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A B S T R A C T   

The standard view of embryogenesis is one of cooperation driven by the cells’ shared genetics and evolutionary 
interests. However, numerous examples from developmental biology and agriculture reveal a surprising amount 
of competition among body cells, tissues, and organs for both metabolic and informational resources. To explain 
the existence of such competition we had hypothesized that evolution uses limiting “reservoirs” of resource 
molecules as a communication medium - a global scratchpad, to enable tissues across the body to coordinate 
growth. Here, we test this hypothesis via an evolutionary simulation of embryogeny in silico. Genomes encode 
state transition rules for cells, such as proliferation, differentiation, and resource use, enabling virtual embryos to 
develop a specific large-scale morphology. An evolutionary algorithm operates over the genomes, with fitness 
defined as a function of specific morphological requirements for the final embryo shape. We found that not only 
does such an algorithm rapidly discover rules for cellular behavior that reliably make embryos with specific 
anatomical properties, but that it discovers the strategy of using finite resources to coordinate development. 
Given the option of using finite or infinite reservoirs (which determine cells’ ability to carry out specific actions), 
evolution preferentially uses finite reservoirs, which results in higher fitness and increased consistency (without 
needing direct selection for morphological invariance). We report aspects of anatomical, physiological/tran
scriptional, and genomic analysis of evolved virtual embryos that help understand how evolution can use 
competition among genetically identical subunits within a multicellular body to coordinate reliable, complex 
morphogenesis. Our results suggest that under some conditions, composite multi-scale systems will promote 
conflict and artificial scarcity for their components.   

1. Introduction 

Multicellular bodies exhibit remarkable complexity of anatomical 
form. Control processes during embryogenesis and organ regeneration 
must coordinate cellular behaviors such as proliferation, differentiation, 
migration, and apoptosis in order to reliably build bodies with specific 
structure and function. Evolutionary dynamics and generic laws of 
morphogenesis are responsible for embryonic development’s robustness 
and ability to result in emergent morphologies with high fitness (Eldar 
et al., 2004; Newman and Comper, 1990). This remarkable process en
ables competent individual subunits (cells), which were independent 
organisms in our evolutionary past, to cooperate toward large-scale 
anatomical outcomes (Levin, 2019). 

A major unknown in development and regeneration is how tissues 

and whole organisms can determine when to stop growth. When 
amputated, planarian flatworms or axolotls re-grow the missing struc
tures and cease growth and remodeling when the correct anatomy is 
restored. In addition to growth limitation, the actual anatomical struc
ture must be coordinated. This is a key unknown not only for under
standing developmental biology but also for developing regenerative 
medicine approaches to restore bodies after injury, disease, or cancer 
(Pezzulo and Levin, 2015, 2016). Thus, it is important to construct 
models of dynamics that are sufficient for emergence of morphological 
coordination. 

Cooperation among cells is typically explained by their identical 
genomes. Bound by shared genetics and survival interests, it is typically 
thought that cells within a single body should be highly cooperative in 
their mission to build or repair an organism (Godfrey-Smith, 2013). 
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However, “genomes are not a blueprint for anatomy” and these pro
cesses also rely on chemicals, electrical signaling, and mechanical pro
cesses to ensure the emergence of correct anatomy in embryogenesis. 
Growth requires energy from fuel (which is necessarily limited) and is 
governed by the dynamics of informational signaling molecules (which 
can be produced in arbitrary quantities by cells) (Briscoe and Small, 
2015; Song and Shvartsman, 2020). Development is the process of 
distributing energy and signals appropriately so as to reach a specific, 
coherent target morphology (Gawne et al., 2020; Pezzulo and Levin, 
2016). However, a surprising amount of competition is found within 
single organisms (reviewed in (Gawne et al., 2020; Heams, 2012; 
Queller, 2011; Wagensberg et al., 2010)). This has been observed across 
taxa, in the context of developmental biology and agricultural research. 
Specifically, organs, tissues, and cells compete for limiting molecules, 
including metabolic resources and informational signals such as growth 
factors and other instructive morphogens. 

Competition between developmental structures relates to how the 
rate and timing of one body part’s growth can alter the store of meta
bolic and informational resources that are used to coordinate growth in 
other parts of the body (Gawne et al., 2020). The classic example of this 
type of competition is the demonstration that removing a tomato plant’s 
fruits often produces an increase in its overall height (Gawne et al., 
2020; Murneek, 1926). Another example is hypertrophy of the 
remaining sexual organ following hemi-castration, which has been 
documented in boars, rats, cows, pigs, sheep, rabbits, and catfish 
(Gawne et al., 2020; Goswami and Sundararaj, 1968; Hackenbruch, 
1888; Klingenberg and Nijhout, 1998; Land and Carr, 1975; Mahade
vaswami et al., 2000; Schanbacher et al., 1987). As in other tissues, each 
half, in a pair of sexual organs, competes for the same finite resources 
(revealed by the release of growth constraints observed when one of the 
pair is removed). Likewise, removing a butterfly’s hindwings prior to 
pupation results in a significant increase in the size of the forewings 
(Gawne et al., 2020; Klingenberg and Nijhout, 1998; Nijhout and Emlen, 
1998). Because resources are limited, their uptake from one area of the 
body likely influences growth in others. Finite metabolic and informa
tional signals may take the form of amino acids, insulin, growth factors, 
ions, or systemic morphogens (Gawne et al., 2020; Nijhout and Emlen, 
1998). 

These competitive dynamics are surprising, given the expectation 
that genetically-identical cells in embryogenesis ought to cooperate 
optimally due to their shared interests – bodies are thought to be 
Darwinian individuals, competing amongst themselves but cooperating 
internally. How can the internal competition be explained? Gawne et al. 
(2020) hypothesized that evolution exploits cells’ natural competitive
ness to coordinate morphogenesis. Specifically, we suggested that res
ervoirs of resources can be used as global scratchpads – informational 
media that carries actionable intelligence about the growth state of 
distant cells. For example, when cells are dependent on an 
infinite-capacity (unlimited) resource to execute their behaviors, a cell 
or tissue is not informed about the state of the others because the 
reservoir carries no information (it doesn’t change over time). In 
contrast, by polling a limiting (finite) resource, cells receive information 
on what the others are doing based on the state of the resource at any 
point in time. In this way, ancient cellular mechanisms of competition 
become co-opted as a communication and control system that in effect 
exploits limiting resources as a stigmergic information medium (Ther
aulaz and Bonabeau, 1999). This strategy is also used at higher scales, 
for example by swarm organisms such as ants, microbes, and even robots 
which use aspects of the environment to coordinate colony behaviors 
(Gloag et al., 2016; Heylighen, 2016; Hunt et al., 2019; Khuong et al., 
2016). 

Here, we sought to specifically test the hypothesis that evolution will 
discover how to use finite resources as a coordination mechanism for 
morphogenesis. We built a virtual embryo simulator, in which cell be
haviors are guided by local rules defined in their genome, taking an 
agent-based, cellular automata approach as an example of Artificial Life 

(Adami, 1998; Bedau, 2005), akin to prior work in artificial embryogeny 
such as (Andersen et al., 2006, 2009; Gerlee et al., 2015, 2017). Our 
simulation is a minimal (2-dimensional) version of development, 
including representations of features of real morphogenesis including 
cell proliferation in a metabolic resource-dependent manner, cell dif
ferentiation into several tissue types, and fitness evaluation based on 
specific features of the resulting virtual embryo. We simulated evolution 
using a standard evolutionary algorithm approach (Fogel et al., 2000), 
which performed a cycle of mutation, embryogenesis, and selection 
based on anatomical criteria, to shape the content of each new genera
tion based on the performance of embryogenesis in the past generation. 
Crucially, this evolutionary approach includes the all-important middle 
layer of developmental physiology that lies between genome and 
outcome: we use a generative encoding (in which the genomic infor
mation contains rules for emergent morphogenesis), not a direct map
ping from genotype to phenotype. 

In our simulations, embryos start as a single cell and divide repeat
edly until they stop growing on their own; their genome determines the 
rules under which they produce various cell types and distribute them 
spatially. A population of initially-randomly generated embryos evolve 
for thousands of generations until they meet specified fitness criteria. 
We set target sizes, shapes, and compositions for the embryos (the fitness 
criteria guiding the evolutionary process). The virtual embryos’ ge
nomes included the ability to reference two types of different resource 
molecules, as prerequisites to action: infinite capacity reservoirs, which 
never reduce and always allow the cell to take an action according to the 
relevant rule; and finite capacity reservoirs, which eventually deplete 
and block cell activity that depends on that reservoir. We provided no 
pressure against profligate use of reservoir resources, to avoid biasing 
the system toward limited reservoirs. 

We studied the dynamics of evolution under these conditions and 
found several fundamental patterns. First, evolutionary dynamics are 
sufficient to rapidly evolve genomic rules with desired anatomical fea
tures, such as bodies with specific aspect ratios, limited size, and 
spatially differentiated anatomical structures at the “tissue” level. Sec
ond, evolution discovered how to use finite reservoirs to help coordinate 
this process, establishing artificial scarcity and competition (despite any 
penalty for metabolic cost of development) to ensure emergence of 
consistent large-scale morphologies with high fitness. We use a number 
of tools to analyze the genomic, transcriptomic/physiological, and 
morphological dynamics of the resulting highly-fit embryos to gain 
insight into how this works. Our loss-of-function and genomic editing 
experiments in silico reveal that evolution is exploiting regulatory 
mechanisms more than structural change, shaping the ways in which 
even a small number of finite-reservoir genes can be efficiently used to 
control growth and form. 

2. Methods 

2.1. Virtual embryos’ development 

An embryo starts as a single stem cell in the center of a two- 
dimensional grid. To begin each step of their discretely timed embryo
genesis, each stem cell queries the genome, which dictates how they can 
divide. The genome is represented by a lookup table, with individual 
genes encoding rules for how stem cells divide (asymmetrically), and 
where they place their progeny, based on the state of the microenvi
ronment of each cell (number of stem cell (black), interstitial cell 
(green), and nerve cell (red) neighbors) and the state of various meta
bolic resources (maintained as global reservoirs of finite or infinite ca
pacity). Note that the names “interstitial” and “nerve” are purely 
symbolic (reminiscent of the two cell types found in the primitive Hydra 
model system), to allow convenient reference to two mature (terminally- 
differentiated) cell types. The order of stem cell activity is random 
(simulating the physiological noise of parallel activity of cells in vivo), 
which provides a stochastic component to development. The genomic 
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lookup table maps every combination of microenvironment inputs 
(possible neighbor counts) to a unique output, for a given cell type. A 
query to the lookup table provides the specifications for the new 
daughter cell and the parent cell’s new reservoirs. 

Each embryo may have a genome that refers to finite and infinite 
reservoirs. While each gene contains alleles that specify whether a cell 
uses an infinite or finite reservoir, the reservoir itself is global (a com
mon pool of molecules available to all cells in the tissue). The initial 
finite reservoir is set to a value between zero and 600, allowing evolu
tion to also choose the capacity of finite reservoirs (in addition to 
choosing between them and infinite-capacity ones). For a stem cell to 
create a daughter cell, it must consume one unit of fuel from the reser
voir that it is currently using. Crucially, a stem cell cannot divide if it is 
using a depleted finite reservoir. Because an infinite reservoir will never 
deplete, it never blocks division for cells whose genomes refer to it. 

The specifications for the new daughter cell include the directional 
bias for where to place the daughter in relation to the parent, the type of 
the daughter cell (stem, interstitial, or nerve), and the (finite or infinite) 
global reservoir that the daughter cell will use to determine its future 
activity. Thus, development here assumes the presence of a planar po
larity signal in the tissue, enabling each stem cell to sense direction in 2 
dimensions. The mature (differentiated) nerve and interstitial cells do 
not divide or consume reservoir fuel. 

An embryo stops growing when none of the stem cells have a 
neighboring space to divide or when the remaining stem cells with space 
to divide are using finite reservoirs that have become depleted. After the 
embryo stops growth (development is complete), the adult form’s fitness 
is calculated based on the fitness criteria. Then, the embryo is rerun a 
reruns_per_embryo (see hyper parameter table) number of times, with the 
same initial condition, and the mean fitness of all of the runs is the 
overall fitness score for the embryo; the range and standard deviation of 
all the fitness values across reruns of the same embryo is calculated as a 
measure of the robustness or consistency of the developmental process 
resulting from that embryo’s genome. 

2.2. Evolutionary wrapper 

Each embryo’s development takes place within an overall evolu
tionary process (using hyperparameters shown in Table 1). In the first 
generation a population_size number of embryos with randomly gener
ated genomes is created; each input in the lookup table corresponds to a 
random output. The rest of each experiment consists of repeats of the 
following cycle. Each of these embryos in our simulator are run and each 
of their fitness scores are calculated. By chance, some of the randomly 
generated embryos will perform better than others. Once all the fitness 

scores for each of the embryos are calculated, population_size/survival_
rate clones of each of the top embryos are generated to make sure that 
the population size stays the same in each generation. 

Each of these embryos’ genome or initial finite reservoir capacity are 
mutated before adding them to the next generation. The initial finite 
reservoir value is mutated at a rate of reservoir_mutation_percentage and 
each time it isn’t, the lookup table is mutated. To mutate the initial finite 
reservoir capacity, our current initial reservoir capacity is randomly 
added to a value randomly selected from a normal distribution centered 
at zero (mu: 0, sigma: 50). This ensures that large jumps can occur, but 
smaller nudges are much more likely. To mutate the lookup table, we 
generate random outputs for mutation_rate percent of the inputs. Despite 
relying solely on random changes, evolutionary pressure crafts highly fit 
embryos by repeating this process over many generations. 

2.3. Calculating fitness 

Fitness is calculated based on the genome’s ability to produce an 
embryo close to a target size, with an overall shape bearing a specific 
aspect ratio, a cell composition that reflects a patterned primary axis 
(more red cells to the left of the embryo’s midpoint and more green cells 
to the right), and growth within the allotted grid size. The following 
fitness functions were used as indicated in the Results: 

Target size: Reaching a target_size number of total cells when growth 
stops.  

sub_score = 50 - (50 * abs((real_size / target_size) - 1))                              

Note that this is a Gaussian distribution. Therefore, a cluster with five 
cells greater than the target size will receive the same score as a cluster 
with five cells less than the target size. Any embryo that grows outside of 
the grid has its total score set to zero. 

Aspect Ratio: Reaching a target width:height ratio when growth 
stops.  

sub_score = 50 - (50 * abs((real_aspect_ratio / target_aspect_ratio) - 1))      

This is also a Gaussian distribution. Therefore, a cluster with an 
aspect ratio above target_aspect_ratio receives the same score as a cluster 
with an aspect ratio equivalently below target_aspect_ratio (ex: 4:1 vs 6:1 
if the target aspect ratio is 5:1). If the height of the embryo is greater 
than the height of the embryo at the midpoint, then the embryo’s height 
minus the height at the midpoint is subtracted from sub_score (this was 
done to prevent the trivial solution of diagonally growing embryos 
achieving a 1:1 aspect ratio). If the width of the embryo is greater than 
the width of the embryo at the midpoint, then the embryo’s width minus 
the width at the midpoint is subtracted from sub_score. 

Head vs. Tail morphometrics: Encouraging nerve cells to grow to the 
left of the embryo’s midpoint and interstitial cells to grow to the right of 
the embryo’s midpoint.  

sub_score = (25 - (25 * abs(left_interstitial_cell_count / left_nerve_cell_count 
/ 3)) + 25- (25 * abs(right_nerve_cell_count / right_interstitial_cell_count / 
3))) / 2                                                                                                  

2.4. Computational implementation 

The simulations were built using the Python programming language. 
Each simulation was run on a single core in the Tufts High Performance 
Cluster. Code is available upon request. 

2.5. Computing statistics 

All the statistics were computed using the permutation test as it is 
non-parametric and the comparison between distributions is non-paired. 

Table 1 
Hyperparameters for evolutionary simulations.  

Hyperparameter Value 

board width and height 50 
re-runs per embryo 5 
population size 250 
survival rate 10% 
max initial reservoir value 600 
max generations 7500 
mutation rate 5% 
reservoir mutation percentage 20% 
target size 400 
target aspect ratio 5:1 

Legend: Hyperparameters. 
Hyperparameters significant for development include the board 
width and height. Hyperparameters significant for evolution 
include the population size, the survival rate, the max initial 
reservoir value, the max generations, the mutation rate, and the 
reservoir mutation percentage. Hyperparameters significant for 
calculating fitness include the target size and the target aspect 
ratio. 
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2.6. New analysis tools 

Several specific tools were created to perform data analysis on our 
simulations as reported in Results:  

1. Given a genome, it produces an image of the embryo and the 
reservoir usage after each step during development (Figs. 1 and 
6).  

2. Given simulation data, it produces images of the best embryo for 
every generation (Fig. 2).  

3. Given simulation data, it plots the simulation’s fitness over the 
generations (Figs. 2 and 7).  

4. Given 3 sets of simulation data, it plots the mean fitness over the 
generations for each set (Figs. 3 and 7).  

5. Given a set of simulations, it produces an image of the embryo 
from the last generation of the highest scoring simulation (Fig. 3).  

6. Given 3 sets of simulation data, it produces a three-column dot 
plot where each column corresponds to one of the sets; each dot 
in each column represents the fitness achieved by the top genome 
in the last generation of each simulation (Fig. 3).  

7. Given 3 sets of simulation data, it produces a three-column dot 
plot where each column corresponds to one of the sets; each dot 
in each column represents the number of generations it took for 
the simulation to surpass a given fitness threshold (Fig. 3).  

8. Given a genome, it overlays repeated final developments of the 
embryo to visualize the genome’s consistency in producing em
bryos (Fig. 4).  

9. Given 3 sets of simulation data, it produces a three-column dot 
plot where each column corresponds to one of the sets; each dot 
in each column represents the standard deviation of 30 fitness 
scores, computed from rerunning the top genome from each 
simulation 30 times (Fig. 4).  

10. Given a genome that evolved with access to a finite reservoir, it 
produces an image of the adult form of the embryo with and 
without access to finite reservoirs (Fig. 5).  

11. Given a set of simulations that evolved with access to a finite 
reservoir, it produces a two-column dot plot that plots the orig
inal fitness of the top genome from each simulation and the 
fitness of the same genomes after forcing them to use only infinite 
reservoirs (Fig. 5).  

12. Given a set of simulations, it plots the remaining finite fuel for the 
top genome from each simulation at the start and end of devel
opment (Fig. 6).  

13. Given a set of simulations, it plots the reservoir capacity over the 
generations for the top genome from each simulation (Fig. 6).  

14. Given a genome, it plots the finite and infinite usage over each 
step of development (Fig. 6).  

15. Given a set of simulations, it plots the number of unique genes 
used by the top genome for each simulation at the start and end of 
evolution (Fig. 6).  

16. Given a set of simulations, it plots the percent of finite alleles in 
the top agent’s genome in the first generation and in the final 
generation for each simulation in the set (Fig. 7).  

17. Given a set of simulations, it plots the mean percentage of finite 
usage during development over 5 repeats of the top agent in the 
first and final generation for each simulation in the set (Fig. 7).  

18. Given a set of simulations, it plots the number of unique alleles 
for each simulation for the 5 genes with the lowest mean of 
unique alleles and the 5 genes with the highest mean of unique 
alleles (Fig. 7).  

19. Given a simulation with a jump in fitness greater than 5 points 
within 500 generations, it produces an image of the top genome’s 
embryo before the jump and after the jump (Fig. 7).  

20. Given a set of simulations, it produces a single list containing 
every gene found in the top genome from each simulation and the 
corresponding percentage that each gene’s allele uses a finite 
reservoir (Fig. 3).  

21. Given a set of simulations, it produces a single list of containing 
every gene found in the top genome from each simulation and the 
corresponding percentage of times that each gene contributed to 
a jump in fitness (Fig. 3). 

Note that the hyperparameters set when running these tools should 
be the same as the hyperparameters used while the simulation was 
running. 

3. Results 

3.1. Schematic of virtual embryogeny model 

In order to examine the evolutionary implications of intra-embryonic 
competition, we constructed a simulation with the following compo
nents (Fig. 1). Each “embryo” is constructed from a single founder cell 
with a genome. Genomes contain information specifying all the cells’ 
behavior as follows: what reservoir is used to determine whether it can 
divide, where to place the daughter cell, the daughter cell’s type (stem, 
or the symbolic designations “nerve” or “interstitial”), and the reservoir 
that the daughter cell will draw from in its future decisions. Develop
ment was implemented as a discretely-timed process during which each 
cell acts in accordance with its rules (and its current microenvironment 
as input to the state table). The result of the development is a 2-dimen
sional configuration of cell positions and states. The genomes are 
modified across time by an evolutionary process operating over a pop
ulation of individuals. Each generation consists of a set of individual 
embryos, each of which undergoes development independently from the 
others and is then evaluated by a fitness function which ranks them 
according to criteria of shape, size, and composition. Data are collected 
throughout the process and analyzed after the repeat simulations are 
complete. The state transitions are deterministic, but there is a stochastic 
element at both the embryo level (with respect to the order of cell be
haviors) and the evolutionary level (because mutations are randomly 
executed). 

Here, we focus on a specific component of this process: the evolution- 
driven changes to the dependence of the embryos on finite resources – 
reservoirs of molecules which permit specific cell actions and are 
decremented each time such an action is taken (like a limited pool of 
metabolic or informational molecules). The starting capacity of finite 
reservoirs is determined by the genome (it is evolvable), and they do not 
get replenished during development. It is important to note that our 
simulation is not focused on metabolic resources (which are often 
externally limiting) but mimics the use of informational resources, such 
as trophic signals or hormones, which in principle could be churned out 
in non-limiting amounts by cells but in biological systems are often 
present in small quantities for which cells compete (Gawne et al., 2020). 
We tracked the developmental and evolutionary usage dynamics of 
finite and infinite reservoirs within populations, and then analyzed the 
genomic and physiological processes that the resulting high-fitness in
dividuals were using to accomplish their morphogenetic outcomes. 
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Fig. 1. Schematic of virtual [or digital] embryogeny 
model. 
(A) The genome specifies the embryo’s development 
from a single stem cell until it stops growing on its 
own, by determining how each stem cell (black) 
makes progeny and what reservoir it uses to be 
allowed to do so. The inputs to the genome are the 
stem cells’ neighbors (number of adjacent stem 
(black), interstitial (green), and nerve (red) cells). 
Stem cells draw fuel from reservoirs of finite and 
infinite capacity in order to divide. If a stem cell has 
space to grow and available fuel from the reservoir it 
refers to, it will create a new cell. Development stops 
once all of the stem cells run out of adjacent places to 
grow or the ones with places to grow rely on depleted 
finite reservoirs (more details in Methods). (B) Sam
ple development of one embryo as it grows from a 
single cell into a highly fit embryo. The finite reser
voir is depleted over the course of development. (C) 
The population of embryos with randomly generated 
genomes evolve over many generations, according to 
a fitness function that evaluates aspects of the 
resulting embryos’ morphologies (as described in 
each specific experiment below).   
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3.2. Embryonic strategies using finite reservoirs are better at 
morphogenesis 

We performed evolutionary simulations to identify strategies that 
optimally solved a problem of morphogenesis (see Table 1): produce an 
embryo close to a target size, with an overall shape bearing a specific 
aspect ratio, and cell composition that reflects a patterned primary axis 
(more red cells to the left of the embryo’s midpoint and more green cells 
to the right). Evolution was able to choose whether, and how, to use 
finite or infinite resources to guide cell behavior. We specifically did not 
include any metabolic penalty on resource usage, to isolate one variable: 
even when resources cost nothing, would evolution prefer to limit them, 
forcing embryonic cells to compete? 

We first ran three sets of 100 evolutionary simulations (Figs. 2 and 
3). With respect to the control of cell functions, the first set was locked to 
use only infinite reservoirs (no competition for resources); the second set 
had access to only finite reservoirs, and the third allowed mutation to 
make genomes that refer to both infinite and finite reservoirs (essentially 
allowing these strategies to compete). Fig. 2A–C shows representative 
simulations from each of the sets. We found that the infinite-only 

simulations (Fig. 2A) tended to reach a lower final fitness and demon
strated much higher variability in its fitness from each generation to the 
next compared to the finite-only (Fig. 2B) and the infinite-and-finite, or 
“mixed model” (Fig. 2C) simulations. The simulations with access to 
finite reservoirs commonly displayed clear jumps in fitness over a few 
generations when evolution discovered an improved strategy. This 
rarely happened for the infinite-only simulations. Fig. 3 illustrates that 
the average fitness scores for the set of mixed-model simulations was 
23% greater than the infinite-only set. The mixed-model simulations 
initially scored lower on average than the only-finite set; however, the 
two sets’ average scores converged throughout the course of evolution 
(Fig. 3A). Despite the mixed-model set performing better on average 
compared to the infinite-only set, the infinite-only simulations’ final 
fitness values range from 96.99 to 134.74 while the mixed-model sim
ulations’ final fitness values range from 121.07 to 146.65. Therefore, the 
infinite-only simulations can outperform the mixed-model simulations 
in a few cases. This indicates that finite reservoirs are not the only 
possible solution for this problem. 

Simulations with only infinite reservoirs frequently evolve to stop 
growth by trapping the stem cells with a layer of differentiated cells. We 

Fig. 2. Representative simulations showing evolution 
with different types of reservoirs. 
Evolution results in embryos that able to reach the 
target fitness criteria of a size of 400 total cells, an 
aspect ratio of 5:1, and an embryo midpoint split of 
two different “tissue” types (red and green) demar
cating a large-scale axial polarity pattern (such as 
anterior vs. posterior, in a flatworm or similar archi
tecture). We ran three sets of 100 evolutionary sim
ulations where each set differs only by the types of 
reservoirs it has access to. The graphs in panels A–C 
show representative time-courses plotting the top 
fitness of the simulation throughout evolution; the 
corresponding individuals on the right show the final 
forms of the best embryo that the simulation pro
duced during generations 0, 100, 500, 2500, 5000, 
and 7499. (A) When given access to only infinite 
reservoirs, the simulations’ best embryo’s fitness from 
each generation is highly variable throughout evolu
tion (ranging from 96.99 to 134.74 across individual 
experiments in the final generation), and rarely sur
passes 120. (B) When evolution allows genomes to 
use finite reservoirs, the simulations evolve embryos 
that have fitness between 140 and 150 and are much 
more consistent (See Fig. 4 for analysis of robustness). 
(C) When evolution is allowed to exploit both finite 
and infinite reservoirs, the result is like that in B. 
Summary statistics for repeats of these experiments 
are shown in Fig. 3.   
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Fig. 3. Simulations using finite reservoirs are better 
able to reach the target fitness criteria. 
Evolutionary simulations were using a fitness func
tion that rewarded a size of 400 cells, an aspect ratio 
of 5:1, and an embryo midpoint split of “nerve” (red) 
and “interstitial” (green) cells. (A) Each line repre
sents the average of the best embryos’ fitness across 
100 simulations over the course of evolution. The 
infinite-and-finite and the finite-only simulations 
reach a significantly higher fitness than the infinite- 
only simulations ((p-value: 9.09e-06). (B, C, D) The 
final morphology of the best embryos produced by 
the best simulation from each set of 100 simulations; 
note that the embryos created by genomes with ac
cess to finite reservoirs (C and D) are noticeably 
better at separating nerve (red) and interstitial 
(green) cells at the embryo’s midpoint. (E) Each dot 
represents the best embryos’ fitness score from the 
final generation of each simulation; the horizontal 
line with the corresponding color represents the mean 
of the scores from the set. Runs using only finite 
reservoirs produced results indistinguishable from 
those allowed to use infinite and finite reservoirs (p 
> 0.02), while runs that were only allowed to use 
infinite reservoirs (no competition for resources) 
exhibited a much lower average (mean) max fitness 
(infinite-only vs. infinite-and-finite p-value = 9.99e- 
06). (F) Each dot represents the generation in which 
the simulation produced an embryo with a fitness 
score surpassing 80% of the highest possible fitness. 
This occurred very early in evolution for reservoirs 
allowed to use finite reservoirs (or both), while 
infinite-only evolutionary runs often didn’t reach 
80% until hundreds or thousands of generations and 
sometimes didn’t find it all (for # of generations 
needed to pass the 80% threshold: p-value = 9.99e- 
06). The average number of generations the infinite- 
only simulations took to surpass 80% of the max 
fitness was 4636.05. For finite-only it was 130.48 
generations and for infinite-and-finite it was 521.22 
generations. The difference between finite-only and 
finite-and-infinite runs was significant (p-value =

9.99e-06) The dots on the top row of the graph are 
simulations that never produced an embryo surpass
ing that threshold.   
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also observed that the average number of generations that the infinite- 
only set of simulations took to surpass 80% of the max fitness was 
4310.2 generations greater than the sets of simulations with access to 
finite reservoirs. Therefore, we conclude that evolutionary simulations 
with access to finite reservoirs produce embryos with significantly (p- 
value: 9.99e-06) higher fitness values after 7500 generations and ach
ieve a high fitness in many fewer (p-value: 9.09e-06) generations than 
simulations using only infinite reservoirs. 

3.3. Without rewarding for developmental consistency directly, finite 
reservoirs enable developmental consistency 

Since development includes stochastic components, repeat runs of 
the same genome do not necessarily produce identical embryos; how
ever, biological embryogenesis is generally highly invariant to a specific 
target morphology (and thus overall fitness). Thus, we next sought to 
test whether simulations using finite reservoirs produce genomes that 
develop more consistently-shaped embryos than simulations using only 
infinite reservoirs. We took the best embryos’ final genomes from each 
of the 100 simulations in the infinite-and-finite (mixed model) set and 
reran them 30 times each, to find the standard deviations of their fitness 

scores. We observed (Fig. 4C) that the set of genomes from the set that 
had access to only infinite reservoirs had significantly higher (p-value: 
9.99e-6, permutation test) standard deviations on average, revealing 
that there was much less consistency amongst embryos compared to 
those arising from genomes with access to finite reservoirs. Therefore, 
we conclude that simulations of stochastic developmental processes 
with access to finite reservoirs evolve genomes that produce embryos 
with more consistent fitness values. 

3.4. Successful individuals’ morphogenesis depends on finite reservoirs 

Given the prevalence of evolved genomes that use finite reservoirs, 
we next sought to directly test whether the resulting high-fitness in
dividuals functionally rely on this property to achieve their successful 
morphogenetic outcomes. We took the best individuals from the last 
generation of each simulation in the mixed model set and edited their 
genome to remove access to finite reservoirs (Fig. 5A). This is a standard 
“loss-of-function” experiment in developmental genetics, enabling 
experimental tests of the function of specific genetic features. We 
observed (Fig. 5C) that every such embryo (out of 100) exhibited un
controlled growth and therefore grew outside of the available grid space, 

Fig. 4. Finite reservoirs enable developmental con
sistency without rewarding for developmental con
sistency directly in the fitness function. (A, B) The 
genomes from the 49, 50, and 51 most successful 
simulations from the set of 100 simulations from the 
infinite-only and infinite-and-finite sets were rerun 10 
times. The images of the final adult form of each of 10 
embryos were overlaid. The final embryos from runs 
allowed to use competition via finite reservoirs are 
much more consistent (low-opacity regions are those 
occupied by only some of the cohort). (C) The best 
genomes from the final generation of the infinite- 
only, finite-only, and infinite-and-finite sets were 
each rerun 30 times. The dots represent the standard 
deviation from the 30 repeats, quantifying the spread 
of fitness values for developmental instances of each 
genome. We found that the embryos developing 
without the ability to coordinate via infinite reser
voirs have much bigger diversity of fitness values in 
repeat runs of the same genome, while those able to 
use finite reservoirs have much greater consistency of 
embryogenesis (p-value: 9.99e-6). The horizontal 
lines demarcate the mean of the standard deviations 
for the set with the corresponding color.   
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Fig. 5. Successful individuals depend on finite res
ervoirs. 
(A) Genomes evolved with access to finite reservoirs 
were forced to undergo development with only 
infinite reservoirs, in a virtual “genomic editing” 
gain-of-function experiment. (B) Examples of single 
individuals (from evolutionary runs in which ge
nomes are allowed to reference finite reservoirs) at 
the end of their embryogenesis, showing good fitness 
according to the criteria of a size of 400 total cells, an 
aspect ratio of 5:1, and an embryo midpoint split of 
nerve (red) and interstitial (green) cells. (B′) When 
their genomes are altered to instead refer to only 
infinite reservoirs, their patterns are very different, 
showing that their specific morphogenesis depended 
on the limited nature of the finite reservoirs used by 
their genomes. (C) Across the infinite-and-finite sim
ulations, the embryos’ fitness drops to zero when 
force to use only infinite reservoir. The blue and or
ange horizontal lines are the means of the group of 
dots with the corresponding color. The black slanted 
lines connect the scores for each individual, before 
and after they are forced to use only infinite reser
voirs to develop (p-value: 9.99e-6). (C′) Removing the 
fitness punishment for growth outside of the 2-dimen
sional grid still leads to an overall drop in fitness 
when forced to use infinite reservoirs only (p-value: 
9.99e-6). (D) The drop in fitness resulting from 
genomic editing of individuals to replace finite 
reservoir genes with those referencing infinite reser
voirs only is over 60% on average (with no border 
punishment), revealing the dependence of high- 
scoring individuals on the ability to use finite reser
voirs. There are some genomes that had a compara
tively small drop in fitness implying that they had less 
of a reliance on finite reservoirs to achieve a high 
fitness.   
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resulting in minimal fitness based on its lack of size control. We conclude 
that genomes that evolve to use finite reservoirs functionally rely on this 
property to achieve their high fitness score (i.e., the increased appear
ance of finite alleles during evolution is not simply an epiphenomenal 
byproduct of other forces but is actually required for optimal 
embryogenesis). 

As is often done in developmental biology to analyze an otherwise 
embryonic lethal phenotype, we sought to artificially enable embryos to 
be scored for fitness despite their abnormal growth, to analyze how 
other aspects of embryogenesis may rely on reservoir properties. Inter
estingly, when growth was artificially stopped at the borders in embryos 
forced to use infinite-only reservoirs, some embryos achieved reason
able fitness scores (9 embryos had a fitness score above 100), suggesting 
that a large component of the benefit of finite reservoirs is specifically 
size control (Fig. 5C’-D). 

3.5. Successful Individuals Have Different Strategies for How They Use 
Finite Reservoirs 

To understand how finite reservoirs create successful embryos, we 
investigated how evolution calibrates reservoir capacity in infinite-and- 
finite (mixed model) contexts, and how embryos use their reservoirs 
during development (Fig. 6); this is the artificial embryogeny equivalent 
of analyzing the transcriptomic or physiological processes underlying 
development. First, we found that all the top genomes from the simu
lation deplete their finite reservoirs by the end of development (Fig. 6A). 
This confirms that the simulations have evolved genomes that utilize the 
stopping power provided by finite reservoirs to create highly fit em
bryos. Moreover, we found that the evolved values of initial reservoir 
capacities do not approach 399 (embryo target size of 400 minus the first 

egg cell) as we expected (Fig. 6B), showing that finite reservoirs can be 
used to coordinate growth in ways other than simply decrementing once 
for each cell to be produced. 

Initially, we hypothesized that the genomes would rely entirely on 
finite reservoirs and evolution would set their capacity to 399 to 
consistently reach their target growth (embryos consisting of ~400 
cells). However, the top genomes from the mixed model set of simula
tions have a mean reservoir capacity of 240.93 with a standard deviation 
of 43.18. To understand how the mixed-reservoir genomes were able to 
stop growth at the correct target size despite their unintuitive initial 
reservoir capacities, we analyzed their reservoir usage throughout the 
development of their embryos (Fig. 6C–E). We found a variety of stra
tegies ranging from harmonic growth with arms that leave only one stem 
cell exposed at a time to a majority reliance on finite reservoirs. We 
concluded that there are a variety of different strategies that use finite 
reservoirs to successfully meet the fitness criteria. 

3.6. How evolution solves the coordination problem: genomic analysis 

Development consists of a rich layer of interactions downstream of 
genetic information. Thus, morphogenetic outcomes relying on limited 
resource use can be modified by evolution in two ways: by increasing the 
number of genes referring to finite reservoirs, and/or by changing other 
genes that cause these same finite reservoir genes to be expressed in 
novel ways (mirroring the distinction between structural genes and 
regulatory/epigenetic mechanisms in biological evolution (Rosati and 
McKinnon, 2009; Tangwancharoen et al., 2018)). 

To determine whether evolution would increase the frequency of 
finite alleles in the genome, we calculated the ratio of finite alleles found 
in populations before and after evolution. In a set of simulations where 

Fig. 6. Successful individuals have different strate
gies for how they use finite reservoirs. 
(A) The average finite reservoir capacity for the top 
genome from the infinite-and-finite set is 243 and 
each of the top genomes from the last generation of 
evolution use the entirety of their finite reservoir 
during development. (B) The infinite-and-finite sim
ulations’ top genome’s finite reservoir capacity varies 
between simulations and commonly changes 
throughout evolution. (C, D, E) The top genomes from 
the infinite-and-finite simulations use their finite 
reservoirs in diverse ways. (C and C′) The two sym
metrical arms growing off this embryo each have only 
one stem cell exposed. It harmonically switches from 
finite to infinite usage and growth halts when the 
finite reservoirs run out. (D and D′) Most of the 
development utilizes the finite reservoir and growth 
halts when it runs out of fuel. (E and E′) This genome 
functions like C and C’; however, it creates new arms 
periodically as development progresses. This is likely 
responsible for the periodic stepped increase in finite 
and infinite usage.   

P. Smiley and M. Levin                                                                                                                                                                                                                        



BioSystems 221 (2022) 104762

11

Fig. 7. How evolution solves the coordination prob
lem. 
(A) In a set of 50 simulations where the percent of 
finite alleles in the genome starts at 5%, the average 
percent of finite alleles for the top genomes in each of 
the simulations did not significantly increase over 
2500 generations of evolution. (B) Each dot repre
sents the percentage of finite fuel used during the 
development of the top embryo in a simulation 
(averaged over five repeats). For 50 simulations, 
almost 15% of the embryo’s development, on average 
(mean, was determined by genes using finite fuel). 
(C) Each tick on the x-axis represents an allele in the 
genome. As an example, allele 123 would be the 
genomic instructions that dictate how a stem cell 
should behave if it has 1 stem cell neighbor, 2 nerve 
cell neighbors, and 3 interstitial cell neighbors. The 
first 5 alleles are the alleles with the least turnover 
and the last 5 alleles are the alleles with the most 
turnover in the infinite-and-finite set. Alleles that 
significantly impact the fitness of the embryo likely 
undergo less turnover as most mutations negatively 
impact the overall fitness. Alleles that do not signifi
cantly impact the fitness of the embryo likely undergo 
more turnover as mutations would not impact the 
overall fitness. Many alleles in the genome are 
changed a couple hundred times on average while 
many alleles in the genome are changed a couple 
thousand times on average across the infinite-and- 
finite set. This indicates that some alleles are more 
impactful than others (see Table 3). (D) The fitness of 
a set of simulations where the percent of finite alleles 
in the genome is blocked from exceeding 5% is 
compared with the set of simulations that are allowed 
to use only infinite reservoirs and the set of simula
tions that can freely fluctuate the amount they draw 
from the infinite and finite reservoirs. While the 
locked at 5% finite alleles set starts at an average 
fitness comparable to the infinite-only simulations, it 
quickly increases in fitness and is closer to the 
infinite-and-finite simulations after 2500 generations. 
After 2500 generations, the average of the infinite- 
only simulations is 107, the average of the infinite- 
and-finite simulations is 133, and the average of the 
simulations locked at 5% finite alleles is 128 (see 
Table 2). (E) The number of unique genes used in 
development decreases by 42.8% over the course of 
evolution in the infinite-and-finite set. (F) Each graph 
represents the fitness over the 7500 generations of 
evolution for two representative simulations from the 
set of infinite-and-finite simulations. The embryos on 

the graphs illustrate the change in morphology due to a jump in fitness of at least 5 points (see Table 4).   
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all the genomes started with only 5% finite alleles in the first generation, 
but were free to fluctuate under evolutionary dynamics, the ratio of 
finite alleles in the genome barely increased (0.1%) after 2500 genera
tions, despite the observed rise in fitness (Fig. 7A). However, the usage 
(equivalent to a transcriptomic analysis) of finite reservoirs during 
development rose from 5% in the first generation to almost 15% in the 
final generation (p-value: 9.99e-6) (Fig. 7B). Despite the tendency not to 
increase the prevalence of finite alleles in the genomes, evolution does 
produce genomes that use genes with finite alleles at higher rates during 
development. As the capacity for finite alleles in the genome increases, 
the transcriptome usage during development increases correspondingly. 
For finite allele ratio in the genome between 20% and 50%, the tran
scriptome usage during development approaches at 60% (Table 2). 
Thus, as in real development, genomic information does not tell the 
whole story: it is essential to ask how the genes are being used during 
embryogenesis. We found that evolution increasingly relies on finite 
reservoirs not by expanding these genes, but by modifying when and 
how they are used by embryos (i.e., at the transcriptional control level). 

To further understand the developmental strategies used by evolu
tion to produce highly fit embryos, we next sought to analyze further the 
importance of specific genes to the rises in fitness we observed during 
evolution (Fig. 7C). We chose allele turnover, the frequency in which a 
gene in the top agent’s genome successfully mutates its allele (See 
Methods), as a gauge for measuring the impact of specific genes on 
morphogenesis. The 5 genes with the least allele turnover in the set of 
mixed-model simulations had a mean of 255.28 unique alleles with a 
standard deviation of 280.6, while the 5 genes with the most allele 
turnover had a mean of 1558.72 unique alleles with a standard deviation 
of 14.1. Moreover, Table 3 demonstrates that the five genes with the 
lowest turnover are also the genes that evolution is most likely (mean of 
35.2%) to assign a finite allele and the five genes with the most turnover 
are the least likely (mean of 1.6%). Additionally, Table 3 highlights that 
the five genes with the lowest allele turnover are likely to contribute to 
jumps in fitness (mean of 48.6%) whereas genes with the highest allele 
turnover (mean of 1.8%) rarely contribute to jumps in fitness. Therefore, 
we conclude that high impact genes take on most of the responsibility to 
achieve high fitness. 

To determine just how efficiently evolution could use a small number 
of finite alleles (and further distinguish structural from regulatory 
change in evolution as a contributor to the rise in fitness), we ran sets of 
simulations where we artificially capped the number of finite alleles that 
were allowed in any genome (Fig. 7D). Initially, the set of simulations 
with finite alleles capped at 5% had an average fitness comparable to the 
infinite-only set; however, after 2500 generations the average fitness 
was 21 points above the infinite-only set and only 5 points below the 
mixed-model set. The 5% capped simulations also developed a reliance 
on finite reservoirs, as their fitness drops precipitously when their finite 
reservoirs are removed (Supplemental Figure). Because the set of 

simulations with only 5% finite alleles in the genome can achieve an 
average fitness that is only 5 points under the mixed-model set which 
can fluctuate their number of finite alleles freely and because its fitness 
score relies on finite reservoirs, we conclude that the populations locked 
to 5% finite alleles are successfully utilizing the rare finite reservoir 
genes to achieve a high fitness. 

Due to the high fitness achieved by the simulations capped at a low 
percentage of finite alleles, we investigated how much of the genome 
matters to create fit embryos (Fig. 7E). We measured the number of 
unique genes used at the start and end of evolution and found that it 
dropped by 42.8% over the course of evolution. By the end of evolution, 
only 37 genes (mean) are responsible for the embryo’s development 
which represents only 5.08% of the genome. This emphasizes that the 
overall state of the genome alleles is not as important as the key genes in 
the genome; the ones that evolution opts to use. 

To analyze in greater detail the events responsible for discrete rises in 
fitness that occur during evolution (punctuated equilibria events), we 
analyzed a simulation’s top genome before and after its jump in fitness. 
Panel F in Fig. 7 illustrates a sample change in the embryo before and 
after one of these jumps. It demonstrates that the embryo performs 
better in the task of cell composition; nerve cells (red) on the left and 
interstitial cells (green) on the right). 1/3 of the removed alleles created 
nerve cells whereas 7/8 of the added or changed alleles created nerve 
cells. Table 4 shows the actual alleles that changed to cause this jump in 
fitness. Six alleles that were locked in became removed due to the jump 
in fitness and 8 gene alleles were either added or changed. Across all the 
simulations, jumps in fitness. For the mixed-model set, the mean number 

Table 3 
Supporting Fig. 7D.  

Gene Probability of 
This Allele Using 
Finite When 
Genome is 
Locked at 5% 
Finite Alleles 

Percentage of 
Times That This 
Allele 
Contributed to a 
Jump in Fitness 

# of Stem 
Neighbors 

# of Nerve 
Neighbors 

# of 
Interstitial 
Neighbors 

1 2 1 38% 53% 
1 1 1 56% 60% 
1 1 2 24% 48% 
1 2 2 38% 51% 
2 2 1 20% 31% 
5 5 1 0% 0% 
4 0 0 2% 3% 
5 2 0 2% 0% 
6 0 0 2% 3% 
6 0 1 2% 3% 

Legend: Distinction Between High and Low Impact Genes In the Genome. 
In order to receive instructions for how to divide and consume fuel, a stem cell 
queries the genome based on its surrounding neighbors; thus, each gene in the 
table is defined by a combination of neighbors. The rows match directly with the 
genes from Panel D in Fig. 7. The first 5 rows are the genes with the least number 
of unique alleles; they have the least turnover. The top genomes from the sim
ulations’ commonly have finite alleles for these genes in the set of simulations 
where the genome is locked at 5% finite alleles. A clear preference for these 
genes to use finite alleles has emerged. Additionally, these genes tend to 
contribute to jumps in fitness. Directly after a jump in fitness, the genes from the 
first five rows had a single allele in the top genome which was not present before 
the jump and that did not change for 100 generations after the jump. The genes 
in the last five rows are the genes with the greatest number of unique alleles; 
they have the greatest turnover. The top genomes from the simulations’ rarely 
have finite alleles for these genes in the set of simulations where the genome is 
locked at 5% finite alleles. Additionally, these genes rarely contribute to jumps 
in fitness. The genes from the last five rows were changing frequently both 
before and after the jump. 

Table 2 
Supporting Fig. 7B.  

Finite Alleles in Genome Finite Transcriptome Usage During Development 

Fixed At 5% 22% 
Fixed At 10% 34% 
Fixed At 20% 59% 
Not Fixed 60% 

Legend: Finite Alleles in Genome Effect on Transcriptome Finite Usage. 
The percent of finite transcriptome usage during development increases as the 
cap for the allowed finite alleles in the genome increases. However, once the 
finite allele cap reaches 20%, the finite transcriptome usage is equivalent to 
when the finite usage can fluctuate freely. 
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of alleles removed for a jump in fitness is 3.7 and the mean number of 
alleles added or changed is 12.3. This demonstrates that jumps in fitness 
can be caused by a small number of mutations and are not necessarily 
triggered by changing a single gene. 

4. Discussion 

This work contributes to, and complements, the rich body of prior 
studies of evolutionary simulated embryogeny (reviewed in (Lai et al., 
2021)), by adding explicit dependence on metabolic reservoirs as a gate 
for executing cell automata rules. This enabled the study of evolutionary 
dynamics for the emergent repurposing of metabolic competition and 
constraint as a mechanism to augment the morphogenetic targets 

achieved by multicellularity. Such mechanisms have important rele
vance to practical applications such as organ transplants, where for 
example multiple livers coordinate and compete to implement correct 
physiological function (Dolson et al., 2020; Liard et al., 2020), and the 
understanding of emergent physiological and morphological outcomes 
in chimeras (Nanos and Levin, 2021). 

4.1. How evolution coordinates morphogenesis 

The ability of the simulations to produce consistent, patterned em
bryos of an “adaptive” size and composition is a tribute to the power of 
evolutionary search to find good solutions via partial credit and inter
mediate forms: initial mutations availing embryos of access to finite 

Table 4 
Supporting Fig. 7F.  

Locked in Alleles Removed Locked in Alleles Added or Changed 

# Of Stem 
Neighbors 

# Of Nerve 
Neighbors 

# Of Interstitial 
Neighbors 

Allele # Of Stem 
Neighbors 

# Of Nerve 
Neighbors 

# Of Interstitial 
Neighbors 

Allele 

1 2 2 New_res ¼ finite, 1 3 1 New_res ¼ infinite, 
Daughter_res ¼ finite Daughter_res ¼ infinite 
Directional_bias ¼ West, 
South, then East 

Directional_bias ¼ West, South- 
West, then North-East 
Daughter_type ¼ Nerve (red) 

Daughter_type ¼
Interstitial (green)  

0 0 1 New_res ¼ finite, 1 3 0 New_res ¼ infinite, 
Daughter_res ¼ infinite Daughter_res ¼ finite 
Directional_bias ¼ North- 
West, East, then South 

Directional_bias ¼ South-East, 
North-East, then South-West 

Daughter_type ¼ Stem 
(black) 

Daughter_type ¼ Nerve (red) 

2 1 3 New_res ¼ finite, 1 2 1 New_res ¼ infinite, 
Daughter_res ¼ infinite Daughter_res ¼ infinite 
Directional_bias ¼ North- 
West, South-East, then 
North 

Directional_bias ¼ North-West, 
East, then North-East 

Daughter_type ¼ Stem 
(black) 

Daughter_type ¼ Nerve (red) 

0 3 0 New_res ¼ infinite, 1 4 1 New_res ¼ finite, 
Daughter_res ¼ infinite Daughter_res ¼ infinite 
Directional_bias ¼ North, 
East, then West 

Directional_bias ¼ South-West, 
North, then South-East 

Daughter_type ¼ Nerve 
(red) 

Daughter_type ¼ Nerve (red) 

0 0 0 New_res ¼ finite, 1 2 0 New_res ¼ infinite, 
Daughter_res ¼ finite Daughter_res ¼ infinite 
Directional_bias ¼ North, 
South-West, then South 

Directional_bias ¼ South-East, 
West, then North 

Daughter_type ¼ Nerve 
(red) 

Daughter_type ¼ Nerve (red) 

0 1 1 New_res ¼ infinite, 1 3 2 New_res ¼ infinite, 
Daughter_res ¼ infinite Daughter_res ¼ finite 
Directional_bias ¼ West, 
East, then South-West 

Directional_bias ¼ South, North- 
West, then South-West 

Daughter_type ¼
Interstitial (green) 

Daughter_type ¼ Stem (black)     

0 1 0 New_res ¼ finite, 
Daughter_res ¼ infinite 
Directional_bias ¼ North-East, 
West, then East 
Daughter_type ¼ Nerve (red)     

2 0 3 New_res ¼ infinite, 
Daughter_res ¼ finite 
Directional_bias ¼ North-West, 
East, then West 
Daughter_type ¼ Nerve (red) 

Legend: Analysis of the Genome Affected by a Jump in Fitness. 
The table’s rows illustrate the genes that were changed due to the jump in fitness in the simulation discussed in Panel F from Fig. 7. The left side of the table lists the 
genes that ceased to be locked in due to the jump and their locked in allele. The genes in the top genome in the simulation had the corresponding alleles in all the 100 
generations prior to the jump. However, the genes no longer had the corresponding alleles after the jump. The right side of the table lists the genes that newly became 
locked in after the jump. The top genome’s listed genes either had alleles that were getting mutated or were locked into a different allele in all of the 100 generations 
prior to the jump. The corresponding allele is the allele that was present in all the 100 generations after the jump. 
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reservoirs were not fully useful (because random initial reservoirs were 
usually of a capacity that is not useful for making a fit embryo). 
Nevertheless, it rapidly spread this phenotype through the population 
and optimized the reservoirs’ capacities. Indeed, this occurred very early 
on in evolution, which spent much of the rest of the time tweaking other 
aspects of the genomes. 

Competition for resources was clearly an effective way to coordinate 
morphogenesis, within and between embryos of a given generation 
(consistency). When given the option, every simulation evolved to 
exploit within-body competition, but discovered a variety of different 
ways to use it in identical repeats of the same conditions. This illustrates 
how despite the randomness of mutation and stochasticity of develop
ment, diverse micro-details of implementation can give rise to stable, 
reproducible dynamics on an evolutionary scale (Fields and Levin, 2020; 
Sepkoski, 2016). Interestingly, the basic strategy of using competition to 
produce fit embryos required very few genes – a small percentage were 
responsible for most of the jumps in fitness, and was focused on the 
finite-reservoir alleles when constrained. 

Crucially, we saw that the most work during development was done 
by the physiological/transcriptional level (how the existing genes were 
used by the cellular automata rules), not the genetic level (the preva
lence of finite-reservoir alleles themselves). For example, once the 
genome got to 20% of finite reservoir alleles, that was sufficient to have 
the transcriptome reach its optimal value of 60% actual finite reservoir 
use during embryogenesis. Evolution was clearly able to exploit all 
levels of the options available to it, not just the genomic “hardware”, an 
idea that has been discussed in the literature on the relative impacts of 
changes in regulatory vs. structural genes (King and Wilson, 1975). This 
illustrates how evolution can take advantage of regulatory dynamics to 
make use of whatever structural components are available in the 
genome, paralleling the ways in which workers in regenerative medicine 
can exploit physiological signaling to accommodate genetic defects in 
the case of embryonic malformations (Pai et al., 2015, 2018, 2020) and 
cancer (Chernet et al., 2016; Chernet and Levin, 2013). 

4.2. Future improvements 

The system currently has several limitations that will be overcome in 
future development of the model. For example, cell migration, 
apoptosis, planar polarity, and explicit signaling will be added to the 
simulation, and it will be ported into a 3D modeling environment such as 
VoxCad (Kriegman et al., 2020a, 2020b; Shah et al., 2021) where 
physical forces and actual behavior (e.g., motility) can be simulated for 
added realism. We will also enable the system to add genes for replen
ishing finite reservoirs under specific circumstances. Likewise, we will 
explore other aspects of morphogenesis besides emergent shape, such as 
regeneration. 

In silico simulations of group dynamics are an essential component of 
complexity science and collective intelligence (Adami, 2002; Couzin, 
2009; Deisboeck and Couzin, 2009; Furusawa and Kaneko, 2000; Hey
lighen, 2013; Sole et al., 2016). Thus, research in swarm robotics 
(Rubenstein et al., 2014; Werfel, 2012), synthetic bioengineering 
(Davies, 2013; Davies and Cachat, 2016; Davies and Glykofrydis, 2020; 
Sole et al., 2016, 2019), regenerative medicine (Mathews and Levin, 
2018; Pezzulo and Levin, 2015, 2016), evolutionary design tools (Che
ney et al., 2014, 2015; Corucci et al., 2015; Kriegman et al., 2017, 2019, 
2020b), will all benefit from simulations to augment human scientists’ 
intuitions about complex multiscale systems’ dynamics, their origins, 
and policies for their control. 

5. Conclusion 

While our in silico model is a very minimal system, lacking much of 
the complexity of real biology, it recapitulates a key dynamic that is 
missing from many studies of genotype:phenotype relationship – 
development and physiological competition among the parts. Our 

quantitative results will no doubt be modified when applied to specific 
biological taxa, but a few general conclusions emerged that shed light on 
intrinsic dynamics of genotype-morphogenesis-phenotypic fitness sys
tems. Evolution is quite efficient at generating interesting target mor
phologies with even extremely simple cellular capabilities, and can 
generate consistent emergent outcomes without any explicit pressure for 
reliability of development. Consistency and high anatomical fitness are 
both greatly enhanced by the ability to use scarce resources to coordi
nate growth – evolution discovers and exploits this, even when there is 
no metabolic penalty for unlimited resource use. It does so largely by 
regulating how those resources are used at the transcriptional/physio
logical level, and relies less on structural genomic change. 

Perhaps the most salient aspect of this work is that it reveals how 
evolutionary dynamics reliably result in systems that preferentially pit 
their parts against each other, generating conflict, competition, and 
artificial scarcity of resources for their parts in order to meet the fitness 
function of the higher level of organization. In our system, there was no 
penalty for using reservoirs of any capacity or type, and multiple other 
ways to solve the growth limitation problem (for example, some em
bryos grew an outer “skin” of differentiated cells, which prevented 
further cell division inside because of lack of space into which daughter 
cells could expand). Despite the fact that cells could in principle have all 
the resources they need, with no efficiency pressure, and other ways to 
solve growth control, evolution preferred the strategy of self-induced 
limitations of resources and competition. This is important, given the 
common assumption that evolution can be expected to drive within- 
agent cooperation: apparently, a given system’s goals can be better 
satisfied by parts that are in conflict over resources. While extrapolation 
of this phenomenon outside of developmental systems warrants caution, 
it is tempting to look for this dynamic in other (larger-scale) systems and 
contexts, and explore additional ways of coordinating information 
among subunits to diffuse pressure toward unnecessary competition 
among the members of a group. 
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