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ARTICLE INFO ABSTRACT

Keywords: The standard view of embryogenesis is one of cooperation driven by the cells’ shared genetics and evolutionary
Competition interests. However, numerous examples from developmental biology and agriculture reveal a surprising amount
Cell . of competition among body cells, tissues, and organs for both metabolic and informational resources. To explain
Morphogenesis . ‘e . . C . w e

) the existence of such competition we had hypothesized that evolution uses limiting “reservoirs” of resource
Embryonic development Lo ) . i
Simulation molecules as a communication medium - a global scratchpad, to enable tissues across the body to coordinate
Evolution growth. Here, we test this hypothesis via an evolutionary simulation of embryogeny in silico. Genomes encode

state transition rules for cells, such as proliferation, differentiation, and resource use, enabling virtual embryos to
develop a specific large-scale morphology. An evolutionary algorithm operates over the genomes, with fitness
defined as a function of specific morphological requirements for the final embryo shape. We found that not only
does such an algorithm rapidly discover rules for cellular behavior that reliably make embryos with specific
anatomical properties, but that it discovers the strategy of using finite resources to coordinate development.
Given the option of using finite or infinite reservoirs (which determine cells’ ability to carry out specific actions),
evolution preferentially uses finite reservoirs, which results in higher fitness and increased consistency (without
needing direct selection for morphological invariance). We report aspects of anatomical, physiological/tran-
scriptional, and genomic analysis of evolved virtual embryos that help understand how evolution can use
competition among genetically identical subunits within a multicellular body to coordinate reliable, complex
morphogenesis. Our results suggest that under some conditions, composite multi-scale systems will promote
conflict and artificial scarcity for their components.

Artificial life

1. Introduction and whole organisms can determine when to stop growth. When

amputated, planarian flatworms or axolotls re-grow the missing struc-

Multicellular bodies exhibit remarkable complexity of anatomical
form. Control processes during embryogenesis and organ regeneration
must coordinate cellular behaviors such as proliferation, differentiation,
migration, and apoptosis in order to reliably build bodies with specific
structure and function. Evolutionary dynamics and generic laws of
morphogenesis are responsible for embryonic development’s robustness
and ability to result in emergent morphologies with high fitness (Eldar
et al., 2004; Newman and Comper, 1990). This remarkable process en-
ables competent individual subunits (cells), which were independent
organisms in our evolutionary past, to cooperate toward large-scale
anatomical outcomes (Levin, 2019).

A major unknown in development and regeneration is how tissues

tures and cease growth and remodeling when the correct anatomy is
restored. In addition to growth limitation, the actual anatomical struc-
ture must be coordinated. This is a key unknown not only for under-
standing developmental biology but also for developing regenerative
medicine approaches to restore bodies after injury, disease, or cancer
(Pezzulo and Levin, 2015, 2016). Thus, it is important to construct
models of dynamics that are sufficient for emergence of morphological
coordination.

Cooperation among cells is typically explained by their identical
genomes. Bound by shared genetics and survival interests, it is typically
thought that cells within a single body should be highly cooperative in
their mission to build or repair an organism (Godfrey-Smith, 2013).
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However, “genomes are not a blueprint for anatomy” and these pro-
cesses also rely on chemicals, electrical signaling, and mechanical pro-
cesses to ensure the emergence of correct anatomy in embryogenesis.
Growth requires energy from fuel (which is necessarily limited) and is
governed by the dynamics of informational signaling molecules (which
can be produced in arbitrary quantities by cells) (Briscoe and Small,
2015; Song and Shvartsman, 2020). Development is the process of
distributing energy and signals appropriately so as to reach a specific,
coherent target morphology (Gawne et al., 2020; Pezzulo and Levin,
2016). However, a surprising amount of competition is found within
single organisms (reviewed in (Gawne et al.,, 2020; Heams, 2012;
Queller, 2011; Wagensberg et al., 2010)). This has been observed across
taxa, in the context of developmental biology and agricultural research.
Specifically, organs, tissues, and cells compete for limiting molecules,
including metabolic resources and informational signals such as growth
factors and other instructive morphogens.

Competition between developmental structures relates to how the
rate and timing of one body part’s growth can alter the store of meta-
bolic and informational resources that are used to coordinate growth in
other parts of the body (Gawne et al., 2020). The classic example of this
type of competition is the demonstration that removing a tomato plant’s
fruits often produces an increase in its overall height (Gawne et al.,
2020; Murneek, 1926). Another example is hypertrophy of the
remaining sexual organ following hemi-castration, which has been
documented in boars, rats, cows, pigs, sheep, rabbits, and catfish
(Gawne et al., 2020; Goswami and Sundararaj, 1968; Hackenbruch,
1888; Klingenberg and Nijhout, 1998; Land and Carr, 1975; Mahade-
vaswami et al., 2000; Schanbacher et al., 1987). As in other tissues, each
half, in a pair of sexual organs, competes for the same finite resources
(revealed by the release of growth constraints observed when one of the
pair is removed). Likewise, removing a butterfly’s hindwings prior to
pupation results in a significant increase in the size of the forewings
(Gawne et al., 2020; Klingenberg and Nijhout, 1998; Nijhout and Emlen,
1998). Because resources are limited, their uptake from one area of the
body likely influences growth in others. Finite metabolic and informa-
tional signals may take the form of amino acids, insulin, growth factors,
ions, or systemic morphogens (Gawne et al., 2020; Nijhout and Emlen,
1998).

These competitive dynamics are surprising, given the expectation
that genetically-identical cells in embryogenesis ought to cooperate
optimally due to their shared interests — bodies are thought to be
Darwinian individuals, competing amongst themselves but cooperating
internally. How can the internal competition be explained? Gawne et al.
(2020) hypothesized that evolution exploits cells’ natural competitive-
ness to coordinate morphogenesis. Specifically, we suggested that res-
ervoirs of resources can be used as global scratchpads — informational
media that carries actionable intelligence about the growth state of
distant cells. For example, when cells are dependent on an
infinite-capacity (unlimited) resource to execute their behaviors, a cell
or tissue is not informed about the state of the others because the
reservoir carries no information (it doesn’t change over time). In
contrast, by polling a limiting (finite) resource, cells receive information
on what the others are doing based on the state of the resource at any
point in time. In this way, ancient cellular mechanisms of competition
become co-opted as a communication and control system that in effect
exploits limiting resources as a stigmergic information medium (Ther-
aulaz and Bonabeau, 1999). This strategy is also used at higher scales,
for example by swarm organisms such as ants, microbes, and even robots
which use aspects of the environment to coordinate colony behaviors
(Gloag et al., 2016; Heylighen, 2016; Hunt et al., 2019; Khuong et al.,
2016).

Here, we sought to specifically test the hypothesis that evolution will
discover how to use finite resources as a coordination mechanism for
morphogenesis. We built a virtual embryo simulator, in which cell be-
haviors are guided by local rules defined in their genome, taking an
agent-based, cellular automata approach as an example of Artificial Life
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(Adami, 1998; Bedau, 2005), akin to prior work in artificial embryogeny
such as (Andersen et al., 2006, 2009; Gerlee et al., 2015, 2017). Our
simulation is a minimal (2-dimensional) version of development,
including representations of features of real morphogenesis including
cell proliferation in a metabolic resource-dependent manner, cell dif-
ferentiation into several tissue types, and fitness evaluation based on
specific features of the resulting virtual embryo. We simulated evolution
using a standard evolutionary algorithm approach (Fogel et al., 2000),
which performed a cycle of mutation, embryogenesis, and selection
based on anatomical criteria, to shape the content of each new genera-
tion based on the performance of embryogenesis in the past generation.
Crucially, this evolutionary approach includes the all-important middle
layer of developmental physiology that lies between genome and
outcome: we use a generative encoding (in which the genomic infor-
mation contains rules for emergent morphogenesis), not a direct map-
ping from genotype to phenotype.

In our simulations, embryos start as a single cell and divide repeat-
edly until they stop growing on their own; their genome determines the
rules under which they produce various cell types and distribute them
spatially. A population of initially-randomly generated embryos evolve
for thousands of generations until they meet specified fitness criteria.
We set target sizes, shapes, and compositions for the embryos (the fitness
criteria guiding the evolutionary process). The virtual embryos’ ge-
nomes included the ability to reference two types of different resource
molecules, as prerequisites to action: infinite capacity reservoirs, which
never reduce and always allow the cell to take an action according to the
relevant rule; and finite capacity reservoirs, which eventually deplete
and block cell activity that depends on that reservoir. We provided no
pressure against profligate use of reservoir resources, to avoid biasing
the system toward limited reservoirs.

We studied the dynamics of evolution under these conditions and
found several fundamental patterns. First, evolutionary dynamics are
sufficient to rapidly evolve genomic rules with desired anatomical fea-
tures, such as bodies with specific aspect ratios, limited size, and
spatially differentiated anatomical structures at the “tissue” level. Sec-
ond, evolution discovered how to use finite reservoirs to help coordinate
this process, establishing artificial scarcity and competition (despite any
penalty for metabolic cost of development) to ensure emergence of
consistent large-scale morphologies with high fitness. We use a number
of tools to analyze the genomic, transcriptomic/physiological, and
morphological dynamics of the resulting highly-fit embryos to gain
insight into how this works. Our loss-of-function and genomic editing
experiments in silico reveal that evolution is exploiting regulatory
mechanisms more than structural change, shaping the ways in which
even a small number of finite-reservoir genes can be efficiently used to
control growth and form.

2. Methods
2.1. Virtual embryos’ development

An embryo starts as a single stem cell in the center of a two-
dimensional grid. To begin each step of their discretely timed embryo-
genesis, each stem cell queries the genome, which dictates how they can
divide. The genome is represented by a lookup table, with individual
genes encoding rules for how stem cells divide (asymmetrically), and
where they place their progeny, based on the state of the microenvi-
ronment of each cell (number of stem cell (black), interstitial cell
(green), and nerve cell (red) neighbors) and the state of various meta-
bolic resources (maintained as global reservoirs of finite or infinite ca-
pacity). Note that the names “interstitial” and “nerve” are purely
symbolic (reminiscent of the two cell types found in the primitive Hydra
model system), to allow convenient reference to two mature (terminally-
differentiated) cell types. The order of stem cell activity is random
(simulating the physiological noise of parallel activity of cells in vivo),
which provides a stochastic component to development. The genomic
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lookup table maps every combination of microenvironment inputs
(possible neighbor counts) to a unique output, for a given cell type. A
query to the lookup table provides the specifications for the new
daughter cell and the parent cell’s new reservoirs.

Each embryo may have a genome that refers to finite and infinite
reservoirs. While each gene contains alleles that specify whether a cell
uses an infinite or finite reservoir, the reservoir itself is global (a com-
mon pool of molecules available to all cells in the tissue). The initial
finite reservoir is set to a value between zero and 600, allowing evolu-
tion to also choose the capacity of finite reservoirs (in addition to
choosing between them and infinite-capacity ones). For a stem cell to
create a daughter cell, it must consume one unit of fuel from the reser-
voir that it is currently using. Crucially, a stem cell cannot divide if it is
using a depleted finite reservoir. Because an infinite reservoir will never
deplete, it never blocks division for cells whose genomes refer to it.

The specifications for the new daughter cell include the directional
bias for where to place the daughter in relation to the parent, the type of
the daughter cell (stem, interstitial, or nerve), and the (finite or infinite)
global reservoir that the daughter cell will use to determine its future
activity. Thus, development here assumes the presence of a planar po-
larity signal in the tissue, enabling each stem cell to sense direction in 2
dimensions. The mature (differentiated) nerve and interstitial cells do
not divide or consume reservoir fuel.

An embryo stops growing when none of the stem cells have a
neighboring space to divide or when the remaining stem cells with space
to divide are using finite reservoirs that have become depleted. After the
embryo stops growth (development is complete), the adult form’s fitness
is calculated based on the fitness criteria. Then, the embryo is rerun a
reruns_per_embryo (see hyper parameter table) number of times, with the
same initial condition, and the mean fitness of all of the runs is the
overall fitness score for the embryo; the range and standard deviation of
all the fitness values across reruns of the same embryo is calculated as a
measure of the robustness or consistency of the developmental process
resulting from that embryo’s genome.

2.2. Evolutionary wrapper

Each embryo’s development takes place within an overall evolu-
tionary process (using hyperparameters shown in Table 1). In the first
generation a population size number of embryos with randomly gener-
ated genomes is created; each input in the lookup table corresponds to a
random output. The rest of each experiment consists of repeats of the
following cycle. Each of these embryos in our simulator are run and each
of their fitness scores are calculated. By chance, some of the randomly
generated embryos will perform better than others. Once all the fitness

Table 1

Hyperparameters for evolutionary simulations.
Hyperparameter Value
board width and height 50
re-runs per embryo 5
population size 250
survival rate 10%
max initial reservoir value 600
max generations 7500
mutation rate 5%
reservoir mutation percentage 20%
target size 400
target aspect ratio 5:1

Legend: Hyperparameters.

Hyperparameters significant for development include the board
width and height. Hyperparameters significant for evolution
include the population size, the survival rate, the max initial
reservoir value, the max generations, the mutation rate, and the
reservoir mutation percentage. Hyperparameters significant for
calculating fitness include the target size and the target aspect
ratio.
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scores for each of the embryos are calculated, population size/survival -
rate clones of each of the top embryos are generated to make sure that
the population size stays the same in each generation.

Each of these embryos’ genome or initial finite reservoir capacity are
mutated before adding them to the next generation. The initial finite
reservoir value is mutated at a rate of reservoir mutation_percentage and
each time it isn’t, the lookup table is mutated. To mutate the initial finite
reservoir capacity, our current initial reservoir capacity is randomly
added to a value randomly selected from a normal distribution centered
at zero (mu: 0, sigma: 50). This ensures that large jumps can occur, but
smaller nudges are much more likely. To mutate the lookup table, we
generate random outputs for mutation rate percent of the inputs. Despite
relying solely on random changes, evolutionary pressure crafts highly fit
embryos by repeating this process over many generations.

2.3. Calculating fitness

Fitness is calculated based on the genome’s ability to produce an
embryo close to a target size, with an overall shape bearing a specific
aspect ratio, a cell composition that reflects a patterned primary axis
(more red cells to the left of the embryo’s midpoint and more green cells
to the right), and growth within the allotted grid size. The following
fitness functions were used as indicated in the Results:

Target size: Reaching a target size number of total cells when growth
stops.

sub_score = 50 - (50 * abs((real_size / target_size) - 1))

Note that this is a Gaussian distribution. Therefore, a cluster with five
cells greater than the target size will receive the same score as a cluster
with five cells less than the target size. Any embryo that grows outside of
the grid has its total score set to zero.

Aspect Ratio: Reaching a target width:height ratio when growth
stops.

sub_score = 50 - (50 * abs((real_aspect_ratio | target_aspect_ratio) - 1))

This is also a Gaussian distribution. Therefore, a cluster with an
aspect ratio above target aspect ratio receives the same score as a cluster
with an aspect ratio equivalently below target aspect ratio (ex: 4:1 vs 6:1
if the target aspect ratio is 5:1). If the height of the embryo is greater
than the height of the embryo at the midpoint, then the embryo’s height
minus the height at the midpoint is subtracted from sub_score (this was
done to prevent the trivial solution of diagonally growing embryos
achieving a 1:1 aspect ratio). If the width of the embryo is greater than
the width of the embryo at the midpoint, then the embryo’s width minus
the width at the midpoint is subtracted from sub_score.

Head vs. Tail morphometrics: Encouraging nerve cells to grow to the
left of the embryo’s midpoint and interstitial cells to grow to the right of
the embryo’s midpoint.

sub_score = (25 - (25 * abs(left_interstitial_cell_count [ left_nerve_cell_count
/3)) + 25- (25 * abs(right_nerve_cell_count | right_interstitial_cell_count /
3)) /2

2.4. Computational implementation
The simulations were built using the Python programming language.

Each simulation was run on a single core in the Tufts High Performance
Cluster. Code is available upon request.

2.5. Computing statistics

All the statistics were computed using the permutation test as it is
non-parametric and the comparison between distributions is non-paired.
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2.6. New analysis tools

Several specific tools were created to perform data analysis on our
simulations as reported in Results:

1. Given a genome, it produces an image of the embryo and the
reservoir usage after each step during development (Figs. 1 and
6).

2. Given simulation data, it produces images of the best embryo for
every generation (Fig. 2).

3. Given simulation data, it plots the simulation’s fitness over the
generations (Figs. 2 and 7).

4. Given 3 sets of simulation data, it plots the mean fitness over the
generations for each set (Figs. 3 and 7).

5. Given a set of simulations, it produces an image of the embryo
from the last generation of the highest scoring simulation (Fig. 3).

6. Given 3 sets of simulation data, it produces a three-column dot
plot where each column corresponds to one of the sets; each dot
in each column represents the fitness achieved by the top genome
in the last generation of each simulation (Fig. 3).

7. Given 3 sets of simulation data, it produces a three-column dot
plot where each column corresponds to one of the sets; each dot
in each column represents the number of generations it took for
the simulation to surpass a given fitness threshold (Fig. 3).

8. Given a genome, it overlays repeated final developments of the
embryo to visualize the genome’s consistency in producing em-
bryos (Fig. 4).

9. Given 3 sets of simulation data, it produces a three-column dot
plot where each column corresponds to one of the sets; each dot
in each column represents the standard deviation of 30 fitness
scores, computed from rerunning the top genome from each
simulation 30 times (Fig. 4).

10. Given a genome that evolved with access to a finite reservoir, it
produces an image of the adult form of the embryo with and
without access to finite reservoirs (Fig. 5).

11. Given a set of simulations that evolved with access to a finite
reservoir, it produces a two-column dot plot that plots the orig-
inal fitness of the top genome from each simulation and the
fitness of the same genomes after forcing them to use only infinite
reservoirs (Fig. 5).

12. Given a set of simulations, it plots the remaining finite fuel for the
top genome from each simulation at the start and end of devel-
opment (Fig. 6).

13. Given a set of simulations, it plots the reservoir capacity over the
generations for the top genome from each simulation (Fig. 6).

14. Given a genome, it plots the finite and infinite usage over each
step of development (Fig. 6).

15. Given a set of simulations, it plots the number of unique genes
used by the top genome for each simulation at the start and end of
evolution (Fig. 6).

16. Given a set of simulations, it plots the percent of finite alleles in
the top agent’s genome in the first generation and in the final
generation for each simulation in the set (Fig. 7).

17. Given a set of simulations, it plots the mean percentage of finite
usage during development over 5 repeats of the top agent in the
first and final generation for each simulation in the set (Fig. 7).

18. Given a set of simulations, it plots the number of unique alleles
for each simulation for the 5 genes with the lowest mean of
unique alleles and the 5 genes with the highest mean of unique
alleles (Fig. 7).
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19. Given a simulation with a jump in fitness greater than 5 points
within 500 generations, it produces an image of the top genome’s
embryo before the jump and after the jump (Fig. 7).

20. Given a set of simulations, it produces a single list containing
every gene found in the top genome from each simulation and the
corresponding percentage that each gene’s allele uses a finite
reservoir (Fig. 3).

21. Given a set of simulations, it produces a single list of containing
every gene found in the top genome from each simulation and the
corresponding percentage of times that each gene contributed to
a jump in fitness (Fig. 3).

Note that the hyperparameters set when running these tools should
be the same as the hyperparameters used while the simulation was
running.

3. Results
3.1. Schematic of virtual embryogeny model

In order to examine the evolutionary implications of intra-embryonic
competition, we constructed a simulation with the following compo-
nents (Fig. 1). Each “embryo” is constructed from a single founder cell
with a genome. Genomes contain information specifying all the cells’
behavior as follows: what reservoir is used to determine whether it can
divide, where to place the daughter cell, the daughter cell’s type (stem,
or the symbolic designations “nerve” or “interstitial”), and the reservoir
that the daughter cell will draw from in its future decisions. Develop-
ment was implemented as a discretely-timed process during which each
cell acts in accordance with its rules (and its current microenvironment
as input to the state table). The result of the development is a 2-dimen-
sional configuration of cell positions and states. The genomes are
modified across time by an evolutionary process operating over a pop-
ulation of individuals. Each generation consists of a set of individual
embryos, each of which undergoes development independently from the
others and is then evaluated by a fitness function which ranks them
according to criteria of shape, size, and composition. Data are collected
throughout the process and analyzed after the repeat simulations are
complete. The state transitions are deterministic, but there is a stochastic
element at both the embryo level (with respect to the order of cell be-
haviors) and the evolutionary level (because mutations are randomly
executed).

Here, we focus on a specific component of this process: the evolution-
driven changes to the dependence of the embryos on finite resources —
reservoirs of molecules which permit specific cell actions and are
decremented each time such an action is taken (like a limited pool of
metabolic or informational molecules). The starting capacity of finite
reservoirs is determined by the genome (it is evolvable), and they do not
get replenished during development. It is important to note that our
simulation is not focused on metabolic resources (which are often
externally limiting) but mimics the use of informational resources, such
as trophic signals or hormones, which in principle could be churned out
in non-limiting amounts by cells but in biological systems are often
present in small quantities for which cells compete (Gawne et al., 2020).
We tracked the developmental and evolutionary usage dynamics of
finite and infinite reservoirs within populations, and then analyzed the
genomic and physiological processes that the resulting high-fitness in-
dividuals were using to accomplish their morphogenetic outcomes.
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Fig. 1. Schematic of virtual [or digital] embryogeny
model.

(A) The genome specifies the embryo’s development
from a single stem cell until it stops growing on its
own, by determining how each stem cell (black)
makes progeny and what reservoir it uses to be
allowed to do so. The inputs to the genome are the
stem cells’ neighbors (number of adjacent stem
(black), interstitial (green), and nerve (red) cells).
Stem cells draw fuel from reservoirs of finite and
infinite capacity in order to divide. If a stem cell has
space to grow and available fuel from the reservoir it
refers to, it will create a new cell. Development stops
once all of the stem cells run out of adjacent places to
grow or the ones with places to grow rely on depleted
finite reservoirs (more details in Methods). (B) Sam-
ple development of one embryo as it grows from a
single cell into a highly fit embryo. The finite reser-
voir is depleted over the course of development. (C)
The population of embryos with randomly generated
genomes evolve over many generations, according to
a fitness function that evaluates aspects of the
resulting embryos’ morphologies (as described in
each specific experiment below).
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3.2. Embryonic strategies using finite reservoirs are better at
morphogenesis

We performed evolutionary simulations to identify strategies that
optimally solved a problem of morphogenesis (see Table 1): produce an
embryo close to a target size, with an overall shape bearing a specific
aspect ratio, and cell composition that reflects a patterned primary axis
(more red cells to the left of the embryo’s midpoint and more green cells
to the right). Evolution was able to choose whether, and how, to use
finite or infinite resources to guide cell behavior. We specifically did not
include any metabolic penalty on resource usage, to isolate one variable:
even when resources cost nothing, would evolution prefer to limit them,
forcing embryonic cells to compete?

We first ran three sets of 100 evolutionary simulations (Figs. 2 and
3). With respect to the control of cell functions, the first set was locked to
use only infinite reservoirs (no competition for resources); the second set
had access to only finite reservoirs, and the third allowed mutation to
make genomes that refer to both infinite and finite reservoirs (essentially
allowing these strategies to compete). Fig. 2A-C shows representative
simulations from each of the sets. We found that the infinite-only
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simulations (Fig. 2A) tended to reach a lower final fitness and demon-
strated much higher variability in its fitness from each generation to the
next compared to the finite-only (Fig. 2B) and the infinite-and-finite, or
“mixed model” (Fig. 2C) simulations. The simulations with access to
finite reservoirs commonly displayed clear jumps in fitness over a few
generations when evolution discovered an improved strategy. This
rarely happened for the infinite-only simulations. Fig. 3 illustrates that
the average fitness scores for the set of mixed-model simulations was
23% greater than the infinite-only set. The mixed-model simulations
initially scored lower on average than the only-finite set; however, the
two sets’ average scores converged throughout the course of evolution
(Fig. 3A). Despite the mixed-model set performing better on average
compared to the infinite-only set, the infinite-only simulations’ final
fitness values range from 96.99 to 134.74 while the mixed-model sim-
ulations’ final fitness values range from 121.07 to 146.65. Therefore, the
infinite-only simulations can outperform the mixed-model simulations
in a few cases. This indicates that finite reservoirs are not the only
possible solution for this problem.

Simulations with only infinite reservoirs frequently evolve to stop
growth by trapping the stem cells with a layer of differentiated cells. We

Fig. 2. Representative simulations showing evolution
with different types of reservoirs.
500 Evolution results in embryos that able to reach the
‘ target fitness criteria of a size of 400 total cells, an
aspect ratio of 5:1, and an embryo midpoint split of
two different “tissue” types (red and green) demar-
cating a large-scale axial polarity pattern (such as
7499 anterior vs. posterior, in a flatworm or similar archi-
tecture). We ran three sets of 100 evolutionary sim-
ulations where each set differs only by the types of
reservoirs it has access to. The graphs in panels A-C
show representative time-courses plotting the top
fitness of the simulation throughout evolution; the
corresponding individuals on the right show the final
forms of the best embryo that the simulation pro-
duced during generations 0, 100, 500, 2500, 5000,
and 7499. (A) When given access to only infinite
reservoirs, the simulations’ best embryo’s fitness from
each generation is highly variable throughout evolu-
tion (ranging from 96.99 to 134.74 across individual
experiments in the final generation), and rarely sur-
passes 120. (B) When evolution allows genomes to
7499 use finite reservoirs, the simulations evolve embryos
that have fitness between 140 and 150 and are much
more consistent (See Fig. 4 for analysis of robustness).
(C) When evolution is allowed to exploit both finite
and infinite reservoirs, the result is like that in B.
Summary statistics for repeats of these experiments
are shown in Fig. 3.
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Fig. 3. Simulations using finite reservoirs are better
able to reach the target fitness criteria.

Evolutionary simulations were using a fitness func-
tion that rewarded a size of 400 cells, an aspect ratio
of 5:1, and an embryo midpoint split of “nerve” (red)
and “interstitial” (green) cells. (A) Each line repre-
sents the average of the best embryos’ fitness across
100 simulations over the course of evolution. The
infinite-and-finite and the finite-only simulations
reach a significantly higher fitness than the infinite-
only simulations ((p-value: 9.09e-06). (B, C, D) The
final morphology of the best embryos produced by
the best simulation from each set of 100 simulations;
note that the embryos created by genomes with ac-
cess to finite reservoirs (C and D) are noticeably
better at separating nerve (red) and interstitial
(green) cells at the embryo’s midpoint. (E) Each dot
represents the best embryos’ fitness score from the
final generation of each simulation; the horizontal
line with the corresponding color represents the mean
of the scores from the set. Runs using only finite
reservoirs produced results indistinguishable from
those allowed to use infinite and finite reservoirs (p
> 0.02), while runs that were only allowed to use
infinite reservoirs (no competition for resources)
exhibited a much lower average (mean) max fitness
(infinite-only vs. infinite-and-finite p-value = 9.99e-
06). (F) Each dot represents the generation in which
the simulation produced an embryo with a fitness
score surpassing 80% of the highest possible fitness.
This occurred very early in evolution for reservoirs
allowed to use finite reservoirs (or both), while
infinite-only evolutionary runs often didn’t reach
80% until hundreds or thousands of generations and
sometimes didn’t find it all (for # of generations
needed to pass the 80% threshold: p-value = 9.99e-
06). The average number of generations the infinite-
only simulations took to surpass 80% of the max
fitness was 4636.05. For finite-only it was 130.48
generations and for infinite-and-finite it was 521.22
generations. The difference between finite-only and
finite-and-infinite runs was significant (p-value =
9.99e-06) The dots on the top row of the graph are
simulations that never produced an embryo surpass-
ing that threshold.
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A 10 Repeats Of The Three Median Infinite Only Agents Overlayed

B 10 Repeats Of The Three Median Infinite And Finite Agents Overlayed
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Fig. 4. Finite reservoirs enable developmental con-

sistency without rewarding for developmental con-

sistency directly in the fitness function. (A, B) The

genomes from the 49, 50, and 51 most successful

simulations from the set of 100 simulations from the
i infinite-only and infinite-and-finite sets were rerun 10
times. The images of the final adult form of each of 10
embryos were overlaid. The final embryos from runs
allowed to use competition via finite reservoirs are
much more consistent (low-opacity regions are those
occupied by only some of the cohort). (C) The best
genomes from the final generation of the infinite-
only, finite-only, and infinite-and-finite sets were
each rerun 30 times. The dots represent the standard
deviation from the 30 repeats, quantifying the spread
of fitness values for developmental instances of each
genome. We found that the embryos developing
without the ability to coordinate via infinite reser-
voirs have much bigger diversity of fitness values in
repeat runs of the same genome, while those able to
use finite reservoirs have much greater consistency of
embryogenesis (p-value: 9.99e-6). The horizontal
lines demarcate the mean of the standard deviations
for the set with the corresponding color.
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also observed that the average number of generations that the infinite-
only set of simulations took to surpass 80% of the max fitness was
4310.2 generations greater than the sets of simulations with access to
finite reservoirs. Therefore, we conclude that evolutionary simulations
with access to finite reservoirs produce embryos with significantly (p-
value: 9.99e-06) higher fitness values after 7500 generations and ach-
ieve a high fitness in many fewer (p-value: 9.09e-06) generations than
simulations using only infinite reservoirs.

3.3. Without rewarding for developmental consistency directly, finite
reservoirs enable developmental consistency

Since development includes stochastic components, repeat runs of
the same genome do not necessarily produce identical embryos; how-
ever, biological embryogenesis is generally highly invariant to a specific
target morphology (and thus overall fitness). Thus, we next sought to
test whether simulations using finite reservoirs produce genomes that
develop more consistently-shaped embryos than simulations using only
infinite reservoirs. We took the best embryos’ final genomes from each
of the 100 simulations in the infinite-and-finite (mixed model) set and
reran them 30 times each, to find the standard deviations of their fitness

scores. We observed (Fig. 4C) that the set of genomes from the set that
had access to only infinite reservoirs had significantly higher (p-value:
9.99e-6, permutation test) standard deviations on average, revealing
that there was much less consistency amongst embryos compared to
those arising from genomes with access to finite reservoirs. Therefore,
we conclude that simulations of stochastic developmental processes
with access to finite reservoirs evolve genomes that produce embryos
with more consistent fitness values.

3.4. Successful individuals’ morphogenesis depends on finite reservoirs

Given the prevalence of evolved genomes that use finite reservoirs,
we next sought to directly test whether the resulting high-fitness in-
dividuals functionally rely on this property to achieve their successful
morphogenetic outcomes. We took the best individuals from the last
generation of each simulation in the mixed model set and edited their
genome to remove access to finite reservoirs (Fig. 5A). This is a standard
“loss-of-function” experiment in developmental genetics, enabling
experimental tests of the function of specific genetic features. We
observed (Fig. 5C) that every such embryo (out of 100) exhibited un-
controlled growth and therefore grew outside of the available grid space,
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Fig. 5. Successful individuals depend on finite res-
ervoirs.

(A) Genomes evolved with access to finite reservoirs
were forced to undergo development with only
infinite reservoirs, in a virtual “genomic editing”
gain-of-function experiment. (B) Examples of single
individuals (from evolutionary runs in which ge-
nomes are allowed to reference finite reservoirs) at
the end of their embryogenesis, showing good fitness
according to the criteria of a size of 400 total cells, an
aspect ratio of 5:1, and an embryo midpoint split of
nerve (red) and interstitial (green) cells. (B') When
their genomes are altered to instead refer to only
infinite reservoirs, their patterns are very different,
showing that their specific morphogenesis depended
on the limited nature of the finite reservoirs used by
their genomes. (C) Across the infinite-and-finite sim-
ulations, the embryos’ fitness drops to zero when
force to use only infinite reservoir. The blue and or-
ange horizontal lines are the means of the group of
dots with the corresponding color. The black slanted
lines connect the scores for each individual, before
and after they are forced to use only infinite reser-
voirs to develop (p-value: 9.99e-6). (C') Removing the
fitness punishment for growth outside of the 2-dimen-
sional grid still leads to an overall drop in fitness
when forced to use infinite reservoirs only (p-value:
9.99¢-6). (D) The drop in fitness resulting from
genomic editing of individuals to replace finite
reservoir genes with those referencing infinite reser-
voirs only is over 60% on average (with no border
punishment), revealing the dependence of high-
scoring individuals on the ability to use finite reser-
voirs. There are some genomes that had a compara-
tively small drop in fitness implying that they had less
of a reliance on finite reservoirs to achieve a high
fitness.
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resulting in minimal fitness based on its lack of size control. We conclude
that genomes that evolve to use finite reservoirs functionally rely on this
property to achieve their high fitness score (i.e., the increased appear-
ance of finite alleles during evolution is not simply an epiphenomenal
byproduct of other forces but is actually required for optimal
embryogenesis).

As is often done in developmental biology to analyze an otherwise
embryonic lethal phenotype, we sought to artificially enable embryos to
be scored for fitness despite their abnormal growth, to analyze how
other aspects of embryogenesis may rely on reservoir properties. Inter-
estingly, when growth was artificially stopped at the borders in embryos
forced to use infinite-only reservoirs, some embryos achieved reason-
able fitness scores (9 embryos had a fitness score above 100), suggesting
that a large component of the benefit of finite reservoirs is specifically
size control (Fig. 5C’-D).

3.5. Successful Individuals Have Different Strategies for How They Use
Finite Reservoirs

To understand how finite reservoirs create successful embryos, we
investigated how evolution calibrates reservoir capacity in infinite-and-
finite (mixed model) contexts, and how embryos use their reservoirs
during development (Fig. 6); this is the artificial embryogeny equivalent
of analyzing the transcriptomic or physiological processes underlying
development. First, we found that all the top genomes from the simu-
lation deplete their finite reservoirs by the end of development (Fig. 6A).
This confirms that the simulations have evolved genomes that utilize the
stopping power provided by finite reservoirs to create highly fit em-
bryos. Moreover, we found that the evolved values of initial reservoir
capacities do not approach 399 (embryo target size of 400 minus the first

B Reservoir Capacity For The Top Genome From
100 Simulations Throughout Evolution

BioSystems 221 (2022) 104762

egg cell) as we expected (Fig. 6B), showing that finite reservoirs can be
used to coordinate growth in ways other than simply decrementing once
for each cell to be produced.

Initially, we hypothesized that the genomes would rely entirely on
finite reservoirs and evolution would set their capacity to 399 to
consistently reach their target growth (embryos consisting of ~400
cells). However, the top genomes from the mixed model set of simula-
tions have a mean reservoir capacity of 240.93 with a standard deviation
of 43.18. To understand how the mixed-reservoir genomes were able to
stop growth at the correct target size despite their unintuitive initial
reservoir capacities, we analyzed their reservoir usage throughout the
development of their embryos (Fig. 6C-E). We found a variety of stra-
tegies ranging from harmonic growth with arms that leave only one stem
cell exposed at a time to a majority reliance on finite reservoirs. We
concluded that there are a variety of different strategies that use finite
reservoirs to successfully meet the fitness criteria.

3.6. How evolution solves the coordination problem: genomic analysis

Development consists of a rich layer of interactions downstream of
genetic information. Thus, morphogenetic outcomes relying on limited
resource use can be modified by evolution in two ways: by increasing the
number of genes referring to finite reservoirs, and/or by changing other
genes that cause these same finite reservoir genes to be expressed in
novel ways (mirroring the distinction between structural genes and
regulatory/epigenetic mechanisms in biological evolution (Rosati and
McKinnon, 2009; Tangwancharoen et al., 2018)).

To determine whether evolution would increase the frequency of
finite alleles in the genome, we calculated the ratio of finite alleles found
in populations before and after evolution. In a set of simulations where

Fig. 6. Successful individuals have different strate-
gies for how they use finite reservoirs.
(A) The average finite reservoir capacity for the top

genome from the infinite-and-finite set is 243 and
each of the top genomes from the last generation of
evolution use the entirety of their finite reservoir
during development. (B) The infinite-and-finite sim-
ulations’ top genome’s finite reservoir capacity varies
between simulations and commonly changes
throughout evolution. (C, D, E) The top genomes from
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Table 2). (E) The number of unique genes used in

development decreases by 42.8% over the course of

evolution in the infinite-and-finite set. (F) Each graph

represents the fitness over the 7500 generations of

evolution for two representative simulations from the

set of infinite-and-finite simulations. The embryos on
the graphs illustrate the change in morphology due to a jump in fitness of at least 5 points (see Table 4).
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Table 2
Supporting Fig. 7B.
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Table 3
Supporting Fig. 7D.

Finite Alleles in Genome Finite Transcriptome Usage During Development

Fixed At 5% 22%
Fixed At 10% 34%
Fixed At 20% 59%
Not Fixed 60%

Legend: Finite Alleles in Genome Effect on Transcriptome Finite Usage.

The percent of finite transcriptome usage during development increases as the
cap for the allowed finite alleles in the genome increases. However, once the
finite allele cap reaches 20%, the finite transcriptome usage is equivalent to
when the finite usage can fluctuate freely.

all the genomes started with only 5% finite alleles in the first generation,
but were free to fluctuate under evolutionary dynamics, the ratio of
finite alleles in the genome barely increased (0.1%) after 2500 genera-
tions, despite the observed rise in fitness (Fig. 7A). However, the usage
(equivalent to a transcriptomic analysis) of finite reservoirs during
development rose from 5% in the first generation to almost 15% in the
final generation (p-value: 9.99e-6) (Fig. 7B). Despite the tendency not to
increase the prevalence of finite alleles in the genomes, evolution does
produce genomes that use genes with finite alleles at higher rates during
development. As the capacity for finite alleles in the genome increases,
the transcriptome usage during development increases correspondingly.
For finite allele ratio in the genome between 20% and 50%, the tran-
scriptome usage during development approaches at 60% (Table 2).
Thus, as in real development, genomic information does not tell the
whole story: it is essential to ask how the genes are being used during
embryogenesis. We found that evolution increasingly relies on finite
reservoirs not by expanding these genes, but by modifying when and
how they are used by embryos (i.e., at the transcriptional control level).

To further understand the developmental strategies used by evolu-
tion to produce highly fit embryos, we next sought to analyze further the
importance of specific genes to the rises in fitness we observed during
evolution (Fig. 7C). We chose allele turnover, the frequency in which a
gene in the top agent’s genome successfully mutates its allele (See
Methods), as a gauge for measuring the impact of specific genes on
morphogenesis. The 5 genes with the least allele turnover in the set of
mixed-model simulations had a mean of 255.28 unique alleles with a
standard deviation of 280.6, while the 5 genes with the most allele
turnover had a mean of 1558.72 unique alleles with a standard deviation
of 14.1. Moreover, Table 3 demonstrates that the five genes with the
lowest turnover are also the genes that evolution is most likely (mean of
35.2%) to assign a finite allele and the five genes with the most turnover
are the least likely (mean of 1.6%). Additionally, Table 3 highlights that
the five genes with the lowest allele turnover are likely to contribute to
jumps in fitness (mean of 48.6%) whereas genes with the highest allele
turnover (mean of 1.8%) rarely contribute to jumps in fitness. Therefore,
we conclude that high impact genes take on most of the responsibility to
achieve high fitness.

To determine just how efficiently evolution could use a small number
of finite alleles (and further distinguish structural from regulatory
change in evolution as a contributor to the rise in fitness), we ran sets of
simulations where we artificially capped the number of finite alleles that
were allowed in any genome (Fig. 7D). Initially, the set of simulations
with finite alleles capped at 5% had an average fitness comparable to the
infinite-only set; however, after 2500 generations the average fitness
was 21 points above the infinite-only set and only 5 points below the
mixed-model set. The 5% capped simulations also developed a reliance
on finite reservoirs, as their fitness drops precipitously when their finite
reservoirs are removed (Supplemental Figure). Because the set of
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Gene Probability of Percentage of
# of Stem # of Nerve  # of T.hi.s Allele Using  Times That This
- - —_— Finite When Allele
Neighbors Neighbors Interstitial - g
. Genome is Contributed to a
Neighbors Locked at 5% Jump in Fitness
Finite Alleles
1 2 1 38% 53%
1 1 1 56% 60%
1 1 2 24% 8%
1 2 2 38% 51%
2 2 1 20% 31%
5 5 1 0% 0%
4 0 0 2% 3%
5 2 0 2% 0%
6 0 0 2% 3%
6 0 1 2% 3%

Legend: Distinction Between High and Low Impact Genes In the Genome.

In order to receive instructions for how to divide and consume fuel, a stem cell
queries the genome based on its surrounding neighbors; thus, each gene in the
table is defined by a combination of neighbors. The rows match directly with the
genes from Panel D in Fig. 7. The first 5 rows are the genes with the least number
of unique alleles; they have the least turnover. The top genomes from the sim-
ulations’ commonly have finite alleles for these genes in the set of simulations
where the genome is locked at 5% finite alleles. A clear preference for these
genes to use finite alleles has emerged. Additionally, these genes tend to
contribute to jumps in fitness. Directly after a jump in fitness, the genes from the
first five rows had a single allele in the top genome which was not present before
the jump and that did not change for 100 generations after the jump. The genes
in the last five rows are the genes with the greatest number of unique alleles;
they have the greatest turnover. The top genomes from the simulations’ rarely
have finite alleles for these genes in the set of simulations where the genome is
locked at 5% finite alleles. Additionally, these genes rarely contribute to jumps
in fitness. The genes from the last five rows were changing frequently both
before and after the jump.

simulations with only 5% finite alleles in the genome can achieve an
average fitness that is only 5 points under the mixed-model set which
can fluctuate their number of finite alleles freely and because its fitness
score relies on finite reservoirs, we conclude that the populations locked
to 5% finite alleles are successfully utilizing the rare finite reservoir
genes to achieve a high fitness.

Due to the high fitness achieved by the simulations capped at a low
percentage of finite alleles, we investigated how much of the genome
matters to create fit embryos (Fig. 7E). We measured the number of
unique genes used at the start and end of evolution and found that it
dropped by 42.8% over the course of evolution. By the end of evolution,
only 37 genes (mean) are responsible for the embryo’s development
which represents only 5.08% of the genome. This emphasizes that the
overall state of the genome alleles is not as important as the key genes in
the genome; the ones that evolution opts to use.

To analyze in greater detail the events responsible for discrete rises in
fitness that occur during evolution (punctuated equilibria events), we
analyzed a simulation’s top genome before and after its jump in fitness.
Panel F in Fig. 7 illustrates a sample change in the embryo before and
after one of these jumps. It demonstrates that the embryo performs
better in the task of cell composition; nerve cells (red) on the left and
interstitial cells (green) on the right). /5 of the removed alleles created
nerve cells whereas 7/ of the added or changed alleles created nerve
cells. Table 4 shows the actual alleles that changed to cause this jump in
fitness. Six alleles that were locked in became removed due to the jump
in fitness and 8 gene alleles were either added or changed. Across all the
simulations, jumps in fitness. For the mixed-model set, the mean number
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Table 4
Supporting Fig. 7F.
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Locked in Alleles Removed

Locked in Alleles Added or Changed

# Of Stem # Of Nerve # Of Interstitial ~ Allele # Of Stem # Of Nerve # Of Interstitial ~ Allele
Neighbors Neighbors Neighbors Neighbors Neighbors Neighbors
1 2 2 New_res = finite, 1 3 1 New_res = infinite,

Daughter res = finite
Directional_bias = West,
South, then East

Daughter_type =
Interstitial (green)

0 0 1 New _res = finite,
Daughter_res = infinite
Directional_bias = North-
West, East, then South
Daughter_type = Stem
(black)

2 1 3 New_res = finite,
Daughter_res = infinite
Directional_bias = North-
West, South-East, then

North
Daughter_type = Stem
(black)

0 3 0 New_res = infinite,

Daughter_res = infinite
Directional_bias = North,
East, then West
Daughter_type = Nerve
(red)

0 0 0 New_res = finite,
Daughter_res = finite
Directional_bias = North,
South-West, then South
Daughter_type = Nerve
(red)

0 1 1 New_res = infinite,
Daughter_res = infinite
Directional_bias = West,
East, then South-West
Daughter_type =
Interstitial (green)

Daughter_res = infinite
Directional_bias = West, South-
West, then North-East
Daughter_type = Nerve (red)

1 3 0 New_res = infinite,
Daughter _res = finite
Directional_bias = South-East,
North-East, then South-West
Daughter_type = Nerve (red)

1 2 1 New_res = infinite,
Daughter_res = infinite
Directional_bias = North-West,
East, then North-East

Daughter_type = Nerve (red)

1 4 1 New_res = finite,
Daughter_res = infinite
Directional_bias = South-West,
North, then South-East
Daughter_type = Nerve (red)

1 2 0 New_res = infinite,
Daughter_res = infinite
Directional_bias = South-East,
West, then North
Daughter_type = Nerve (red)

1 3 2 New_res = infinite,
Daughter _res = finite
Directional_bias = South, North-
West, then South-West
Daughter_type = Stem (black)

0 1 0 New_res = finite,
Daughter _res = infinite
Directional_bias = North-East,
West, then East
Daughter_type = Nerve (red)

2 0 3 New_res = infinite,
Daughter _res = finite
Directional_bias = North-West,
East, then West
Daughter_type = Nerve (red)

Legend: Analysis of the Genome Affected by a Jump in Fitness.

The table’s rows illustrate the genes that were changed due to the jump in fitness in the simulation discussed in Panel F from Fig. 7. The left side of the table lists the
genes that ceased to be locked in due to the jump and their locked in allele. The genes in the top genome in the simulation had the corresponding alleles in all the 100
generations prior to the jump. However, the genes no longer had the corresponding alleles after the jump. The right side of the table lists the genes that newly became
locked in after the jump. The top genome’s listed genes either had alleles that were getting mutated or were locked into a different allele in all of the 100 generations
prior to the jump. The corresponding allele is the allele that was present in all the 100 generations after the jump.

of alleles removed for a jump in fitness is 3.7 and the mean number of
alleles added or changed is 12.3. This demonstrates that jumps in fitness
can be caused by a small number of mutations and are not necessarily
triggered by changing a single gene.

4. Discussion

This work contributes to, and complements, the rich body of prior
studies of evolutionary simulated embryogeny (reviewed in (Lai et al.,
2021)), by adding explicit dependence on metabolic reservoirs as a gate
for executing cell automata rules. This enabled the study of evolutionary
dynamics for the emergent repurposing of metabolic competition and
constraint as a mechanism to augment the morphogenetic targets

achieved by multicellularity. Such mechanisms have important rele-
vance to practical applications such as organ transplants, where for
example multiple livers coordinate and compete to implement correct
physiological function (Dolson et al., 2020; Liard et al., 2020), and the
understanding of emergent physiological and morphological outcomes
in chimeras (Nanos and Levin, 2021).

4.1. How evolution coordinates morphogenesis

The ability of the simulations to produce consistent, patterned em-
bryos of an “adaptive” size and composition is a tribute to the power of
evolutionary search to find good solutions via partial credit and inter-

mediate forms: initial mutations availing embryos of access to finite

13



P. Smiley and M. Levin

reservoirs were not fully useful (because random initial reservoirs were
usually of a capacity that is not useful for making a fit embryo).
Nevertheless, it rapidly spread this phenotype through the population
and optimized the reservoirs’ capacities. Indeed, this occurred very early
on in evolution, which spent much of the rest of the time tweaking other
aspects of the genomes.

Competition for resources was clearly an effective way to coordinate
morphogenesis, within and between embryos of a given generation
(consistency). When given the option, every simulation evolved to
exploit within-body competition, but discovered a variety of different
ways to use it in identical repeats of the same conditions. This illustrates
how despite the randomness of mutation and stochasticity of develop-
ment, diverse micro-details of implementation can give rise to stable,
reproducible dynamics on an evolutionary scale (Fields and Levin, 2020;
Sepkoski, 2016). Interestingly, the basic strategy of using competition to
produce fit embryos required very few genes — a small percentage were
responsible for most of the jumps in fitness, and was focused on the
finite-reservoir alleles when constrained.

Crucially, we saw that the most work during development was done
by the physiological/transcriptional level (how the existing genes were
used by the cellular automata rules), not the genetic level (the preva-
lence of finite-reservoir alleles themselves). For example, once the
genome got to 20% of finite reservoir alleles, that was sufficient to have
the transcriptome reach its optimal value of 60% actual finite reservoir
use during embryogenesis. Evolution was clearly able to exploit all
levels of the options available to it, not just the genomic “hardware”, an
idea that has been discussed in the literature on the relative impacts of
changes in regulatory vs. structural genes (King and Wilson, 1975). This
illustrates how evolution can take advantage of regulatory dynamics to
make use of whatever structural components are available in the
genome, paralleling the ways in which workers in regenerative medicine
can exploit physiological signaling to accommodate genetic defects in
the case of embryonic malformations (Pai et al., 2015, 2018, 2020) and
cancer (Chernet et al., 2016; Chernet and Levin, 2013).

4.2. Future improvements

The system currently has several limitations that will be overcome in
future development of the model. For example, cell migration,
apoptosis, planar polarity, and explicit signaling will be added to the
simulation, and it will be ported into a 3D modeling environment such as
VoxCad (Kriegman et al., 2020a, 2020b; Shah et al., 2021) where
physical forces and actual behavior (e.g., motility) can be simulated for
added realism. We will also enable the system to add genes for replen-
ishing finite reservoirs under specific circumstances. Likewise, we will
explore other aspects of morphogenesis besides emergent shape, such as
regeneration.

In silico simulations of group dynamics are an essential component of
complexity science and collective intelligence (Adami, 2002; Couzin,
2009; Deisboeck and Couzin, 2009; Furusawa and Kaneko, 2000; Hey-
lighen, 2013; Sole et al., 2016). Thus, research in swarm robotics
(Rubenstein et al., 2014; Werfel, 2012), synthetic bioengineering
(Davies, 2013; Davies and Cachat, 2016; Davies and Glykofrydis, 2020;
Sole et al., 2016, 2019), regenerative medicine (Mathews and Levin,
2018; Pezzulo and Levin, 2015, 2016), evolutionary design tools (Che-
ney et al., 2014, 2015; Corucci et al., 2015; Kriegman et al., 2017, 2019,
2020b), will all benefit from simulations to augment human scientists’
intuitions about complex multiscale systems’ dynamics, their origins,
and policies for their control.

5. Conclusion

While our in silico model is a very minimal system, lacking much of
the complexity of real biology, it recapitulates a key dynamic that is
missing from many studies of genotype:phenotype relationship —
development and physiological competition among the parts. Our
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quantitative results will no doubt be modified when applied to specific
biological taxa, but a few general conclusions emerged that shed light on
intrinsic dynamics of genotype-morphogenesis-phenotypic fitness sys-
tems. Evolution is quite efficient at generating interesting target mor-
phologies with even extremely simple cellular capabilities, and can
generate consistent emergent outcomes without any explicit pressure for
reliability of development. Consistency and high anatomical fitness are
both greatly enhanced by the ability to use scarce resources to coordi-
nate growth — evolution discovers and exploits this, even when there is
no metabolic penalty for unlimited resource use. It does so largely by
regulating how those resources are used at the transcriptional/physio-
logical level, and relies less on structural genomic change.

Perhaps the most salient aspect of this work is that it reveals how
evolutionary dynamics reliably result in systems that preferentially pit
their parts against each other, generating conflict, competition, and
artificial scarcity of resources for their parts in order to meet the fitness
function of the higher level of organization. In our system, there was no
penalty for using reservoirs of any capacity or type, and multiple other
ways to solve the growth limitation problem (for example, some em-
bryos grew an outer “skin” of differentiated cells, which prevented
further cell division inside because of lack of space into which daughter
cells could expand). Despite the fact that cells could in principle have all
the resources they need, with no efficiency pressure, and other ways to
solve growth control, evolution preferred the strategy of self-induced
limitations of resources and competition. This is important, given the
common assumption that evolution can be expected to drive within-
agent cooperation: apparently, a given system’s goals can be better
satisfied by parts that are in conflict over resources. While extrapolation
of this phenomenon outside of developmental systems warrants caution,
it is tempting to look for this dynamic in other (larger-scale) systems and
contexts, and explore additional ways of coordinating information
among subunits to diffuse pressure toward unnecessary competition
among the members of a group.
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