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Abstract—We study online active learning for classifying stream-
ing instances within the framework of statistical learning theory.
At each time, the learner either queries the label of the current
instance or predicts the label based on past seen examples. The
objective is to minimize the number of queries while constraining
the number of prediction errors over a horizon of length T . We
develop a disagreement-based online learning algorithm for a gen-
eral hypothesis space and under the Tsybakov noise and establish
its label complexity under a constraint of bounded regret in terms
of classification errors. We further establish a matching (up to a
poly-logarithmic factor) lower bound, demonstrating the order
optimality of the proposed algorithm. We address the tradeoff
between label complexity and regret and show that the algorithm
can be modified to operate at a different point on the tradeoff curve.

Index Terms—Active learning, label complexity, online learning,
regret, statistical learning theory.

I. INTRODUCTION

W E CONSIDER online classification of streaming in-
stances within the framework of statistical learning the-

ory. Let {Xt}t≥1 be a sequence of instances drawn indepen-
dently at random from an unknown underlying distribution PX

over an instance space X . Each instance Xt has a hidden binary
label Yt ∈ {0, 1} that relates probabilistically to the instance
according to an unknown conditional distribution PY |X . The
learner is characterized by its hypothesis spaceH consisting of
all classifiers under consideration. At each time t, the learner
decides whether to query the label of the current instance Xt.
If yes, Yt is revealed. Otherwise, the learner predicts the label
of Xt using a hypothesis in H and incurs a classification error
if the predicted label does not equal to the true label Yt. The
objective is to minimize the expected number of queries over
a horizon of length T while constraining the total number of
classification errors. The tension between label complexity and
classification error rate needs to be carefully balanced through a
sequential strategy governing the query and labeling decisions
at each time.

The above problem arises in applications such as spam de-
tection and event detection in real-time surveillance. The key
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characteristics of these applications are the high-volume stream-
ing of instances and the complex and nuanced definition of
labels. While the latter necessitates human intervention to pro-
vide annotations for selected instances, such human annotations,
time consuming and expensive to obtain, should be sought after
sparingly to ensure scalability.

A. Previous Work on Active Learning

The above problem falls under the general framework of active
learning. In contrast to passive learning where labeled examples
are given a priori or drawn at random, active learning asserts
control over which labeled examples to learn from by actively
querying the labels for carefully selected instances. The hope is
that by learning from the most informative examples, the same
level of classification accuracy can be achieved with much fewer
labels than in passive learning.

1) Offline Active Learning: Active learning has been studied
extensively under the Probably Approximately Correct (PAC)
model, where the objective is to output an ε-optimal classifier
with probability 1− δ using as few labels as possible. The PAC
model pertains to offline learning since the decision maker does
not need to self label any instances during the learning process.
An equivalent view is that classification errors that might have
incurred during the learning process are inconsequential, and
the tension between label complexity and classification errors
is absent. If measured purely by label complexity, the decision
maker has the luxury of skipping, at no cost, as many instances
as needed to wait for the most informative instance to emerge. In
the online setting considered in this work, however, self labeling
is required in the event of no query, classification errors need to
be strictly constrained, and no feedback to the predicted labels is
available (thus learning has to rely solely on queried labels). As a
result, online active learning faces an essential tradeoff between
real-time classification errors and label complexity, which is
absent in the offline settings.

A much celebrated offline active learning algorithm was given
by Cohn, Atlas, and Ladner [1]. Named after its inventors, the
CAL algorithm is applicable to a general hypothesis spaceH. It,
however, relies on the strong assumption of realizability, i.e., the
instances are perfectly separable and there exists an error-free
classifier inH. In this case, hypotheses inconsistent with a single
label can be safely eliminated from further consideration. Based
on this key fact, CAL operates by maintaining two sets at each
time: the version space consisting of all surviving hypotheses
(i.e., those that are consistent with all past labels), and the region
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of disagreement (RoD), a subset ofX for which there is disagree-
ment among hypotheses in the current version space regarding
their labels. CAL queries labels if and only if the instance falls
inside the current RoD. Each queried label reduces the version
space, which in turn may shrink the RoD, and the algorithm
iterates indefinitely. Note that instances outside the RoD are
given the same label by all the hypotheses in the current version
space. It is thus easy to see that CAL represents a conservative ap-
proach: it only disregards instances whose labels can already be
perfectly inferred from past labels. Quite surprisingly, by merely
avoiding querying labels that carry no additional information,
exponential reduction in label complexity can be achieved in a
broad class of problems. (See, for example, an excellent survey
by Dasgupta [2] and a monograph by Hanneke [3]).

The CAL algorithm was extended to the agnostic setting by
Balcan, Beygelzimer, and Langford [4]. In the agnostic setting,
instances are not separable, and even the best classifier h∗ in
H experiences a non-zero error rate. The main challenge in
extending CAL to the agnostic case is the update of the version
space: a single inconsistent label can no longer disqualify a
hypothesis, and the algorithm needs to balance the desire of
quickly shrinking the version space with the irreversible risk
of eliminating h∗. Referred to as A2 (Agnostic Active), the
algorithm developed by Balcan, Beygelzimer, and Langford
explicitly maintains an ε neighborhood ofh∗ in the version space
by examining the empirical errors of each hypothesis. Analysis
of the A2 algorithm can be found in [5]–[8]. Variants of the A2

algorithm include [9]–[13]. In particular, the DHM algorithm
(named after the authors) in [12] simplifies the maintenance of
the RoD through a reduction to supervised learning.

The above conservative approach originated from the CAL
algorithm is referred to as the disagreement-based approach.
The design methodology of this conservative approach focuses
on avoiding querying labels that provide no or little additional
information. More aggressive approaches that actively seeking
out more informative labels to query have been considered in the
literature. One such approach is the so-called margin-based. It is
specialized for learning homogeneous (i.e. through the origin)
linear separators of instances on the unit sphere in Rd and adopts
a specific noise model that assumes linearity in terms of the inner
product with the Bayes optimal classifier. In this case, the infor-
mativeness of a potential label can be measured by how close
the instance is to the current decision boundary. Representative
work on the margin-based approach includes [14]–[21]. Another
such approach is considered in [22] that combines ideas from
both disagreement-based and margin-based approaches.

Besides the stream-based model where instances arrive one
at a time, active learning has also been considered under the
synthesized instances and the pool-based sampling models [23]
and synthesizes instances for various models for applications
(see for example, [24]–[26]). These models are less relevant
to the online setting considered in this work. In addition to
online classification, active learning approaches have also been
considered in the context of Bayesian Learning [27], [28] and
inference of network topology [29].

2) Online Active Learning: Active learning in the online
setting has received much less attention. The work of [30]

and [31] extended the margin-based approach to the online
setting, focusing, as in the offline case, on homogeneous linear
separators for instances on the unit sphere in Rd. A specific noise
model was adopted, which assumes that the underlying condi-
tional distribution of the labels is fully determined by the Bayes
optimal classifierh∗. In this work, we consider a general instance
space and arbitrary classifiers. Tackling the general setting, the
proposed algorithm and the analysis are fundamentally different
from these two existing studies. Furthermore, we show with
simulation examples in Section VI that, even when restricted to
the special case of homogeneous linear separators, the algorithm
proposed in this work outperforms the margin-based algorithm
developed in [30], [31].

The only works we are aware of that extend the disagreement-
based approach to the online setting are [32] and [33]. [33] con-
structs a disagreement graph to relate different hypotheses in the
hypothesis space and then uses importance weighted sampling
to eliminate them based on observation — an approach that is
difficult to extend for the model considered in this work. [32]
extends the offline DHM algorithm to a stream-based setting and
we discuss in detail the difference between [32] and this work
in Section I-B.

B. Main Results

We consider a general instance spaceX , a general hypothesis
space H of Vapnik-Chervonenkis (VC) dimension d, and the
Tsybakov noise model parameterized by α ∈ (0, 1] [34]. We
develop an online active learning algorithm and establish its
O(dT

2−2α
2−α log2 T ) label complexity and uniformly bounded

regret in prediction errors with respect to the best classifier h∗

in H. More specifically, the total expected classification errors
in excess to h∗ over a horizon of length T is bounded below 1/2
independent of T , demonstrating that the proposed algorithm
offers practically the same level of classification accuracy as
h∗ with a sublinear label complexity in T . We further estab-
lish a matching (up to a poly-logarithmic factor) lower bound,
demonstrating the order optimality of the proposed algorithm.
We address the tradeoff between label complexity and regret and
show that the algorithm can be modified to operate at a different
point on the tradeoff curve. Below we contextualize this work
with respect to the existing literature by highlighting the differ-
ences in three aspects: algorithm design, analysis techniques,
and performance comparison.

1) Algorithm Design: Referred to as OLA (OnLine Active),
the algorithm developed in this work is rooted in the design
principle of the disagreement-based approach. The defining
characteristic of the disagreement-based approach is to avoid
querying instances that see insufficient disagreement among sur-
viving hypotheses by maintaining, explicitly or inexplicitly, the
RoD. Specific algorithm design differs in its temporal structure
of when to update the RoD and, more crucially, in the threshold
design on what constitutes sufficient disagreement. As detailed
below, OLA differs from representative disagreement-based
algorithms—the offline A2 [4] and DHM [12] algorithms and
the online ACAL algorithm [32]—in both aspects.
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In terms of temporal structure, OLA operates in epochs and
updates the RoD at the end of each epoch, where an epoch
ends when a fixed number M of labels have been queried. This
structure is different from A2, DHM, and ACAL. In particular,
the epochs in A2 are determined by the time instants when the
size of the current RoD shrinks by half due to newly obtained
labels. Such an epoch structure, however, requires the knowledge
of the marginal distribution PX of the instances for evaluating the
size of the RoD. The epoch structure of OLA obviates the need
for this prior knowledge. DHM, on the other hand, does not op-
erate in epochs and updates (inexplicitly) the RoD at each time.
Similarly, ACAL also updates the RoD at each time.1 Moreover,
the updates involve calculating thresholds by solving multiple
non-convex optimization problems with randomized nonlinear
constraints that can only be checked numerically. In contrast,
the epoch-based updates in OLA only involve thresholds that
are given in closed-form in terms of empirical errors.

A more crucial improvement in OLA is the design of the
threshold that determines the RoD. This is the key algorithm
parameter that directly controls the tradeoff between label com-
plexity and classification error rate. By focusing only on empiri-
cal errors incurred over significant (X,Y ) examples determined
by the current RoD, we obtain a tighter concentration inequality
and a more aggressive threshold design (See Theorem 1), which
leads to significant reduction in label complexity as compared
with A2, DHM, and ACAL, as well as margin-based algorithms
(see details on the performance comparison below).

2) Analysis Techniques: Under the offline PAC setting, the
label complexity of an algorithm is often analyzed in terms of
the suboptimality gap ε and the outage probability δ. Under the
online setting, however, the label complexity of an algorithm
is measured in terms of the horizon length T , which counts
both labeled and unlabeled instances. In the analysis of the label
complexity of A2 [4], [5], unlabeled instances are assumed to
be cost free, and bounds on the number of unlabeled instances
skipped by the algorithm are missing and likely intractable.
Without a bound on the unlabeled data usage, the offline label
complexity in terms of (ε, δ) cannot be translated to its online
counterpart.

Yang [32] analyze the label complexity by bounding the
excess risk in terms of local Rademacher complexity [35] within
each epoch. This technique is restricted to the specific threshold
design in ACAL, which is based on expensive non-convex opti-
mization with constraints on randomized Rademacher process.

We adopt new techniques in analyzing the online label com-
plexity of OLA. First we separate the analysis into two stages
based on the size of the RoD. For the early stage where the
RoD is large, we show that RoD is decreasing exponentially.
Then, to upper bound the label complexity, the key idea is to
construct a supermartingale {S(t)}t≥0 given by the difference
of an exponential function of the total queried labels up to t
and a linear function of t. The optimal stopping theorem for

1ACAL has a predetermined epoch structure with geometrically growing
epoch length. This epoch structure, however, is not for controlling when to
update the RoD, but rather for setting a diminishing sequence of outage proba-
bility of eliminating h∗. The algorithm otherwise restarts by forgetting all past
experiences at the beginning of each epoch.

supermartingales then leads to an upper bound on the expo-
nential function of the label complexity. A bound on the label
complexity thus follows from Jensen’s inequality. The remaining
label complexity where the RoD is small can be bounded by
the product of the size and the remaining time horizon. The
separation of the two stages is then optimized to tighten the
bound.

The lower bound established in this work is new. We are not
aware of any existing lower bound on label complexity in the
online setting. Lower bounds for the offline PAC setting (see,
e.g., [36], [37]) are inapplicable to the online setting and were
established using different techniques.

3) Performance Comparison: We now comment on the per-
formance comparison in terms of both asymptotic orders and
finite-time performance.

As stated above, the performance analysis of A2 is in terms of
the PAC parameters (ε, δ). The analysis of its online performance
is missing. Dasgupta et al. provided an upper bound on the
unlabeled data usage in DHM [12]. The bound, however, appears
to be loose and translates to a linear O(T ) label complex-
ity in the online setting. Yang [32] provided an upper bound
O(dT

2−2α
2−α log3 T ) on the label complexity of ACAL, which is

higher than the O(dT
2−2α
2−α log2 T ) order offered by OLA.

The margin-based algorithm for learning homogeneous linear
separators under a uniform distribution of X on the unit sphere
is analyzed in [31] under the Tsybakov noise condition. It leads
to a regret order of O(dT

2−2α
3−2α log T ) and a label complexity

of O(dT
2−2α
2−α log T ) under the Tsybakov low noise condition.

These orders cannot be directly compared with that of OLA due
to the restrictions to homogeneous linear separators and the spe-
cific form of PY |X . This margin-based algorithm also operates
at a different point on the tradeoff curve between regret and label
complexity, offering a slightly lower order in label complexity
but a higher order in regret. However, even when restricted to
the special case targeted by this margin-based algorithm, the
dominating polynomial term is the same, and the finite-time
comparison given by simulation examples in Section VI actually
show superior performance of OLA in both label complexity and
regret.

The finite-time comparison in Section VI also demonstrate
significant performance gain offered by OLA over the three
representative disagreement-based algorithms: A2, DHM, and
ACAL. In particular, the improvement over the online algorithm
ACAL is drastic.

II. PROBLEM FORMULATION

A. Instances and Hypotheses

Let{Xt}t≥1 be a streaming sequence of instances, each drawn
from an instance/sample spaceX and characterized by its feature
vector. Each subset of X is a concept. There is a target concept
C ⊂ X that the learner aims to learn (e.g., learning the concept
“table” from household objects). Relating to the target conceptC,
each instance Xt has a hidden label Yt, indicating whether Xt ∈
C (i.e., a positive example whereinYt = 1) orXt /∈ C (a negative
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example with Yt = 0). The label Yt relates probabilistically to
Xt according to an unknown conditional distribution PY |X .

The learner is characterized by its hypothesis space H con-
sisting of all classifiers under consideration. Each hypothesis
h ∈ H is a measurable function mapping from X to {0, 1}. The
complexity of the hypothesis space H is measured by its VC
dimension d.

B. Error Rate, Disagreement, and Bayes Optimizer

Recall that PY |X denotes the conditional distribution of the
true label Y for a givenX . Let PX denote the unknown marginal
distribution of instances X and P = PX × PY |X the joint dis-
tribution of an example (X,Y ). The error rate of a hypothesis
h is given by

εP(h) = P[h(X) �= Y ], (1)

which is the probability that h misclassifies a random instance.
Define the pseudo-distance and the disagreement between two
hypotheses as, respectively,

d(h, h′) = |εP (h)− εP (h
′)|, ρ(h, h′) = PX [h(X) �= h′(X)],

(2)
where the distance is the difference in error rates and the
disagreement is the probability mass of the instances over
which the two hypotheses disagree. Lastly, D(h1, h2) = {x ∈
X : h1(x) �= h2(x)} denotes the disagreement region between
two hypotheses h1 and h2.

Let h∗ be the Bayes optimal classifier that minimizes the error
rate, i.e., for all x ∈ X , h∗(x) is the label that minimizes the
probability of classification error:

h∗(x) = arg min
y=0,1

EPY |X=x
1[Y �= y], (3)

where 1[·] is the indicator function. Let

η(x) = PY |X=x(Y = 1|X = x). (4)

It is easy to see that

h∗(x) =

{
1 if η(x) ≥ 1

2

0 if η(x) < 1
2

. (5)

We assume that h∗ ∈ H.

C. Noise Condition

The function η(x) given in (4) is a measure of the feature noise
level at x. The noise-free case is when labels are deterministic:
PY |X=x, hence η(x), assumes only values of 0 and 1. In this
case, the optimal classifier h∗ is error-free. This is referred to as
the realizable case with perfectly separable data.

In a general agnostic case with arbitrary PY |X , consistent
classifiers may not exist, and even h∗ suffers a positive error
rate. A particular case, referred to as the Massart bounded noise
condition [38], is when η(x) is discontinuous at the boundary be-
tween positive examples X∗1 � {x ∈ X : h∗(x) = 1} and neg-
ative examples X∗0 � {x ∈ X : h∗(x) = 0}. Specifically, there
exists γ > 0 such that |η(x)− 1

2 | ≥ γ for all x ∈ X .
A more general noise model is the Tsybakov noise condi-

tion [34], for which the Massart bounded noise condition is a

special case. It allows η(x) to pass 1
2 with a continuous change

across the decision boundary and parameterizes the slope around
the boundary. Specifically, the Tsybakov noise condition states
that there exist α ∈ (0, 1], c0 ≥ 0, such that for all h, we have

ρ(h, h∗) ≤ c0d
α(h, h∗). (6)

At α = 1, the Tsybakov noise reduces to the more benign Mas-
sart noise. In terms of the slope around the decision boundary,
the above condition can be restated as

PX

({
x :

∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ γ

})
≤ c′0γ

α
1−α (7)

for some constant c′0 ≥ 0.

D. Learning Policies and Performance Measure

An online active learning strategy π consists of a sequence of
query rules {υt}t≥1 and a sequence of prediction rules {λt}t≥1.
Here υt and λt map from causally available information consist-
ing of past actions, instances, and queried labels to, respectively,
the query decision of 0 (no query) or 1 (query) and a predicted
label at time t. With a slight abuse of notation, we also let υt and
λt denote the resulting query decision and the predicted label at
time t under these respective rules.

The performance of policy π = ({υt}, {λt}) over a horizon
of length T is measured by the expected number of queries
and the expected number of classification errors in excess to
that of the Bayes optimal classifier h∗. These two performance
measures, referred to as label complexity E[Q(T )] and re-
gret E[R(T )], are given as follows.

E[Q(T )] = E

[
T∑

t=1

1[υt = 1]

]
(8)

E[R(T )] = E

[ ∑
t≤T :υt=0

1[λt �= Yt]− 1[h∗(Xt) �= Yt]

]
, (9)

where the expectation is with respect to the stochastic process
induced by π. Note that regret measures the expected difference
in the cumulative classification errors over the entire horizon
between a learner employing π and an oracle that uses h∗ all
through the horizon.

The objective is a learning algorithm that minimizes the label
complexity E[Q(T )] with a constraint on the regret E[R(T )].
The constraint, for example, can be either bounded by a constant
independent of T or in a logarithmic order of T .

III. THE ONLINE ACTIVE LEARNING ALGORITHM

A. The Basic Structure

The algorithm operates under an epoch structure. When a
fixed numberM of labels have been queried in the current epoch,
this epoch ends and the next one starts. Note that the epoch
length, lower bounded by M , is random due to the real-time
active query decisions. The algorithm maintains two sets in each
epoch k: the version space Hk and the RoD D(Hk) defined as
the region of instances for which there is disagreement among
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hypotheses in the current version spaceHk. More specifically,

D(Hk) = {x ∈ X : ∃h1, h2 ∈ Hk, h1(x) �= h2(x)}. (10)

The initial version space is set to the entire hypothesis spaceH,
and the initial RoD is the instance space X . At the end of each
epoch, these two sets are updated using the M labels obtained
in this epoch, and the algorithm iterates into the next epoch.

At each time instant t of epoch k, the query and prediction
decisions are as follows. If xt ∈ D(Hk), its label is queried.
Otherwise, the learner predicts the label of xt using an arbitrary
hypothesis inHk.

At the end of the epoch, Hk is updated as follows. Let Zk

denote the set of the M queried examples in this epoch. For a
hypothesis h inHk, define its empirical error over Zk as

εZk
(h) =

1

M

∑
(x,y)∈Zk

1[h(x) �= y]. (11)

Let h∗k = argminh∈Hk
εZk

(h) be the best hypothesis in Hk in
terms of empirical error over Zk. The version space is then
updated by eliminating each hypothesis h whose empirical error
over Zk exceeds that of h∗k by a threshold ΔZk

(h, h∗k) that is
specific to h, h∗k, and Zk. Specifically,

Hk+1 = {h ∈ Hk : εZk
(h)− εZk

(h∗k) < ΔZk
(h, h∗k)}. (12)

The new RoDD(Hk+1) is then determined byHk+1 as in (10).

B. Threshold Design

We now discuss the key issue of designing the threshold
ΔZk

(h, h∗k) for eliminating suboptimal hypotheses. This elim-
ination threshold controls the tradeoff between two conflicting
objectives: quickly shrinking the RoD (thus reducing label com-
plexity) and managing the irreversible risk of eliminating good
classifiers (thus increasing future classification errors).

In OLA, we obtain a more aggressive threshold design fo-
cusing on empirical errors incurred over significant (X,Y )
examples determined by the current RoD.

Specifically, for a pair of hypotheses h1, h2, define

εP (h1, h2) = P (h1(X) �= Y ∧ h2(X) = Y ), (13)

where ∧ is the logical AND operation. Thus, εP (h1, h2) is
the probability that h1 misclassifies a random instance but h2

successfully classified. For a finite set Z of (x, y) samples, the
empirical excess error of h1 over h2 on Z is defined as

εZ(h1, h2) � 1

|Z|
∑

(x,y)∈Z
1[h1(x) �= y ∧ h2(x) = y]. (14)

The elimination threshold ΔZk
(h, h∗k) is set to:

ΔZk
(h, h∗k) = β2

Hk,M

+ βHk,M

(√
εZk

(h, h∗k) +
√

εZk
(h∗k, h)

)
,

(15)
where βH′, n =

√
(4/n) ln(16T 2S(H′, 2n)2) for an arbitrary

hypothesis space H′ and positive integer n. Here S(H′, n) is
the n-th shattering coefficient of H′. By Sauer’s lemma [39],
S(H′, n) = O(nd′) with d′ being the VC dimension ofH′.

Algorithm 1: The OLA Algorithm.
Input: Time horizon T , VC dimension d, parameter
m ∈ N+.

Initialization: Set Z1 = ∅, Version spaceH1 = H, RoD
D1 = X . Current epoch k = 1. M = �mdT

2−2α
2−α log T 
.

for t = 1 to T do
if xt /∈ Dk then

Choose any h ∈ Hk and label xt with h(xt);
end if
if xt ∈ Dk then

Query label yt and let Zk = Zk ∪ {(xt, yt)};
if |Zk| = M then

UpdateHk+1 and Dk+1 according to (10) and (12)
with the elimination threshold ΔZk

given in (15);
Let k = k + 1;

end if
end if

end for

The choice of this specific threshold function will become
clear in Section IV-A when the relationship between the empir-
ical error difference of two hypotheses and the ensemble error
rate difference under P is analyzed.

A detailed description of the algorithm is given in Algo-
rithm 1. The algorithm parameter M is set to �mdT

2−2α
2−α log T 
,

where m is a positive integer whose value will be discussed
in Section IV-B. We point out that while the horizon length
T is used as an input parameter to the algorithm, the standard
doubling trick can be applied when T is unknown.

IV. ANALYSIS OF REGRET AND LABEL COMPLEXITY

We first develop the following concentration inequality in
Theorem 1 to establish the relationship between the empirical er-
ror and ensemble error rate of any pair of hypotheses. The proof
employs the normalized uniform convergence VC bound [40].
Details can be found in [41, Appendix A].

Theorem 1: Let Z be a set of n i.i.d. (X,Y )-samples under
distribution P . For all h1, h2 ∈ H, we have, with probability at
least 1− δ,

εP (h1)− εP (h2) ≤ εZ(h1)− εZ(h2)

+ γ2
n + γn(

√
εZ(h1, h2) +

√
εZ(h2, h1)), (16)

where γn =
√

(4/n) ln(8S(H, 2n)2/δ).
Since all samples inDk are queried at epoch k in the proposed

OLA algorithm, we can see thatZk is an i.i.d. sample of size M
from distribution P |Dk, which is defined as

P |Dk(x) =

{
P (x)/φ(Dk) if x ∈ Dk

0 otherwise
, (17)

where φ(D) = P (X ∈ D) for D ⊆ X .
Therefore, we can apply Theorem 1 to each epoch k with Zk

and P |Dk, which gives us the following corollary.
Corollary 1: Let βn =

√
(4/n) ln(16T 2S(H, 2n)2). With

probability at least 1− 1
2T , for all k ≥ 1 and for all h ∈ Hk,
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we have

εP |Dk
(h∗k)− εP |Dk

(h) ≤ εZk
(h∗k)− εZk

(h) + β2
M

+βM

(√
εZk

(h∗k, h) +
√

εZk
(h, h∗k)

)
. (18)

A. Regret

Next, using Theorem 1 we show that the expected regret of
the proposed OLA algorithm is bounded by 1/2.

Theorem 2: The expected regret E[R(T )] of the OLA algo-
rithm is bounded as follows:

E[R(T )] ≤ 1

2
.

Proof: Here we provide the sketch of the proof. The detailed
proof can be found in [41, Appendix B]. First we show that
if the inequalities in Corollary 1 hold simultaneously for all
k ≥ 1, we haveh∗ ∈ Hk for all k ≥ 1, which impliesR(T ) = 0.
Therefore by Corollary 1, we have P (R(T ) > 0) ≤ 1

2T . Note
that R(T ) ≤ T , we have E[R(T )] ≤ 1

2T · T = 1
2 as desired. �

B. Label Complexity

For the purpose of label complexity analysis, we define the
following online disagreement coefficient, which is slightly
different from the disagreement coefficient defined for offline
active learning in [5]. Recall the psuedo-metric ρ defined in (2).
The online disagreement coefficient θ = θ(P ,H) is defined as

θ = sup

{
φ[D(B(h∗, r))]

r
: r > 0

}
, (19)

where B(h, r) = {h ∈ H : ρ(h, h′) < r} is a “hypothesis ball”
centered at h with radius r.

The quantity θ bounds the rate at which the disagreement mass
of the ball B(h∗, r) grows with the radius r. It is bounded by√
d whenH is d-dimensional homogeneous separators [5].
Next we upper bound the label complexity for the proposed

online active learning algorithm.
Theorem 3: Let E[Q(T )] be the expected label complexity of

OLA. If m > 324(θc0)
2
α , then there exists C1 > 0 such that

E[Q(T )] ≤ C1mdT
2−2α
2−α (log T + 1)2, (20)

where θ = θ(PX ,H) is the disagreement coefficient.
Note that m is a constant determined by the algorithm, the

label complexity E[Q(T )] has an order of O(dT
2−2α
2−α log2 T ).

For the Massart noise condition at α = 1, the label complexity
is O(d log2 T ).

Proof: We have discussed in Section I-B the key ideas and
techniques used in the proof. The detailed proof can be found
in [41, Appendix C]. �

C. Order Optimality

We now establish the order optimality of the label complexity
(upto poly-logarthmic factors) of OLA under a bounded regret
constraint. This is obtained by establishing a lower bound on
the label complexity feasible under any policy with a bounded
regret.

Theorem 4: Consider the Tsybakov noise satisfying the fol-
lowing condition with a parameter α ∈ (0, 1): there exist con-
stants c1 and c2 independent of x ∈ X such that c1

2 r0(x)
1
α−1 ≤

|η(x)− 1
2 | ≤ c2

2 r0(x)
1
α−1 holds for all x ∈ X where r0(x) =

inf
{h:x∈D(h,h∗)}

ρ(h, h∗). The label complexity of all policies with

bounded regret is of order Ω(T
2−2α
2−α ).

Note that a lower bound on the noise (i.e., an upper bound
specified through the constant c2 on the slope of η(x) passing
1/2) is further imposed in order to establish a tight lower bound
on label complexity for a specific noise level. We point out
that while we focused on the constraint of a bounded regret,
the analysis can be easily modified to obtain lower bounds
under regret constraints of different orders. Specifically, we
can show a lower bound of Ω(min{T 2(1−α)(1−ε), T

2−2α
2−α }) un-

der a regret constraint of order O(T ε) for some ε > 0. It is
also straightforward to modify the lower bound analysis to
accommodate different problem models (e.g., those studied
in [31], [32]).

Proof: The key in establishing the lower bound is to iden-
tify a limiting subproblem inherent to the online classification
problem that determines the label complexity. We show that an
inherent binary hypothesis testing problem presents such a limit.
For this specific subproblem, we show that the probability of the
event where label complexity is capped at Ω(T

2−2α
2−α ) is small if

the regret on the subproblem has to be bounded. The detailed
proof is given in [41, Appendix D]. �

For the case of Massart Noise, we can establish a lower bound
of Ω(log T ) under the constraint of a sublinear regret budget.
The basic proof technique follows similar ideas as that for the
Tsybakov noise but with a simplified analysis (See [41]). We
summarize the lower bound for the case of Massart Noise in the
following theorem.

Theorem 5: Consider the Massart Noise model where η(x)
is bounded away from 1/2 by a parameter γ > 0, i.e., for all
x ∈ X , |η(x)− 1/2| ≥ γ. The label complexity of all policies
that achieve a sublinear regret under the above Massart Noise
model is of the order Ω(log T ).

For constraints of sublinear but unbounded regret, the above
lower bound is tight since it matches with the upper bound
on the label complexity of Random Walk OLA or RW-OLA
for short (see Section V). Under the constraint of bounded
regret, however, we conjecture a Ω(log2 T ) lower bound on
label complexity for a general hypothesis space with an infinite
number of hypotheses. 2

2The intuition behind this conjecture is as follows. Let N(ε) denote the ε-
covering number ofH and C be an associated ε-cover that has N(ε) hypotheses.
Specifically, an ε-cover C of H is a subset of hypothesis {h1, . . . , hN} such
that for any h ∈ H there exists an i ∈ {1, 2, . . . ,N} such that ρ(h, hi) ≤ ε and
the ε-covering number of H is the size of the smallest ε-cover of H. Following
the same line of arguments in the proof of Theorem 5, we can show that for
a hypothesis h ∈ C, the policy needs to query Ω(logT ) instances in D(h, h∗)
to ensure a bounded regret and this needs to hold simultaneously for all h ∈ C
by the end of the time horizon. Using the uniformity of the cover C, we can
show that the expected number of queries to hit Ω(logT ) queries in D(h, h∗)
for all h ∈ C is Ω(logT logN(ε)). Choosing ε ∼ T−1/2 results in a bound of
Ω(log2 T ) on label complexity.
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V. EXTENSIONS AND DISCUSSIONS

A. Tradeoff Between Label Complexity and Regret

In this section, we show that OLA can be modified to operate
on a different point on the tradeoff curve of regret vs. label
complexity.

In OLA, the threshold for elimination is constructed conserva-
tively to achieve a bounded regret. More specifically, the outage
probability of eliminating h∗ from the version space (i.e., the
parameter δ in Theorem 1) in each epoch is capped at a small
value 1/T 2 that diminishes with T . We now consider a variant
of OLA in which the elimination probability δ is set to a constant
in order to quickly shrink RoD for a lower label complexity. To
mitigate the high probability of h∗ being eliminated, which may
result in a linear regret order, we build in a verification stage at
the beginning of each epoch for the algorithm to self recognize
and recover from the event of h∗ being eliminated. The key idea
is to devise a biased random walk on the version spaces that
allows the algorithm to trace back to a previous version space in
the event of h∗ being eliminated. The bias of the random walk,
however, ensures that with high probability the trajectories of
the random walk concentrate on subsets of H containing h∗

with disagreement regions diminishing at a desired rate. As a
result, after taking O(log T ) steps, the random walk arrives at a
version space with a disagreement region in the order ofO(1/T )
in terms of its probability mass. In summary, compared with a
deterministic transition between consecutive version spaces as
in OLA, the random walk approach allows us to move more
swiftly on average across version spaces with the option of
tracing back and hence correcting previous erroneous moves.
It is crucial to the objective of operating at a different point on
the label complexity-regret curve. We refer to this variant of
OLA as RW-OLA.

Before delving into the details of the verification stage, we
define the parent and child relationship between version spaces.
For each epoch k, ifHk is obtained by eliminating some of the
hypotheses in the version spaceHr(k) of a previous epoch r(k),
we say thatHr(k) is the parent ofHk andHk is a child ofHr(k).
Note thatHk is a subset ofHr(k).

1) Verification Stage: In the verification stage of epoch k,
the query and prediction decision are based on its parent version
space Hr(k) and its corresponding RoD. When a fixed number
M of labels have been queried, we start the verification process
as follows.

Let Z′k denote the set of the M queried examples in the veri-
fication stage. We examine two values in terms of the empirical
error overZ′k: (1)minh∈Hk

εZ′k(h): the minimum empirical error
inside Hk; (2) minh/∈Hk

εZ′k(h): the minimum empirical error
outsideHk. Intuitively, if h∗ ∈ Hk, the difference

min
h/∈Hk

εZ′k(h)− min
h∈Hk

εZ′k(h) (21)

will be large, and vice versa. We hence determine the outcome
of the verification stage based on whether this gap between the
empirical errors outside and inside the current version spaceHk

exceeds a properly designed threshold. If the verification passes,
indicating that h∗ ∈ Hk with a sufficiently high probability, the

Fig. 1. A typical random walk on a version space tree.

epoch proceeds in the same way as in OLA, and the current
version spaceHk is further pruned to form a new version space
Hk+1. If, on the other hand, the verification fails, the current
epoch ends, and the algorithm traces back to the parent of Hk

by setting Hk+1 = Hr(k). The evolution of the version spaces
across epochs follows a biased random walk as detailed below.

2) Random Walk on a Version-Space Tree: Based on the
outcome of the verification stage, the version space Hk+1 of
epoch k + 1 is either a child or a parent of Hk. In particular,
following the evolution of the version spaces, we can construct a
growing tree to record the parent-children relationship between
version spaces. In this tree structure, each node represents a
version space, and the version space sequence {Hk}k≥1 forms a
random walk on the tree. Illustrated in Fig. 1 is a sample path of
the random walk on a tree for a hypothesis space consisting of
threshold classifiersH = {hz|0 ≤ z ≤ 1} on X = [0, 1] where
hz = [z, 1]. We can see that on this tree, the verification failed
in epochs 2 and 5 and but passed in epochs 1, 3, 4, and 6.

3) Threshold design: In addition to the elimination threshold
for pruning the version space as in OLA, RW-OLA also requires
a verification threshold. As explained below, these two thresh-
olds are coupled and need to be designed jointly to ensure the
desired performance of the algorithm.

The verification stage performs a binary detection problem:
whether h∗ is inside the current version spaceHk. On one hand,
to ensure that the random walk on the version spaces is biased
toward the direction of correct pruning, the verification threshold
needs to be chosen to ensure a sufficiently accurate detection
outcome. On the other hand, the hardness of this detection
problem is determined by how close the two cases of h∗ ∈ Hk

and h∗ /∈ Hk are. More specifically, the hardness of this binary
detection problem is determined by the error rate difference
between the best hypothesis inside Hk and the best hypothesis
outsideHk:

min
h/∈Hk

εPr(k)
(h)− min

h∈Hk

εPr(k)
(h), (22)

which, in turn, is determined by the elimination threshold in
epoch r(k) when Hk is obtained. More specifically, while a
smaller elimination threshold leads to more aggressive pruning
of the version space, it results in a smaller performance gap
between hypotheses outside Hk and those inside Hk since
near-optimal hypotheses may be eliminated from the version
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space. Consequently, the verification stage faces a harder de-
tection problem. In summary, the two thresholds need to be
designed jointly to balance the label complexity associated with
verification and with normal learning.

Let p denote the desired bias of the random walk. This implies
that (i) when h∗ ∈ Hk, the verification passes with a probability
no smaller than p; (ii) when h∗ /∈ Hk, the verification fails with
a probability no smaller than p. Let

Δ(M, δ) = 2

√
2
logS(H, 2M) + log 2

δ

M
. (23)

We set the elimination threshold to 6Δ(M, 1−√p) so that
the error rate difference in (22), which determines the hardness
of the verification problem, is at least 4Δ(M, 1−√p)with high
probability. The verification threshold is set to 2Δ(M, 1−√p)
to guarantee the desired bias of p. A detailed derivation of the
thresholds is given in [41, Appendix E].

A detailed description of the algorithm is given in Algo-
rithm 2. The algorithm parameter M is set to �md
, where m is
a positive integer whose value will be discussed in the analysis
below.

4) Analysis of Regret and Label Complexity: Theorem 6:
Let E[Q(T )] be the expected label complexity of the RW-OLA
algorithm. If m > 1024(θc0)

2, under Massart noise condition,
there exists C2 > 0 such that

E[Q(T )] ≤ C2md log T, (25)

where θ = θ(PX ,H) is the disagreement coefficient.
Proof: Here we provide a sketch of the proof. The detailed

proof can be found in the [41, Appendix E]. We first show that
the bias of the random walk is indeed bounded above p with
the chosen thresholds. We then show that when the verification
passes, the RoD in the next epoch will shrink with a fixed rate c.
Based on these two statements, we can show that the expected
RoD is decreasing exponentially with rate c1 = 1− p+ c2p <
1. The same submartingale technique used in analyzing OLA is
then used to bound the label complexity of RW-OLA. �

Under Massart noise, the epoch length for OLA is md log T ,
which leads to O(log2 T ) label complexity. For RW-OLA, the
epoch length is only md, which makes the label complexity
only O(log T ). In other words, to make sure RoD decreases
exponentially, OLA requires epoch length to be O(d log T ) but
RW-OLA only requires it to be O(1).

Theorem 7: Let E[R(T )] be the expected regret of the RW-
OLA algorithm. If m > 1024(θ′c0)2 and θ′ > 0, under Massart
noise condition, there exists C3 > 0 such that

E[R(T )] ≤ C3md log T, (26)

where

θ′ = inf

{
φ[D(B(h∗, r))]

r
: r > 0

}
. (27)

is the modified disagreement coefficient.
Proof: Since an epoch k with h∗ ∈ Hk incurs no regret, we

only need to consider the case where h∗ /∈ Hk. In this case,
based on the RW-OLA algorithm, regret incurs if and only if

Algorithm 2: The Random Walk OLA (RW-OLA) Algo-
rithm.

Input: VC dimension d, parameter m ∈ N+.
Initialization: Set Version spaceH1 = H, RoD
D1 = X . Current epoch k = 1. M = md. Parents
r(1) = 1

while t ≤ T do
Verification:
Let Z ′k = ∅
while |Z ′k| < M do

Let t = t+ 1
if xt /∈ Dr(k) then

Choose any h ∈ Hr(k) and label xt with h(xt);
else

Query label yt and let Z′k = Z′k ∪ {(xt, yt)};
end if

end while
if
minh/∈Hk

εZ′k(h)−minh∈Hk
εZ′k(h) < 2Δ(M, 1− p)

then
LetHk+1 = Hr(k), Dk+1 = Dr(k),

r(k + 1) = r(r(k)), k ← k + 1;
continue;

end if
Elimination:
Let Zk = ∅
while |Zk| < M do

Let t = t+ 1
if xt /∈ Dk then

Choose any h ∈ Hk and label xt with h(xt);
else

Query label yt and let Zk = Zk ∪ {(xt, yt)};
end if

end while
UpdateHk+1 as following:

Hk+1 = {h ∈ Hk : εZk
(h)− εZk

(h∗k) <

6Δ(M, 1−√p)} (24)

Update Dk+1 according to (10).
Let r(k + 1) = k, k = k + 1;

end while

the instance falls into a subset outside of RoD. Based on the
bias of the random walk, we can show that the expected ratio of
that subset to the current RoD is bounded by a constant. Since
queries occur whenever the instances fall inside the RoD, we can
show that the expected regret is upper bounded by this constant
multiplying the expected label complexity, which is O(d log T ).
See [41, Appendix F] for the detailed proof.

B. Implementation for Homogeneous Linear Classification

There are several steps in OLA and RW-OLA that can be com-
putationally expensive, which is inherent to the disagreement-
based approach. Specifically, maintaining the version space
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Fig. 2. Comparison with A2, DHM, and ACAL (d = 1, Tsybakov noise with α = 1 and c0 = 5, h∗ = h0.5).

and RoD, and computing the best empirical hypothesis h∗k can
be costly. We discuss here approximate implementations with
manageable computational complexity for homogeneous linear
classification, drawing inspiration from techniques of using sur-
rogate loss [13] and the Query-by-Committee approaches [14],
[42].

In homogeneous linear classification, X is the surface of the
d-dimension unit Euclidean sphere. Each hypothesis, as a linear
separator that passes the origin, is given by a unit vector u ∈ Rd

such that the corresponding concept is {x ∈ X : ux ≥ 0}.
To estimate the best empirical hypothesis h∗k, we use hinge

loss function l(z) = max{1− z, 0} to replace the 0-1 loss func-
tion in (11). Then, the best empirical hypothesis ĥ∗k under hinge
loss is given by

ĥ∗k = min
h∈Hk

∑
(x,y)∈Zk

max{1− (2y − 1)ux, 0}. (28)

Then standard linear classification algorithms such as SVM can
be employed to compute ĥ∗k.

The version space is approximated with N constituent hy-
potheses sampled uniformly at random. Specifically, at t = 1,
we sample N hypotheses uniformly at random from the entire
hypothesis space {u ∈ Rd, ||u|| = 1} and form Ĥ1. At each
epoch k, for each hypothesis h ∈ Ĥk, we check whether it
should be eliminated based on (12) and label them as +1 or
−1 accordingly. Then, we run a linear classification algorithm
to separate the hypotheses labeled +1 from those labeled −1
in the above process. This yields a linear classifier of the form
ωu+ b ≥ 0 that represents an approximation of the new version
space. To obtain an approximation of the new version space
Ĥk+1, we again sampleN hypotheses uniformly at random from
{u : ωu+ b ≥ 0} to form the next version space Ĥk+1.

Since the version space is estimated by a finite number of
hypotheses, instead of maintaining the RoD explicitly, we check
whether xt /∈ Dk by checking whether all h ∈ Ĥk agree on xt.
A detailed description of the algorithm is given in Algorithm 3.

For RW-OLA, both the verification stage and elimination
stage can be implemented similarly. In particular, the elimi-
nation stage of RW-OLA is exactly the same as OLA except

Algorithm 3: OLA for Homogeneous Linear Classification.

Initialization: Set Z0 = ∅, Random sample Ĥ0

uniformly fromH.
for t = 1 to T do

if All h ∈ Ĥk agree on xt then
Choose any h ∈ Ĥk and label xt with h(xt);

else
Query label yt and let Zk = Zk ∪ {(xt, yt)};
if |Zk| = M then

1. Find h∗k using Zk and (28);
2. For all h ∈ Ĥk, check whether h ∈ Hk+1 based

on (12) and label them accordingly;
3. Find linear classifier ωu+ b ≥ 0 for Ĥk and its

label;
4. Random sample Ĥk+1 from {u : ωu+ b ≥ 0};

end if
end if

end for

the threshold will be different. Therefore, it can be done by
replacing the threshold in step 2 to maintain the version space
and RoD. For the verification stage, which involves finding the
best empirical hypothesis inside and outside ofHk, can be done
using the hinge loss replacement in (28) with a standard linear
classification algorithm as well.

VI. SIMULATION EXAMPLES

We first compare the label complexity of OLA and RW-OLA
with existing disagreement-based active learning algorithms.
We first consider a one-dimensional instance space X = [0, 1]
and threshold classifiers withH = {hz|0 ≤ z ≤ 1}where hz =
[z, 1]. Note that the VC dimension d = 1. We set PX to be the
uniform distribution. Fig. 2 and 3 show the comparison under
different Tsybakov noise conditions.

In Fig. 4, we consider the same instance spaceX = [0, 1] and
uniformly distributed instances, but a hypothesis space H =
{hz1,z2 |0 ≤ z1, z2 ≤ 1} consisting of all intervals hz1,z2 =
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Fig. 3. Comparison with A2, DHM, and ACAL (d = 1, Tsybakov noise with α = 0.5 and c0 = 1, h∗ = h0.5).

Fig. 4. Comparison with A2, DHM, and ACAL for (d = 2, Tsybakov α = 1 and c0 = 1 h∗ = h0,25,0.75).

Fig. 5. Comparison with A2 and DHM for (d = 3, N = 50000, Tsybakov noise with α = 1 and c0 = 1, α = 0.5 and c0 = 5, h∗ = (1, 0, 0)).

[z1, z2]. Note that in this case, the VC dimension d = 2. For
both cases, since the hypothesis space can be effectively repre-
sented by Nd points (with d = 1, 2) after taking N samples, we
implemented an exact version of all the algorithms. For ACAL,
the optimization problem to obtain the threshold was solved
numerically.

Since the label complexity for ACAL is much larger
than the others, we plot the others in the right fig-
ure. The significant reduction in label complexity offered
by OLA and RW-OLA is evident from Figs. 2–4. The
simulated classification errors are near zero for all the
algorithms.
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Fig. 6. Comparison with A2 and DHM for (d = 4, N = 50000, Tsybakov noise with α = 1 and c0 = 1, α = 0.5 and c0 = 5 h∗ = (1, 0, 0, 0)).

Fig. 7. Comparison with CB-C-G [30] under Tsybakov noise with α = 0.5 and c0 = 1.

Next we considerd-dimension homogeneous linear classifica-
tion setting. Fig. 5 and 6 show the comparison ford = 3, 4. DHM
and A2 are implemented with similar methods as discussed in
Section V-B. The simulated classification errors are near zero
for all three algorithms.

Next we compare OLA with the online margin-based al-
gorithm CB-C-G proposed in [30], [31]. It is specialized in
learning homogeneous separators under specific noise model:
there exists a fixed and unknown vector u ∈ Rd with Euclidean
norm ||u||= 1 such that η(x) = (1 + u�x)/2. Then, the Bayes
optimal classifier h∗(x) = 1[u�x ≥ 0]. Shown in Fig. 7 are the
label complexity and classification error comparisons under this
specific noise model with d = 2,u = (1, 0), and uniform PX .
It shows that even when comparing under this special setting,
OLA offers considerable reduction in label complexity and
drastic improvement in classification accuracy. These simulation
results suggest that the more conservative disagreement-based
approach might be more suitable in the online setting than
the aggressive margin-based approach, especially in terms of
bounding the online classification errors. The reason is that
the margin-based approaches aggressively seek out the most
informative samples to query, which may have an advantage
in the offline setting when unqueried samples can be skipped
without labeling. In the online setting, however, such approaches

result in more frequent self-labeling, hence higher rate of online
classification errors.

VII. CONCLUSION

Online active learning has received considerably less attention
than its offline counterpart. Real-time stream-based applica-
tions, however, necessitate a better understanding of this prob-
lem. The proposed algorithms and the established lower bounds
in this work represent only initial attempts at addressing this
problem. Much remains open. In particular, the characterization
of the regret vs. label complexity tradeoff is incomplete, and
online learning algorithms that can operate at any given point
on the tradeoff curve require further investigation. Furthermore,
an immediate direction is to consider the multi-class equivalent
of this binary classification problem. A promising approach to
this direction is via the use of output codes [43], [44].

Several other future directions include extending OLA for
spaces that are difficult to characterize by VC dimension but
can be more conveniently characterized by covering/bracketing
numbers. Another interesting direction would to be consider the
scenario of potentially correlated samples for which one would
need to redesign the threshold and update schemes to account for
the correlation among samples. Thus, this work offers a stepping
stone towards a rich set of future directions.
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