

1 **Response to Laepple et al. – SAT method precludes the reconstruction of interglacial
2 thermal maxima**

3 **Authors:** Samantha Bova^{1*}, Yair Rosenthal^{2,3}, Zhengyu Liu⁴, Mi Yan^{5,6}, Anthony J. Broccoli⁷,
4 Shital P. Godad^{2**}, Cheng Zeng^{5,6}, Weipeng Zheng⁸

5 **Affiliations:**

6 ¹Department of Geological Sciences, San Diego State University, California, CA

7 ²Department of Marine and Coastal Sciences, Rutgers, State University of New Jersey, New
8 Brunswick, NJ 08901

9 ³ Department of Earth and Planetary Sciences, Rutgers, State University of New Jersey, New
10 Brunswick, NJ 08901

11 ⁴Atmospheric Science Program, Department of Geography, The Ohio State University,
12 Columbus, OH, USA

13 ⁵School of Geography, Nanjing Normal University, Nanjing, China

14 ⁶Open Studio for Ocean-Climate-Isotope Modeling, Pilot National Laboratory for Marine Science
15 and Technology, Qingdao, China

16 ⁷ Department of Environmental Sciences, Rutgers, State University of New Jersey, New
17 Brunswick, NJ 08901

18 ⁸State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid
19 Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
20 China

21 *Correspondence to: sbova@sdsu.edu

22 **Now at Department of Geosciences, National Taiwan University, Taipei, Taiwan

24 **The Seasonal to Annual mean Transformation (SAT) proposed by Bova et al.¹, offers a
25 possible solution to the apparent discrepancy between proxy records showing long term
26 cooling^{2,3}, and models, which show long-term warming across the Holocene known as the
27 'Holocene temperature conundrum'^{4,5}. Model-data inconsistencies and conflicting proxy
28 records are particularly prominent in the mid- to low latitudes, and have been variably
29 attributed to seasonal biases in proxy temperature reconstructions⁶⁻⁹, model deficiencies^{10,11},
30 or both. Bova et al.¹ have suggested that proxy seasonal biases are the primary source of the
31 conundrum. While it is widely acknowledged that seasonal biases complicate paleoclimate
32 data interpretations, the accompanying Comment¹² questions whether SAT is a robust
33 solution to this problem, challenging the validity of SAT's foundational assumptions and
34 thereby arguing that the consistency with model results is fortuitous.**

35 The clear impact of seasonality on marine proxies of surface temperature, which compose 30²
36 and 80%³, respectively, of the proxy records included in prior global stacks, has been discussed
37 previously^{8,9,13-15}. These authors show a systematic divergence in Holocene SST trends between
38 alkenone and *G. ruber*-Mg/Ca proxy reconstructions. In regions, such as the eastern equatorial

39 Pacific, for example, alkenone and *G. ruber*-Mg/Ca SST estimates measured on adjacent
40 sediment cores show *opposite* Holocene SST trends, making it impossible for both proxies to
41 reflect mean annual sea surface conditions. We therefore assert that any proposed resolution
42 of the Holocene Temperature Conundrum must also come to terms with this second
43 conundrum, the observed discrepancies among the proxy records themselves. Notably, the SAT
44 method proposed and implemented in our recent Article resolves both.

45 **SAT Foundational Principles revisited**

46 The divergent Holocene SST trends were explored previously via model-data comparison
47 studies, which showed that accounting for proxy seasonality improved, but did not resolve,
48 model-data discrepancies during the Holocene¹³⁻¹⁵. However, these tests were conducted using
49 model simulations forced only by orbital forcing, and did not account for the Holocene
50 variations in GHG and ice forcing, which cannot be ignored. This led us to “calibrate” the SAT
51 method using records from the last interglacial (LIG), when GHG and ice sheet forcing were
52 stable, while seasonality was at its maximum.

53 A key strength of the SAT method is that it provides a systematic, physically-based way to
54 assess seasonal bias and calculate MASST from seasonal SSTs in individual records. However,
55 the SAT method cannot be applied indiscriminately. For an effective application of SAT, two
56 foundational assumptions must be satisfied:

- 57 (1) sea surface temperature responds linearly to changes in the local insolation (or to
58 insolation that is highly correlated with the local insolation) and
- 59 (2) the response to insolation is dominant in the absence of other forcing “external” to the
60 coupled ocean-atmosphere system (i.e. GHGs and land ice), as is arguably the case
61 during the LIG

62 We acknowledge that these assumptions will not be satisfied sufficiently at all times nor in all
63 locations. First, SAT requires an approximately linear relationship to be satisfied only within
64 interglacial periods, and thus does not dispute the role of seasonally-dependent feedbacks in
65 driving state changes in the climate system, as outlined by Milankovitch theory. However, there
66 may be locations where seasonal feedbacks modulate the sensitivity of SST to insolation across
67 the year¹⁶, even during interglacials. For example, SAT should not be applied to sites in
68 proximity to oceanographic fronts where SST can be strongly affected by nonlinear dynamics, as
69 seen in the western Atlantic^{6,17}. In fact, the inclusion of such records in a previous compilation³
70 is the primary source of the apparent Holocene global cooling trend. Thus the ‘conundrum’, in
71 the high northern latitudes was largely solved simply by removing these datasets as shown in a
72 recent paper⁶. In our compilation, we were therefore selective of the records included, limiting
73 the records included to low- to mid-latitude regions where the SST response to insolation is the
74 most likely to respond quasi-linearly to the local insolation, and indeed, where the conundrum
75 remains most prominent.

76 Nevertheless, Laepple et al.¹² question whether these assumptions are satisfied sufficiently
77 anywhere in the global oceans. Strong non-linearities are observed in the modern seasonal
78 insolation-temperature relationship at some locations in the global oceans (at least 3 locations
79 as shown by Laepple and Lohmann¹⁶: notably NH mid-latitude and high latitude southern sites

80 because of the strongly nonlinearity associated with the winter mixed layer and sea ice).
81 However, it is not obvious, nor is it proven, that these same nonlinear relationships apply on
82 orbital timescales, or that they apply everywhere in the global oceans. Laepple and Lohmann¹⁶
83 provide a first test of this hypothesis in one model by applying the modern seasonal insolation-
84 temperature relationship to orbital trends across the Holocene, either estimated using a linear
85 or a polynomial relationship. The amplitude of the calculated trends using the polynomial
86 relationship are larger, but neither the polynomial nor the linear relationship reproduces the
87 tropical ocean response robustly, at least as simulated by the AGCM (see Fig. 5 in Laepple and
88 Lohmann¹⁶). An additional test noted in the Comment refers to an experiment in an
89 intermediate complexity model with many assumptions¹⁸, and is thus unlikely to be informative
90 on this issue. Accordingly, the assertion that nonlinear responses dominate the global surface
91 ocean temperature response to insolation at orbital timescales remains a hypothesis, and one,
92 that like ours, needs further testing.

93 Given that there is some uncertainty, we acknowledge that there is more confidence in the
94 successful application of SAT at locations where the modern seasonal insolation-temperature
95 relationship is approximately linear. Here we assess linearity as the maximum deviation from
96 linearity of modern SST^{19,20} from the daily insolation²¹, with some time lag (estimating by
97 maximizing the correlation coefficient) relative to the magnitude of SST change during the SAT
98 calibration interval or last interglacial period. We illustrate this proposed approach for IODP site
99 U1485 in the western Pacific. Here we find that in examining the seasonal SST (long-term
100 average from 1971-2000) response to daily insolation, the maximum deviation in warm pool
101 SST is $\pm 0.1012^{\circ}\text{C}$ (Fig 1A,B). While future versions of SAT should explicitly account for this
102 uncertainty, at most of the sites included in the Bova et al.¹ study, the observed deviation is
103 small relative to the change in SST across the LIG, less than about 20%. An exception is ODP site
104 1240 where we identify strong nonlinear behavior, with a maximum deviation from linearity of
105 1.4°C and a reconstructed change in LIG SSTs of $\sim 1.5^{\circ}\text{C}$. The strong nonlinearity observed in the
106 modern seasonal SSTs at the site should disqualify the record from inclusion in the compilation,
107 though its removal does not fundamentally impact the conclusions of our original study.

108 Lastly, the accompanying Comment outlines an additional requirement for the successful
109 implementation of SAT: that temperature variations arising from other “external” forcing to the
110 climate system (i.e. not insolation) are evenly distributed throughout the year and independent
111 from the seasonal insolation. We do not include this requirement because neither GHGs nor ice
112 volume exhibit substantial change across the LIG. Nevertheless, we acknowledge that the
113 impacts of these forcings are likely not evenly distributed throughout the year. Atmospheric
114 CO₂, for example, is substantially impacted by insolation via the seasonal cycle in
115 photosynthetic activity by plants. In addition, GHG forcing takes place in the infrared part of the
116 spectrum and thus its magnitude depends on many properties of the climate system including
117 clouds and the vertical profile of water vapor. However, the insolation dependent component
118 of the GHG forcing would be accounted for in the transformation because it is correlated to the
119 insolation and thus covered under assumption 1, and variations independent from the
120 insolation forcing are likely small relative to SST changes arising from the seasonal insolation.

121 **Evaluating SAT**

122 The fidelity of the transformation using a linear relationship between SST and insolation is
123 evaluated by applying our method in a state-of-the-art climate model (see Methods, linear-
124 insolation-temperature relationships). The good agreement between estimates based on the
125 SAT method and from the complex climate model is, on its own, an important outcome of the
126 paper, suggesting that when averaged across our chosen sites our simple linear model
127 estimates the long-term SST response to solar forcing in the tropical and subtropical regions
128 equally well as the non-linear dependencies in the climate model. Our results are further
129 supported by a new reanalysis using paleoclimate data assimilation techniques, which shows a
130 remarkably similar Holocene temperature evolution and no evidence for a HTM, despite
131 following a completely different methodological approach²². Thus, we show that SST in the
132 climate model, which is forced by fully non-linear dynamics in the coupled ocean-atmosphere
133 system and includes sea ice and other fast feedback processes, can be approximated with a
134 linear transformation to climate forcing on multi-millennial timescales in the region studied.

135 Additional model tests of the SAT method were conducted by the Commenting authors.
136 Although these tests highlight some important limitations of SAT as well as possible avenues for
137 improvement, the results indicate no obvious “fatal flaws”.

138 *Test #1: False seasonal bias detection*

139 In test #1, Laepple et al.¹² apply the SAT method to LIG modeled annual mean temperatures
140 across the entire ocean domain and find that in nearly 80% of the global grid boxes SAT
141 incorrectly assigns a seasonal bias. On the surface, this result appears highly problematic, but in
142 practice the false bias detection has little impact and can be readily fixed in a future update.

143 First, the false seasonal bias detections arise because the modeled mean annual SST increase
144 across the LIG, especially in the mid- to low-latitudes, is very small, which leads to a low signal-
145 to-noise ratio. Thus, the monthly insolation curve that has the “strongest correlation” is in
146 many cases random, an assertion that is supported by a very low correlation coefficient. In the
147 future, these false seasonal bias identifications can be avoided by implementing a threshold
148 correlation value into the SAT algorithm, and we will do so in a future version.

149 Given that this fix was not in place, however, when we analyzed the datasets included in the
150 Bova et al.¹ study, the question remains as to whether a false seasonal bias detection could
151 have impacted the previously published results. We tested this possibility by applying SAT to
152 modeled LIG mean annual SSTs, following Laepple et al.¹², at a handful of the sites included in
153 the Bova et al.¹ compilation. We found that despite incorrectly identifying a seasonal bias at
154 many of the sites, the correction applied was insignificant, at most a few tenths of a degree,
155 and thus the mean annual SST evolution remained unchanged. Why? Because LIG mean annual
156 SSTs change very little, and when regressed against the identified seasonal insolation, the slope
157 or SST sensitivity to the seasonal insolation is also small.

158 We appreciate the Commenting authors for bringing this issue to our attention. Nevertheless,
159 while it should be addressed in the future by the addition of a threshold correlation value, in
160 practice the issue has little impact on the final results published in the original article.

161 *Test #2: Assessing SAT’s skill*

162 In the second test, the authors test the ability of SAT to perform in all months of the year in all
163 ocean grid boxes. We agree it would be ideal for SAT to work for any record, regardless of its
164 seasonal bias and location. However, this is not yet possible due to an important statistical
165 constraint for a successful application of the SAT method: the independence of the annual and
166 seasonal insolation curves during the LIG. If the mean annual insolation is highly positively
167 correlated with the seasonal insolation, SAT will be subject to large errors, because the filtering
168 of the seasonal signal will also filter the annual signal significantly. This means that for many
169 months out of the year (roughly November thru February for the tropical region) seasonal
170 detection will not be possible and the SAT method will not produce robust results. This
171 statistical constraint, however, has little impact in practice given that July, August, and
172 September seasonal biases are identified for 36 out of the 44 records included in the Bova et
173 al.¹ compilation.

174 *Test #3: Questioning SAT's Foundational Assumptions*

175 The third test assesses whether the SAT method, prevents "by construction" a trend or thermal
176 maximum. However, this test, *by construction*, violates the foundational principles of the SAT
177 method by artificially changing the evolution of MASST without changing the forcings.
178 Nevertheless, the point of the third test is clearly to draw attention and additional scrutiny to
179 the second foundational assumption of SAT, that the "the response to insolation is dominant in
180 the absence of forcing "external" to the coupled ocean-atmosphere system, such as land ice
181 and GHGs". Since SAT assumes that the LIG SSTs are forced solely by insolation, and to respond
182 linearly, LIG MASSTs will inherently track the annual mean insolation. However, the Holocene
183 MASSTs are not constrained or predetermined to follow the annual mean insolation, and, in
184 fact, they do not. It is important to remember that the seasonal bias and SST sensitivity to
185 monthly insolation in SAT are determined during the LIG, when GHG and ice volume were
186 stable and seasonality was at a maximum, and then applied to the Holocene. Thus, Holocene
187 SSTs, though still constrained to respond linearly to seasonal insolation, are not constrained to
188 respond solely to insolation.

189 Although we do not agree with the Commenting authors that their tests reveal any fatal flaws
190 in the SAT method, we recognize that SAT is not the ultimate method for filtering seasonal bias.
191 We use it because seasonal biases in various SST proxies are not fully understood
192 mechanistically. Ideally, the seasonal bias would be understood mechanistically and one could
193 then filter the seasonal bias cleanly and directly from the proxy. This is possible for some
194 proxies, such as borehole temperature, which is biased towards summer air temperature
195 because snow cover tends to insulate the borehole from overlying air in winter²³. It is hoped
196 that such a direct method with clear mechanism will be developed in the future. Until then, a
197 next-generation approach for the SAT method should leverage model information to improve
198 the relationship between SST and the local insolation forcing as well as to expand the spatial
199 domain over which SAT can be applied. Importantly, however, model-data inconsistencies and
200 conflicting proxy records are most prominent where we already have data, in the mid- to low-
201 latitudes^{4,6}. Further, temperature here is highly correlated with the global mean, though the
202 magnitude of tropical warming is somewhat larger than the global mean as observed in the
203 PMIP climate models (Fig.2), because the global mean warming is reduced by the cooling at
204 high latitude.

205 **Final Thoughts**

206 Given the complexity of the feedbacks and the transport processes, the net effects of all the
207 feedbacks and local insolation are difficult to assess. Our model test of SAT is a first attempt in
208 this direction. We show that a simple linear response of SST to local insolation produces SST
209 estimates consistent with climate models that include feedbacks and non-linear dependencies,
210 thereby resolving the Holocene Temperature Conundrum. Furthermore, seasonal biases
211 detected using SAT can resolve the second conundrum, i.e. proxy-proxy discrepancies. In our
212 opinion, these results provide strong support for the hypothesis that local insolation is
213 dominant, at least over much of the low to mid-latitudes and for the seasonal response.
214 Nonetheless, we emphasize again that this method will only perform well in places where the
215 underlying assumptions discussed above are met.

216 Finally, the possibility remains that both the SAT method and the climate model simulations
217 have major flaws. Sea ice in the Arctic is one possible mechanism that could induce a non-linear
218 response to local insolation forcing, thereby violating the assumptions underlying SAT and
219 invalidating its use. Furthermore, its impact can extend from high to low latitudes via
220 atmospheric and oceanic transports. Vegetation and clouds have also been suggested. With the
221 exception of vegetation, these feedbacks, to the best of our knowledge, have been included in
222 all current generation climate models. As far as the global mean is concerned, these feedbacks
223 have apparently been far too weak to substantially change the global mean trends^{4,24}.
224 Moreover, despite continued increases in complexity, the sign and magnitude of the mid- to
225 late Holocene global mean temperature evolution has changed very little^{4,5}. In fact, the latest
226 mid-Holocene simulations (PMIP4-CMIP6), now including GHG forcing and feedback processes,
227 suggest even greater Holocene warming than in previous versions⁵ (Figure 2).

228

229 **Figure Legends**

230 **Figure 1. Impact of nonlinearities on WPWP SSTs.** (a) Mean annual SST in the WPWP (WOA
231 13)²⁵ showing the domain utilized to assess modern insolation-SST relationship (4.125°S to
232 4.125°N and 142.125°E to 159.875°E) (b) Daily insolation²¹ versus the long-term average
233 seasonal SST^{19,20} averaged across the domain indicated in panel a. SST data from the NOAA
234 daily optimum interpolation sea surface temperature dataset. Daily insolation is shifted 55 days
235 forward in time to account for the time delay in the SST response. The maximum deviation from
236 linearity in the SST response to insolation across this region is 0.1°C. Note that this deviation
237 arises due to both variations in the magnitude of the SST response to the insolation forcing as
238 well as variations in the time lag. (c) unadjusted SST reconstructed from IODP Site U1485 from
239 the WPWP during the LIG or SAT calibration period. Note that the maximum deviation from
240 linearity in the modern insolation-temperature relationship is negligible(±0.1°C) relative to the
241 long-term trend in SST during the LIG at this site (~2.25°C).

242

243

244

245

246 **Figure 2. PMIP global vs tropical (40S-40N) mean annual temperature (area-weighted) change**
247 **from 6ka to 0ka for PMIP2 (13 models), PMIP3 (15 models) and PMIP4 (15 models).** The
248 change is calculated as the difference of 0ka - 6ka experiments. The 0ka experiments are forced
249 by preindustrial orbital and GHG. The 6ka experiments are forced by orbital forcing only in
250 PMIP2 and 3, and additionally by the lower GHG as observed in PMIP4. Note that the cross-
251 model spread of tropical temperature is highly correlated with the global mean temperature
252 such that the warming occurs in both the tropics and global mean in most models. A second
253 point is that when responding to orbital forcing alone, as in PMIP2 & 3, the global mean MAT is
254 centered around 0 with both warming and cooling, but when GHG forcing is included (i.e.
255 PMIP4) then all experiments are warming, both in the global mean and in the tropics. Finally,
256 note that the magnitude of tropical warming is stronger than the global mean in nearly all
257 experiments, because of the insolation associated with reduced obliquity.

258

259 **References**

260

- 261 1 Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal
262 maxima at the Holocene and the last interglacial. *Nature* **589**, 548-553,
263 doi:10.1038/s41586-020-03155-x (2021).
- 264 2 Kaufman, D. *et al.* Holocene global mean surface temperature, a multi-method
265 reconstruction approach. *Scientific Data* **7**, 201, doi:10.1038/s41597-020-0530-7 (2020).
- 266 3 Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A Reconstruction of Regional and
267 Global Temperature for the Past 11,300 Years. *Science* **339**, 1198-1201,
268 doi:10.1126/science.1228026 (2013).
- 269 4 Liu, Z. *et al.* The Holocene temperature conundrum. *Proceedings of the National
270 Academy of Sciences* **111**, E3501-E3505, doi:10.1073/pnas.1407229111 (2014).
- 271 5 Brierley, C. M. *et al.* Large-scale features and evaluation of the PMIP4-CMIP6
272 midHolocene simulations. *Clim. Past Discuss.* **2020**, 1-35, doi:10.5194/cp-2019-168
273 (2020).
- 274 6 Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling
275 divergent trends and millennial variations in Holocene temperatures. *Nature* **554**, 92-96,
276 doi:10.1038/nature25464 (2018).
- 277 7 Rodriguez, L. G. *et al.* Mid-Holocene, Coral-Based Sea Surface Temperatures in the
278 Western Tropical Atlantic. *Paleoceanography and Paleoclimatology* **34**, 1234-1245,
279 doi:10.1029/2019pa003571 (2019).
- 280 8 Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the
281 last 21 ka derived from alkenones and G. ruber-Mg/Ca in the equatorial Pacific.
282 *Paleoceanography* **29**, 680-696, doi:10.1002/2013pa002598 (2014).
- 283 9 Leduc, G., Schneider, R., Kim, J.-H. & Lohmann, G. Holocene and Eemian sea surface
284 temperature trends as revealed by alkenone and Mg/Ca paleothermometry. *Quaternary
285 Science Reviews* **29**, 989-1004 (2010).
- 286 10 Liu, Y. *et al.* A possible role of dust in resolving the holocene temperature conundrum.
287 *Scientific reports* **8**, 1-9 (2018).

288 11 Park, H.-S., Kim, S.-J., Stewart, A. L., Son, S.-W. & Seo, K.-H. Mid-Holocene Northern
289 Hemisphere warming driven by Arctic amplification. *Science advances* **5**, eaax8203
290 (2019).

291 12 Laepple, T., Shakun, J. D., He, F. & Marcott, S. A. SAT method precludes the
292 reconstruction of interglacial thermal maxima. *Nature Matters Arising* (2021).

293 13 Schneider, B., Leduc, G. & Park, W. Disentangling seasonal signals in Holocene climate
294 trends by satellite-model-proxy integration. *Paleoceanography* **25**,
295 doi:<https://doi.org/10.1029/2009PA001893> (2010).

296 14 Lohmann, G. *et al.* in *Integrated Analysis of Interglacial Climate Dynamics*
297 (*INTERDYNAMIC*) 31-35 (Springer, 2015).

298 15 Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G. & Kim, J.-H. A model–data comparison
299 of the Holocene global sea surface temperature evolution. *Climate of the Past* **9**, 1807-
300 1839 (2013).

301 16 Laepple, T. & Lohmann, G. Seasonal cycle as template for climate variability on
302 astronomical timescales. *Paleoceanography* **24**, doi:10.1029/2008pa001674 (2009).

303 17 Sachs, J. P. Cooling of Northwest Atlantic slope waters during the Holocene. *Geophysical*
304 *Research Letters* **34**, doi:<https://doi.org/10.1029/2006GL028495> (2007).

305 18 Clement, A. C., Hall, A. & Broccoli, A. J. The importance of precessional signals in the
306 tropical climate. *Climate Dynamics* **22**, 327-341, doi:10.1007/s00382-003-0375-8 (2004).

307 19 Huang, B. *et al.* Improvements of the Daily Optimum Interpolation Sea Surface
308 Temperature (DOISST) Version 2.1. *Journal of Climate* **34**, 2923-2939, doi:10.1175/jcli-d-
309 20-0166.1 (2021).

310 20 Reynolds, R. W. *et al.* Daily High-Resolution-Blended Analyses for Sea Surface
311 Temperature. *Journal of Climate* **20**, 5473-5496, doi:10.1175/2007jcli1824.1 (2007).

312 21 Huybers, P. & Eisenman, I. (ed NOAA/NCDC Paleoclimatology Program) (IGBP
313 PAGES/World Data Center for Paleoclimatology Boulder CO, USA, 2006).

314 22 Osman, M. B. *et al.* Globally resolved surface temperatures since the Last Glacial
315 Maximum. *Nature* (in press).

316 23 Mann, M. E., Schmidt, G. A., Miller, S. K. & LeGrande, A. N. Potential biases in inferring
317 Holocene temperature trends from long-term borehole information. *Geophysical*
318 *Research Letters* **36**, doi:<https://doi.org/10.1029/2008GL036354> (2009).

319 24 Bader, J. *et al.* Global temperature modes shed light on the Holocene temperature
320 conundrum. *Nature Communications* **11**, 4726, doi:10.1038/s41467-020-18478-6
321 (2020).

322 25 Locarini, R. A. *et al.* *NOAA Atlas NESDIS* (ed S. Levitus) (A. Mishonov Technical Ed.,
323 2013).

324

325 **Competing Interests:**

326 The authors declare no competing interests.

327

328 **Data Availability:**

329 The datasets utilized in this study are available in
330 the NOAA Database, World Data Service for Paleoclimatology at <https://www.ncdc.noaa.gov/paleo/study/31752>.

331

332

333 **Code Availability:**

334 A MATLAB code that implements the SAT method is available on GitHub

335 (<https://github.com/sambova/SAT>).

336

337 **Acknowledgments**

338 Funding for this research was provided by NSF grant OCE-1834208, OCE-1810681, the NSF-
339 sponsored U.S. Science Support Program for IODP, the Institute of Earth, Ocean, and
340 Atmospheric Sciences at Rutgers University, Chinese NSF 41630527, the School of Geography,
341 Nanjing Normal University, and the USIEF-Fulbright Program.

342

343 **Author Contributions**

344 S.B, Y.R., Z.L., M. Y., A.J., S.G. and C.Z. contributed to conception of the presented ideas. S.B.
345 wrote the first manuscript draft. All authors provided review and editing. Three authors, not on
346 the original paper were added to the author list. C.Z. provided additional analysis of model
347 results. A.B. provided critical feedback and discussion. W.Z. provided the analysis of the PMIP
348 global vs tropical mean annual temperature shown in Fig. 2.

349