Tropical Atlantic oceans are two distinct 
regions significantly influenced by external forcing, where 
we detect a lower chance of existence for the signal-to-
noise paradox in CMIP5 HIST simulations compared with 
PI simulations. Many regions in the North Atlantic are also 
impacted by external forcing in terms of decadal SST pre-
dictability and the signal-to-noise paradox. The signal-to-
noise paradox applies to CMIP5 uninitialized simulations 
(i.e., HIST and PI), implying that the paradox is not due 
to model initialization processes’ problems.

To address the second question, we perform CCSM4 HR 
model experiments with eddying ocean component com-
pared to the LR model, and the results are also discussed 
through the lens of the signal-to-noise paradox. The model 
experiments’ design is based on the hypothesis that the 
presence of ocean mesoscale processes and features and the 
associated vertical connectivity impact decadal variability, 
predictability, and the signal-to-noise paradox. For the first 
time, we have addressed the signal-to-noise paradox using 
eddying GCMs. Our argument here is generally consistent 
with Strommen and Palmer (2019) and Zhang and Kirtman 
(2019b) in that we attribute the low signal-to-noise ratio to 
the lack of persistence, which can be seen in decadal predict-
ability estimates in Fig. 7. We further argue that the lack of 
persistence in climate models stems from the lack of vertical 
connectivity in the subsurface ocean between ocean mixed 
layer and thermocline. As shown in SST/TEMP decadal 
predictability ratio (Fig. 8), there is a significant difference 
in decadal SST and TEMP predictability in LR resulting 
from the lack of vertical connectivity, which implies close 
relationships between vertical connectivity and decadal SST 
predictability. The inclusion of a high-resolution ocean com-
ponent shows comparable decadal predictability of ocean 
temperature in the upper ocean in many regions. We com-
pare HR and LR models in terms of the relationships among 
SST, surface heat flux, OHC, and subsurface ocean tempera-
ture, suggesting that HR and LR models have substantially 
different subsurface vertical structure (Figs. 9, 10, 11). In 
the HR model with better represented ocean mesoscales, we 
have demonstrated that there is consistent upper ocean verti-
cal structure and strong vertical connection in the subsurface 
ocean that is weaker or even absent in the LR model. The 
differences in the HR and LR models’ vertical connectivity 
can thus contribute to the differences in the persistence of 

Fig. 11   Correlation between 5  year low-pass filtered anomalies of 
0–400 m ocean heat content and net heat flux for a HR, b LR, and 
c difference of correlation coefficients (absolute values) between HR 
and LR. The sign convention in a and b indicates positive heat flux 
warms the atmosphere
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decadal SST variability and the decadal SST predictability. 
Compared with LR, HR suggests more vertical connectivity, 
particularly over eddy-rich regions, such as the Gulf Stream, 
Kuroshio Current, and the Southern Ocean, where increased 
decadal predictability and longer persistence (or reduced sig-
nal-to-noise paradox) are detected. Note that there are some 
exceptions, such as the Northern North Atlantic, where we 
detect increased vertical connectivity but decreased decadal 
SST predictability in HR compared with LR. This reduced 
decadal SST predictability in HR cannot be simply explained 
by vertical connectivity, which requires further investiga-
tion. Overall, we argue that the better represented mesoscale 
ocean features may (at least partially) eliminate the signal-
to-noise issue and improve decadal-scale climate predict-
ability in comparison with observational estimates.
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