

1 **Cyclic evolution of phytoplankton forced by changes in tropical seasonality**

2  
3 Luc Beaufort<sup>1\*</sup>, Clara T. Bolton<sup>1\*</sup>, Anta-Clarisso Sarr<sup>1</sup>, Baptiste Suchéras-Marx<sup>1</sup>, Yair  
4 Rosenthal<sup>2</sup>, Yannick Donnadieu<sup>1</sup>, Nicolas Barbin<sup>1\\$</sup>, Samantha Bova<sup>3</sup>, Pauline Cornuault<sup>1#</sup>,  
5 Yves Gally<sup>1</sup>, Emmeline Gray<sup>1&</sup>, Jean-Charles Mazur<sup>1</sup>, Martin Tetard<sup>1</sup>

6  
7 <sup>1</sup>Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France  
8 <sup>2</sup>Rutgers University, Piscataway, USA

9 <sup>3</sup>Department of Geological Sciences, San Diego State University, San Diego, California,  
10 USA

11 <sup>\\$</sup>Present address: TOTAL S.A., Pau, France

12 <sup>#</sup>Present address: Universität Bremen, MARUM, Bremen, Germany

13 <sup>\&</sup>Present address: The Open University, Milton Keynes, UK

14 \* To whom correspondence should be addressed: [beaufort@cerege.fr](mailto:beaufort@cerege.fr) or [bolton@cerege.fr](mailto:bolton@cerege.fr)

15  
16 **Although the role of Earth's orbital variations in driving global climate cycles has long**  
17 **been recognised, their effect on evolution is hitherto unknown. Because of their**  
18 **abundance in marine sediments and preservation of their morphological adaptation to**  
19 **the changing environment<sup>1</sup>, the fossil remains of coccolithophores, a key calcifying**  
20 **phytoplankton group, enable an exceptional assessment of the impact of cyclic orbital-**  
21 **scale climate changes on evolution<sup>2</sup>. Recently, evolutionary genetic analyses linked**  
22 **broad changes in Pleistocene fossil coccolith morphology to species radiation events<sup>3</sup>.**  
23 **Using high-resolution coccolith data, we show that during the last 2.8 million years the**  
24 **morphological evolution of coccolithophores was forced by Earth's orbital eccentricity**  
25 **with rhythms of ~100,000 years and 405,000 years - a distinct spectral signature to that**

26 **of coeval global climate cycles<sup>4</sup>. Simulations with an Earth System Model<sup>5</sup> coupled with**  
27 **an ocean biogeochemical model<sup>6</sup> demonstrate strong eccentricity modulation of the**  
28 **seasonal cycle, which we suggest directly impacts the diversity of ecological niches**  
29 **occurring over the annual cycle in the tropical ocean. Reduced (enhanced) seasonality**  
30 **favours species with mid-size (large and small) coccoliths, increasing (decreasing)**  
31 **coccolith carbonate export and burial. We posit that eccentricity pacing of**  
32 **phytoplankton evolution contributed to the strong 405-kyr cyclicity seen in global**  
33 **carbon cycle records.**

34

35 Coccolithophores produce half of the biogenic  $\text{CaCO}_3$  in the open ocean<sup>7</sup> and their fossil  
36 platelets (called coccoliths) first appeared in sediments during the Upper Triassic, ~215  
37 million years ago (Ma). Thereafter, coccolithophores rose to dominance<sup>8</sup> and became a key  
38 biological modulator of the global carbon cycle via photosynthesis and calcification<sup>9</sup>. In the  
39 dominant Cenozoic Noelaerhabdaceae family (including *Emiliania huxleyi* and  
40 *Gephyrocapsa*), species are defined by the morphological characteristics of their coccoliths,  
41 with size being a key criterion<sup>10</sup> that is related to cell size<sup>11</sup>. For *Gephyrocapsa* and  
42 *Emiliania*, phylogenies reconstructed from gene sequences indicate that morphology-based  
43 definitions correspond to biological species<sup>3,12</sup>. Within a given Noelaerhabdaceae population,  
44 typically dominated by one but including several species, interspecific and intraspecific  
45 changes in coccolith length and mass occur in response to environmental parameters such as  
46 carbonate chemistry<sup>1</sup> and temperature<sup>2</sup>. Studies of coccolithophore evolution have focused on  
47 geological-timescale changes in species richness and turnover<sup>13</sup>, coccolith carbonate  
48 accumulation<sup>8,14</sup>, or calcification potentially driven by carbon cycle changes<sup>15</sup>. In addition,  
49 climate changes induced by orbital cycles (on timescales of tens to hundreds of thousands of  
50 years) strongly influence nannofossil assemblage composition (e.g. references 16-18).

51 However, to date the impact of orbital cycles on coccolithophore evolution, coccolith  
52 morphology, and carbonate production have not been explored simultaneously.  
53  
54 Here, we quantify the Pleistocene history of tropical Noelaerhabdaceae evolution at high  
55 resolution (~2 thousand years, kyr), using coccoliths preserved in nine well-dated  
56 sedimentary sections from the Indian and Pacific Oceans cored during International Ocean  
57 Discovery Program (IODP) and International Marine Past Global Changes Study (IMAGES)  
58 expeditions (Extended Data Table 1). We use artificial intelligence microscopy to create an  
59 unprecedented biometric database of over 7 million coccoliths from >8000 samples (see  
60 Methods). The strong similarity of morphometric patterns observed at each site (Extended  
61 Data Fig. 1) has led us to build composite frequency contour plots of coccolith size and mass,  
62 representing larger-scale evolutionary change (Fig. 1a, Methods). Patches denoting high  
63 frequency of a particular size correspond in many cases to described acmes of  
64 Noelaerhabdaceae species<sup>19-21</sup> or proposed evolutionary events<sup>3</sup> (Fig. 1). The most recent  
65 evolutive phase starting ~550 thousand years ago (ka) is attributed to a radiation event and  
66 the emergence of new *Gephyrocapsa* species, based on a genetic study of extant taxa and its  
67 temporal correlation to low-resolution coccolith morphometric data<sup>3</sup>. Over the Pleistocene,  
68 average coccolith size shows an increasing trend that corresponds to a gradual shift in  
69 dominance from smaller to larger coccoliths (Fig. 1b). On orbital time scales, global ice  
70 volume and deep-sea temperature as represented by benthic foraminiferal  $\delta^{18}\text{O}$ <sup>22</sup> show a  
71 dominance of 41-kyr and later ~100-kyr glacial-interglacial cycles (Fig. 1c)<sup>22</sup>. In contrast,  
72 average coccolith length follows a regular cycle that is highly coherent (>99.9%) with the  
73 orbital eccentricity periods of 405 kyr (e405) and of 124 and 95 (e100)<sup>23</sup> (Extended Data  
74 Figure 2a), with larger average size occurring at high eccentricity with a slight time lag (Fig.

75 1b).

76

77 Average size or mass of coccoliths in a *Noelaerhabdaceae* population may vary because of  
78 macro- and/or micro-evolution, or because ecological changes modulate the relative  
79 abundances of species in different size ranges. To build a metric that describes only species  
80 evolution, we remove the effect of relative abundance changes related to ecology<sup>24</sup> by  
81 formulating a Morphological Divergence Index, MDI, calculated as the difference in average  
82 coccolith mass between two size classes, larger and smaller than 3  $\mu\text{m}$  (Methods). Thus, MDI  
83 quantifies morphological divergences of species over time through evolution, and could be  
84 driven by changes in size or degree of calcification (see Fig. 2 for a conceptual explanation).

85 *Noelaerhabdaceae* coccolithophores spread rapidly throughout the oceans and are often  
86 cosmopolitan, resulting in the same species being present in many regions, but with different  
87 relative abundances<sup>12,19</sup>. MDI varies independently of regional ecological specificities, and  
88 MDI records from sites in distinct oceanographic biomes<sup>25</sup> and climatic regimes (e.g., warm  
89 pool, monsoon-dominated; Extended Data Table 1) are highly intercorrelated, all showing  
90 significant e405 and e100 periods (Extended Data Figures 1, 2). Therefore, we produce a  
91 composite MDI stack, preserving the high resolution of each dataset (Fig. 1e, Methods). The  
92 MDI stack, interpreted as reflecting evolutionary changes in morphological diversity, shows  
93 strong 405-kyr pacing throughout the Pleistocene irrespective of glacial-interglacial  
94 background state. Cross-spectral analysis indicates significant (>90%) coherency between the  
95 stack and Earth's eccentricity periods since 2.8 Ma (Fig. 1d, d'). This pattern cannot be the  
96 result of differential dissolution on coccolith morphology (see Methods) since in contrast to  
97 MDI, Pleistocene deep-sea  $\text{CaCO}_3$  dissolution generally follows a glacial-interglacial  
98 cycles<sup>26</sup>. Similarly, coccolith morphological evolution appears not to be responding  
99 directly to physical parameters covarying with global ice volume, such as sea level or ocean

100 temperature. While eccentricity forcing on coccolithophore productivity has previously been  
101 suggested<sup>27,28</sup>, our new dataset reveals that eccentricity cycles instead forced the evolution of  
102 the Noelaerhabdaceae.

103

104 Cyclic coccolithophore evolution may have impacted the ocean carbon cycle via coccolith  
105 carbonate production and burial in sediments<sup>14,29</sup>. Coccolithophores produce large amounts  
106 of calcite during blooms<sup>27,30</sup>, and sediments are often dominated by few opportunistic  
107 species, for example *Emiliania huxleyi* (0-90 ka)<sup>19</sup> and *Gephyrocapsa caribbeana* (280-  
108 570 ka)<sup>20</sup> in the late Pleistocene. We estimate the mass accumulation rate of  
109 Noelaerhabdaceae coccoliths (NoMAR) in our cores and produce a stacked record (Fig. 1g,  
110 Methods). Noelaerhabdaceae coccoliths represent on average half of the total calcareous  
111 nannoplankton mass in our studied cores (Extended Data Table 2). The two components of  
112 NoMAR, coccolith flux and average mass, are separated in Extended Data Figure 3. This  
113 reveals that NoMAR is primarily driven by changes in coccolith flux, and that flux and mass  
114 often have opposing effects on NoMAR since medium-sized, lighter species (e.g., *E. huxleyi*,  
115 *G. caribbeana*) contribute the most to coccolith carbonate export. Thus, higher NoMARS  
116 when mid-size opportunistic species dominate often correspond to lower MDI values (Fig.  
117 1e, g). The dominance of these opportunistic species coupled with high coccolithophore  
118 accumulation in sediments during eccentricity minima is also recorded in the extra-tropics<sup>27</sup>.  
119 In contrast to MDI, local ecological conditions affecting productivity and export, and  
120 possibly water depth affecting coccolith accumulation, also influence NoMAR, thus a linear  
121 relationship between the two is not expected. Though it is impossible to quantify the relative  
122 effects of these factors, common trends between sites emerge despite different absolute  
123 values, and these trends are reflected in the NoMAR stack. Thus, NoMAR combines global  
124 evolutionary and local ecological drivers of calcite production, while MDI should exclusively

125 record evolution. Nevertheless, the NoMAR composite record shows strong eccentricity  
126 periodicities that are significantly coherent with MDI throughout the Pleistocene (Fig. 1f, f'),  
127 demonstrating a strong imprint of coccolithophore morphological evolution on carbonate  
128 production and burial.

129

130 **MDI as a recorder of long-term seasonal modulations**

131 We posit that the MDI index responds to variations in the amplitude of tropical seasonality.  
132 In low latitudes, seasonal contrast is related to the eccentricity of Earth's orbit<sup>23,31</sup>, 1) directly  
133 because the ellipticity of the orbit determines the distance between the Sun and the Earth  
134 during each season, affecting radiation intensity, and 2) indirectly because eccentricity  
135 modulates the effect of precession on seasonal insolation contrast. Seasonal contrast is greater  
136 during periods of high eccentricity. To our knowledge, the eccentricity-paced rhythm of  
137 surface-ocean seasonality that dominates MDI has not been documented previously because  
138 most proxies record integrated annual average conditions or a specific season. In the modern  
139 inter-tropical ocean, large seasonal changes in upper water column properties (e.g., mixed-  
140 layer depth, nutrient availability) are associated with the seasonally-reversing monsoon  
141 systems and latitudinal migrations in the inter-tropical convergence zone. The seasonal  
142 succession of coccolithophore species, a characteristic of phytoplankton ecology, is indicative  
143 of their adaptation to the different ecological niches created by seasons<sup>24</sup>. In the modern  
144 ocean, highest phytoplankton diversity is found in the tropical band, a pattern probably  
145 related to high temperatures and stable conditions, whereas seasonal species turnover is  
146 highest at mid-latitudes because of a strong seasonal temperature contrast<sup>32</sup>. Intra-annual  
147 dynamics of Net Primary Production (NPP) are good descriptors of the range of  
148 oceanographic niches and biomes<sup>25</sup>, because NPP represents the integrated biological  
149 response to all of the changes forced by the ocean-atmosphere coupled system. To

150 demonstrate the effect of orbital configuration on NPP seasonality and therefore niche  
151 availability, we simulate monthly oceanic NPP using the IPSL-CM5A-2 model<sup>6</sup>coupled  
152 ocean with PISCES-V2 biogeochemical model<sup>5</sup>, for seven early Pleistocene time intervals  
153 covering a large eccentricity spectrum with different precession conditions but with similar  
154 ice volume and obliquity (Extended Data Table 3, Fig. 1b). The results of these simulations  
155 for the tropical Indian and western Pacific Oceans show that the seasonal range of NPP  
156 increases with eccentricity, a trend that parallels the eccentricity sorted values of MDI in our  
157 Plio-Pleistocene time series (Fig. 3).

158

159 In the simulations, the increase in amplitude of the NPP seasonal cycle (Fig. 3a and Extended  
160 Data Figure 4a-e) is primarily driven by higher productivity during boreal summer, especially  
161 in the eastern Indian ocean. This increase is forced by modification of atmosphere-ocean  
162 dynamics in response to variations in the amplitude and seasonality of insolation forcing  
163 (Extended Data Fig. 5a-c). Eccentricity acts on sea-level pressure over continental Asia  
164 (Extended Data Fig. 5d-h) via insolation, inducing modifications of sea-level pressure  
165 gradients and low-level wind circulation over the Indo-Pacific Warm Pool, IPWP (Extended  
166 Data Fig. 4f-h). Changes in atmospheric dynamics are responsible for regional and seasonal  
167 enhancement of NPP at high eccentricity (Extended Data Fig. 4a-c), either via generation of  
168 anomalous upwelling along the equator (SW of India) or modification of the hydrological  
169 cycle that create more favorable conditions for intense vertical mixing (Extended Data Fig. 6a  
170 and c), depending on precession. Overall, those localised increases in the amplitude of the  
171 seasonal cycle lead to a less homogeneous upper ocean in the IPWP region at high  
172 eccentricity (Fig. 3a, Extended Data Fig. 4a-c). We propose that during high eccentricity  
173 times, the higher seasonal range of NPP in our model simulations (representing up to 100%  
174 of mean annual NPP) is indicative of more diverse ecological niches that coccolithophores

175 can adapt to. A greater diversity of ecological niches when seasonality is high<sup>25</sup> leads to a  
176 larger number of species because Noelaerhabdaceae adaptation is characterised by the  
177 adjustment of coccolith size and degree of calcification to thrive in the new environments<sup>1,2</sup>.  
178 Exact core locations in Figure 3a are not relevant, as recorded evolutionary events may have  
179 originated anywhere in the tropics.

180

### 181 **Eccentricity lags, species origination, and dominance**

182 Coccolith morphological diversity clearly responds to eccentricity (Fig. 1); however, in stark  
183 contrast to Plio-Pleistocene climate proxy records<sup>22,33</sup> and coccolithophore assemblage  
184 dynamics<sup>16-18</sup>, precession and obliquity cycles are absent from the 2 kyr resolution MDI  
185 records (Extended Data Figure 2b-j). Those cycles could have been smoothed out by an  
186 adaptive strategy acting as a lowpass filter. This would explain the phase shift observed  
187 between eccentricity and Noelaerhabdaceae morphology (Fig. 1b, Extended Data Fig. 2a;  
188 Extended Data Fig. 2a). Speciation events spread rapidly throughout the oceans<sup>19,21</sup>, and  
189 species dominance takes more time, as shown by the history of *Emiliania huxleyi*: it  
190 appeared at 290 ka, but did not become dominant until 90 ka<sup>19</sup>, at time of an intense low-  
191 eccentricity interval (Extended Data Figure 7). It was not until two e100 cycles later that *E.*  
192 *huxleyi* gained a competitive advantage and rose to dominance over *G.oceanica* and *G.*  
193 *ericsonii*. The delay between species appearance and dominance, intrinsic is smoothing out  
194 the variability at precession and obliquity timescales in the MDI record (Fig. 1b, Extended  
195 Data Fig. 7). The eccentricity lags and transfer of spectral power from high to low  
196 frequencies described here are analogous to modelling results in a recent study of deep-time  
197 carbon cycle variations on orbital timescales<sup>34</sup>, hinting that coccolithophores may drive,  
198 rather than just respond to, carbon cycle changes.

199

200 **Long-eccentricity forcing, coccolithophores, and the global carbon cycle**

201 The persistence of e100 and e405 cycles in Cenozoic and Mesozoic records of the ocean

202 carbon cycle (e.g., percent  $\text{CaCO}_3$  and foraminiferal  $\delta^{13}\text{C}$ ), independent of glacial-interglacial

203 climate state, attests to the importance of biogeochemical processes operating at these

204 timescales throughout Earth's history <sup>e.g.,</sup><sup>35,36</sup>. For example, during the Pleistocene

205 Mediterranean surface  $\delta^{13}\text{C}$  records document e405 cycles more faithfully than deep open-

206 ocean records, suggesting a low-latitude origin of this signal<sup>28</sup>. Chemical weathering has been

207 suggested as a potential modulator of the ocean carbon cycle on 400-kyr timescales<sup>37</sup>. Similar

208 to our coccolith records, a significant phase lag between  $\delta^{13}\text{C}$  and eccentricity is observed in

209 the e405 band, which has been explained by the long residence time of carbon in the oceans

210 and resultant transfer of energy from precession into eccentricity bands via a non-linear

211 process<sup>34,35</sup>. Previously, coccolith records spanning up to ~1 Myr have linked to eccentricity

212 forcing of productivity<sup>17,27</sup>. Yet changes reconstructed at our low-latitude sites cannot be

213 explained by the hypothesis that eccentricity-driven changes in growing season length are

214 responsible for the ~400-kyr cycle in coccolithophore production<sup>27</sup>. Our data and model

215 results support the alternative hypothesis that changes in seasonality caused by the

216 eccentricity of the Earth's orbit paced tropical *Noelaerhabdaceae* evolution and production

217 throughout the Pleistocene. Although these changes clearly impact carbonate accumulation

218 patterns (Fig. 1g), coccolithophore productivity alone cannot be responsible for the

219 expression of long eccentricity cycles in climate records because they are only one

220 constituent of the phytoplankton. Other phytoplankton groups, some with little or no fossil

221 record, may also have been similarly influenced by variations in tropical seasonality on these

222 timescales. In this case, the impact of changes in the ratio of exported organic carbon

223 production to carbonate mineral production, known as the rain ratio<sup>38</sup>, may have been strong

224 enough to modulate the carbon cycle. The cyclic evolution of calcifying phytoplankton on

225 eccentricity timescales in response to seasonality documented here, support the hypothesis  
226 that biosphere productivity must have responded to changes in solar insolation<sup>35,37</sup> thus  
227 explaining the strong e405 signature in carbon cycle records.

228

229 **Main references**

230 1 Beaufort, L. *et al.* Sensitivity of coccolithophores to carbonate chemistry and ocean  
231 acidification. *Nature* **476**, 80-84, doi:10.1038/nature10295. (2011).

232 2 Henderiks, J. & Bollmann, J. The *Gephyrocapsa* sea surface palaeothermometer put  
233 to the test: comparison with alkenone and foraminifera proxies off NW Africa. *Mar.*  
234 *Micropaleontol.* **50**, 161-184 (2004).

235 3 Bendif, E. M. *et al.* Repeated species radiations in the recent evolution of the key  
236 marine phytoplankton lineage *Gephyrocapsa*. *Nature Communications* **10**, 4234,  
237 doi:10.1038/s41467-019-12169-7 (2019).

238 4 Ruddiman, W. F. & Raymo, M. E. in *The past three million years : Evolution of*  
239 *climatic variability in the North Atlantic Region* (eds N.J. Shackleton, R.G. West, &  
240 D.Q Bowen) (University Press, 1988).

241 5 Sepulchre, P. *et al.* IPSL-CM5A2 – an Earth system model designed for multi-  
242 millennial climate simulations. *Geosci. Model Dev.* **13**, 3011-3053, doi:10.5194/gmd-  
243 13-3011-2020 (2020).

244 6 Aumont, O., Éthé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: An ocean  
245 biogeochemical model for carbon and ecosystem studies. *Geoscientific Model*  
246 *Development Discussions* **8** (2015).

247 7 Broecker, W. & Clark, E. Ratio of coccolith CaCO<sub>3</sub> to foraminifera CaCO<sub>3</sub> in late  
248 Holocene deep sea sediments. *Paleoceanography* **24** (2009).

249 8 Suchéras-Marx, B. *et al.* The colonization of the oceans by calcifying pelagic algae.  
250 (2019).

251 9 Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the regulation  
252 and evolution of the Earth system. *Earth and Planetary Science Letters* **234**, 299-315  
253 (2005).

254 10 Young, J. *et al.* A guide to extant coccolithophore taxonomy. *Journal of*  
255 *Nannoplankton Research, Special Issue* **1**, 1-132 (2003).

256 11 Henderiks, J. Coccolithophore size rules—reconstructing ancient cell geometry and  
257 cellular calcite quota from fossil coccoliths. *Mar. Micropaleontol.* **67**, 143-154  
258 (2008).

259 12 Filatov, D. A. Extreme Lewontin's paradox in ubiquitous marine phytoplankton  
260 species. *Molecular Biology and Evolution* **36**, 4-14 (2019).

261 13 Bown, P. R. Calcareous nannoplankton evolution: a tale of two oceans.  
262 *Micropaleontology* **51**, 299-308 (2005).

263 14 Si, W. & Rosenthal, Y. Reduced continental weathering and marine calcification  
264 linked to late Neogene decline in atmospheric CO<sub>2</sub>. *Nature Geoscience* **12**, 833-838,  
265 doi:10.1038/s41561-019-0450-3 (2019).

266 15 Bolton, C. T. *et al.* Decrease in coccolithophore calcification and CO<sub>2</sub> since the  
267 middle Miocene. *Nature communications* **7**, 1-13 (2016).

268 16 Gibbs, S. J., Shackleton, N. & Young, J. Orbitally forced climate signals in mid-  
269 Pliocene nannofossil assemblages. *Mar. Micropaleontol.* **51**, 39-56 (2004).

270 17 Beaufort, L. *et al.* Insolation Cycles as a Major Control of Equatorial Indian Ocean  
271 Primary Production. *Science* **278**, 1451-1454 (1997).

272 18 Chepstow-Lusty, A., Backman, J. & Shackleton, N. J. in *Ruddiman, WF, Sarnthein, M.*, *et al.*, *Proc. ODP, Sci. Results.* 121-141.

273 19 Thierstein, H. R., Geitzenauer, K. R., Molfino B. & Shackleton, N. J. Global  
274 synchronicity of late Quaternary coccolith datum levels : validation by oxygen  
275 isotopes. *Geology* **5**, 400-404 (1977).

276 20 Bollmann, J., Baumann, K. H. & Thierstein, H. R. Global dominance of  
277 Gephyrocapsa coccoliths in the Late Pleistocene: Selective dissolution, evolution, or  
278 global environmental change? *Paleoceanography* **13**, 517-529,  
279 doi:10.1029/98PA00610 (1998).

280 21 Raffi, I. *et al.* A review of calcareous nannofossil astrobiochronology encompassing  
281 the past 25 million years. *Quaternary Science Reviews* **25**, 3113-3137,  
282 doi:<https://doi.org/10.1016/j.quascirev.2006.07.007> (2006).

283 22 Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally  
284 distributed benthic  $\delta^{18}\text{O}$  records. *Paleoceanography* **20**, doi:10.1029/2004PA001071  
285 (2005).

286 23 Laskar, J. *et al.* A long-term numerical solution for the insolation quantities of the  
287 Earth. *Astronomy & Astrophysics* **428**, 261-285, doi:10.1051/0004-6361:20041335  
288 (2004).

289

290 24 Okada, H. & McIntyre, A. Seasonal distribution of modern Coccolithophorees in the  
291 western north Atlantic ocean. *Marine Biology* **54**, 319-328 (1979).

292 25 Longhurst, A. *Ecological Geography of the Sea*. Vol. 1 (Academic Press, 1998).

293 26 Sexton, P. F. & Barker, S. Onset of 'Pacific-style' deep-sea sedimentary carbonate  
294 cycles at the mid-Pleistocene transition. *Earth and Planetary Science Letters* **321-322**,  
295 81-94, doi:<https://doi.org/10.1016/j.epsl.2011.12.043> (2012).

296 27 Rickaby, R. E. M. *et al.* Coccolith chemistry reveals secular variations in the global  
297 ocean carbon cycle? *Earth and Planetary Science Letters* **253**, 83-95 (2007).

298 28 Wang, P., Tian, J. & Lourens, L. J. Obscuring of long eccentricity cyclicity in  
299 Pleistocene oceanic carbon isotope records. *Earth and Planetary Science Letters* **290**,  
300 319-330, doi:<https://doi.org/10.1016/j.epsl.2009.12.028> (2010).

301 29 Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory:  
302 Impacts of calcareous nannoplankton evolution on carbonate burial over the past 17  
303 million years. *Global and Planetary Change* **123**, 97-109,  
304 doi:<https://doi.org/10.1016/j.gloplacha.2014.10.015> (2014).

305 30 Holligan, P. M. *et al.* A biogeochemical study of the coccolithophore, *Emiliania*  
306 *huxleyi*, in the North Atlantic. *Global Biogeochemical cycles* **7**, 879-900 (1993).

307 31 Laepple, T. & Lohmann, G. Seasonal cycle as template for climate variability on  
308 astronomical timescales. *Paleoceanography* **24** (2009).

309 32 Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern  
310 of phytoplankton diversity driven by temperature and environmental variability.  
311 *Science Advances* **5**, eaau6253, doi:10.1126/sciadv.aau6253 (2019).

312 33 Ruddiman, W. F., Raymo, M. & McIntyre, A. Matuyama 41,000-year cycles : North  
313 Atlantic Ocean and Northern hemisphere ice sheets. *Earth Plan. Sci. Lett.* **80**, 117-129  
314 (1986).

315 34 Zeebe, R. E., Westerhold, T., Littler, K. & Zachos, J. C. Orbital forcing of the  
316 Paleocene and Eocene carbon cycle. *Paleoceanography* **32**, 440-465 (2017).

317 35 Pälike, H. *et al.* The Heartbeat of the Oligocene Climate System. *Science* **314**, 1894-  
318 1898, doi:10.1126/science.1133822 (2006).

319 36 Herbert, T. D. A long marine history of carbon cycle modulation by orbital-climatic  
320 changes. *Proceedings of the National Academy of Sciences* **94**, 8362-8369 (1997).

321 37 Ma, W., Tian, J., Li, Q. & Wang, P. Simulation of long eccentricity (400-kyr) cycle  
322 in ocean carbon reservoir during Miocene Climate Optimum: Weathering and nutrient  
323 response to orbital change. *Geophysical Research Letters* **38** (2011).  
324 38 Archer, D. & Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on  
325 atmospheric CO<sub>2</sub> concentration. *Nature* **367**, 260-263 (1994).  
326

327 **Figure legends**

328 **Figure 1: Noelaerhabdaceae coccolith morphology and accumulation, eccentricity, and**  
329 **climate over the last 2.8 million years.** **a:** Frequency contour plot of multi-site stacked  
330 coccolith length (see Methods). Scanning electron microscope images represent examples of  
331 the diversity of Noelaerhabdaceae morphologies over time. 1: *Emiliania huxleyi*, 2:  
332 *Gephyrocapsa ericsonii*, 3: *G. oceanica*, 4: *G. caribbeanica*, 5-6: *G. omega*, 7- 8: mid-size  
333 *Gephyrocapsa*, 9: small *Gephyrocapsa*, 10: *Pseudemiliania ovata*, 11: *Reticulofenestra*  
334 *minuta*, 12: left: *P. ovata*, right: *R. minutula*. **b:** Mean coccolith length in the multi-site stack  
335 (blue), plotted with Earth's eccentricity<sup>23</sup> (dotted black line) and low-pass filtered eccentricity  
336 with an angular frequency of 0.021 kyr<sup>-1</sup> (red). Described Noelaerhabdaceae acmes<sup>19-21</sup> are  
337 shown as black bars (*I* = *E. huxleyi*; *II* = *G. caribbeanica*; *III* and *IV* = mid-size  
338 *Gephyrocapsa*). Coloured stars and diamonds on the eccentricity curve show the timing of  
339 actual orbital configurations used in model simulations (Pmax = perihelion in December,  
340 Pmin = perihelion in June); smaller grey symbols indicate times throughout the record with  
341 similar eccentricity and precession configurations to those modelled (see Methods). **c:** LR04  
342 benthic foraminiferal δ<sup>18</sup>O stack<sup>22</sup>. Grey band illustrates the small range of benthic δ<sup>18</sup>O  
343 between model simulations. **d:** Evolutive cross-spectral analysis between MDI and  
344 eccentricity (see Methods). Colour-scale shows coherency (90% Confidence Level (CL)  
345 above 0.7); Horizontal dashed lines show eccentricity periods. **d':** MTM spectral analysis of  
346 detrended MDI stack. Shaded areas are above the CL90% (dashed line). Solid black line is

347 CL95%. **e**: MDI Stack (2 kyr resolution, see Methods). **f**: Evolutive cross-spectral analysis  
348 between NoMAR and MDI (CLs as in d). **f'**: MTM spectral analysis of detrended NoMAR  
349 stack. CLs as in d'. **g**: NoMAR stack (2 kyr resolution, see Methods). MDI and NoMAR  
350 stacks are smoothed with a Loess function, and blue shading shows maximum and minimum  
351 values across all records.

352

353 **Figure 2: Morphological Divergence Index (MDI) concept.** **a**: Schematic representation of the  
354 MDI. Here we consider an evolutionary sequence with three successive epochs of a species A  
355 (Epoch 1) of intermediate morphology evolving into 2 species, B (smaller) and C (larger). In  
356 Epoch 2, B and C have equivalent proportions in the population, and in Epoch 3, they  
357 fluctuate in relative abundance between 25% and 75%. The evolutionary event between  
358 Epoch 1 and 2 (red shading) is not detected in the mean population morphology (e.g., size,  
359 mass). In Epoch 3, fluctuating ecology produces population dynamics detected in mean  
360 morphology (grey shading). With a biometric boundary fixed at 2 units, MDI will jump from  
361 0 to 2 units from Epoch 1 to 2, showing that it is diagnostic of an evolutionary sequence. In  
362 Epoch 3, MDI remains stable despite fluctuating assemblage composition. In this idealised  
363 example, average population biometry is related to ecology and MDI to evolution. **b**: MDI  
364 calculated for core IODP Site U1485. **b3**: average Noelaerhabdaceae coccolith mass  
365 (smoothed using a Loess function). **b2**: two size classes are created: coccoliths shorter and  
366 longer than 3  $\mu\text{m}$  (grey histograms). MDI is the difference between the average  $\log(\text{mass})$  of  
367 each class (light and dark grey dots on histograms). Thus, MDI can differ substantially from  
368 average coccolith mass (black dots on mass distribution plots), and two samples can have a  
369 similar MDI but very different average mass and mass distributions (e.g., 180 ka vs 190 ka),  
370 or very different MDI but similar averages (e.g., 3 ka vs 190 ka). In this way, MDI isolates  
371 morphological variability resulting from evolutionary changes in the number of different

372 morphotypes present within the population. **b1**: MDI record (identical Loess smoothing  
373 window as in **b3**). Different smoothed curves illustrate the effect of different length or mass  
374 thresholds used to calculate MDI: solid red line = 3  $\mu\text{m}$ , red dotted line = 2.7  $\mu\text{m}$ , red dashed  
375 line = 3.6  $\mu\text{m}$ , solid blue line = 3.16 pg.

376

377 **Figure 3: Modelled NPP seasonal contrast under different eccentricity configurations**  
378 **and morphological divergence index. a:** Eccentricity-driven changes in the seasonality of  
379 net primary production (NPP) in the tropical Indo-Pacific. Colour scale shows the vertically  
380 integrated NPP seasonal contrast difference between numerical model outputs computed at  
381 maximum and minimum eccentricity, each run at perihelion in June (Pmin) and December  
382 (Pmax) and then averaged (Methods) (i.e., Seasonality  $E_{\max} - E_{\min}$ ). Values are  
383 expressed as a percentage of mean annual pre-industrial NPP simulated in reference 5. Red  
384 (blue) colours imply higher seasonality at high (low) eccentricity. Black circles show  
385 sediment core site locations used in this study: 1: IODP U1446; 2: IODP U1448; 3: IODP  
386 U1443; 4: MD97-2140; 5: MD05-2920; 6: IODP U1486; 7: IODP U1485; 8: MD05-2930; 9:  
387 IODP U1483 (Extended Data Table 1). **b:** Box-whiskers plot of all MDI values, sorted and  
388 binned by increasing low-pass filtered eccentricity, compared to the seasonal contrast of NPP  
389 (maximum minus minimum month) from seven numerical simulations (see Methods). Model  
390 points represent a regional mean of the entire map area. As in Fig. 1b, orange diamonds are  
391 model runs with perihelion in December (Pmax: 2222 ka, 2265 ka, and 2380 ka), green stars  
392 are runs with perihelion in June (Pmin: 2230 ka, 2346 ka, 2369 ka, and 2395 ka) – illustrating  
393 that eccentricity has a much larger effect on seasonality than precession at a given  
394 eccentricity.

395

396 **Methods**

397 **Coccolith data acquisition**

398 Over eight thousand samples were extracted from sediment cores for coccolithophore  
399 analysis at depth intervals to achieve a high stratigraphic resolution (0.5 to 2.3 kyr, Extended  
400 Data Table 1). Samples were prepared using the settling method<sup>39,40</sup>: sediments were  
401 disaggregated in water and suspensions were settled onto a 12x12 mm cover slip and  
402 mounted with Norland Optical Adhesive 74, with 8 cover slips per microscope slide. Some  
403 samples were prepared as independent duplicates. Two slides (16 samples) were placed onto  
404 the stage of an automated polarizing microscope (Leica DM6000). Following auto-focusing,  
405 165 contiguous fields of view (with an area of 125 x 125  $\mu\text{m}$  each) were imaged in each  
406 sample using a black and white SPOTFLEX camera (Diagnostic Instrument). SYRACO, a  
407 software program based on an Artificial Neural Network<sup>41</sup>, identified all specimens belonging  
408 to 33 groups of coccolithophore taxa in the images<sup>42</sup>. The gephyrocapsid specimens, the  
409 dominant group studied here, were classified into six distinct classes that were merged into  
410 one group. On average, 888 Noelaerhabdaceae coccoliths were identified in each sample.

411 Among other morphometric parameters, size and mass of the coccoliths were measured.  
412 Coccolith mass is measured using birefringence, following published state-of-the-art  
413 methods<sup>40,43</sup>. The use of Artificial Intelligence in this type of work is essential because it is  
414 the only way to measure such a large number of specimens (>7 million) in a reasonable time,  
415 and thus obtain the high-resolution multi-site records required for this study.

416

417 The pattern recognition was performed with a structured multi-layer neural network called  
418 SYRACO, written in C++ by D. Dollfus<sup>44</sup>. The input image of 64x64 pixels is connected to  
419 the output (class name) by three convolutional layers of 1764, 360 and 80 neurons with no  
420 shared weights, which induces long computing time. The advantages of this structure are  
421 discussed in reference 45. In order to mimic the dynamic process of human recognition, in

422 parallel to the second and third convolutional layers, there are three small neural networks of  
423 20 neurons each, called motor layers that perform simple image transformations from five  
424 possibilities: rotation, translation, symmetry, contrast, and dilation. These parallel neural  
425 networks enhance the efficiency of the pattern recognition by 50%<sup>41</sup> with an accuracy above  
426 95% (based on >5000 test images). In his PhD thesis, Barbarin<sup>42</sup> increased the number of  
427 calcareous nannofossil species recognised by SYRACO to include most Cenozoic species  
428 and grouped them into 49 morphological classes. The number of false positives (non-  
429 coccolith particles of calcareous debris such as broken foraminifera, micrite, broken  
430 coccoliths) has been reduced in SYRACO by adding a second pattern recognition level after  
431 the SYRACO Artificial Neural Network (ANN), based on a Random Forest algorithm<sup>46</sup>. This  
432 cross-checking is more robust because it results in only 5% of false positives, compared to  
433 ~50% before<sup>42</sup>. In this work, we combine the 49 morphological classes into only five groups  
434 and work essentially with one of these, the Noelaerhabdaceae. From the confusion matrix  
435 produced by the analysis of 6888 images (ref. 42, Table 1, p.109), the percentage of  
436 successful identifications for those five taxonomic groups are 96% for Noelaerhabdaceae;  
437 91% for Coccolithales; 90% for Syracosphaearales and Zygodiscales (grouped together); and  
438 88% for other coccolith taxa. *Florisphaera profunda* coccoliths are recognised at a rate of  
439 98%<sup>42</sup>. Most of the losses can be explained by the quality of the captured image due to some  
440 particle in a large image being out of focus or luminosity and contrast problems, or  
441 aggregation of particles. We progressively solved some of these problems by developing new  
442 optical methods<sup>40,43</sup> and by changing the pre-processing (e.g., refining image segmentation);  
443 this increased the number of recognized coccoliths without changing the proportion of the  
444 different species. Because we were satisfied with its performance, we did not test other  
445 architectures of SYRACO such as increasing the number and the size of the convolutional  
446 layers. The goal of SYRACO was to provide a robust and rapid coccolith extractor

447 compatible with commercial computer performance during development in the late 1990s and  
448 early 2000s. In this work, SYRACO was processed on a Dell Precision T7910 with 2 Xeon  
449 processors (2.3 GHz) of 20 cores each and 64 Go of memory, with Windows as the operating  
450 system.

451

#### 452 **Site-specific chronologies**

453 **IMAGES core MD97-2140**<sup>47</sup> : The age model for Site MD97-2140<sup>47</sup>, on the Eauripik Rise in  
454 the Western Pacific Warm Pool, is based on tuning of a high-resolution planktonic  
455 foraminiferal *Globigerinoides ruber*  $\delta^{18}\text{O}$  record to the astronomically calibrated ODP Site  
456 677  $\delta^{18}\text{O}$  *G. ruber* record<sup>48</sup>, located in the eastern equatorial Pacific. This age model yields a  
457 chronology consistent with major micropaleontological (disappearance of *G. ruber* pink  
458 variety) and palaeomagnetic (Brunhes–Matuyama boundary) events<sup>49</sup>.

459 **IMAGES core MD05-2920**<sup>50</sup> : The age model for Site MD05-2920<sup>51</sup>, on the southern bank of  
460 Manus Island, is based on ten Accelerator Mass Spectrometer (AMS)  $^{14}\text{C}$  dates obtained from  
461 the surface-dwelling planktonic foraminifera *G. ruber* (white), and a correlation between the  
462 benthic foraminiferal  $\delta^{18}\text{O}$  record and the reference LR04 benthic foraminiferal  $\delta^{18}\text{O}$  stack<sup>22</sup>.

463 **IMAGES core MD05-2930**<sup>50</sup> : The age model for Site MD05-2930<sup>52</sup>, in the Coral Sea, is  
464 based on ten AMS  $^{14}\text{C}$  measurements of *G. ruber* *sensu stricto* (ss), and on correlation of the  
465 MD05-2930  $\delta^{18}\text{O}$  *G. ruber* ss record with the LR04 benthic foraminiferal  $\delta^{18}\text{O}$  stack<sup>22</sup>.

466 **IODP Site U1443**<sup>53</sup> : The age model for Site U1443, on the Ninetyeast Ridge in the  
467 southernmost Bay of Bengal, is based on correlation of physical properties data on the  
468 primary shipboard splice to the LR04 benthic foraminiferal  $\delta^{18}\text{O}$  stack<sup>22</sup>. Physical properties  
469 were measured onboard the RV *Joides Resolution* on archive halves from all holes at Site  
470 U1443, and correlation and splicing were based on magnetic susceptibility, natural gamma  
471 ray, and reflectance spectroscopy b\* data<sup>54</sup>.

472 **IODP Site U1448**<sup>53</sup> : The age model for Site U1448, in the Andaman Sea, is based on  
473 correlation of the Site U1448 Ti/Ca record, derived by X-Ray Fluorescence (XRF) core  
474 scanning, to the XRF Ti/Ca record of Indian National Gas Hydrate Program (NGHP) Site 17  
475 – a very close site with age control based on a benthic foraminiferal oxygen isotope record  
476 tuned to the LR04 benthic foraminiferal  $\delta^{18}\text{O}$  stack<sup>22,55,56</sup>.

477 **IODP Site U1446**<sup>53</sup> : The age model for Mahanadi Basin Site U1446 is based on correlation  
478 of a high-resolution benthic foraminiferal oxygen isotope stratigraphy to the LR04 benthic  
479 foraminiferal  $\delta^{18}\text{O}$  stack<sup>22,57</sup>.

480 **IODP Site U1483**<sup>58</sup>: The age model for Scott Plateau Site U1483 is based on the shipboard  
481 integrated magneto-biostratigraphy, and on correlation of the U1483 L\* record, which  
482 presents strong G-IG variability, to the LR04 benthic foraminiferal  $\delta^{18}\text{O}$  stack<sup>22</sup>.

483 **IODP Site U1485**<sup>58</sup>: The age model of the northern Papua Margin Site U1485 is based on  
484 correlation between the benthic foraminiferal  $\delta^{18}\text{O}$  record of this site and the LR04 benthic  
485 foraminiferal  $\delta^{18}\text{O}$  stack<sup>22</sup>.

486 **IODP Site U1486**<sup>58</sup>: The age model of the upper 100 m (the last 1.6 Ma) of Site U1486, from  
487 the southern bank of Manus Island, is based on a correlation between the benthic  
488 foraminiferal  $\delta^{18}\text{O}$  record and the LR04 benthic foraminiferal  $\delta^{18}\text{O}$  stack<sup>22</sup>. Below 100 m, the  
489 age model is based on the shipboard integrated magneto-biostratigraphy and correlation of  
490 the U1486 L\* record (that shows strong G/IG variability) with the LR04 benthic  
491 foraminiferal  $\delta^{18}\text{O}$  stack<sup>22</sup>.

492

#### 493 **Construction of composite frequency contour plot of coccolith size**

494 Measurements were grouped into morphological bins of 0.1  $\mu\text{m}$  for coccolith length in every  
495 sample. Samples were binned into 30-kyr time windows in each core, chosen such that it is  
496 larger than the length of a precession cycle (23-19 kyr). This will prevent any bias in the

497 size/mass distribution resulting from changes in the relative abundance of large versus small  
498 gephyrocapsid species on precessional timescales<sup>59</sup>. Another advantage of using a 30-kyr  
499 time window is that the high number of measurements included in each bin (on average  
500 16650 measurements) make it extremely precise but easier to discern trends. To standardise  
501 each time window at each site, the numbers contained in each bin are divided by the total  
502 number of coccoliths in that time window and multiplied by 100. To stack the records and  
503 produce the frequency-density plot of size (Fig. 1a), samples in each core were grouped into  
504 30 kyr bins, standardised (%) and merged into a single stack. Frequency contour plots for size  
505 and mass (latter not shown) show near-identical trends and variability. The distribution of  
506 coccolith mass values is skewed toward heavy values. We therefore used the logarithm of the  
507 mass to obtain a symmetrical mass distribution before binning (0.05 log(pg) bins) and  
508 stacking as for length.

509

#### 510 **Note on taxonomy of the Pleistocene Noelaerhabdaceae:**

511 The genus concept in the Pleistocene Noelaerhabdaceae is rather straightforward<sup>10,60</sup>:  
512 *Emiliania* presents “T-shaped” elements in its distal shield, *Gephyrocapsa* presents a bridge  
513 in its central area, *Pseudoemiliania* presents slits in its distal shield and *Reticulofenestra* has  
514 none of these features. Two of these features may be present on *Gephyrocapsa* (e.g. *G.*  
515 *protohuxleyi*). The species concept is much more complex<sup>10,60,61</sup>. It essentially depends on  
516 coccolith size, ratio of central area opening to coccolith size, and bridge angle (for  
517 *Gephyrocapsa*). All these features are continuous rather than discrete parameters and  
518 therefore often present a continuum between species. In Fig. 1a and b, the size density plot  
519 and the average size plot illustrate how size is a variable feature. One of the main taxonomic  
520 parameters of this group (i.e., size) is constantly evolving, complicating the common use of a  
521 size-based typological species concept. *Bendif et al.*<sup>3</sup> indicate that all extant species evolved

522 from *Gephyrocapsa caribbeonica* around 550 000 years ago, implying a rapid (<0.55 Myr)  
523 species turnover. The Noelaerhabdaceae family is therefore rapidly evolving genetically and  
524 morphologically. In this paper we do not intend to dispute taxonomy or species concepts.  
525 Given that it is difficult to follow genetic and typological species through time in this family,  
526 we prefer to discuss morphological evolution in a taxon-free manner. In the described  
527 taxonomies of this family<sup>60</sup>, there remains however a clear cut-off between smaller and larger  
528 Noelaerhabdaceae species' coccoliths around 3  $\mu\text{m}$ , which is why we choose this boundary to  
529 develop the MDI concept.

530

### 531 **Morphological Divergence Index (MDI)**

532 To quantitatively capture the history of biological evolution within a group of species with a  
533 biometric tool, it is necessary to build a metric that it is as independent as possible from the  
534 population dynamics of the different species relative to the others. This is because the  
535 biometry of a multi-species population is greatly influenced by its population dynamics: the  
536 relative success of one species in one particular biotope will affect the average biometry of  
537 the entire population. The average biometry is therefore greatly influenced by species  
538 adaptation to biotopes and will not be necessarily diagnostic of biological evolution. A way  
539 to limit the influence of the relative abundance of species in a sample is to measure the  
540 difference between the biometric means of the considered species. A simple index can be  
541 designed to parametrize a biometric boundary between two populations: the arithmetic  
542 distance between the two population means. A schematic example of an evolutionary  
543 sequence as recorded by MDI is described in Figure 2a.

544

545 Therefore, the MDI is *not* designed: (1) to trace the spatial variation of ecological parameters  
546 such as seasonality. This is because a new morphological trait will spread rapidly (on

547 geological timescales) in the ocean if it is successful. The MDI will be distributed evenly  
548 wherever the species are present, or (2) to describe a physiological adaptation to a fluctuating  
549 environment.

550 MDI *is* designed (1) to trace the morphologic evolution of a small group of species. (2) to  
551 trace temporal variations of ecological parameters at the large geographical scale that can  
552 lead to the evolution of new morphological traits.

553

#### 554 **MDI designed for Plio-Pleistocene Noelaerhabdaceae**

555 In each sample, individual coccoliths were divided into two size classes: coccoliths longer  
556 and shorter than 3  $\mu\text{m}$ . The average  $\log(\text{mass})$  is calculated in both classes. MDI is the  
557 difference between the two averages (Fig. 2b). The size of 3  $\mu\text{m}$  corresponds to the best cut-  
558 off value between the two modes (2.8 and 3.9  $\mu\text{m}$ ) of the size distribution. Other size cut-offs  
559 (2.9, 3.25 and 3.5  $\mu\text{m}$ ) as well as a mass cut-off (3.16 pg) were tested, without large  
560 differences in the resulting MDI values and temporal trends (see Fig. 2b). The records are  
561 resampled (by linear integration) at 2 kyr intervals for further analysis (time series, statistics,  
562 and stacking). A stacked record composed of all records is calculated for each time window.  
563 This stacked MDI reflects the variability seen in all individual records (Extended Data Figure  
564 1). Because not all records cover the entire 2.8 Myr interval (3 records are over 2.3 Myr long,  
565 3 are between 0.7 and 1.8 Myr long, and 3 are 0.4-0.6 Myr long), the stack is composed of  
566 more records in the younger part than in the older part. Because of the phase lag between  
567 MDI and eccentricity we use band-passed eccentricity (red line in Fig. 1b) to sort and bin  
568 MDI values used for Figure 3b. Finally, because the relative abundances of small versus  
569 larger Noelaerhabdaceae are not considered during the calculation of the MDI, any  
570 preferential dissolution of smaller more fragile coccoliths would not affect the MDI, as it  
571 represents the difference between the mean masses of the two size groups. A negligible effect

572 of carbonate dissolution on MDI is supported by the fact that species-specific mean coccolith  
573 mass is conserved in dissolution experiments<sup>62</sup>, and by the similarity between MDI records  
574 regardless of core depth in the range ~1100–3000 m (all well above the Pleistocene Pacific  
575 carbonate saturation horizon) (Extended Data Figure 1).

576

### 577 **Mass accumulation rates**

578 Mass accumulation rates of *Noelaerhabdaceae* coccoliths (NoMAR) were estimated in seven  
579 cores (all cores excluding MD05-2530 and U1446) for which a quantitative sample  
580 preparation techniques was applied<sup>40</sup>: The samples were prepared by settling onto coverslips  
581 that were weighed before and after settling, the weight difference providing the amount of  
582 sediment deposited. The number and the mass of the *Noelaerhabdaceae* is estimated by  
583 SYRACO. From these quantities it is possible to estimate the weight of *Noelaerhabdaceae*  
584 per gram of sediment. NoMAR is obtained by multiplying weight per gram by the  
585 sedimentation rate and the dry bulk density of sediment. The dry bulk density was estimated  
586 from continuous measurements of wet bulk density from gamma ray attenuation (GRA) and  
587 transformed by the linear relationship for each site between discrete shipboard measurements  
588 of wet bulk density and dry bulk density<sup>63</sup>. NoMARs for the 7 cores were stacked together  
589 after resampling each record at 2 kyr intervals (Fig 1g), using the same method as for MDI.  
590 Other stacking methods, such as assembling loess-detrended records, were tried and produced  
591 consistent results. Differences exist between individual NoMAR records due to regional  
592 difference in coccolithophore productivity, export dynamics, and core depth (although only 2  
593 cores, MD97-2140 and U1443, were retrieved from sediments deeper than 2000 m).  
594 However, three common patterns emerge in all individual records: an increasing trend in  
595 NoMAR towards the present, a stepwise increase at ~1.1 Ma, and the clear presence of  
596 eccentricity cycles. *Noelaerhabdaceae* coccolith flux (Extended Data Fig. 3b) is calculated as

597 the number of coccoliths per gram of sediment multiplied by the sedimentation rate, and is  
598 the main driver of the step increase in NoMAR at ~1.1 Ma.

599

## 600 **Time series analysis**

601 Time series analyses were performed using the software packages Analyseries<sup>64</sup> and Acycle<sup>65</sup>  
602 on detrended records. Cross-spectral analyses were performed in Analyseries using  
603 Blackman-Turkey transforms<sup>66</sup>. For evolutive cross-spectral analyses (Fig. 1d, f) a window of  
604 500 kyr (250 data points) and a step of 100 kyr was used. Coherence values above 0.56 are  
605 above the 80% confidence level. Spectral Analyses were performed with the Multi Taper  
606 Method (MTM)<sup>67</sup> with both evolutive and entire series (Extended Data Fig. 2). Spectral  
607 properties are similar in all individual MDI records, and show that the absence of precession  
608 (19-23 kyr) and obliquity (~41 kyr) is not a result of chronological bias in constructing the  
609 stack that would have smoothed the record. Each record has a ~2 kyr resolution with a  
610 precise independent age model. The absence of precession and obliquity is therefore a  
611 common and robust feature of all of the MDI series as well as the stacked record.

612

## 613 **Low-pass filters**

614 We designed 2<sup>nd</sup> order low-pass filters in order to reproduce the effect of the time needed for  
615 a new evolved species to fully succeed (200 kyr for *E. huxleyi*). We transformed the  
616 following classical low-pass filter complex transfer function  $H$ :

$$617 H(j\omega) = \frac{A}{1 + \frac{j\omega}{Q\omega_0} - \frac{\omega^2}{\omega_0^2}}$$

618 (where A is the amplitude, Q is the quality factor,  $\omega$  is the angular frequency  $2\pi f$ , (f the  
619 frequency)) in its associated differential equation:

$$620 \frac{d^2y}{dt^2} + \frac{\omega_0}{Q} \frac{dy}{dt} + \omega_0^2 y = \omega_0^2 x \quad \text{where } y \text{ is the output series and } x \text{ the input series.}$$

621 We solved it numerically as follow:

622 
$$y_t = \frac{1}{1+\frac{\omega_0}{Q}+\omega_0^2} ((2 + \omega_0)y_{t-1} - y_{t-2}) A \omega_0^2 x_t$$

623 Two configurations have been chosen: one produces a delay of 200 kyr for the new species'  
624 success, the second produces a delay of 130 kyr (Extended Data Figure 8a). To obtain those  
625 delays, we used the following values:

626 First case (delay of 200 kyr),  $\omega_0 = 0.021$ ,  $Q = 1$ ,  $A = 1$

627 Second case (delay of 130 kyr),  $\omega_0 = 0.035$ ,  $Q = 1.02$ ,  $A = 0.65$

628 The delay of 200 kyr corresponds to the time between the First Appearance Datum (FAD)  
629 and the beginning of the acme (BA) of *E. huxleyi*<sup>21</sup>. The FAD of this species is well  
630 documented because its characteristic T shape elements are a morphological feature that  
631 appeared suddenly, without gradation. The other *Gephyrocapsa* species have been described  
632 using criteria that are subject to gradation between species: coccolith length, size of the  
633 central opening, and orientation of the bridge<sup>68</sup>. For example, the FAD of a typical  
634 *G. ericsonii*, (a small gephyrocapsid) that appeared at about the same time as *E. huxleyi*<sup>3</sup> is  
635 not reported precisely because it evolved progressively from *G. caribbeanica* (a mid-size  
636 species). It is interesting to note that the FAD and the BA of *E. huxleyi* occurred similarly in  
637 times of eccentricity decrease, but two cycles apart. The intermediate cycle may have been  
638 too high to allow *E. huxleyi* to begin its dominance. This may not have been the case for  
639 other species under different orbital configurations. This is why we did a filter with a  
640 different configuration, which produces a delay of about one eccentricity cycle between a  
641 FAD and a BA. In order to express the response of those filters, we built their Bode  
642 magnitude plots, expressing the frequency response, and their Bode phase plots, expressing  
643 the phase shift (Extended Data Figure 8b, c).

644

645 **Model Description**

646 To simulate changes in Net Primary Production (NPP) related to changes in eccentricity we  
647 used the Earth System Model IPSL-CM5A2<sup>5</sup> that simulates the interactions between ocean,  
648 atmosphere, land and ice. The following section provides a brief description of model  
649 components and experiments setup. We then describe the model behaviour at low eccentricity  
650 and discuss how the large-scale ocean-atmosphere circulation at high eccentricity in our  
651 simulations compare to previous modelling studies.

652

653 The IPSL-CM5A2 coupled model is a combination of the LMDz5A atmospheric model<sup>69</sup>, the  
654 ORCHIDEE<sup>70</sup> land surface model and the NEMOv3.6 oceanic model<sup>71</sup>. The NEMO model  
655 includes an ocean dynamic component (OPA<sup>72</sup>), a sea-ice thermodynamics model (LIM2<sup>73</sup>)  
656 as well as a biogeochemistry model (PISCES-v2<sup>6</sup>) and has an horizontal resolution of 2° by  
657 2° (refined to 0.5° in the tropics) and 31 vertical levels, whose thickness increases from 10 m  
658 at the surface to 500 m at the bottom. The atmospheric grid has a horizontal resolution of  
659 1.875° in latitude by 3.75° in longitude with 39 vertical levels. The ocean-atmosphere  
660 coupling is ensured by the OASIS coupler<sup>74</sup> that interpolates and exchanges variables  
661 between the two components. Detailed description of IPSL-CM5A2 and performances in  
662 simulating pre-industrial climate can be found in references<sup>5,75</sup>. PISCES-v2 simulates the  
663 main oceanic biogeochemical cycles (C, P, Si, N and Fe) and has a simple representation of  
664 the lower trophic levels of the marine ecosystem<sup>6</sup>, with two phytoplankton  
665 (nannophytoplankton and diatoms) and two zooplankton (micro- and meso-zooplankton) size  
666 classes and five limiting nutrients (Fe, NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, Si and PO<sub>4</sub><sup>3-</sup>). Phytoplankton growth is  
667 controlled by nutrients, light availability, and water temperature. In the version of the model  
668 we used, river supply to the ocean of all elements apart from DIC and alkalinity is taken from

669 the GLOBAL-NEWS2 data sets<sup>76</sup> and does not vary from one simulation to another. Model  
670 parameterizations are detailed in reference 6.

671

672 Simulations were performed for seven early Pleistocene time slices and differ only by their  
673 respective orbital parameters (Extended Data Table 3, Figure 1b). The time slices were  
674 chosen in order to target the signal produced by the 405-kyr eccentricity cycle. Land-sea  
675 mask, ice-sheets configuration as well as CO<sub>2</sub> and other greenhouse gases concentrations are  
676 set at pre-industrial values. Each simulation was started from the same equilibrated pre-  
677 industrial simulation<sup>5</sup> and was run for 500 years. NPP is integrated over the whole water-  
678 column and averaged over the last 100 model years.

679

680 At low eccentricity (EminPmax and EminPmin) the eastern Indian ocean surface dynamics is  
681 forced by the summer westerlies that blow northward over the Bay of Bengal (Extended Data  
682 Fig. 4f), associated with high precipitation over India and the Himalayan foreland region,  
683 while strong easterlies are recorded south of the equator. Winds force strong westward  
684 surface currents along the equator and south of Sumatra Island that generate upwelling  
685 (Extended Data Figure 7b). The latter advects nutrients to the surface (Extended Data Figure  
686 7a) and triggers high productivity during summer. This peak productivity contributes to the  
687 strong seasonal cycle in this region. The winds reverse during boreal winter, triggering a  
688 second productivity bloom of lesser intensity (not shown). The productivity minimum is  
689 recorded during late spring when low-level winds along the equator are weak westerlies that  
690 favour downwelling and prevent strong convective mixing, which results in lower nutrient  
691 content within the surface layer of the ocean. The seasonal cycle of productivity in this region  
692 is very similar to the cycle simulated for the present-day equatorial Indian Ocean<sup>5</sup>.

693

694 During high eccentricity periods at precession minima (maxima), increasing (decreasing)  
695 boreal summer insolation (Extended Data Fig. 5b-c) is responsible for increasing (decreasing)  
696 sea-level pressure over continental Asia (Extended Data Fig. 5d-h). Induced modifications of  
697 sea-level pressure gradients over the tropical Indian and Pacific Oceans in turn translate into  
698 changes in the low-level wind circulation over the Indo-Pacific Warm Pool, IPWP (Extended  
699 Data Fig. 4f-h). Anomalous easterlies at precession minima (westerlies at precession  
700 maxima) in the equatorial region generate anomalous upwelling along the equator (SW of  
701 India) that are responsible for the increasing nutrient content at the surface triggering large  
702 enhancement of productivity (Extended Data Figure 6a-c). NPP is, in addition, amplified by  
703 modifications of the hydrological cycle that create more favourable conditions related to  
704 changes in salinity, water temperature and/or amount of solar radiation at the surface. At  
705 maximum precession and eccentricity, for example, higher sub-surface salinity (+0.5 to 1.6  
706 psu) and lower temperatures (-1.2 to -2°C) in the western Bay of Bengal (Extended Data Figure  
707 7c) reduce stratification of the upper-water column, which favours vertical mixing and  
708 contributes to enhanced productivity. The simulated patterns of atmosphere-ocean circulation  
709 and surface ocean physical state (Extended Data Figure 4f-h and 6b-c) are in line with  
710 previous modelling study under similar orbital configurations<sup>77-79</sup>. In addition, our  
711 simulations also illustrate how these changes impact the seasonal productivity cycle. The  
712 increasing amplitude of the seasonal cycle in the surface ocean at high eccentricity is  
713 probably not limited to the IPWP area. For example, Erb et al.<sup>80</sup> also simulate enhancement  
714 of the surface ocean temperature cycle at high eccentricity in the Eastern Equatorial Pacific,  
715 with higher amplitude than in the Western Equatorial Pacific.

716

## 717 **Methods references**

718 39 Beaufort, L. Adaptation of the random settling method for quantitative studies of  
719 calcareous nannofossils. *Micropaleontology* **37**, 415-418 (1992).

720 40 Beaufort, L., Barbarin, N. & Gally, Y. Optical measurements to determine the  
721 thickness of calcite crystals and the mass of thin carbonate particles such as  
722 coccoliths. *Nature Protocols* **9**, 633-642, doi:10.1038/nprot.2014.028 (2014).

723 41 Beaufort, L. & Dollfus, D. Automatic recognition of coccolith by dynamical neural  
724 network. *Mar. Micropaleont.* **51/1-2**, 57-73 (2004).

725 42 Barbarin, N. *La reconnaissance automatisée des nannofossiles calcaires du*  
726 *Cénozoïque*, PhD thesis, Aix-Marseille Université, (2014).

727 43 Beaufort, L. Weight estimates of coccoliths using the optical properties  
728 (birefringence) of calcite. *Micropaleontol.* **51**, 289-298 (2005).

729 44 Dollfus, D. *Reconnaissance des Formes Naturelles par des Réseaux de Neurones*  
730 *Artificiels: Application au Nannoplancton Calcaire*, PhD thesis, Aix-Marseille  
731 Université, (1997).

732 45 Dollfus, D. & Beaufort, L. Fat neural network for recognition of position-normalised  
733 objects. *Neural Networks* **12**, 553-560 (1999).

734 46 Breiman, L. Random forests. *Machine learning* **45**, 5-32 (2001).

735 47 de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. C. & Beaufort, L. Stable sea  
736 surface temperatures in the western Pacific warm pool over the past 1.75 million  
737 years. *Nature* **433**, 294-298 (2005).

738 48 Shackleton, N. J. & al., e. An alternative astronomical calibration of the lower  
739 Pleistocene timescale based on ODP Site 677. *Transaction of the Royal Society of*  
740 *Edinburgh* **81**, 251-261 (1990).

741 49 Carcaillet, J. T., Thouveny, N. & Boulès, D. L. Geomagnetic moment instability  
742 between 0.6 and 1.3 Ma from cosmonuclide evidence. *Geophys. Res. L.* **30**, 1792  
743 (2003).

744 50 Beaufort, L. & party, S. s. *MD148/PECTEN*. (Institut Polaire Francais, 2005).

745 51 Tachikawa, K. *et al.* The precession phase of hydrological variability in the Western  
746 Pacific Warm Pool during the past 400 ka. *Quaternary Science Reviews* **30**, 3716-  
747 3727, doi:10.1016/j.quascirev.2011.09.016 (2011).

748 52 Regoli, F. *et al.* Progressive shoaling of the equatorial Pacific thermocline over the  
749 last eight glacial periods. *Paleoceanography* (2015).

750 53 Clemens, S. C., Kuhnt, W., LeVay, L. J. & Scientists, t. E. Indian monsoon rainfall.  
751 *International Ocean Discovery Program Preliminary Report* **353**, doi:10.14379/  
752 iodp.pr.353.2015 (2015).

753 54 Clemens, S. C. Site U1443. - *Proceedings of the International Ocean Discovery*  
754 *Program; Indian monsoon rainfall; Expedition 353 of the riserless drilling platform*  
755 *from and to Singapore; Sites U1443-U1443, 29 November 2014-29 January 2015*  
756 **353**, 41-41 (2016).

757 55 Gebregiorgis, D. *et al.* Southern Hemisphere forcing of South Asian monsoon  
758 precipitation over the past ~1 million years. *Nature Communications* **9**, 4702,  
759 doi:10.1038/s41467-018-07076-2 (2018).

760 56 Gebregiorgis, D. *et al.* What Can We Learn From X-Ray Fluorescence Core Scanning  
761 Data? A Paleomonsoon Case Study. *Geochemistry, Geophysics, Geosystems* **21**,  
762 e2019GC008414, doi:10.1029/2019GC008414 (2020).

763 57 McGrath, S. M., Clemens, S. C., Huang, Y. & Yamamoto, M. Greenhouse Gas and  
764 Ice Volume Drive Pleistocene Indian Summer Monsoon Precipitation Isotope  
765 Variability. *Geophysical Research Letters* **48**, e2020GL092249 (2021).

766 58 Rosenthal, Y., Holbourn, A. E., Kulhanek, D. K. & Scientists, E. in *IODP proceeding*  
767 Vol. 363 (ed IODP) 69 (Texas A&M University, College Station TX, USA, 2017).

768 59 Beaufort, L., Bassinot, F. C. & Vincent, E. in *Reconstructing Ocean History : a*  
769 *window into the future* (eds F. Abrantes & A.C. Mix) 245-272 (Kluwer  
770 Academic/Plenum Publisher, 1999).

771 60 Young, J. R., P.R., B. & J.A., L. *Nannotax3 website*,  
772 <<http://www.mikrotax.org/Nannotax3>> (2021).

773 61 Perch-Nielsen, K. in *Plankton Stratigraphy: Volume 1, Planktic Foraminifera,*  
774 *Calcareous Nannofossils and Calpionellids* Vol. 1 (eds Hans M Bolli, John B  
775 Saunders, & Katharina Perch-Nielsen) (CUP Archive, 1989).

776 62 Beaufort, L., Probert, I. & Buchet, N. Effects of acidification and primary production  
777 on coccolith weight: Implications for carbonate transfer from the surface to the deep  
778 ocean. *Geochemistry, Geophysics, Geosystems* **8** (2007).

779 63 Lyle, M. Neogene carbonate burial in the Pacific Ocean. *Paleoceanography* **18**,  
780 doi:10.1029/2002PA000777 (2003).

781 64 Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series  
782 analysis. *Eos Trans. AGU*, **77**, 379 (1996).

783 65 Li, M., Hinnov, L. & Kump, L. Acycle: Time-series analysis software for  
784 paleoclimate research and education. *Computers & Geosciences* **127**, 12-22,  
785 doi:<https://doi.org/10.1016/j.cageo.2019.02.011> (2019).

786 66 Blackman, R. B. & Tukey, J. W. The measurement of power spectra from the point of  
787 view of communications engineering—Part I. *Bell System Technical Journal* **37**, 185-  
788 282 (1958).

789 67 Thomson, D. J. Spectrum estimation and harmonic analysis. *Proceeding of the IEEE*  
790 **70**, 1055-1096 (1982).

791 68 Bollmann, J. Morphology and biogeography of the Gephyrocapsa coccoliths in  
792 Holocene sediments. *Mar. Micropaleontol.* **29**, 319-350 (1997).

793 69 Hourdin, F. *et al.* Impact of the LMDZ atmospheric grid configuration on the climate  
794 and sensitivity of the IPSL-CM5A coupled model. *Climate Dynamics* **40**, 2167-2192  
795 (2013).

796 70 Krinner, G., Ciais, P., Viovy, N. & Friedlingstein, P. A simple parameterization of  
797 nitrogen limitation on primary productivity for global vegetation models.  
798 *Biogeosciences Discussions* **2**, 1243-1282 (2005).

799 71 Madec, G. & Nemo, T. NEMO ocean engine. *Note du Pôle de modélisation de  
800 l'Institut Pierre-Simon Laplace* **27** (2015).

801 72 Madec, G. NEMO reference manual, ocean dynamics component: NEMO-OPA.  
802 *Preliminary version. Note du Pole de modélisation, Institut Pierre-Simon Laplace  
803 (IPSL), France*, 1288-1161 (2008).

804 73 Fichefet, T. & Maqueda, M. M. Sensitivity of a global sea ice model to the treatment  
805 of ice thermodynamics and dynamics. *Journal of Geophysical Research: Oceans* **102**,  
806 12609-12646 (1997).

807 74 Valcke, S. *et al.* Coupling technologies for earth system modelling. *Geosci. Model  
808 Dev* **5**, 1589-1596 (2012).

809 75 Dufresne, J.-L. *et al.* Climate change projections using the IPSL-CM5 Earth System  
810 Model: from CMIP3 to CMIP5. *Climate Dynamics* **40**, 2123-2165 (2013).

811 76 Mayorga, E. *et al.* Global nutrient export from WaterSheds 2 (NEWS 2): model  
812 development and implementation. *Environmental Modelling & Software* **25**, 837-853  
813 (2010).

814 77 Bosmans, J. *et al.* Response of the Asian summer monsoons to idealized precession  
815 and obliquity forcing in a set of GCMs. *Quaternary Science Reviews* **188**, 121-135  
816 (2018).

817 78 Braconnot, P. & Marti, O. Impact of precession on monsoon characteristics from  
818 coupled ocean atmosphere experiments: changes in Indian monsoon and Indian ocean  
819 climatology. *Marine Geology* **201**, 23-34 (2003).

820 79 Prescott, C., Haywood, A., Dolan, A., Hunter, S. & Tindall, J. Indian monsoon  
821 variability in response to orbital forcing during the late Pliocene. *Global and*  
822 *Planetary Change* **173**, 33-46 (2019).

823 80 Erb, M. P. *et al.* Response of the equatorial pacific seasonal cycle to orbital forcing.  
824 *Journal of Climate* **28**, 9258-9276 (2015).

825 81 Chen, M.-T. & Beaufort, L. Exploring quaternary variability of the east Asia  
826 monsoon, Kuroshio Current, and western Pacific warm pool systems: High-resolution  
827 investigations of paleoceanography from the IMAGES III (MD106) IPHIS cruise.  
828 *Terrestrial Atmospheric And Oceanic Sciences* **9**, 129-142 (1998).

829 82 Gartner, S. Paleoceanography of the mid-Pleistocene. *Mar. Micropaleontol.* **13**, 23-46  
830 (1988).

831 83 Pujos, A. & Giraudeau, J. Distribution of Noelaerhabdaceae (calcareous nannofossils)  
832 in the upper and middle Quaternary of the Atlantic and Pacific oceans. *Oceanologica*  
833 *acta* **16**, 349-362 (1993).

834

835 **Acknowledgments**

836 This paper is a contribution of the Climate research group at CEREGE. This research uses  
837 samples provided by the International Ocean Discovery Program (IODP). We thank the  
838 scientists, technical staff, and crews of IODP Expeditions 353 and 363 and IMAGES  
839 Expeditions 3 and 13. The authors acknowledge French ANR projects CALHIS (LB),  
840 iMonsoon (CTB), AMOR (YD), and INSU project CALVE (CTB) which provided funding  
841 for this work. IODP-France provided post-cruise funding to LB and CTB. We thank A. Fruy  
842 and S. Sergi for sample preparation assistance. We thank the CEA/CCRT for providing  
843 access to the HPC resources of TGCC under the allocation 2019-A0070102212 made by  
844 GENCI.

845

846 **Author Contributions**

847 LB designed the study. LB, YG, NB and MT developed automated artificial intelligence  
848 methods. LB, CTB, JCM, PC, EG, and SB prepared samples and/or generated data. ACS  
849 designed and ran the model simulations, in collaboration with YD. LB and CTB analysed the  
850 morphometric data. LB, CTB, ACS, BSM, YD, and YR discussed interpretations. LB, CTB  
851 and ACS wrote the manuscript with important contributions from BSM, YD, and YR.

852

### 853 **Competing interest declaration**

854 The authors declare no competing interests.

855

### 856 **Extended Data Figures and Tables**

857

858 **Extended Data Table 1:** Characteristics of the nine marine records used in this study. Biome  
859 codes<sup>25</sup>: INDE = Eastern India Coastal province, MONS = Indian Monsoon Gyres Province,  
860 WARM = Western Pacific Warm Pool province, SUND = Sunda-Arafura Shelves Province,  
861 AUSE = East Australian Coastal Province, ISSG = Indian South Subtropical Gyre Province.  
862 These cores were retrieved during four expeditions: IMAGES 3<sup>81</sup> and 13<sup>50</sup>, and International  
863 Ocean Discovery Program (IODP) Expeditions 353<sup>53</sup> and 363<sup>58</sup>, which took place in the  
864 Western Pacific and Indian tropical oceans (Figure 3a).

865

866 **Extended Data Table 2:** Relative calcium carbonate mass contribution per calcareous  
867 nannofossil taxon/groups for each sediment core. In each case, values represent the average  
868 value of the entire time series. Values were calculated by multiplying the number of  
869 individuals recognized for each taxon (class<sup>42</sup> grouped by taxon : Noelaerhabdaceae  
870 (*Emiliania*, *Gephyrocapsa*, *Pseudoemiliania* and *Reticulofenestra*), Coccolithales  
871 (*Calcidiscus*, *Coccolithus*, and *Umbellicosphaera*), and Helicosphaerales + Syracosphaerales

872 (*Helicosphaera*, *Pontosphaera*, *Syracosphaera* and *Rhabdolithus*)) multiplied by the  
873 averaged mass of the considered class in that core. This calculation was not possible for core  
874 MD05-2930 as some species abundance data were not available.

875

876 **Extended Data Table 3:** Summary of orbital parameters<sup>23</sup> used for each simulation and  
877 Mean Yearly Contrast of Radiation at Equator (Wm<sup>-2</sup>) derived from IPSL-CM5A2  
878 (Methods).

879

880 **Extended Data Figure 1: Size and MDI records for each core.** Top panels **a** to **i**: Size  
881 frequency plots for each individual core used to create the composite record shown in Figure  
882 1a. Lower panels **a** to **i**: Individual MDI records for each core (black lines and points) plotted  
883 with the stacked MDI record (red line). Pearson correlation coefficients between individual  
884 sites and the stack vary between 0.71 and 0.93 (p-values are all <0.00001).

885

886 **Extended Data Figure 2: Time-series analyses of individual records.** **a**: Cross-spectral  
887 analysis between eccentricity and stacked coccolith length. Top: coherency; Bottom: phase  
888 (radian). **b to j**: MTM and evolutive spectral analyses (see Methods) of detrended individual  
889 MDI series resampled at 2 kyr intervals (shown on left of each evolutive analysis). Primary  
890 orbital periods are shown by red lines.

891

892 **Extended Data Figure 3: Decomposition of the Noelaerhabdaceae mass accumulation**  
893 **rate (NoMAR) record into its mass and flux components.** **a**: Stacked NoMAR record,  
894 binned into 2-kyr intervals (orange shading) and smoothed with a 30-kyr moving window  
895 (orange line), **b**: Noelaerhabdaceae coccolith flux (blue) and average Noelaerhabdaceae  
896 coccolith mass (red). Here, stacked mass and flux records are smoothed with a 30-kyr moving

897 window as in **a**. **c**: NoMAR (orange) and MDI (purple) records, smoothed with a 30-kyr  
898 moving window. Grey shaded areas represent four described acmes of mid-size  
899 Noelaerhabdaceae species<sup>19-21,82,83</sup>.

900

901 **Extended Data Figure 4: Ocean-atmosphere model outputs under different orbital**  
902 **configurations:** Top: Yearly maximum contrast in NPP ( $\text{gC m}^{-2} \text{ day}^{-1}$ ) for **a**: EminPmin, **b**:  
903 EmaxPmin and **c**: EmaxPmax. Low eccentricity values minimize the amplitude of precession  
904 variability, thus we only show results for minimum precession value at minimum eccentricity  
905 (EminPmin) but the reader can consider those results to be similar for the EmaxPmax  
906 simulation. **d** and **e** represent the anomaly of yearly maximum contrast in NPP. At  
907 EmaxPmax, the eastern equatorial Indian Ocean exhibits moderate seasonality (**a**) due to  
908 inhibition of the summer productivity induced by lower nutrient concentrations in this area  
909 (Extended Data Fig. 6a). In this case, high productivity areas during boreal summer are  
910 shifted to south-west of India. Bottom: Late summer (JASO) low-level winds for **f**:  
911 EminPmin, **g**: EmaxPmin, **h**: EmaxPmax simulations. **i** and **j** represent the anomaly in late  
912 summer low-level winds. At EmaxPmax the north-equatorial westerlies (**c**, **e**) are confined to  
913 south of  $10^{\circ}\text{N}$  due to the extension above India of the low-pressure area.

914

915 **Extended Data Figure 5: Solar radiation and sea-level pressure in model simulations.**

916 Seasonal latitudinal variations of solar radiation at the top of the atmosphere derived from the  
917 model ( $\text{W.m}^{-2}$ ); **a**: EminPmin, **b**: EmaxPmin, **c**: EmaxPmax. See Extended Data Table 3 for  
918 details of orbital configurations of each simulation. Late summer (JASO) low-level winds for  
919 **d**: EminPmin, **e**: EmaxPmin, **f**: EmaxPmax simulations and anomaly in late summer low-  
920 level winds, **g**: EmaxPmin minus EminPmin, **h**: EmaxPmax minus EminPmax.

921

922 **Extended Data Figure 6: Nutrients, temperature, and upwelling in model simulations.** **a:**  
923 NO<sub>3</sub> concentrations in the surface layer (0-100m), **b:** upwelling velocity (averaged between  
924 40 and 80m), **c:** Sea Surface Temperature (SST). All variables are averaged over JASO. **Left:**  
925 Emin, **Middle:** EmaxPmin minus EminPmin, **Right:** EmaxPmax minus EminPmax.

926

927 **Extended Data Figure 7: Explanation of non-linearities in coccolithophore evolution** **a:**  
928 Low-pass filter design, for the delay between First Appearance Datum (FAD) and the  
929 beginning of the acme (BA) for *E. huxleyi* (blue line, lag of two eccentricity cycles) and  
930 another possible scenario for another species (red line, lag of one eccentricity cycle). The  
931 stepped green line represents *E. huxleyi*'s existence (0 means absence, 1 means presence).  
932 The blue and red curves in all panels are the output series of the 2 low-pass filters described  
933 in the methods. The black curve in **a** represents coeval eccentricity values. **b** and **c:** Bode  
934 plots of the 1-cycle lag filter (red) and the 2-cycle lag filter (blue) for magnitude (**b**) and  
935 phase (**c**) (see Methods). Earth's primary orbital periods are indicated by shading.

936

### 937 **Data and Code availability**

938 All coccolith morphological data, as well as all model outputs described in the paper  
939 (including NPP and main oceanic and atmospheric variables) are archived at  
940 [www.pangaea.de](http://www.pangaea.de).

941

942 LMDZ, XIOS, NEMO and ORCHIDEE are released under the terms of the CeCILL license.  
943 OASIS-MCT is released under the terms of the Lesser GNU General Public License (LGPL).  
944 IPSL-CM5A2 source code is publicly available through svn, with the following commands  
945 line :svn co

946 http://forge.ipsl.jussieu.fr/igcmg svn/modipsl/branches/publications/IPSLCM5A2.1\_1119201  
947 9 modipsl ; cd modipsl/util ; ./model IPSLCM5A2.1  
948 The mod.def file provides information regarding the different revisions used, namely :  
949 - NEMOGCM branch nemo\_v3\_6\_STABLE revision 6665  
950 - XIOS2 branches/xios-2.5 revision 1763  
951 - IOIPSL/src svn tags/v2\_2\_2  
952 - LMDZ5 branches/IPSLCM5A2.1 rev 3591  
953 - branches/publications/ORCHIDEE\_IPSLCM5A2.1.r5307 rev 6336  
954 - OASIS3-MCT 2.0\_branch (rev 4775 IPSL server)  
955  
956 The login/password combination requested at first use to download the ORCHIDEE  
957 component is anonymous/anonymous. We recommend that you refer to the project website:  
958 http://forge.ipsl.jussieu.fr/igcmg\_doc/wiki/Doc/Config/IPSLCM5A2 for a proper installation  
959 and compilation of the environment.