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ABSTRACT

Product retrieval systems have served as the main entry for cus-

tomers to discover and purchase products online. With increasing

concerns on the transparency and accountability of AI systems,

studies on explainable information retrieval has received more and

more attention in the research community. Interestingly, in the do-

main of e-commerce, despite the extensive studies on explainable

product recommendation, the studies of explainable product search

is still in an early stage. In this paper, we study how to construct

effective explainable product search by comparing model-agnostic

explanation paradigms with model-intrinsic paradigms and ana-

lyzing the important factors that determine the performance of

product search explanations. We propose an explainable product

search model with model-intrinsic interpretability and conduct

crowdsourcing to compare it with the state-of-the-art explainable

product search model with model-agnostic interpretability. We

observe that both paradigms have their own advantages and the

effectiveness of search explanations on different properties are af-

fected by different factors. For example, explanation fidelity is more

important for user’s overall satisfaction on the system while ex-

planation novelty may be more useful in attracting user purchases.

These findings could have important implications for the future

studies and design of explainable product search engines.
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• Information systems→ Retrieval models and ranking; Re-

trieval tasks and goals; Evaluation of retrieval results.
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1 INTRODUCTION

As online marketplaces have gradually dominated the retail mar-

ket, product retrieval systems such as product search engines and

recommendation systems have become the main entry for users

to discover products. Meanwhile, with increasing concerns on the

transparency and accountability of AI systems, studies on explain-

able AI have received more attention in both academic communities

and industry [18, 24]. Specifically in the domain of e-commerce

information retrieval, explainability means the ability of a prod-

uct retrieval system in providing explanations that allow users to

understand, trust, and effectively control the retrieved products.

Previous studies have shown that providing recommendation re-

sults together with explanations on why the items are retrieved not

only increases the conversion rates from clicks to purchases, but

also improves user’s satisfaction on e-shopping websites [76]. Thus,

how to improve the explanability of product retrieval systems has

become an important challenge and opportunity for e-commerce.

Interestingly, despite of the extensive studies on explainable

product recommendation [11, 29, 43, 58], the effectiveness and the

potentials of explainable product search is mostly unexplored. As of

today, more than 80% of shoppers find products starting from search

online1, which means that product search is still the most popular

method to find products on e-commerce platforms. On the one

hand, developing product search engines is similar to developing

product recommendation systems from multiple perspectives, in-

cluding the need of personalization [2], the model of heterogeneous

information [72], etc. On the other hand, by explicitly formulat-

ing and feeding a query to the systems, user’s requirements and

expectations for product search engines are significantly different

from those for product recommendation. For instance, while it is

preferable to recommend PC games to a customer who recently pur-

chased Alienware gaming laptops, it may not be a good idea when

the user is searching for “running shoes”. Thus, how to retrieve

and explain search results based on both the explicit need and im-

plicit preferences of product search users make explainable product

search an unique challenge in explainable information retrieval.

Existing studies on explainable AI can be broadly categorized into

two directions, namely model-intrinsic (or pre-hoc) interpretabil-

ity and model-agnostic (or post-hoc) interpretability [38]. Model-

intrinsic interpretability focuses on the construction of transparent

AI systems that can explicitly explain its behavior based on its infer-

ence process. In contrast, model-agnostic interpretability focuses on

explaining model outputs without knowing the internal mechanism

of the model. Previous studies on explainable IR have explored both

paradigms in document retrieval [21, 55, 56, 64] by creating pre-hoc

1https://www.retaildive.com/news/87-of-shoppers-now-begin-product-searches-
online/530139/
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or post-hoc explanations with text-matching signals extracted by

the retrieval models from query-document pairs. In product search,

however, it has been shown that text matching is relatively less

important [1, 16] comparing to other information such as knowl-

edge entities and their relationships [26, 39] in determining user’s

purchase decisions. Thus, how to create model-intrinsic/agnostic ex-

planations in product search and how those two approaches would

benefit or affect the development of explainable product search

systems is mostly unknown. To the best of our knowledge, the only

study on explainable product search is the Dynamic Relation Em-

bedding Model [3] (DREM) that utilizes product knowledge graph

to generate post-hoc result explanations. For evaluation, however,

Ai et al. [3] simply use a survey to examine whether users are

more likely to purchase after seeing the explanations and conduct

no comparison of different explanation methodologies as well as

possible factors that affect the effectiveness of search explanations.

To fill in this blank, we propose to construct and train an intrinsic-

explainable model for product search with user-interaction data and

knowledge graph. Inspired by the Zero Attention mechanism [1],

we propose to extend DREM with a Hierarchical Gated Network

(HGN) that explicitly construct user representations from items

and knowledge entities related to the user’s purchase history. By

extracting the attention weights from HGN, our proposed model

is capable of generating model-intrinsic explanations for product

search results. To understand the advantages and drawbacks of pre-

hoc and post-hoc search explanations, we conduct a crowdsourcing

study with Amazon Mechanical Turk to evaluate and analyze the

performance of model-agnostic and model-instrinsic explanations

generated by the original DREM and the proposed DREMwith HGN.

Experiment results show that model-intrinsic explanations usually

could be more informative and reliable while model-agnostic expla-

nations could have better potentials in attracting users to purchase

the product. Further, we propose an explanation performance task

and build models to explore the possibility of automatically evalu-

ating search explanations without human annotations. Based on

feature analysis, we find that the fidelity of search explanations

could be more important for user’s overall satisfaction with the

search engines while the novelty of the search explanations could

be more useful in attracting users to purchase the item.

2 RELATEDWORK

There are three lines of studies that are important to our work:

Interpretable AI, Explainable IR and Product Search.

Interpretable AI . The research of interpretable and explainable

AI is a growing topic as the concerns on transparency and account-

ability of AI systems have increased dramatically recently [24]. In

general, existing studies on interpretable AI can be broadly cate-

gorized into two groups, i.e., the studies on explaining machine

learning (ML) models based on their internal structures, and the

studies on explaining model outputs by treating the ML model as

a black box [38]. Examples of the first group including the exam-

ination of network neurons and layers [7, 22, 46, 53, 71], the use

of attention networks [32, 63, 69], and the design of disentangled

model structure and information representations [13, 17, 30, 40].

Examples of the second group including the construction of proxy

models with linear classifiers [50], decision trees [52, 77], extracted

rules [4, 23], and salience map [54, 73]. Both paradigms have their

own advantages and disadvantages depending on application sce-

narios, and the field of interpretable AI is still young with numerous

new studies and approaches emerging every year [24].

Explainable Recommendation. The studies of explainable re-

trieval systems have drawn the attention of researchers mainly

starting from the last decade. Early IR systems based on termmatch-

ing are transparent and explainable in nature [49, 51, 60]. However,

as more state-of-the-art retrieval systems rely on complex ML and

latent representation models [25, 45], interpretability is no longer a

minor problem for IR. Most existing studies on explainable IR focus

on recommendation tasks [75]. For example, model-based explain-

able recommendation methods attempt to develop models that gen-

erate both recommendations and explanations together [14, 59, 74].

Peake andWang [48] created post-hoc explanations based on the la-

tent vectors in recommendation models; Zhang et al. [76] explained

recommendation results with facets extracted from user reviews.

Another line of explainable recommendation research focuses on an-

alyzing the nature of user behaviors to help users better understand

recommendations [6, 28, 29]. Bilgic and Mooney [11] used statis-

tical histrograms as explanations to help users understand rating

distribution; Tintarew and Mashthoff [58] provided user-centered

design approaches to analyze the explanation effectiveness.

Explainable Search. Search is fundamentally different from rec-

ommendation as user intents are explicitly expressed with queries.

Different from explainable recommendation, the studies on explain-

able search mostly focuses on the domain of ad-hoc retrieval, i.e.,

retrieving text documents such as news articles or web pages based

on user’s query. For example, Zeon Trevor et al. [21] proposes to

use DeepSHAP [41] to explain the outputs of neural retrieval mod-

els; Verma and Ganguly [65] explore different sampling methods to

build explanation models for a given retrieval model and proposes

a couple of metrics to evaluate the explanations based on the terms

in queries and documents. Unfortunately, those methods are not

applicable to product search as they are purely designed for text re-

trieval and text matching signals are relatively unimportant [1, 16]

compared to other information such as entity relationships and

user purchase history in determining user’s purchases. As for how

to create result explanations with heterogeneous entity and infor-

mation in product search, to the best of our knowledge, the only

study on this topic is proposed by Ai et al. [3] that construct a dy-

namic relation embedding model to incorporate product knowledge

graph and use it to explain product search results. However, they

only conducted a laboratory study to examine the effectiveness of

the explanations generated by their model and did no comparison

and study on different explanation methodologies as well as what

factors are important for product search explanations.

Product Search. Early studies on product search focus on re-

trieving products based on structured product facets such as brands

and categories [19, 20, 37]. However, as there exists a significant vo-

cabulary gap between user queries and product descriptions [47, 61],

state-of-the-art approaches usually conduct product search in latent

space with deep learning techniques [10, 27, 68]. For example, Bi et

al. [8, 9] extract fine-grained review information with embedding

networks; Guo et al. [26] model long/short term user preferences

with attention networks over user query history. There are also

considerable studies on extracting ranking features and applying
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learning-to-rank methods for product search [5, 15, 31, 34, 70]. In

this paper, our main focus is not to build the state-of-the-art prod-

uct search models but to explore how to build effective search

explanations to better improve user experience.

3 METHODOLOGY

In this section, we describe our proposed method for explainable

product search. We start from introducing the framework of latent

product retrieval models, the structure of the state-of-the-art ex-

plainable product search model (i.e., DREM) for model-agnostic

explanation, and then propose a hierarchical gated network (HGN)

to extend DREM for model-intrinsic search explanations.

3.1 Latent Product Retrieval Framework

As discussed previously, the goal of product search is to retrieve

products according to user’s needs so that we can maximize the

average transaction rate (i.e., user purchases) in search sessions.

Usually, this means ranking and showing products to users accord-

ing to their probabilities to be purchased [2, 62]. Different from

traditional IR tasks such as ad-hoc retrieval, information in product

search is often stored in heterogeneous forms and classic retrieval

models based on text matching often performs suboptimal in prac-

tice [3, 27, 47]. Therefore, the state-of-the-art methods in product

search often build retrieval models in latent spaces by representing

and matching queries, users, and items with latent vectors.

In general, user’s purchase decisions are affected by two fac-

tors [2, 3, 27]: (1) the explicit purchase intents in the current session,

which are usually expressed by user’s queries, and (2) the implicit

preferences over product properties (e.g., colors and brands), which

are usually inferred from user’s historical behaviors (e.g., previous

purchases). Formally, let q, u, i ∈ Rα be the α dimensional latent

representations of the search query, the user’s personal preferences,

and the item, respectively. Following previous studies [2, 26], we

model the probability of an item i being purchased by a user u after

submitting a query q with a latent generative model as

P (i |u,q) =
exp(i · Suq )

∑

i′∈I exp(i
′ · Suq )

, Suq = q +u (1)

where I is the universal set of candidate items, and Suq is the latent

representation of the user’s purchase intent in search, which could

be modeled as the linear combination of q and u.2

Under this formulation, the representations of queries, users, and

items can be directly optimized for product search by maximizing

the log likelihood of observed user purchases in search defined as

L = log
∏

u,q,i

P (i |u,q) =
∑

u,q,i

(

i · (q+u)−log
∑

i′∈I

exp(i ′ · (q+u))
)

(2)

While directly computing L is prohibitive due to the softmax func-

tion and the large number of items in I , there are many effective

and mature solutions built with approximation algorithms such as

hierarchical softmax and negative sampling [44]. In this paper, we

adopt the negative sampling strategy that approximate the denomi-

nator of softmax function by randomly sampling negative samples

from I . Therefore, the key problem of product search in latent space

is how to construct the representations of queries, users, and items.

2For simplicity, we ignore the discussions of more complicated models for Suq as it is
not the focus of this paper.

3.2 Dynamic Relation Embedding Model and

Model-agnostic Explanations

To the best of our knowledge, the first model proposed for explain-

able product search is the Dynamic Relation Embedding Model

(DREM) [3]. In order to utilize heterogeneous data and knowl-

edge for product search and explanations, Ai et al. [3] proposed

to build a latent dynamic knowledge graph that jointly encodes

the relationships between queries, users, items, as well as product-

related knowledge entities. Specifically, the construction of DREM

and search explanations include two parts: the modeling of entity

relationships, and the extraction of explainable knowledge path

between users and retrieved items.

3.2.1 Product Knowledge Graph and�eryModeling. Product search

is different from product recommendation as the relevance and re-

lationships between users and items could vary based on user’s

information need expressed in the search query. To model both the

static relationships between knowledge entities and the dynamic

relationships between users, queries, and items, Ai et al. [3] pro-

pose to adopt the TransE models [12] for product search and treat

Search&Purchase as a special relationship that translates users to

items. Formally, let (h, r , t ) ∈ G be a relation triple with head entity

h, relation r , and tail entity t (e.g., IPhone is Produced_by Apple) in

observed data G. Then DREM defines a linear translation function

and a latent generative model to model (h, r , t ) as

P (t |h, r ) =
exp(t · (h + r ))

∑

t ′∈T exp(t ′ · h + r )
(3)

whereT is the universal set of possible tail entity t , andh, r , t ∈ Rα

are the embedding representations of the head entity, the relation,

and the tail entity, respectively. In other words, the entity h can be

translated to entity t through relation r with probability P (t |h, r ).

As the relationship between users and items (i.e., Search&Purchase)

varies according to different search queries, Ai et al. [3] propose

to create a dynamic relation embedding by encoding query string

with a non-linear project function ϕ as

q = ϕ ({wq |wq ∈ q}) = tanh(W ·

∑

wq ∈q wq

|q |
+ b) (4)

wherewq andwq ∈ R
α are query words and their corresponding

embedding representations,W ∈ Rα×α and b ∈ Rα are model

parameters, and q ∈ Rα is the query embedding as well as the

relation embeddding of Search&Purchase. The probability of a user

u searched and purchased an item i is then computed in the same

way with other relation triples as shown in Eq. (3).

To optimize the embedding representations of all entities and

relations for product search, DREM directly maximizes the log

likelihood of all observed relation triples as

L =
∑

(u,q,i )

log P (i |u,q) +
∑

(h,r,t )∈G

log P (t |h, r )

≈
∑

(u,q,i )

logσ
(

(u + q) ·i
)

+ k ·Ei′∼Pi [logσ
(

− (u + q) ·i ′
)

]

+

∑

(h,r,t )∈G

logσ
(

(h + r ) ·t
)

+ k ·Et ′∼Pt [logσ
(

− (h + r ) ·t ′
)

]

(5)
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where σ (x ) is the sigmoid function (i.e., σ (x ) = 1
1+e−x ) and we

apply a negative sampling strategy with sample size k . Pi is defined

as a uniform item noisy distribution and Pt is defined as a frequency-

based entity noisy distribution [3, 62].

3.2.2 Post-hoc Search Explanations. With the latent knowledge

graph learned from observed product purchases and meta data,

Ai et al. [3] argues that DREM is capable of creating post-hoc

search explanations for each item retrieved for a user-query pair.

Specifically, as all relations and entities are encoded in the latent

space with the TransE models defined in Eq. (3), one can infer an

arbitrary item from a user-query pair by finding a set of relations

and intermediate entities that translate the joint representation of

user and query (i.e., Suq) to the item representation (i.e., i). Then, the

path from the user to the item can be used to create an explanation

of why the item is relevant to the user’s search intent.

Let {r
j
u } (where r0u is Search&Purchase) and {rmi } be two se-

quences of relations that finally translate a user u and an item

i to an entity in entity space Ωe . DREM defines a soft matching

path between u and i through e ∈ Ωe with score:

M (e |u, i ) = log
(

P (e |u, {r
j
u })P (e |i, {r

m
i })
)

= log P (e |eu ) + log P (e |ei )

= log
exp(eu ·e − γ j )
∑

e ′∈Ωe
exp(eu ·e ′)

+log
exp(ei ·e − γm)
∑

e ′∈Ωe
exp(ei ·e ′)

(6)

where eu = u+
∑

j r
j
u , ei = i+

∑

m rm
i
, andγ is a hyper-parameter3.

While the soft matching score of a path does not have any meanings

to users, Ai et al. [3] argues that it indicates the model’s confidence

on the path. Thus, they sort all potential inference path from user-

query pair to a target item with the soft matching score and directly

create a search explanation using simple templates and the rela-

tions/entities on the path to explain why i is retrieved foru by q. For

example, suppose that there is a path from user u to Apple Pencil

with query “tablet” and relation Brought_Together, then we can ex-

plain why we retrieved Apple Pencil with a post-hoc explanation as

“Apple Pencil is retrieved because it is frequently Brought_Together

with products retrieved by query “tablet” ”.

3.3 Hierarchical Gated Network and

Model-intrinsic Explanations

While DREM can provide post-hoc explanations to search results

with inference paths on knowledge graph, the retrieval process

of the model is simply ranking items according to the dot prod-

uct between user-query pair and item representation in the latent

space, which are not necessarily correlated to the generated explana-

tions. In practice, we may prefer a transparent retrieval model that

could provide direct explanations to its inference process for many

reasons such as model reliability and result accountability [38]. In-

spired by the Zero Attention Mechanism (ZAM) [1], in this paper,

we propose an extension to DREM to enhance it’s interpretability

and enable it to provide model-intrinsic search explanations.

3.3.1 A�ention Network with Gates. ZAM is first proposed to con-

duct selective personalization in product search [1]. The idea of

ZAM is to relax the assumption of traditional attention mechanism

3Please refer to the original paper [3] for more details.

by allowing the network to attend none input data when the query

is not relevant to any input vectors. Letq be the query vector andX

be the input vectors of an attention network, then ZAM computes

the output y by attending q to both X and a zero vector 0 as

y =
∑

x ∈X

exp( f (q,x ))

exp( f (q, 0)) +
∑

x ′∈X exp( f (q,x ′))
x (7)

where 0 is a vector with all elements equal to 0, and f (q,x ) is the

attention function that computes the attention score of x with q.

By adding 0 to the attention network, ZAM naturally creates

a gate that controls whether the output vector of the attention

network would be fed into downstream applications or not. Let aX
be the vector of { f (q |x ) |x ∈ X }, then ZAM can be reformulated as

y =
exp(aX )

exp( f (q, 0)) + exp+ (aX )
·X (8)

where exp+ (aX ) is the element-wise sum of exp (aX ). Thus, the out-

puty would be influenced by the inputX only when the aggregated

attention of X is significantly larger than a threshold f (q, 0).

3.3.2 User Modeling in Hierarchy. We now describe howwe extend

DREM to a transparent product search model with the idea of

ZAM. The construction of a interpretable retrieval model with

heterogeneous product knowledge involves two questions: (1) how

tomodel user preferences in a specific knowledge domain according

to the current search query, and (2) how to jointly combine user

preferences in each knowledge domain to retrieve items for the

current search query. To solve these questions, we proposed to build

a Hierarchical Gated Network (HGN) to model user preferences

in search with knowledge entities associated to user’s purchase

history. A illustration of the DREM with HGN is shown in Figure 1.

Formally, let Ωu
e be the set of entities with type e associated to a

user u. For example, Ωu
e could be the items or brands purchased by

u. For each knowledge domain e , we compute a latent embedding

ue for u in e by attending each entity with the current query q as

ue =
∑

e ∈Ωue

exp( fe (q,e ))

exp( fe (q, 0)) +
∑

e ′∈Ωue exp( fe (q,e ′))
e (9)

where fe (q,e ) is a simple attention function defined as

f (q,e ) =
(

e · tanh(W
f
e · q + be )

)

·W h
e (10)

whereW h
e ∈ R

β ,W
f
e ∈ R

α×β×α , be ∈ R
α×β , and β is a hyper-

parameter that controls the number of the attention heads.

To further aggregate ue from each domain to create the final

user embedding u, we apply another layer of zero attention above

all knowledge domains. Let Ωu
= {Ωu

e }, then

u =
∑

Ωue ∈Ω
u

exp( fu (q,ue ))

exp( fu (q, 0)) +
∑

Ωu
e′
∈Ωu exp( fu (q,u

′
e ))

ue (11)

where fu (q,ue )) is another attention function with similar form of

Eq. (10) but different set of parameters.

Intuitively, the idea of HGN is to construct a hierarchical zero

attention network that aggregates fine-grained user preferences

from each knowledge domain to a unified user vector based on

the search query. For parameter optimization, we simply follow

the methodology of DREM introduced in Section 3.2.1 and replace

the original user vector u with the new user vector constructed by
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Figure 1: An illustration of the vanilla DREMandDREMwithHGN.Different types of entities are colored differently. Squashed

rectangles are vectors randomly initialized and learned in training, and rectangles are vectors encoded from other vectors.

HGN. Through this way, we can easily track down the usage of

each knowledge entity in product search and create a higher-level

of transparency and interpretability to DREM.

3.3.3 Pre-hoc Search Explanations. The advantage of HGN-based

DREM is its ability to create model-intrinsic explanations. Attention

network is explainable by nature as the importance of input data

is directly reflected by their attention weights in model outputs.

With the help of HGN, we can not only infer the importance of

each user-associated entity in building the final retrieval model (i.e.,

Suq in Eq. (1)), but also distinguish how much utility is obtained

from understanding user’s preferences over retrieved items or the

general relevance/popularity between items and search queries.

For pre-hoc search explanations, the attention weights in HGN

can be split into two parts. The first part is the attention score of

each user-associated knowledge domain and entity. Let Ae
Ωue

be the

attention weight that entity e received within domain Ωu
e , andA

u
Ωue

be the attention weight that domain Ωu
e received in search, then

Ae
Ωue
=

exp( fe (q,e ))

exp( fe (q, 0)) +
∑

e ′∈Ωue exp( fe (q,e ′))

Au
Ωue
=

exp( fu (q,ue ))

exp( fu (q, 0)) +
∑

Ωu
e′
∈Ωu exp( fu (q,u

′
e ))

(12)

Intuitively, Au
Ωue

is the importance of domain Ωu
e in building the

final user model u, and Ae
Ωue

is the importance of entity e in the

domain. To explain the behavior of the product search model with

these information, we can adopt simple templates to generate user

readable search explanations with the attention weights. For ex-

ample, for a specific user-query pair, if the attention weight of

the domain Brand is 0.5, and Apple is the entity that received the

highest attention within Brand, we can generate a pre-hoc search

explanations as “this product are retrieved 50% because of the Brand

of products previously purchased by the user, such as Apple”.

The second part of the attention weights in HGN is the attention

on the zero vector. As depicted in Figure 1, HGN allows the model to

attend to a zero vector when aggregating the information extracted

from each knowledge domain with weight Au0 as

Au0 =
exp( fu (q, 0))

exp( fu (q, 0)) +
∑

Ωu
e′
∈Ωu exp( fu (q,u

′
e ))

(13)

Particularly, we apply a negative sampling strategy to maximize the

probability of observed purchase P (i |u,q), which has been proven

to be equivalent to factorizing the pointwise mutual information

between Suq and i [36]. According to Eq. (1) and (13), when Au0
is close to 1, Suq would downgrade to q and the final retrieval

model is essentially retrieving items according to their mutual

information with the query. From this perspective, the weight of

the zero vector in HGN can be seen an indicator of the importance

of item popularity under the query in the generation of the final

ranked list. Therefore, given a particular Au0 , we could explain the

results retrieved by HGN as “this product is retrieved Au0% because

of its popularity under the query”.

4 RETRIEVAL EXPERIMENTS

In general, the evaluation of an explainable product search model

involves two parts: (1) the evaluation of retrieval performance in

terms of retrieving items that are most likely to be purchased by

users, and (2) the evaluation of explanation effectiveness in terms of

illustrating the connections between users, queries, and retrieved

items as well as increasing the conversion rates from search to

purchase. In this section, we focus on the first part and introduce

our settings and results in retrieval experiments.

4.1 Experimental Setup

The goal of retrieval experiments is to evaluate the effectiveness of

product search models in retrieving relevant items for user-query

pairs. To this end, we conduct experiments on a well-established

product search dataset and implement a couple of state-of-the-art

baselines to analyze the performance of DREM with HGN.

4.1.1 Dataset. Our testbed is a well-established Amazon product

search benchmark datasets [2, 26, 62]. The dataset contains user’s

purchases, reviews, and queries in a variety of categories as well as

detained descriptions and meta data of a large number of items on

Amazon4. Specifically, we conduct experiments on three categories,

i.e., Electronics, Health&PersonalCare, and Sports&Outdoors, and use

the 5-core data where each user/item has at least 5 reviews [2, 26].

Other than review text, to incorporate rich product meta data for

product search, we also consider five types of entity relationships

in our experiments. They are Also_bought: users who purchased

item i1 has also purchased item i2 (i1 → i2); Also_viewed: users

who viewed item i1 also viewed item i2 (i1 → i2); Bought_together :

item i1 was purchased together with item i2 in a single transaction

(i1 → i2); Brand: item i has brand b (i → b); and Category: item i

has category c (i → c). More data statistics can be found in Table 1.

4.1.2 Baselines. Other than the naive DREM proposed by Ai et

al. [3], in our experiments, we include six state-of-the-art product

search baselines including classic retrieval models such as

4Please refer to [2, 26, 62] for the details of Amazon search datasets.
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Table 1: Statistics for the 5-core data.

Electronics Health&PersonalCare Sports&Outdoors

Vocabulary size 142,922 38,772 32,386

Number of reviews 1,689,188 346,355 296,337

Number of users 192,403 38,609 35,598

Number of items 63,001 18,534 18,357

Number of brands 3,525 3,855 2,412

Number of categories 983 861 1,443

Also_bought per item 36.70±38.56 63.03±35.36 75.18±31.98
Also_viewed per item 4.36±9.44 15.43±9.35 14.46±12.24
Bought_together per item 0.59±0.72 0.86±0.77 0.83±0.76
Brand per item 0.47±0.50 0.76±0.43 0.67±0.47
Category per item 4.39±0.95 4.20±0.93 4.82±1.33

Number of reviews 1,275,432/413,756 261,281/85,074 224,807/71,530

Number of user-query pairs 1,204,928/5,505 232,187/207 214,919/1,739

Relevant items per pair 1.12±0.48/1.01±0.09 1.13±0.47/1.00±0.00 1.12±0.45/1.01±0.13

• QL: the query-likelihood model [49] that ranks items accord-

ing to the log likelihood of queries in the unigram language

model built with item descriptions and reviews.

• BM25: the classic probabilistic model proposed by Robertson

and Walker [51] built on the item’s descriptions and reviews.

• LTR5: a learning-to-rank model built with LambdaMART.

and latent product search baselines such as

• LSE: the Latent Semantic Entity model [62] that ranks items

based on the similarity of queres and items in latent spaces.

• HEM: the Hierarchical Embedding Model [2] that personal-

izes product search results with a latent retrieval framework.

• ZAM: the original Zero Attention Model [1] that conducts

selective personalization in product search.

4.1.3 Implementation and Evaluation Details. Following previous

studies [3, 26], we partition the data in each product category by

randomly hiding 30% user purchases from the training process and

use them as the testing data. We randomly select 30% queries as

the test queries and match users with queries extracted from their

purchase history to form training and testing user-query pairs. A

item is considered relevant to a user-query pair when it is relevant

to the query and has been purchased by the user. More information

about our data partition can be found in Table 1.

For implementation details, we follow the settings proposed by

Ai et al. [3] by building QL and BM25 with galago6, building LTR

with ranklib7, and tuning the Dirichlet smoothing parameter µ in

QL from 1000 to 3000, the scoring parameter k and b in BM25 from

0.5 to 4 and 0.25 to 1, respectively. The number of trees and leaf in

LambdaMART model used in LTR are set as 1000 and 10, and we

tune the learning rate from 0.01 to 0.1. For latent product retrieval

models such as LSE, HEM, ZAM, the vanilla DREM [3] and our

extended DREM with HGN (DREM-HGN), we use Adagrad [42]

with batch size 64 to optimize the latent vectors and set the sample

size of negative sampling as 5. We clipped batch gradients with

norm 5 to avoid unstable updates and train eachmodel for 20 epochs

by gradually decrease the learning rate from 0.5 to 0 (note that most

models converge after 10 epoches). For fair comparison, we fixed

the personalization weight η in HEM, ZAM, DREM, and DREM-

HGN as 0.5 (which results in Eq. (1)) and the size of all latent vectors

as 100 (i.e., α = 100). We acknowledge that having larger vector size

could boost the performance of some latent product search models,

5We extract ranking features for LTR following the same method used by Ai et al. [3],
which is ignored in this paper due to page limit.
6https://sourceforge.net/p/lemur/wiki/Galago/
7https://sourceforge.net/p/lemur/wiki/RankLib/

especially those using rich product knowledge and information

(e.g., DREM and DREM-HGN) [3]. However, this is the not focus of

this paper and we ignore the tunning of α so that the embeddings

learned by different models have comparable dimentionalities.

We adopt mean average precision (MAP), mean reciprocal rank

(MRR) and normalized discounted cumulative gain (NDCG) to eval-

uate the performance of product searchmodels. For each user-query

pair, we retrieve 100 items among all candidate items in each dataset

to generate the rank list and compute MAP and MRR accordingly.

We also report NDCG with cutoff 10 and 50. Significant tests are

measured by the Fisher randomization test [57] with p < 0.05.

4.2 Retrieval Results

The results of our retrieval experiments are shown in Table 2. Sim-

ilar to previous studies [2, 62], we observed that latent product

search models usually perform better than classic retrieval mod-

els constructed based on text matching signals. For example, our

best latent product search baseline (i.e., the vanilla DREM) has sig-

nificantly outperformed QL and BM25 on all the datasets. This is

reasonable as previous studies have observed significant vocabulary

gap between queries and item descriptions [47, 62], and users often

purchase items that “seems” irrelevant to their submitted query in

text [16]. After incorporating more complex behavior features such

as item popularity, the LTR baseline has managed to outperform

DREM on Sports&Outdoors, but still performs worse than DREM

on Electronics and Health&PersonalCare.

Among all latent product search models, the non-personalized

baseline (i.e., LSE) performs the worst, which demonstrates the

importance of personalization in product search. In the results

of personalized product search models, we observed that DREM

has significantly outperformed other baselines with large improve-

ments from 25% to 50%. This indicates that incorporating rich in-

formation from product knowledge graph and meta data is indeed

helpful in improving the effectiveness of product search. Further,

our proposed model (i.e., DREM-HGN) has achieved the best per-

formance in our experiments. It has outperformed all the baselines

significantly and achieved 5.6%, 53.6%, and 28.2% MRR improve-

ments over the vanilla DREM on Electronics, Health&PersonalCare,

and Sports&Outdoors, respectively. This indicates that user repre-

sentations encoded from product knowledge with the hierarchical

gated network is more useful than the user embedding learned by

DREM from randomly initialed vectors.

While the results of DREM-HGN outperforming the vanilla

DREM is not surprising as the former has incorporated a compli-

cated attention network to model query-specific user preferences,

the main advantage of HGN is its transparency and model-intrinsic

interpretability that allows the generation of pre-hoc explanation

for product search. To compare the post-hoc and pre-hoc search

explanations generated by DREM and DREM-HGN in detail, we

further conduct a series of explanation evaluation and analysis.

5 EXPLANATION EVALUATION

In practice, both pre-hoc and post-hoc explanations have their

unique advantages for IR. For example, pre-hoc search explanations

are considered more reliable as they are directly inferred from the
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Table 2: The retrieval performance of product search models. Best performance in each model group are highlighted in bold.

∗ and † denote significant improvements over the best classic retrieval baselines and latent search baselines, respectively.
Electronics Health&PersonalCare Sports&Outdoors

Model MAP MRR NDCG@10 NDCG@50 MAP MRR NDCG@10 NDCG@50 MAP MRR NDCG@10 NDCG@50

QL 0.166 0.164 0.187 0.210 0.063 0.063 0.059 0.097 0.068 0.067 0.080 0.117

BM25 0.216 0.213 0.227 0.270 0.076 0.076 0.088 0.131 0.092 0.091 0.097 0.142

LTR 0.216 0.216 0.230 0.303 0.060 0.060 0.055 0.113 0.109† 0.109† 0.120† 0.166

LSE 0.108 0.108 0.137 0.183 0.016 0.016 0.000 0.113 0.015 0.015 0.019 0.040

HEM 0.156 0.156 0.182 0.197 0.157∗ 0.157∗ 0.146∗ 0.200∗ 0.075 0.075 0.086 0.128

ZAM 0.115 0.115 0.130 0.162 0.208∗ 0.208∗ 0.244∗ 0.263∗ 0.074 0.075 0.087 0.153

Vanilla DREM 0.231∗ 0.232∗ 0.268∗ 0.314∗ 0.349∗ 0.349∗ 0.378∗ 0.429∗ 0.099 0.099 0.113 0.180∗

DREM-HGN 0.244∗† 0.245∗† 0.275∗† 0.339∗† 0.536∗† 0.536∗† 0.556∗† 0.588∗† 0.126∗† 0.127∗† 0.141∗† 0.215∗†

structure of the retrieval model. In contrast, post-hoc search expla-

nations are more flexible as it neither enforces the retrieval model

to have intrinsic interpretability nor requires access to the internal

structure and data flow of the model. To the best of our knowledge,

DREM is the only explainable models for product search in the

literature. Ai et al. [3] has conducted a laboratory user study and

show that the post-hoc search explanations extracted by DREM are

useful in attracting users to purchase the items. However, how this

is achieved or what factors are important for the quality of search

explanations are mostly unexplored. In this section, we conduct

experiments to evaluate and compare the pre-hoc explanations cre-

ated by DREM-HGN with the post-hoc explanations created by the

vanilla DREM for product search. Specifically, we want to study

and shed some lights on the following research questions:

RQ1: Which types of search explanations do users prefer? Model-

intrinsic ones or model-agnostic ones?

RQ2: What factors are important for product search explanations?

5.1 Experimental Setup

We design and conduct a crowdsourcing experiment on Amazon

Mechanical Turk8 (AMT) to evaluate the pre-hoc and post-hoc

search explanations generated by DREM-HGN and DREM.

5.1.1 Explanation Generation. As described in Section 3, bothDREM

and DREM-HGN create explanations with templates using knowl-

edge entities and relations extracted by the models. For fair compar-

ison, we adopt a single set of explanation templates for both DREM

and DREM-HGN. For example, given a specific relation triple such

as (item, Brand, Apple) extracted by the vanilla DREM, we would

create an explanation as “This product was retrieved because the user

often buys products with brands such as Apple”. Also, as DREM-

HGN relies on the attention weights extracted from HGN to explain

its behavior, we add the corresponding information in the template

and create explanations such as “This product was retrieved 50%

because the user often buys products with brands such as Apple”.

To avoid the randomness in search explanations and to improve

the robustness of crowdsourcing, we increase the redundancy of our

experiment by allowing each model to provide a group of explana-

tions instead of a single one. Specifically, we extracted and grouped

the top-3 search explanations extracted by DREM and DREM-HGN

and allow each explanation to include at most 3 relevant knowl-

edge entities. Instead of requiring each crowdsourcing worker to

annotate each search explanation, we let workers to annotate the

search explanations in groups so that the final results would be

8https://requester.mturk.com/

influenced less by the quality variance of explanations provided

by each model. We refer to the group of explanations generated

by DREM and DREM-HGN as Model-Agnostic Explanation (MAE)

and Model-Intrinsic Explanation (MIE), respectively.

5.1.2 Annotation Strategy. Previous studies [3, 67, 74] evaluated

product recommendation and search explanations mainly from

three perspectives: (1) whether the explanation has provided more

relevant information about the item and the query, or Informative-

ness; (2) whether the explanation is useful in attracting the user to

purchase the item, or Usefulness; and (3) whether providing the ex-

planation would increase user’s satisfaction for the service provided

by the product search engine, or Satisfaction.

In this paper, we adopt the same strategy to evaluate the per-

formance of search explanations. However, instead of requiring

crowdsourcing workers to directly annotate each explanation with

a 5-level score [67], we propose to conduct pairwise comparisons

for the explanations generated by DREM and DREM-HGN for each

user-query-item triple and let the workers to annotate their pair-

wise preferences only. Pairwise preferences have been proven to be

much more robust and reliable comparing to pointwise relevance

judgements in IR [33]. Through this way, we hope to improve the

quality of our crowdsourcing experiments as well as exploring

the possibility of building automatic search explanation evaluation

models for product search, which is further discussed in Section 5.3.

5.1.3 Data Sampling. Our crowdsourcing dataset is sampled from

the retrieval experiment dataset of Electronics. Electronics is one

of the most popular product categories on Amazon. Products in

Electronics usually have less complicated knowledge structures (e.g.,

less entity relations per item as shown in Table 1) and are more

familiar to workers on AMT. Specifically, we randomly sampled

101 user-query pairs from the test data of Electronics where both

DREM and DREM-HGN achieved MRR scores greater or equal

to 0.1. For fairness, we extracted the user-query-item triples to

explain by pairing user-query pairs with the item purchased by

the user in the corresponding session. Thus, all sampled items are

indeed purchased by the user and AMT workers only need to judge

which explanations can better explain the user’s purchase in the

search session. Specifically, we recruited three workers per case,

and applied a voting process to assign the final labels.

5.1.4 UI Design. Figure 2 provides an illustration of the UI we

used for the crowdsourcing experiments. On the top of the UI, we

provided a variety of information related to the current item, in-

cluding product links, images, titles, descriptions, the search query,

and the recent purchases and reviews of the current user. In the
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