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Abstract

Recent research suggests the widespread existence of the signal-to-noise paradox in seasonal-to-decadal climate predictions.
The essence of the paradox is that the signal-to-noise ratio in models can be unrealistically small and models may make better
predictions of the observations than they predict themselves. The paradox highlights a potentially serious issue with model
predictions as previous studies may underestimate the limit of predictability. The focus of this paper is two-fold: the first
objective is to re-examine decadal predictability from the lens of the signal-to-noise paradox in the context of CMIP5 models.
We demonstrate that decadal predictability is generally underestimated in CMIP5 models possibly due to the existence of the
signal-to-noise paradox. Models underestimate decadal predictability in regions where it is likely for the paradox to exist,
especially over the Tropical Atlantic Ocean and Tropical Indian Ocean and eddy-rich regions, including the Gulf Stream,
Kuroshio Current, and Southern Ocean. The second objective follows from the results of the first, attempting to determine
if this underestimate of decadal predictability is, at least partially, due to missing ocean mesoscale processes and features in
CMIPS5 models. A suite of coupled model experiments is performed with eddying and eddy-parameterized ocean component.
Compared with eddy-parameterized models, the paradox is less likely to exist in eddying models, particularly over eddy-
rich regions. These also happen to be regions where increased decadal predictability is identified. We hypothesize that this
enhanced predictability is due to the enhanced vertical connectivity in the ocean. The presence of mesoscale ocean features
and associated vertical connectivity significantly influence decadal variability, predictability, and the signal-to-noise paradox.
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1 Introduction

There is a continuously growing demand for decadal climate
predictions. Making skillful decadal predictions has poten-
tial benefits in terms of supporting decision-making pro-
cesses in agriculture, energy and water management among
other sectors (e.g., Kirtman et al. 2013; Kushnir et al. 2019;
Merryfield et al. 2020). While seasonal climate prediction
has matured into regular operational forecasts (e.g., Kirtman
et al. 2014), forecasting the climate over decades has proven
more challenging (Keenlyside et al. 2008; Meehl et al. 2014;
Zhang and Kirtman 2019a).

One of the significant challenges in decadal prediction
and often overlooked in previous studies is the so-called
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“signal-to-noise paradox” (e.g., Scaife et al. 2014; Siegert
et al. 2016; Smith et al. 2019; Zhang and Kirtman 2019b).
The essence of the paradox is that the signal-to-noise ratio
estimated in climate models can be too small. Specifically,
models seem to be better at predicting observations than
predicting themselves as the model ensemble mean forecasts
are better correlated with observations than with individual
ensemble members. Scaife et al. (2014) first discussed the
signal-to-noise paradox in seasonal prediction of the win-
ter North Atlantic Oscillation (NAO) index, and subse-
quently, a growing list of examples in different atmospheric
and climate models has emerged (Scaife and Smith 2018).
For example, Zhang and Kirtman (2019b, hereafter ZK19)
developed a simple Markov model framework and provided
a comprehensive assessment of the NAO index indicating
the widespread existence of the signal-to-noise paradox in
coupled models from the fifth Coupled Model Intercom-
parison Project (CMIP5). The Markov model framework
can easily reproduce the signal-to-noise paradox, which is
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dependent on the magnitude of the persistence and noise
variance. Smith et al. (2019) used multi-model decadal hind-
casts from seven state-of-the-art coupled climate models
with a total of 71 ensemble members suggesting the exist-
ence of the signal-to-noise paradox in decadal predictions.
One of the key points highlighted in the Smith et al. (2019;
2020) papers was that model-based estimates of decadal
predictability might actually be an underestimate, as previ-
ous studies could have mispresented the noise, or underesti-
mated the magnitude of the predictable signal due to limited
ensemble size.

The specific examples of the paradox and the associated
model errors noted above suggest that model based estimates
of climate predictability may seriously underestimate the
limit of predictability. As we begin to understand the mecha-
nisms for the paradox, predictability estimates also need to
be revisited. Where and to what extent is the paradox leading
to substantial underestimates of the limit of predictability?
The first goal of the paper is to re-examine decadal predict-
ability from the lens of the signal-to-noise paradox in the
context of the CMIP5 models. We also attempt to understand
if and how model initialization and external forcing con-
tribute to the signal-to-noise paradox. Different from Smith
et al. (2019), who investigated the signal-to-noise para-
dox from initialized decadal hindcasts from seven CMIP5
models, our study examines the paradox from a diagnostic
perspective using thirty CMIPS5 uninitialized historical and
preindustrial control simulations. Instead of estimating dec-
adal prediction skill, we examine decadal potential predict-
ability (a diagnostic method to estimate predictability; Boer
2004) for both observations and CMIP5 models. Based on
the Markov model framework in ZK19, we determine the
widespread existence of the signal-to-noise paradox that
applies to CMIP5 uninitialized simulations (focusing on dec-
adal timescales), suggesting that the paradox is not due to
problems with model initialization processes. Comparisons
of the paradox between historical and preindustrial control
simulations imply the potential impact of external forcing
on the signal-to-noise paradox and decadal predictability.

The second goal of the paper follows from the results
of the first. Essentially, the results from the first goal show
that the CMIP5 models seriously underestimate the limit of
decadal predictability, and models seem to underestimate
decadal predictability in regions where it is likely for the
paradox to exist. Specifically, we find that models underes-
timated decadal SST predictability, particularly in the Gulf
Stream, Kuroshio Current, Southern Ocean and other eddy-
rich regions, where the signal-to-noise paradox occurs. The
underestimation of decadal predictability over eddy-rich
regions in models suggests the importance of ocean model
resolution or mesoscale ocean features in decadal SST pre-
dictability and the signal-to-noise paradox. Therefore, we
hypothesize in this second goal that this underestimate of

@ Springer

decadal SST predictability is, at least in part, due to miss-
ing ocean mesoscale processes and features in the CMIP5
models. Again, the results are presented in the context of the
signal-to-noise paradox.

With the above in mind, there have been several studies
examining the mechanisms for the paradox. For example,
the signal-to-noise paradox has been attributed to a lack of
persistence (Strommen and Palmer 2019; Zhang and Kirt-
man 2019b), weak extratropical air-sea coupling (Scaife
and Smith 2018), stratospheric initialization (O’Reilly et al.
2019), and underestimated eddy feedbacks due to low atmos-
pheric model resolution (Scaife et al. 2019). Little to no
research, however, has asked how mesoscale ocean features
affect the signal-to-noise paradox and associated estimate
of decadal predictability. The role of ocean mesoscale pro-
cesses is of particular interest since several previous stud-
ies have suggested that decadal SST variability in coupled
models is improved when ocean mesoscale features and pro-
cesses are correctly represented (e.g., He et al. 2018; Infanti
and Kirtman 2019; Kim et al. 2018; Samanta et al. 2018;
Kirtman et al. 2012, 2017; Siqueira and Kirtman 2016;
Zhang and Kirtman 2019a; among others). As shown by
Kirtman et al. (2017), for example, mesoscale ocean features
can substantially influence large-scale climate variability,
air-sea interactions, and predictability. Particularly in the
North Atlantic region, a more realistic mean-state climate
and improved representation of ocean—atmosphere coupling
and decadal SST variability around the Gulf Stream region
have been detected with eddying Global Coupled Models
(GCMs; Siqueira and Kirtman 2016). Given the importance
of eddies on low-frequency variability and ocean—atmos-
phere coupling, the lack of ocean eddy resolution in current
coupled models (e.g., eddy-parameterized models used in
CMIP5) can potentially affect the estimates of decadal cli-
mate predictability.

In addition to the overall representation of decadal vari-
ability, the second goal of this study is motivated by the
hypothesis that low-resolution eddy-parameterized GCMs
may misrepresent or even lack the vertical communication
in the subsurface to the deeper ocean, contributing to a lack
of persistence in models and thus the signal-to-noise para-
dox. The underestimated vertical communication between
the deep ocean and surface processes in CMIP5 models
compared to observations has been recently explored by
Kravtsov (2020). Kravtsov (2020) introduced an updated
linear energy-balance model considering the heat exchange
between ocean mixed layer and thermocline in the Atlan-
tic and Pacific oceans. By fitting the observed and CMIP5
model-simulated SST with the energy-balance model,
Kravtsov (2020) identified stronger vertical communication
between the deep ocean and surface processes in observa-
tions than CMIP5 models, contributing to a larger frac-
tion of predictable variability at decadal timescales. This
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significant difference in decadal potential predictability
between observations and CMIPS5 models, as suggested by
Kravtsov (2020), may lead to the signal-to-noise paradox.

In this study, we first examine the decadal potential pre-
dictability in observations and CMIP5 models from a diag-
nostic perspective, i.e., the first goal. Again, through the lens
of the signal-to-noise paradox we use the Markov model
framework developed in ZK19 to diagnose predictability.
In terms of the second goal, distinct from Kravtsov (2020)
who estimated the coupling parameters between thermocline
and mixed layer in the energy-balance model, we perform a
suite of model experiments with and without eddying ocean
component, again through the lens of the paradox. We argue
that high-resolution models with better represented ocean
mesoscale features have stronger vertical connectivity in the
subsurface to the deeper ocean than low-resolution mod-
els, which may potentially, or at least partially eliminate the
signal-to-noise issue and thus improve predictability over
decadal timescales.

2 Data and method

2.1 Observations, reanalysis datasets, and CMIP5
models

Three observational monthly sea surface temperature (SST)
datasets are used in this study; namely, the National Oce-
anic and Atmospheric Administration (NOAA) Extended
Reconstructed SST version-5 (ERSST; Huang et al. 2017)
on 2°X2° grids for 1854-present, the Hadley Center Global
Sea Ice and SST data set (HadISST; Rayner et al. 2003) from
1870 to 2017 with a spatial resolution of 1° x1°, and the
Centennial Observation-Based Estimates of SST version-2
(COBE; Hirahara et al. 2014) from 1850 to 2017 on the
same grid as HadISST data. Monthly mean sea level pres-
sure (SLP) data are obtained from three resources, including
two 20th century reanalysis datasets from the NOAA (20CR;
2°%2°; 1871-2012; Compo et al. 2011) and the European
Centre for Medium-Range Weather Forecasts (ERA20C; 1x
1°; 1900-2010; Poli et al. 2016), as well as the Hadley Cen-
tre’s Mean SLP data (HadSLP; 5x5°; 1850-2004; Allan and
Ansell 2006). Here we simply consider reanalysis datasets
as supplement to observations.

Both the historical (HIST, the first ensemble member) and
the preindustrial control (PI) simulations of thirty CMIP5
models are used in this study to compare with observa-
tions (Table 1). We only use the first realization (rlilpl)
of each CMIP5 model to equally weight each model in the
multi-model mean estimates. The HIST simulations are
simulations of recent past climate (1850-2005) forced by
changing conditions, while the PI simulations are preindus-
trial coupled ocean—atmosphere control simulations with

non-evolving preindustrial conditions (Taylor et al. 2012).
Variability in the PI simulations is generated only through
interactions internal to the coupled system, while variability
in the HIST simulations is also due to natural and anthropo-
genic forcing (Murphy et al. 2017).

2.2 CCSM4 model experiments

A suite of model experiments is performed with the National
Center for Atmospheric Research Community Climate Sys-
tem Model Version 4 (CCSM4; see overview in Gent et al.
2011). CCSM4 is a state-of-the-art global coupled model
composed of four component models, namely, the Com-
munity Atmosphere Model version 4 (CAM4), the Paral-
lel Ocean Program version 2 (POP2), the Community Land
Model version 4 (CLM4), the Community Ice Code version
4 (CICE4), and the coupling infrastructure version 7 (CPL7)
(Gent et al., 2011). In the low-resolution eddy-parameter-
ized experiment (hereafter referred to as LR), we use 1°
CAM4 and CLM4 coupled to the POP2 and CICE4 with the
nominal 1° horizonal resolution. The zonal resolution of the
POP2 and CICEA4 is 1.125°globally while the meridional res-
olution increases from 0.27° around the equator to 0.54° at
33°N/S and is constant at high latitudes. We conduct the LR
CCSM4 experiment with present-day forcing (e.g., green-
house gas concentrations for 1990) for 500 years. The LR
simulation was initialized as a “cold-start”, that is an ocean
at rest and was spin-up for 200 years. Different from the LR
experiment, we employ a 0.5° CAM4 and CLM4 coupled
to the nominal 0.1° horizonal resolution of the POP2 and
CICE#4 in the high-resolution eddying experiment (hereaf-
ter referred as HR). We first perform a 155-year standard
control simulation with the same greenhouse gas concen-
trations as in the LR experiment, and the first 100 years of
the simulation are taken as spin-up and are discarded in the
analysis. Restarting from the first experiment with small per-
turbations, we run two other experiments for 70 years, each
with the first 20 years taken as spin-up periods (see details of
HR initialization and configuration in Kirtman et al. 2012).
In total, we analyze here 155 years of HR simulations and
300 years of LR simulations.

2.3 Markov model framework

The Markov model framework is extensively described in
ZK19 and has proven useful to determine the existence
of the signal-to-noise paradox. The design of the Markov
model framework starts from a linear signal-plus-noise
model assuming that the future state forecasts depend lin-
early on the current state predictor and a stochastic noise
term. The observations and models can be simulated with a
statistical Markov chain model:
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Table 1 CMIP5 models used in this study

Models Atmos- Ocean grid PI length (years) Data/modeling institute
pheric grid (Latx Lon)
(Latx Lon)
ACCESS1-0 1.3°x1.9° 1°x1° 500 Commonwealth Scientific and Industrial Research Organization and
ACCESS1-3 Bureau of Meteorology (Australia)
BCC-CSM1-1 2.8°x2.8° 1°x1° 500 China Meteorological Administration
BCC-CSM1-1-m 1.1°x1.1° 400
BNU-ESM 2.8°%2.8° 1°x1° 559 Beijing Normal University
CanESM2 2.8°x2.8° 0.9°x1.4° 996 Canadian Centre for Climate Modeling and Analysis
CCSM4 0.9°x1.3° 0.6°x1.1° 1051 National Center for Atmospheric Research
CESM1-BGC 500
CESM1-CAMS 319
CESM1-FASTCHEM 222
CMCC-CM 0.8°x0.8° 1.9°x2.0° 330 Centro Euro-Mediterraneo per I Cambiamenti Climatici
CMCC-CMS 3.7°x3.7° 500
CNRM-CM5 1.4°x1.4° 0.8°x1.0° 850 Centre National de Recherches Meteorologiques and Centre Europeen
de Recherche et Formation Avancees en Calcul Scientifique
CSIRO-Mk3-6-0 1.9°%x1.9° 0.9°x1.9° 500 Australian Commonwealth Scientific and Industrial Research Organi-
zation and Queensland Climate Change Centre of Excellence
GFDL-CM3 2.0°x2.5° 1.0°x1.0° 500 Geophysical Fluid Dynamics Laboratory
GFDL-ESM2G
GFDL-ESM2M
GISS-E2-H-CC 2.0°%x2.5° 1.0°x1.0° 251 Goddard Institute for Space Studies
GISS-E2-R-CC
HadGEM2-CC 1.2°x1.9° 1.0°x1.0° 240 Met Office Hadley Centre
HadGEM2-ES 576
inmecm4 1.5°%2.0° 0.4°x0.8° 500 Institute for Numerical Mathematics
IPSL-CMS5A-LR 1.9°x3.8° 1.9°x2.0° 1000 Institut Pierre-Simon Laplace
IPSL-CM5B-LR
IPSL-CM5A-MR 1.3°x2.5° 1.4°x1.6° 300
MPI-ESM-LR 1.9°x1.9° 1.5°x1.5° 1000 Max Planck Institute for Meteorology
MPI-ESM-P
MPI-ESM-MR 0.4°x0.4° 1156
NorESM1-ME 1.9°x2.5° 0.6°x1.1° 252 Norwegian Climate Centre
NorESM1-M 501

PI accounts for the preindustrial control simulations. We use historical simulations of CMIP5 models from 1870 to 2005. The CMIP5 model out-
puts and associated descriptions can be found in the CMIP5 archive (http://cmip-pcmdi.llnl.gov/cmip5). Atmospheric and ocean grids indicate
horizonal resolution for each model. Ocean grids show approximate values as resolution may vary with different latitudes and longitudes. Note
that in this study, we only use the last 200 years of PI for each model to estimate decadal predictability

0" =a0"+ N (D)
Mt = O™ + P, 2)
M = po" + P 3)

where {O} is the observation, and {M} is the model fore-
casts initialized with observations and perturbed with dif-
ferent noise realizations {P;} (i=1, 2, 3, ...). @ and f are
estimated as the lag-1 autocorrelation coefficients implying
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the persistence of the system. N and P are simply modeled
as white-noise processes (see also Kirtman et al. 2005). (M}
and {ﬁ} are model ensemble mean forecasts and ensemble
mean noise. Following the procedure in ZK19, we can ana-
Iytically derive the correlation between the model ensemble
mean forecasts and observations (corr(ﬂ, 0)) and the cor-
relation between the model ensemble mean forecasts and
individual ensemble members (corr(M,Mi)), and thus the
ratio of squared correlation (RSC):


http://cmip-pcmdi.llnl.gov/cmip5
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RSC = corr? (1_\71, 0) _ azﬂzal%, + az(l - az)of, @
corr? (M, Mi) ﬂzai,

where 0'1%, and 612:, are noise variance for the observation and
model ensemble members, which can be estimated as the
total variance in observations and model forecasts multiplied
by a factor of 1 — @? and 1 — #, respectively. Based on Scaife
and Smith (2018), there can be a signal-to-noise paradox
when the RSC is greater than 1.0. So Eq. (4) becomes,

Ot2 ﬂ2
g ®
N P

Distinct from ZK19, who applied the Markov model
framework to the monthly NAO index, this study further
examines the signal-to-noise paradox, especially in SST
fields based on CMIPS5 HIST and PI simulations with a focus
on decadal timescales.

3 Results and discussion

3.1 Underestimated decadal climate predictability
in CMIP5 models

Decadal climate predictability is quantified using the poten-
tial predictability variance ratio (Boer 2004; Zhang et al.
2017), which indicates the relative intensity of decadal vari-
ability and provides an efficient approach to estimate decadal
predictability from a diagnostic perspective. As suggested
by Boer (2004), the total climate variability (¢2 ) can be

Tot
decomposed into a low-frequency component (azf) that may

be potentially predictable and a high-frequency unpredict-
able noise component (aérr). This approach assumes that the
slower potentially predictable component is independent

: 2 _ 2 _ 2
from the noise term (aLf =05, GErr)' Therefore, decadal

potential predictability can be defined as the ratio of dec-
adal-scale variability with respect to the total variability
(aif/a%m %X 100%). In this study, we extract decadal-scale
climate variability by applying a 5-year low-pass Butter-
worth filter, after subtracting the annual cycle and linearly
detrending the monthly time series from each observation
and model simulation. The observational mean (based on
ERSSTv5, COBE-SST2, and HadISST) and multi-model
mean estimates (based on thirty CMIP5 HIST simulations)
of decadal SST predictability are shown in Fig. 1a, b. Note
that SST in model simulations is obtained by masking all the
non-ocean regions of surface temperature, and for each
observation and model simulation, SST is bilinearly inter-
polated to multiple 2° x 2° grids before analysis. In observa-
tions, considerable ocean regions display high values of
decadal SST predictability such as the North Atlantic,

Western Pacific, Tropical Indian Ocean, and Southern
Ocean, which is generally consistent with several earlier
studies (e.g., Ding et al. 2016; Zhang and Kirtman 2019a).
Meanwhile, low values of decadal SST predictability are
detected over the Eastern Tropical Pacific, with values rang-
ing from 25 to 60% gradually increasing westward, implying
that decadal climate in this region may be still potentially
predictable to some extent, though the Eastern Tropical
Pacific is dominated by the El Nifio-Southern Oscillation
(ENSO) at interannual timescales. Uncertainty remains in
the long-term predictability over the Eastern Tropical Pacific
region (e.g., Gonzalez and Goddard 2016; Kirtman and
Schopf 1998; Kravtsov 2012; Newman 2007), and as sug-
gested by Wittenberg et al. (2014), for example, the ENSO
potential predictability is lost after the 3—4 year range in the
absence of external forcing. Compared with observational
estimates, we find much lower values of decadal SST pre-
dictability for the CMIP5 multi-model mean estimates,
except for some regions such as the Northeastern Pacific and
subpolar North Atlantic (Fig. 1b). High decadal SST predict-
ability in the subpolar North Atlantic is consistent with the
results based on observations, where decadal SST variability
is significantly impacted by internal atmospheric noise and
subsurface ocean dynamics (e.g., Boer 2004; Robson et al.
2018; Wouters et al. 2013; Yan et al. 2018; Zhang and Kirt-
man 2019a; among others). Figure 1c¢ shows the observa-
tional and CMIPS multi-model estimates of decadal SST
predictability averaged over six different ocean regions,
namely, the North Atlantic (NA; 20°-65° N, 80°-0° W),
North Pacific (NP; 20°-60° N, 120° E-120° W), Eastern
Tropical Pacific (ETP; 10° S—-10° N, 180°-85° W), Tropical
Atlantic (TA; 15° S-15° N, 80°-0° W), Tropical Indian (TI;
15° S-25° N, 40°-100° E), and Southern Ocean (SO;
65°-40° S, 0°-360° E). The observational estimates show
higher decadal SST predictability than most of the CMIP5
models except in the North Pacific; that is, decadal SST pre-
dictability is generally underestimated in CMIP5 models.
The spatial distribution of decadal SST predictability based
on CMIP5 models in the North Pacific is substantially dif-
ferent from those based on observational estimates, with
larger values concentrated in the subpolar gyre, despite that
the mean estimates in models and observations are some-
what comparable. Notably, there is significant inconsistency
among different observational estimates in the Tropical
Indian and the Southern Ocean; also, thirty CMIP5 models
used here show better agreement with each other in the
North Atlantic and North Pacific (based on larger percentage
values) than other regions.

The impact of linear detrending is assessed in Fig. 2,
which shows decadal SST predictability without detrending
and with the regression-detrending method following Ting
et al. (2009) by regressing out the global mean SST warming
trend. Similar spatial patterns of decadal SST predictability
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Fig.1 Decadal SST predictability based on observations and CMIP5
models. a Observational mean estimates based on three observa-
tional SST datasets. We calculate decadal SST predictability for
each observational dataset and then take the average as the obser-
vational mean estimates. b Multi-model mean estimates based on
30 CMIPS historical simulations. ¢ Estimates of Decadal SST pre-
dictability for each observational dataset and CMIP5 model aver-
aged over six different ocean regions, namely, the North Atlantic
(NA; 20°-65° N, 80°-0° W), North Pacific (NP; 20°-60° N, 120°

is found with the different detrending methods and even
without detrending, supporting our argument of the under-
estimated decadal SST predictability in CMIP5 models.
Figure 3 is the same as Fig. 1 but for decadal SLP pre-
dictability. The observations and reanalysis data (ERA20C,
20CR, and HadSLP) present higher values of decadal SLP
predictability than almost all the CMIP5 models, indicat-
ing that CMIPS models also underestimate the observed
decadal SLP predictability. Figure 3c shows regionally
averaged decadal SLP predictability for each observation
and CMIP5 model in different ocean regions, namely, NA,
NP, ETP, TA, TI, and SO. In all the ocean regions, CMIP5
models present substantially lower values of decadal SLP
predictability than those based on observational SLP esti-
mates. The underestimated decadal predictability in mod-
els is not merely due to the underestimate of decadal-scale
SST and SLP variance in CMIP5 models. For example,
the variance can be comparable or even higher than the
observed variance estimate in substantial regions (Fig. 4).
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E-120° W), Eastern Tropical Pacific (ETP; 10° S-10° N, 180-85°
W), Tropical Atlantic (TA; 15° S—-15° N, 80°-0° W), Tropical Indian
(TI; 15°S-25°N, 40-100°E), and Southern Ocean (SO; 65°—40° S,
0°-360° E). HadISST =Hadley Centre Sea Ice and Sea Surface Tem-
perature. ERSST=Extended Reconstructed Sea Surface Tempera-
ture. COBE-SST =Centennial in situ Observation-Based Estimates.
OBSM =observational mean estimates. CMIP5=Coupled Model
Intercomparison Project 5. MMM =Multi-model Mean estimates

The results shown here suggest that the CMIP5 models
largely underestimate the decadal predictability, but not
necessarily the decadal variance. Even though the simu-
lated decadal variance is large, its fractional contribution
to the total variance is much smaller than in observations,
meaning that the simulated non-decadal variance is much
larger than in observations.

Wang et al. (2015) diagnose the leading Empirical
Orthogonal Function (EOF) modes of SST on monthly
and decadal timescales and argue that both CMIP3 and
CMIPS5 models fail to capture accurately the spatial struc-
ture compared with observational estimates of SST vari-
ability. The striking disagreement in SST variability and
predictability among observational estimates and CMIP5
models may stem from the ocean—atmosphere coupling
(Li et al. 2013; Sun et al. 2015), ocean dynamics (Kirtman
et al. 2012), and intrinsic model errors (Gupta et al. 2013;
Richter 2015), which requires further investigation.
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Fig.2 Impact of linear detrending on decadal SST predictability. a
Observational mean estimates of decadal SST predictability without
any detrending. b Observational mean estimates of decadal SST pre-
dictability using the regression-detrending method (regressing out the

3.2 Signal-to-noise paradox in decadal climate
predictability

Recent research reveals the widespread existence of the
signal-to-noise paradox in climate models. Here we ask
is the underestimated decadal predictability in CMIP5
models related to the signal-to-noise paradox? Figure 5
encapsulates the relationship between the paradox and
predictability. First, Fig. 5a shows the difference in dec-
adal SST predictability between observations (Fig. 1a)
and CMIP5 HIST simulations (Fig. 1b), which is indica-
tive of the underestimation in CMIP5 models. Based on
the Markov model framework (see Sect. 2), the chance
of existence for the signal-to-noise paradox based on
thirty CMIP5 HIST simulations is examined in the low-
pass filtered SST field (Fig. 5b). Each SST observation
and model simulation is detrended and normalized before
analysis. We first compute the RSC values of global SST
for each CMIP5 model based on the method introduced in
Sect. 2. The paradox is present when the RSC values are
greater than 1.0 at any spatial grid for each model. Here
we apply the likelihood chart used in the Fifth Assessment
Report of the United Nations Intergovernmental Panel on

global mean warming trend). ¢ Multi-model mean estimates of dec-
adal SST predictability without any detrending. d Multi-model mean
estimates of decadal SST predictability using the regression-detrend-
ing method

Climate Change (IPCC 2014): very likely 90-100%, likely
66-90%, about as likely as not 33-66%, unlikely 10-33%,
and very unlikely 0-10%. The chance of existence for the
paradox is then determined by considering all the thirty
CMIP5 models; for example, if over 90% of thirty mod-
els present RSC values greater than 1.0 (or a paradox)
in a region, this region will be considered “very likely”
for the paradox to exist. The patterns in the possibility
of the existence of the signal-to-noise paradox (Fig. 5b)
are somewhat consistent with those in Fig. 5a, implying
a possible relationship between the underestimated dec-
adal SST predictability and the signal-to-noise paradox.
Models are likely to underestimate decadal predictabil-
ity in regions where it is likely to have a signal-to-noise
paradox, especially around the Tropical Atlantic and the
Tropical Indian Ocean and eddy-rich regions, including
the Gulf Stream, the Kuroshio Current, and the Southern
Ocean. We note that considerable regions show inconsist-
ency between Fig. 5a and b such as the mid-latitude North
Atlantic, subtropical Northwest Pacific, and eastern tropi-
cal Pacific. The signal-to-noise paradox (Fig. 5b) is deter-
mined by the Markov model framework, which is devel-
oped based on the hypothesis that the lack of persistence
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Fig.3 Same as Fig. 1 but for decadal SLP predictability. a Observa-
tional mean estimates based on three observational SLP datasets. (b)
Multi-model mean estimates based on 30 CMIPS5 historical simula-
tions. ¢ Estimates of decadal SLP predictability for each observa-
tional dataset and CMIP5 model averaged over six different ocean

(c) Percent
80
70 A
A % Ap
60 % B §
A % 6
50 A ® A
40 % 8 c -
 J 8 [ )
0 8 g
30 o o % @
(&)
8 8
20 @)
NA NP ETP TA TI SO
A 20CR A ERA-20C A HadSLP
> OBSM O CMIP5 ® MMM

regions (same as in Fig. 1c). 20CR =NOAA-CIRES-DOE Twentieth
Century Reanalysis. ERA-20C=ECMWEF’s Astmospheric Reanalysis
of the Twentieth Century. HadSLP =Hadley Centre’s Mean Sea Level
Pressure
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Fig.4 Variance ratio between observations and CMIP5 models for a
decadal SST variability and b decadal SLP variability. SST in models
is obtained by masking all the non-ocean regions of surface tempera-

leads to the paradox. Predictability can be highly related
to persistence, but high persistence is not always indica-
tive of larger predictability. Uncertainty remains in the
simple Markov model as the lack of persistence may not
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ture. Low ratio of decadal SST variance between models and observa-
tions in polar regions is significantly affected by sea ice temperature

be the only factor contributing to the signal-to-noise para-
dox (e.g., O’Reilly et al. 2019; Scaife et al. 2019) and the
underestimated decadal predictability.
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Fig.5 Existence of the signal-to-noise paradox in CMIP5 mod-
els and the impact of external forcing. a Difference of decadal SST
predictability between observations and CMIP5 historical simula-
tions. b Chance of existence for the signal-to-noise paradox based on
30 CMIP5 historical simulations. Each SST simulation is detrended
and normalized before analysis. The existence of the signal-to-noise

This relationship between the paradox and predictabil-
ity is further supported by the ratio of squared correlation
over six ocean areas (same as Fig. 1c) estimated for each
model in CMIP5 (Fig. 6). The regional mean SST index
for each ocean region is created and then assessed with the
ratio of squared correlation for each model. There would
be a signal-to-noise paradox when the ratio of squared cor-
relation is higher than 1.0 (Eq. 4). Here we show that the
signal-to-noise paradox is very likely to occur in extratropi-
cal regions (e.g., the North Atlantic), the Tropical Atlantic
and the Southern Ocean; meanwhile, only about half of the
CMIP5 models used in this study indicate a paradox in the
North and Eastern Tropical Pacific. The results in Fig. 6 are
in good agreement with decadal SST predictability esti-
mates for regional averages based on three observational
datasets and 30 CMIP5 models in Fig. lc. For example,
ratios of squared correlation for CMIP5 models are gener-
ally greater than 1.0 in the North Atlantic (Fig. 6a), where
decadal predictability of SST is underestimated by most of
CMIPS5 models (Fig. 1¢). The distributions for the chance of

Unlikely

As Likely As Not Likely

0.33 0.66

Unlikely

_ As Likely As Not Likely

0.1 0.33 0.66 0.9

paradox is estimated based on the Markov model framework. ¢ Dif-
ference of decadal SST predictability between CMIPS5 historical and
pre-industrial control simulations, suggesting the impact of external
forcing. d Chance of existence for the signal-to-noise paradox based
on 30 CMIP5 pre-industrial control simulations

occurrence of the signal-to-noise paradox in this study show
some consistency with several previous studies (Eade et al.
2014; Smith et al. 2019); for instance, Eade et al. (2014)
show the distribution of the signal-to-noise paradox in sur-
face air temperature by the ratio of predictable component
based on a multi-model ensemble of decadal hindcasts from
the Met Office decadal prediction system (DePreSys; Knight
et al. 2014) and four CMIP5 models.

The impact of external forcing on decadal SST predict-
ability and the signal-to-noise paradox is also examined
here (Fig. 5c, d). Figure 5c displays the difference of dec-
adal SST predictability between thirty CMIPS HIST and PI
simulations, with the latter having constant external forcing.
Allowing for model drift, we only use the last 200 years of
PI simulations to compute decadal SST predictability (Cal-
culation 1). Some CMIP5 PI simulations may have short
time records less than 500 years. Therefore, we recalculated
decadal SST predictability based on selected models with
simulation length over 500 years (Calculation 2). The results
suggested no significant difference between Calculation 1
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Fig.6 Ratio of squared correlation estimated based on the Markov
model framework for 30 CMIP5 models (historical simulations) in six
different ocean regions: a NA: North Atlantic, b NP: North Pacific, ¢
ETP: Eastern Tropical Pacific, d TA: Tropical Atlantic, e TI: Tropical

and 2. The most noticeable difference between CMIP5 HIST
and PI simulations appears in the tropics such as the Tropi-
cal Atlantic and the Tropical Indian Ocean as larger decadal
SST predictability is found in these regions, accompanied by
a higher chance of the signal-to-noise paradox. Parts of west-
ern tropical Pacific and North Atlantic are also influenced
by external forcing, where the chance of existence for the
paradox is high for both HIST and PI simulations. Consist-
ent with previous studies (e.g., Goddard et al. 2013; Guemas
et al. 2013; Meehl et al. 2014), the Tropical Indian ocean
stands out as the area significantly affected by the externally
forced variability, which is shown to be much larger than the
internally generated variability in both uninitialized simula-
tions and initialized decadal hindcasts. We hypothesize that
CMIP5 models underestimate the externally forced trend
in the Tropical Indian ocean, though we cannot exclude the
role of internal dynamics and any other associated factors in
decadal predictability.

The Tropical Atlantic is another region of emerging interest
in near-term climate predictability, where external forcing acts
as an important factor driving decadal variability (Yeager and
Robson 2017). The Tropical Atlantic has long been considered
as a region with significant SST bias and poor upper ocean
thermal structure and limited decadal predictability (Harla3
et al. 2018; Patricola et al. 2012; Xu et al. 2014). Shaffry et al.
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Indian, and f SO: Southern Ocean. The percentage in each panel is
computed as the number of models with RSC values greater than 1.0
divided by thirty

(2017) utilized a high-resolution eddying GCM (ocean model
resolution 1/3° x 1/3°) and showed improved decadal predic-
tion skills compared with low-resolution models, especially
over the Tropical Atlantic region, pointing toward the impor-
tance of model resolution, in addition to external forcing.

Furthermore, the coexistence of the underestimated dec-
adal SST predictability and the high chance of occurrence
for the signal-to-noise paradox in eddy-rich regions is sug-
gestive of the lack of ocean model resolution in CMIP5 mod-
els. This is because all the coupled models in CMIP5 use
eddy parameterized ocean models that may have weak verti-
cal connectivity between ocean mixed layer and thermocline
(Kravtsov 2020). The role of mesoscale ocean eddies and
fronts in climate variability, air-sea interaction, and predict-
ability, particularly in the western boundary regions has been
highlighted in previous work (Bryan et al. 2010; Kirtman
et al. 2012; Minobe et al. 2008; Siqueira and Kirtman 2016),
and is a potential source of decadal predictability that has
not been fully accounted for or leveraged.

3.3 Advancing decadal predictability
from an eddying GCM

The following is based on the hypothesis that the presence of
ocean mesoscale processes and features and the associated
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vertical connectivity affects decadal variability, predictabil-
ity, and the signal-to-noise paradox. Specifically, coupled
models with an eddying ocean component may, at least par-
tially, reduce the signal-to-noise issue and thus improve dec-
adal-scale climate predictability. The enhanced predictability
we argue, is in part, due to the enhanced vertical connectiv-
ity in the ocean. This enhanced vertical connectivity allows
the deeper ocean to more efficiently communicate with the
surface, which, given the slower sub-surface time-scales,
leads to longer surface predictability. To test this argument,
we perform a suite of model experiments using CCSM4 with
HR (eddying; 0.1° X0.1°) and LR (eddy-parameterized; 1° X
1°) ocean component models. The details of the CCSM4
model setup and experiment design have been provided in
Sect. 2, which are generally consistent with Kirtman et al.
(2017), but here we employ a much longer LR simulation.
Figure 7 encapsulates how better represented ocean
mesoscales affect decadal predictability estimates. In par-
ticular, Fig. 7a, b shows the global distributions of decadal
SST potential predictability based on CCSM4 HR and the
ratio of decadal SST predictability between HR and LR

Percent

NN [
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simulations, respectively. In the HR simulations, we find
a higher decadal SST predictability in eddy-rich regions
such as the Gulf Stream and Kuroshio Current systems,
Tropical Atlantic, and Southern Ocean, where decadal SST
variability is also increased (Fig. 7c). Perhaps surprising
is that we also detect higher decadal SST predictability in
HR over the Tropical Indian region, suggesting the strong
influence of mesoscale ocean features on decadal SST pre-
dictability in addition to the impact of external forcing
(e.g., Guemas et al. 2013; Meehl et al. 2014). Another
possible explanation is better represented ocean fronts and
mesoscale eddies in the North Atlantic in HR are forc-
ing basin-wide modes, enhancing decadal variability in
the tropics. As suggested by Hameed et al. (2018), Gulf
Stream variability in the decadal band is related to both
the Atlantic Meridional Mode and North Atlantic Oscil-
lation. Compared with HR, LR has substantially broader
and more diffuse western boundary currents leading to
underestimated covariability between Gulf Stream and
Tropical Atlantic (Hameed et al. 2018). We also note that
decadal SST variability is remarkably elevated with HR

I B
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L. L 1Im
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Fig.7 Decadal SST predictability using CCSM4 models and the
effect of ocean model resolutions. a Decadal SST predictability based
on HR CCSM4. Ratio of HR and LR CCSM4 in terms of b decadal

I B
05 07 09 11 13 15

SST predictability, ¢ decadal SST variability, and d the persistence
of decadal SST variability. The persistence of the system is estimated
as the lag-1 year autocorrelation of 5-year low-pass filtered SST data
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over western and eastern boundary current regions in the
extratropics (Fig. 7¢).

Table 2 provides regionally averaged decadal SST pre-
dictability for CCSM4 LR and HR models in different ocean
regions. In many ocean regions, we detect increased decadal
SST predictability with the global mean HR/LR predictabil-
ity ratio of 1.1. In the meanwhile, there are considerable
regions such as the Eastern Tropical Pacific, Northern North
Atlantic, as well as parts of the Southern Ocean showing
reduced decadal predictability in HR. In the Northern North
Atlantic, for example, both the LR and HR simulations show
relatively higher decadal SST predictability than other ocean
regions (Fig. 7a and Table 2), which is closely related with
the persistence of ocean heat content (OHC) variability
(Buckley et al. 2019; Foukal and Lozier 2018; Klavans et al.
2019; Robson et al. 2012; Yeager and Robson 2017), which
some studies have related to the Atlantic Meridional Over-
turning Circulation (AMOC; Latif et al. 2006; Yan et al.
2018; Zhang 2017; Zhang and Zhang, 2015). The inclusion
of mesoscale ocean features in HR results in greater dec-
adal variability in the North Atlantic SST, but without a
substantial increase in decadal predictability, except in the
Gulf Stream and its extension. In particular, we find even
decreased decadal predictability (or persistence) with HR in
the Northern North Atlantic, with the HR/LR predictability
(or persistence) ratio of 0.9 (Table 2).

The spatial patterns and area-averaged values of the HR/
LR persistence ratio are included in Fig. 7d and Table 2.
The persistence of the system is estimated as the lag-1 year

Table 2 Regionally averaged decadal SST predictability for CCSM4
LR and HR models and HR/LR persistence ratio

Region Decadal SST pre- HR/LR predict- HR/LR
dictability (%) ability ratio persistence
W ratio

NA 57.2 61.6 1.1 1.3

NNA 60.6 52.8 0.9 0.9

GS 48.9 63.6 1.3 23

NP 54.5 56.6 1.0 1.0

ETP 20.7 18.1 0.9 1.5

TA 38.5 47.5 1.2 1.3

TI 31.8 352 1.1 1.2

SO 48.5 53.0 1.1 1.7

Global Mean 47.7 51.0 1.1 1.3

HR/LR predictability (persistence) ratio is defined as HR predictabil-
ity (persistence) divided by LR predictability (persistence)

NA North Atlantic (20°-65° N, 80°-0° W), NNA Northern North
Atlantic (47°-52° N, 60°—45° W), GS Gulf Stream (32°-45° N; 80°-
45° W), NP North Pacific (20°-60° N, 120° E-120° W), ETP Eastern
Tropical Pacific (5° S-5° N, 120°-90° W), TA Tropical Atlantic (15°
S—-15° N, 80°-0° W), TI Tropical Indian (15° S-25° N, 40°-~100° E),
SO Southern Ocean (65°—40° S, 0°-360° E)
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autocorrelation of 5-year low-pass filtered SST data. We
compute the HR/LR persistence ratio because of the lack
of persistence in models can contribute to the signal-to-
noise paradox (see also Eq. 5 in Sect. 2.3). A comparison of
the persistence characteristics between HR and LR models
indicates the possibility of the paradox’s existence. Note
that we cannot directly compare the persistence of CCSM4
model simulations (control simulations) with observational
estimates. So the results solely based on the persistence
characteristics can lead to considerable uncertainty. As
shown in Table 2, we find that many regions with higher
decadal predictability in HR than LR are accompanied with
longer persistence and vice versa. We speculate that in these
regions (larger predictability and persistence in HR than
LR), there is a smaller chance for the paradox to exist in
HR than LR. Uncertainty remains in regions such as parts
of the Southern Ocean and Eastern Tropical Pacific, show-
ing significant inconsistency between decadal predictability
and persistence. For example, this predictability-persistence
inconsistency in the Eastern Tropical Pacific is possibly due
to different decadal ENSO variability in the simulations, as
shown in Fig. 7c, decadal variance in HR is much lower than
LR. Although HR shows longer persistence in the Eastern
Tropical Pacific, the noise variance may be larger than LR,
contributing to a higher chance for the paradox to exist in
HR (Eq. 5 in Sect. 2.3).

As noted earlier, we hypothesize on these decadal time-
scales (5—10 years) the enhanced vertical connectivity in the
HR simulation compared to the LR simulation is a possible
explanation for the longer limits of predictability (Buckley
et al. 2019). We demonstrate this point by first taking a close
look at the decadal predictability ratio of SST and subsurface
ocean temperature averaged over 200—700 m depth (TEMP)
in CCSM4 HR and LR models as well as the area-averaged
values of SST/TEMP predictability ratio in different ocean
regions (Fig. 8). In LR, decadal TEMP predictability is
substantially higher than decadal SST predictability (except
for parts of the Tropical Indian Ocean and Eastern Tropical
Pacific; see Fig. 8b), while many regions in HR show com-
parable decadal SST and TEMP predictability (Fig. 8a). As
shown in Fig. 8c, SST/TEMP decadal predictability ratio
in HR is much closer to 1.0 than LR. We speculate that the
difference between decadal SST and TEMP predictability
in LR results from the lack of vertical connectivity. That is,
a lack of vertical connectivity suggests that deeper ocean
processes that tend to occur on longer timescales are not
contributing to the SST variability, and thus the decadal pre-
dictability is lower.

Figure 9 shows the lead-lag correlations of SST anoma-
lies (SSTA) and OHC at different depths over the Northern
North Atlantic, Gulf Stream, Eastern Tropical Atlantic, and
Eastern Tropical Pacific, where large differences between
LR and HR decadal SST predictability are situated (see
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Fig.8 SST/TEMP decadal predictability ratio for a CCSM4 HR
and b LR models. ¢ Regionally averaged values in different ocean
regions, including NA, NNA, GS, NP, ETP, TA, TI, and SO (same
as regions in Fig. 7). TEMP decadal predictability is computed as

Fig. 7b). For shallow depth integrals of 100 m and 200 m,
both LR and HR models show OHC anomalies highly cor-
related with SSTA, especially in the Gulf Stream (Fig. 9c,
d). However, for deeper depth integrals, such as to 400 and
700 m, the OHC anomalies get progressively less correlated
with the SSTA in the LR model, especially in the Northern
North Atlantic (Fig. 9a, b) and Eastern Tropical Atlantic
(Fig. 9e, 1), indicating evident differences with HR, which
maintains a consistent vertical structure. Notably, LR has
OHC leading SST up to a year over the Eastern Tropical
Pacific (Fig. 9g, h), which can contribute to a higher decadal
SST predictability in LR than HR (Fig. 7b). Of particular
interest is the Northern North Atlantic, where HR seems
to have more vertical connectivity (Fig. 9a, b) but shorter
decadal SST predictability (Table 2). So we speculate that
the reduced predictability in HR cannot be simply explained
by vertical connectivity, other factors such as different mean
state model bias (e.g., Kirtman et al., 2017), and telecon-
nection patterns (i.e., the effect of ENSO on mid-latitude
climate) between HR and LR may contribute to the predict-
ability reduction.

To underscore the results in Fig. 9, i,e., the enhanced
vertical connectivity associated with ocean mesoscale

(c)
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0.9 ° o
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©e

0.6 © o

0.3
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® HR SST/TEMP decadal predictability
® LR SST/TEMP decadal predictability

decadal predictability of subsurface ocean temperature averaged over
200-700 m depth. The black reference line at 1.0 in ¢ implies compa-
rable values of decadal SST and TEMP predictability

features and processes, we show the vertical correlation
between SSTA and subsurface ocean temperature anoma-
lies (Fig. 10) and the instantaneous correlation (zero-lag
cross-correlation) between the 400 m OHC anomalies and
surface heat flux anomalies (Fig. 11). Figure 10 shows
the vertical correlation between SSTA and thermocline
ocean temperature averaged over 200-500 m (upper ther-
mocline; Fig. 10a, b) and 700-1000 m (deeper thermo-
cline; Fig. 10c, d), as well as the difference of vertical
correlation coefficients (absolute values) between HR and
LR (Fig. 10e, f). We note that there is a strong vertical
connection between SST and upper thermocline in many
regions in both HR (Fig. 10a) and LR (Fig. 10b), such as
the Northern North Atlantic, Gulf Stream, Eastern Tropi-
cal Pacific, and the Southern Ocean. For example, the
vertical correlation coefficients in the Gulf Stream and
its extension regions reach the maximum values of about
0.8 for both HR and LR simulations. Note that HR shows
stronger vertical connections in part of the Northern North
Atlantic compared with LR, with an area-averaged differ-
ence around 0.21. Different from LR, this strong verti-
cal connectivity in HR persists in the deeper thermocline
(Fig. 10c) albeit weaker than in the upper thermocline
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Fig.9 Lagged cross-correlation between SSTA and OHC anomalies
for depths of integration to 100, 200, 400 and 700 m in (a, b) North-
ern North Atlantic (47°-52° N, 60°-45° W), ¢, d Gulf Stream (32°-
45° N; 80°—45° W), e, f Eastern Tropical Atlantic (20° S-10° N; 15°
W-15° E), and g, h Eastern Tropical Pacific (5° S-5° N, 120°-90°
W). The left panels (a, c, e, g) are based on HR while the right panels

(Fig. 10a), except for the Eastern Tropical Pacific where
both HR and LR show very weak or no vertical connectiv-
ity in the deeper thermocline (Fig. 10c, d). In the North
Atlantic, for instance, the area-averaged vertical correla-
tions in the upper thermocline in HR and LR are 0.38
and 0.32, respectively. The North Atlantic area-averaged
vertical correlation coefficient in the lower thermocline
slightly decreases to 0.22 in HR, but in LR, the vertical
correlation is almost missing. The difference of vertical
correlation coefficients (absolute values) between HR and
LR (Fig. 10e, f) suggests that HR has more robust verti-
cal connectivity, especially over eddy-rich regions (i.e.,
Gulf Stream, Kuroshio Current, and the Southern Ocean)
that may contribute to larger decadal SST predictability
and the smaller chance for the existence of the paradox
than LR (Fig. 7b, d). HR has reduced vertical connectiv-
ity in the upper thermocline of Northern North Atlantic,
which may provide some hints for the decreased decadal
SST predictability (Table 2). However, larger vertical
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are based on LR. Negative (positive) years indicate the SSTA leading
(lagging) the OHC anomalies for lags between —2 and 2 years. All
variables are 5-year low-pass filtered. The one-tailed (95%) signifi-
cance threshold for the cross-correlation is depicted by the hatched
area and estimated using the non-parametric random phase method
(Ebisuzaki 1997)

correlation values are detected in HR in the deeper ther-
mocline (Fig. 10e, f).

Figure 11 shows the correlation between the surface net
heat flux anomalies and OHC anomalies for HR and LR,
as well as the difference of correlation coefficients (abso-
lute values) between HR and LR. The results are generally
consistent with Buckley et al. (2019). The correlations in
frontal ocean zones and eddy rich regions in HR (Fig. 11a)
are stronger than LR (Fig. 11a). Further, in LR, there are
widespread regions of negative correlations in the Gulf
Stream and Kuroshio subtropical recirculation gyres,
subtropical North and South Pacific, and Southern Ocean
(Fig. 11b). This reversal is difficult to detect or appears
only in isolated regions of HR, notably in the Pacific warm
pool and the sub-Antarctic zone of deep mixed layers.
Though uncertainty remains, HR has higher correlation
values between ocean heat content and net heat flux than
LR, particularly over the Gulf Stream, Kuroshio Current,
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Fig. 10 Vertical correlation between SSTA and subsurface ocean
temperature anomalies averaged over (a, b) the upper 200-500 m
and ¢, d the upper 700-1000 m. e, f Difference of vertical correla-
tion coefficients (absolute values) between HR and LR models: e dif-
ference between a and b; f difference between ¢ and d. a and ¢ are

and the Southern Ocean, consistent with results based on
SST-TEMP relationships. Only a slight increase of verti-
cal correlation in HR (about 0.1), however, is detected
over the Tropical Indian and Tropical Atlantic Ocean, as
shown in Fig. 11c. It is found that HR generally displays
a higher correlation of OHC and net heat flux in eddy-
rich regions, where higher decadal SST predictability and
reduced signal-to-noise paradox are also shown (Fig. 7b).
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for HR and b and d are for LR. Vertical correlation coefficients are
estimated as simultaneous correlation between SSTA and subsurface
ocean temperature anomalies. All the data are linearly detrended and
5-year low-pass filtered

4 Summary

To understand the underlying mechanisms for the signal-
to-noise paradox, we focus on two main questions: (i)
where and to what extent is the paradox leading to sub-
stantial underestimates of the limit of predictability? (ii) Is
this underestimate of predictability and associated signal-
to-noise paradox related to the representation of ocean
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Fig. 11 Correlation between 5 year low-pass filtered anomalies of
0-400 m ocean heat content and net heat flux for a HR, b LR, and
¢ difference of correlation coefficients (absolute values) between HR
and LR. The sign convention in a and b indicates positive heat flux
warms the atmosphere

mesoscale processes and features? To address the first
question, we re-examine decadal predictability in CMIP5
models from the signal-to-noise paradox’s perspective. We
first compare decadal predictability of SST and SLP in
observations and CMIP5 models, showing that decadal
predictability estimates based on models are generally
underestimated, particularly in the Tropical Atlantic, Trop-
ical Indian ocean, and many eddy-rich regions. The distri-
bution of the signal-to-noise paradox in the SST fields of
CMIPS models is presented following the Markov model
framework in Zhang and Kirtman (2019b). The difference
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between observed and model-simulated decadal predict-
ability is closely associated with the signal-to-noise para-
dox. Models are likely to underestimate decadal predict-
ability in regions where it is likely for the signal-to-noise
paradox to exist. Note that some regions fail to satisfy
these predictability-paradox relationships, which requires
further investigation. We also examined this question in
the context of so-called historical climate simulations
and pre-industrial control runs. For example, the Tropi-
cal Indian and Tropical Atlantic oceans are two distinct
regions significantly influenced by external forcing, where
we detect a lower chance of existence for the signal-to-
noise paradox in CMIP5 HIST simulations compared with
PI simulations. Many regions in the North Atlantic are also
impacted by external forcing in terms of decadal SST pre-
dictability and the signal-to-noise paradox. The signal-to-
noise paradox applies to CMIP5 uninitialized simulations
(i.e., HIST and PI), implying that the paradox is not due
to model initialization processes’ problems.

To address the second question, we perform CCSM4 HR
model experiments with eddying ocean component com-
pared to the LR model, and the results are also discussed
through the lens of the signal-to-noise paradox. The model
experiments’ design is based on the hypothesis that the
presence of ocean mesoscale processes and features and the
associated vertical connectivity impact decadal variability,
predictability, and the signal-to-noise paradox. For the first
time, we have addressed the signal-to-noise paradox using
eddying GCMs. Our argument here is generally consistent
with Strommen and Palmer (2019) and Zhang and Kirtman
(2019b) in that we attribute the low signal-to-noise ratio to
the lack of persistence, which can be seen in decadal predict-
ability estimates in Fig. 7. We further argue that the lack of
persistence in climate models stems from the lack of vertical
connectivity in the subsurface ocean between ocean mixed
layer and thermocline. As shown in SST/TEMP decadal
predictability ratio (Fig. 8), there is a significant difference
in decadal SST and TEMP predictability in LR resulting
from the lack of vertical connectivity, which implies close
relationships between vertical connectivity and decadal SST
predictability. The inclusion of a high-resolution ocean com-
ponent shows comparable decadal predictability of ocean
temperature in the upper ocean in many regions. We com-
pare HR and LR models in terms of the relationships among
SST, surface heat flux, OHC, and subsurface ocean tempera-
ture, suggesting that HR and LR models have substantially
different subsurface vertical structure (Figs. 9, 10, 11). In
the HR model with better represented ocean mesoscales, we
have demonstrated that there is consistent upper ocean verti-
cal structure and strong vertical connection in the subsurface
ocean that is weaker or even absent in the LR model. The
differences in the HR and LR models’ vertical connectivity
can thus contribute to the differences in the persistence of
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decadal SST variability and the decadal SST predictability.
Compared with LR, HR suggests more vertical connectivity,
particularly over eddy-rich regions, such as the Gulf Stream,
Kuroshio Current, and the Southern Ocean, where increased
decadal predictability and longer persistence (or reduced sig-
nal-to-noise paradox) are detected. Note that there are some
exceptions, such as the Northern North Atlantic, where we
detect increased vertical connectivity but decreased decadal
SST predictability in HR compared with LR. This reduced
decadal SST predictability in HR cannot be simply explained
by vertical connectivity, which requires further investiga-
tion. Overall, we argue that the better represented mesoscale
ocean features may (at least partially) eliminate the signal-
to-noise issue and improve decadal-scale climate predict-
ability in comparison with observational estimates.
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