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When analyzing scRNA-seq data with clustering algorithms, annotating the
clusters with cell types is an essential step toward biological interpretation of the
data. Annotations can be performed manually using known cell type marker
genes. Annotations can also be automated using knowledge-driven or data-
driven machine learning algorithms. Majority of cell type annotation algorithms
are designed to predict cell types for individual cells in a new dataset. Since
biological interpretation of scRNA-seq data is often made on cell clusters
rather than individual cells, several algorithms have been developed to
annotate cell clusters. In this study, we compared five cell type
annotation algorithms, Azimuth, SingleR, Garnett, scCATCH, and SCSA,
which cover the spectrum of knowledge-driven and data-driven
approaches to annotate either individual cells or cell clusters. We applied
these five algorithms to two scRNA-seq datasets of peripheral blood
mononuclear cells (PBMC) samples from COVID-19 patients and healthy
controls, and evaluated their annotation performance. From this
comparison, we observed that methods for annotating individual cells
outperformed methods for annotation cell clusters. We applied the cell-
based annotation algorithm Azimuth to the two scRNA-seq datasets to
examine the immune response during COVID-19 infection. Both datasets
presented significant depletion of plasmacytoid dendritic cells (pDCs),
where differential expression in this cell type and pathway analysis
revealed strong activation of type | interferon signaling pathway in
response to the infection.

KEYWORDS

single-cell data, cell type annotation, PBMC, COVID-19, type | interferon
Introduction

Single-cell RNA sequencing (scRNA-seq) has facilitated the study of cellular
heterogeneity in complex tissues, enabling identification and characterization of many
cell types in various biological contexts (Eberwine et al., 2014). When analyzing scRNA-
seq data with clustering algorithms, annotating the clusters with cell types is a key step for
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downstream analysis and biological interpretations. Often, cell
type annotation is performed manually based expression of
known cell type marker genes, which can be subjective and
labor-intensive (Lahnemann et al., 2020). Motivated by this
analysis challenge, numerous computational algorithms have
been developed to automatically annotate cells (Duo
et al.,2018; Freytag et al., 1000; Kiselev et al., 2019).

Existing cell type annotation algorithms can be categorized
into either knowledge-driven or data-driven approaches,
depending on whether prior knowledge of cell type marker
genes or annotated scRNA-seq reference datasets are used to
construct models to predict cell types in a new query dataset
(Abdelaal et al., 2019). Another way to categorize cell type
annotation algorithms is whether the cell type predictions are
made for individual cells or cell clusters in a new dataset.
Majority of existing cell type annotation algorithms make
predictions for individual cells, such as Azimuth, SingleR,
Garnett, CHETAH, scMATCH, CellAssign, scmap, scPred,
and CellAtlasSearch (Alquicira-Hernandez et al., 2019;
Kiselev et al., 2018; Srivastava et al., 2018; Aran et al., 2019;
Hou et al., 2019; Jurrian et al., 2019; Pliner et al., 2019; Zhang
et al., 2019; Hao et al., 2021). Since biological interpretation of
scRNA-seq is often made on cell clusters rather than individual
cells, a few algorithms have been developed to annotate cell
clusters instead of individual cells, such as SCSA and
scCATCH (Cao et al., 2020; Shao et al., 2020). The strategy
of annotating cell clusters is intuitively appealing, because it is
more in line with how biologists interpret the data. In addition,
annotation predictions based on data of a cell cluster may be
more robust compared to making predictions based on data of
an individual cell, because expression data for an individual cell
can be noisy and sparse, whereas data of a cell cluster can define
more robust and less sparse gene expression signatures. To
evaluate whether the conceptual advantage of annotating cell
clusters translates into higher annotation accuracy, we set out
to compare two algorithms designed to annotate cell clusters
[i.e., SCSA and scCATCH (Cao et al., 2020; Shao et al., 2020)]
and three algorithms for annotating
(i.e., Azimuth, SingleR, and Garnett (Aran et al, 2019;
Pliner et al.,, 2019; Hao et al., 2021)), using PBMC samples
in Coronavirus disease 2019 (COVID-19) as the biological
context.

COVID-19 has triggered international concern due to its
rapid spread and mortality rate. Blood tests revealed differences

individual cells

in cell indices between COVID-19 patients and healthy controls
(Chua et al,, 2020; Ji-Yuan Zhang et al., 2020; Lee et al., 2020;
Wilk et al., 2020), but the underlying molecular mechanism of
such differences is not fully understood. In two pioneering
studies (Lee et al, 2020; Wilk et al., 2020), peripheral blood
mononuclear cells (PBMC) of COVID-19 patients and healthy
controls were profiled using scRNA-seq, which provided valuable
datasets that not only are suitable for testing performance of cell
type annotation algorithms, but also have the potential to
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elucidate the molecular landscape of PBMCs of COVID-19
patients.

In this study, we applied five cell type annotation algorithms
to annotate the two scRNA-seq datasets of PBMC samples of
both healthy and COVID-19 patients.
performances of these tools were cross-compared. We
observed that the cell-based
outperformed the cluster-based annotation algorithms. This
but
opportunity to further develop algorithms for annotating cell

The annotation

annotation  algorithms

was somewhat counter intuitive, pointed to an
clusters. Using the cell type annotation results generated by
Azimuth, we compared the cell type composition of COVID-
19 patients and healthy controls, aiming to identify common
trends of compositional changes in both datasets, as well as genes
and pathways that exhibit cell-type-specific changes associated to

COVID-19.

Results

Compare cell type annotation algorithms
using PBMC data of COVID-19 patients

In this study, we compared five cell type annotation
algorithms. Two of these algorithms, Azimuth (Hao et al,
2021), SingleR (Aran et al., 2019) and Garnett (Pliner et al.,
2019), make cell type annotations for individual cells in a query
dataset, based on either annotated reference scRNA-seq data or
prior knowledge of cell-type-specific marker genes. The other
two of these algorithms, scCATCH (Shao et al., 2020) and SCSA
(Cao et al., 2020), make cell type annotations for cell clusters
defined in a query dataset, by matching cluster marker genes
identified from the query data and prior knowledge of cell-type-
specific marker genes. Therefore, these five algorithms spanned
the spectrum of exiting cell type annotation algorithms, i.e., data-
driven vs. knowledge-driven, and cell-based vs. cluster-based.

scRNA-seq data of PBMC from two cohorts of COVID-19
patients and healthy controls were obtained from two previously
published studies (Lee et al., 2020; Wilk et al., 2020). Lee et al.
(2020) provided scRNA-seq data for 4 healthy controls,
5 COVID-19 patients with mild symptoms and 6 COVID-19
patients with severe symptoms. Wilk et al. (2020) provided
scRNA-seq data for 6 healthy controls and 7 COVID-19
patients with severe symptoms. To prepare the input for
cluster-based cell type annotation algorithms, cells from
different samples in the same cohort were aligned and
integrated using scTransform and CCA implemented in the
Seurat package to remove batch effect (Stuart et al,, 2019).
Then, cells were clustered using Seurat, and the clusters
served as the input for SCSA and scCATCH to annotate these
clusters. For cell-based approaches, raw count data without any
preprocessing were provided to Azimuth, SingleR, and Garnett to
annotate individual cells.
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TABLE 1 Percentage of cells being confidently annotated.

Dataset SCSA scCATCH Azimuth Garnett SingleR
Lee et al dataset 17.9 45.8 78.8 74.3 N/A
Wilk et al dataset 19.9 47.1 68.9 81.5 N/A

We applied the five cell type annotation algorithms on these algorithms collective gave four or five distinct annotations for
two datasets, and evaluated the annotation results. First, the one cell, we considered no consensus existed for this cell. If there
annotation performance was quantified by calculating the was a tie that two algorithms gave a certain annotation, two other
percentage of cells being confidently annotated (Table 1). Four algorithms gave another annotation and the remaining algorithm
of the five algorithms are able to report cells or clusters that gave a third annotation, we also considered no consensus existed
cannot be confidently annotated. Garnett assigns label for the cell. For the two datasets combined, 66.9% of the cells
“unknown” to cells with low prediction scores from its elastic received consensus annotation (other than unknown), 5.1% of
net regression models. Azimuth produces probabilities for the cells were consensually annotated as unknown, and 28.0% of
annotating each cell to each possible cell type, and the the cells did not receive consensus annotation. We compared the
annotation of a cell is less confident if the highest probability annotation result for each algorithm against the consensus
for the cell is lower than a threshold (0.75 was used in this study annotation, and calculated the percentage of cells whose
which was determined based on the distribution of probabilities annotation from individual algorithms agreed with the
across all cells). The two cluster-based algorithms provide consensus. As shown in Table 2, cell type annotation results
qualitative evaluation of Good/Uncertain/Unknown for their of Azimuth, SingleR, and Garnett had a higher level of agreement
annotations, depending on the marker evidence scoring with the consensus, which means Azimuth, SingleR, and Garnett
metrics in those algorithms. In our analysis, we considered likely achieved higher level of accuracy in their annotations.
cells belonging to clusters with “Good” annotations as Therefore, despite cluster-based methods’ conceptual
confidently annotated cells. In contrast, SingleR assigns a cell advantage of using more data to perform annotation, current
type label to every query cell with its most similar cell type in the implementations of the cluster-based methods still need further
reference datasets, based on similarity defined by Spearman improvement to match the performance of state-of-art cell-based
correlation of gene expression profiles. More details about the methods, such as Azimuth and Garnett. Since Azimuth provided
annotation results are described in Supplementary Table S1. The finer annotations with more detailed cell types, our subsequent
percentages of cells confidently annotated by four algorithms explorations of the COVID datasets were based on the
were summarized in Table 1, with SingleR listed as N/A (not annotation results generated by Azimuth.

applicable) because it does not label any query cell as unknown or

uncertain. As shown in Table 1, the cell-based algorithms

(Azimuth and Garnett) were able to produce confident Cellular composition differences
annotations for much higher percentage of cells compared to associated to COVID-19

the cluster-based algorithms (SCSA and scCATCH), which

indicates that cell-based algorithms achieved a higher level of We examined the cellular composition of various samples
recall by annotating more cells confidently. based on the annotation result of Azimuth. Comparisons of the

We also examined the agreement among different annotation cellular compositions between COVID-19 patients and healthy
algorithms. Since these algorithms produced cell type subjects revealed COVID-19 associated changes in the cell type
annotations at different levels of granularity, we consolidated proportions. In the Lee et al. dataset, compared to COVID-19
the annotation results at a relatively low resolution. We kept patients with mild symptoms, COVID-19 patients with severe
annotations of major lineages (such as DC, B, Monocytes, T, symptoms showed significant depletion of multiple immune cell

Erythrocytes, HSPC, Lymphoid and Macrophages), and merged types (Figure 1), such as CD4" naive T-cells, CD4" T-cell subsets
detailed subtypes into the corresponding major lineages, (such as (TCM and TEM), CD8" TCM, regulatory T-cells (Tregs),
merging B intermediate, B memory and B naive to B cells). More CD16 monocytes, CD56 bright natural killer (NK) cells,
details available in Supplementary Table S1. After consolidating cDC2 dendritic cells, y§ T-cells, and plasmacytoid dendritic

the annotation results, we defined the consensus annotations of cells (pDCs) (p-value<0.05). Among these immune cell types,
the five algorithms. If three or more of the five algorithms gave only CD8" T central memory (TCM) cells and yd T-cells were
one cell the same annotation, we considered this cell to have a significantly exhausted in COVID-19 patients with mild
consensus annotation from the five algorithms. If the five symptoms when compared to healthy controls (Figure 1).
algorithms failed to achieve a majority vote, ie., the five These observations were consistent with a previous study
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TABLE 2 Agreement among different annotation algorithms.
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Dataset SCSA scCATCH Azimuth Garnett SingleR
Lee et al. dataset 12.6 17.5 67.0 64.2 66.1
Wilk et al. dataset 10.3 234 65.6 56.4 64.5
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FIGURE 1

Cellular compositions of PBMC samples from healthy controls and COVID-19 patients in Lee et al. dataset. Dots and boxes of different colors
represent samples from samples groups of normal, mild COVID-19 and severe COVID-19, respectively. The Y axis represents the cellular fractions of

cell types. The p_values were calculated from t-test.

which showed that the frequency of NK cells was significantly
lower in severe COVID-19 cases when compared to mild cases
and healthy controls, implying that lower NK cell counts are
associated with greater COVID-19 severity (Li et al., 2020). The
previous study also found that the cellular compositions of CD4*
T-cells, CD8" T-cells and NKT cells were considerably lower in
severe cases than in mild cases. In addition, another study also
linked SARS-CoV-2 infection and impairment of NK cellular
functions as well as the innate and cell-mediated immune
responses (van Eeden et al., 2020).

The Wilk et al. dataset allowed us to compare the immune
cell types’ proportions between healthy controls and COVID-19
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patients with severe symptoms. As shown in Figure 2, innate
lymphoid cells (ILC), mucosal associated invariant T-cells
(MAIT) and plasmacytoid dendritic cells (pDCs) (p-value <
0.05) presented significant depletion in the COVID-19
patients. It has been reported that MAIT cells are associated
with COVID-19 severity due to their activation function on ILCs,
proinflammatory cytokines, and interleukin (IL)-18 (Flament
et al, 2021). Consequently, the frequency of differentiated
ILCs drops remarkably in patients. Furthermore, a relevant
study found some ILC subsets, like ILC1, ILC2, and ILC
precursors, reveal a dysregulated expression of chemokine
receptors involved in the activation response (Garcia et al,
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FIGURE 2

Cellular compositions of PBMC samples from healthy controls and COVID-19 patients in Wilk et al. dataset. Dots and boxes of different colors
represent samples groups of healthy vs. COVID. The Y axis represents the cellular fractions of cell types. The p_values were calculated from t-test.

2020). Thus, we can conclude that alteration or depletion of
MAIT cell functions might be responsible for disease severity.
When comparing the analysis result of the Lee et al.
dataset and the Wilk et al. dataset, it is worth noting that
pDCs presented significant depletion in COVID-19 patients
in both studies (Figures 1, 2). pDCs are primarily responsible
for the production of Type I and III interferons (IFN-I/)),
which are critical antiviral mediators against SARS-CoV-
2 infection. A previous study showed that activation of
pDCs is negatively associated to the severity of COVID-19,
and some of the severe cases presented damage of the pDC
response pathway (Venet et al., 2021). The previous study is
consistent with our observation that mild patients in the Lee
et al. dataset showed less depletion of pDCs compared to
severe patients. SARS-CoV-2 infection and the triggered
inflammation may have an influence on the frequency and
functioning of different pDC subpopulations and their
corresponding regeneration capacity (Venet et al., 2021).
Furthermore, higher expression of pro-apoptotic molecules
was found in pDCs from severe COVID patients (Saichi et al.,
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2021), which may explain their massive cellular depletion in
both datasets.

Gene profile alteration of pDCs during
COVID-19 infection

As pDCs was the only cell type that exhibited significant
depletion in both datasets, we focused on the pDCs to examine
genes and pathways that showed differential expression for this
specific cell type between COVID-19 patients and healthy

subjects.
Differential expression analysis revealed that IFI44L,
IF127, MX1, XAFl, and STATI were the most

differentially expressed genes of pDCs between COVID-19
patients and healthy subjects, as shown in Figure 3A. Our
observations were consistent with a previous study which
compared SARS-CoV-2-induced acute respiratory illnesses
(ARIs) and non-viral ARIs, and showed that interferon
pathway genes, such as IFI44L and IFI27, were most
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FIGURE 3

(A) Top-ranked differential genes in pDCs of COVID-19 patients and healthy controls. (B) Pathways enriched by these differential genes.

significantly upregulated in COVID-driven ARIs (Mick et al.,
2020). Both TFI44L and MX1 are antiviral associated genes
(Pekayvaz et al.,, 2022), and MX1 could function to generate
an antiviral response, showing higher expression in COVID-
19 patients in a previous study (Bizzotto et al., 2020). XAFI is
known to interact with interferon regulatory factor-1 (IRF-1)
as a positive feedback loop, where IRF-1 stimulates its
transcription, which further stabilizes and activates IRF-1
(Jeong et al., 2018). This pathway is frequently triggered
under stressful conditions, accompanied by increasing
apoptosis, be reason
explaining the significant exhaustion of pDCs in infected
samples of the Lee et al. and Wilk et al. datasets. STAT1 acts

cellular which might another
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as a downstream effector of interferon signaling. Its
upregulation was reported to be positively correlated with
the severity of COVID-19 patients (Rincon-Arevalo et al,
2022). The differential expression of STATI in pDCs
observed in our analysis aligned well with its function to
amplify IFN-mediated signals.

Gene set enrichment analysis revealed pathways enriched in
those COVID-19 associated differentially expressed genes in
pDCs, where we observed a strong IFN-I/A activation pathway
triggered by SARS-CoV-2 infection, as shown in Figure 3B. The
enriched pathways pointed
mechanism, where pDCs could be differentiating into various
subgroups with different functions and efficacy levels to initiate

to a biologically coherent
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type I interferon signaling pathway (Venet et al., 2021), which
further stimulated high cellular response and defense response to

virus.

Discussion

In this study, we compared five cell type annotation
algorithms, which cover the spectrum of knowledge-driven
and data-driven approach to annotate either individual cells
or cell clusters. Using two scRNA-seq datasets of PBMC
samples of COVID-19 patients and healthy subjects, we
demonstrated that the annotation performance of methods
that annotated clusters (scCATCH and SCSA) were relatively
poor compared to methods that annotated individual cells. This
is somewhat counter intuitive. The strategy of annotating cell
clusters has the potential to be more robust and accurate, because
expression data of cell clusters is less noisy and less sparse
compared to expression data of individual cells. Such a
counter intuitive result pointed to an opportunity to further
develop algorithms for annotating cell clusters. In fact, both of
the cluster-based annotation methods examined here (scCATCH
and SCSA) are knowledge-driven, aiming to match marker genes
of cell clusters with prior knowledge of cell type marker genes.
Data-driven designs of annotation algorithms for cell clusters
may be a promising direction to better realize the potential of the
strategy of annotating cell clusters, and hence a possible future
direction for development cell type mapping algorithms.

Among the five annotation algorithms compared here,
scCATCH and SCSA were designed to annotated clusters.
Since they require pre-defined cell clusters as part of their
input, their performances depend on the quality of the pre-
defined clusters. In this study, we defined clusters using the
Seurat clustering pipeline with default parameters, because it is
the most popular clustering analysis pipeline widely used in the
literature. We also examined these two algorithms using clusters
defined with different Seurat parameter, in particular, the
resolution parameter. When the number of clusters was too
small, cluster-based cell type annotation performed poorly
which was expected. When the resolution parameter was large
to over-cluster the data, the cell type mapping performance also
decreased. Overall, we observed that the pre-defined clusters
using default Seurat worked very well with the two cluster-based
cell type annotation algorithms.

The sample sizes of the two datasets are small, which limit the
statistical power for consistently identifying biological signals.
Some cell types showed similar trend but did not achieve
statistical significance in both datasets. For examples, CD4"
TEM, Tregs, Monocytes and CD56bright natural killer (NK)
cells were significantly depleted in the Lee et al. dataset. The
alteration in the Wilk et al. dataset was not significant, even
though similar depletion trend could be observed. On the other
hand, MAIT was significantly depleted in the Wilk et al. dataset,
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while did not pass the significant test in the Lee et al. dataset.
Given this observation, the power of applying single cell RNA
sequencing and automated cell type annotation for defining
cellular alteration during immune response was proved. If the
sample size could be larger, the agreement would be better.

Materials and methods

All analyses were performed using the R statistical computing
environment. SCSA, scCATCH, SingleR, and Garnett were
download following instructions in their original publications
(Aran et al., 2019; Pliner et al., 2019; Cao et al., 2020; Shao et al.,
2020). Azimuth was performed using its online portal (https://
azimuth.hubmapconsortium.org/).

PBMC scRNA-seq data of healthy controls and COVID-19
subjects were obtained from two published datasets, Lee et al.
(2020); Wilk et al. (2020). The datasets are available from GEO
with accession number GSE149689 (Lee et al. dataset) and
GSE150728 (Wilk et al. dataset).

In order to prepare input for cluster-based annotation
algorithms, we used Seurat with default parameters to cluster
the cells. Preprocessing parameters included min. cells = 3, min.
features = 200 and percent. mt < 20 for quality control filtering of
cells and genes. SC Transform and CCA were performed to
reduce batch effect. In the dimension reduction step by principle
component analysis (PCA), 10 principle components (PCs) were
chosen. For the clustering analysis by community finding, the
clustering resolution was set as 0.5.
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