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A B S T R A C T

This study presents an imaging-based deep learning tool to measure the fuel regression rate in a 2D slab burner
experiment for hybrid rocket fuels. The slab burner experiment is designed to verify mechanistic models of
reacting boundary layer combustion in hybrid rockets by the measurement of fuel regression rates. A DSLR
camera with a high intensity flash is used to capture images throughout the burn and the images are then used
to find the fuel boundary to calculate the regression rate. A U-net convolutional neural network architecture is
explored to segment the fuel from the experimental images. A Monte-Carlo Dropout process is used to quantify
the regression rate uncertainty produced from the network. The U-net computed regression rates are compared
with values from other techniques from literature and show error less than 10%. An oxidizer flux dependency
study is performed and shows the U-net predictions of regression rates are accurate and independent of the
oxidizer flux, when the images in the training set are not over-saturated. Training with monochrome images is
explored and is not successful at predicting the fuel regression rate from images with high noise. The network
is superior at filtering out noise introduced by soot, pitting, and wax deposition on the chamber glass as well
as the flame when compared to traditional image processing techniques, such as threshold binary conversion
and spatial filtering. U-net consistently provides low error image segmentations to allow accurate computation
of the regression rate of the fuel.
1. Introduction

Hybrid rockets are recently gaining attention and becoming a com-
petitive propulsion system because they have the benefits of solid
and liquid rockets in one platform [1,2]. The fuel and oxidizer are
n two different states: typically the fuel is a solid and the oxidizer
s a gas/liquid, providing a highly dense fuel source similar to a
i-propellant solid motor but with the throttle control of a liquid
otor [3–5]. The fuel regression rate (𝑟̇) corresponds to the rate that the
uel recedes over the course of a burn and is an important measurement
ince it directly defines the motor thrust and geometry (e.g., a higher
egression rate results in smaller combustion chambers) [6]. Low fuel
egression rates correspond to low fuel mass flow rates, leading to
xcess oxidizer passing through the motor, which reduces the available
hrust and therefore reduces the overall efficiency [7]. From a predic-
ion perspective, the regression rate is a simple measurement that can
e used to verify model estimates.
The simplest method to measure temporally and spatially averaged

egression rate is to measure the fuel grain mass before and after the
urn, then divide by the time of the burn, as performed in [8–10].

∗ Corresponding author.
E-mail address: ped3@buffalo.edu (P.E. DesJardin).

Measuring the regression rate in this way may be subject to error
caused by part of the fuel mass not combusting and melting away
(e.g., for solid fuels that have a low melting point such as paraffin
wax). Another drawback to weighing the fuel grain is that it does
not provide data of local and instantaneous regression rates which
is useful for validating regression rate models [6]. Other methods of
regression rate measurement include using combustion chamber pres-
sure [11], x-ray radiography [3], initial and final port diameter [6,12,
13], and ultrasonic transducers [14–16]. More recently, [5] developed
an imaging-based regression rate measurement for a 2D slab burner
experiment. They collected images of the fuel profiles captured contin-
uously throughout the burn and manually traced the fuel boundary to
segment the fuel from the background (binary masks where a value of
‘‘0’’ corresponds to background and a value of ‘‘1’’ corresponds to fuel).
The regression rate was then computed by measuring the fuel height
variation over the burn time.

Even if manually segmenting the fuel and noise from experimental
images is accurate, it is certainly not the most efficient and repeatable
process for a large number of images and experimental dataset. The
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task of solid fuel image segmentation for measuring the fuel regression
rate can benefit from advances in deep learning processes. Image
segmentation refers to the process of classifying objects and identifying
their location in an image. Modern image processing tools based on
deep learning, such as convolutional neural networks (CNNs) have
been used to segment images for autonomous driving [17] and medical
applications [18]. CNNs are primarily made up of convolutional layers,
intermediate activation function (or transfer function) layers, and pool-
ing layers. Convolutional layers apply kernels (or filters) of weights that
convolve with the image creating a feature map to extract important
learning features from the images. The activation function layers apply
a non-linear function, a Rectified Linear Unit (ReLU), that determines
the output of previous convolution nodes in the neural network and
whether they will be activated. The pooling layers reduce the size of
the feature map and also help retain the useful information for the
segmentation task [19]. The pooled feature maps result in smaller num-
er of parameters in the network and reduced computational expense.
raining of a CNN refers to the process of computing the values of
he kernel weights. After initialization, the weights are updated using
he gradient descent optimization method after each pass through the
raining data (or epoch) [20].
U-net is a widely used CNN architecture that was initially created

or biomedical image segmentation with a low number of training
ata [21]. Examples of U-net based architecture applications include
nfant brain segmentation [22], nuclei segmentation for cancer grading
nd cell detection/classification [23], chronic stroke lesion segmenta-
ion [24], liver and tumor segmentation [25], retinal vessel segmenta-
ion for discover and treatment of ocular diseases [26], and even cloud
nd shadow segmentation [27]. Although, U-net has mostly been ap-
lied in the medical field, more recent studies have demonstrated appli-
ations specifically in combustion, such as aluminum droplet combus-
ion detection in solid propellant from shadowgraph images [28], flame
egmentation to locate the hottest region for fire suppression [29], and
egment coolant film and hot exhaust gases in a rocket combustion
hamber [30]. Neural networks in general have also been recently
tilized in the combustion field, including maximizing power density in
roton exchange membrane fuel cells [31], creating a fuel consumption
odel to predict the most efficient route for truck transportation [32],
nd to classify solid fuels based on ash content, volatile matter, and
ixed carbon [33]. Similar machine learning processes have been used
n hybrid rockets to recognize the different burning phases of solid fuel
n a similar 2D slab burner experiment [34]. The most relevant work to
he goal of this study is the particle shape and size regression detection,
n example, BubCNN, presented by [35], where neural networks were
sed to detect the shape and size of bubbles in a gas–liquid multiphase
low while segmenting them from the background. Another example
ould be [36] where the U-net was used to segment bubble images and
lassify particle shapes and sizes. The work from [35] and [36] however
o not have noise from soot, pitting, wax, and flame interfering with
he imaging.
The overall research focus of this study is on automating the manual

egression rate measurement technique in [5] using U-net to produce
he fuel segmentation masks instead of manually tracing them. The
anual approach is used as the ground truth and serves as a baseline
o validate the U-net results. The goal of this paper is to evaluate
hether the U-net architecture is a viable and self-consistent way to
roduce segmented fuel masks to measure the fuel regression rate.
o accomplish this goal, a series of U-net models of similar architec-
ure is built. Each model is trained on a subset of the data collected
n [5], a 2D slab burner experiment with four different oxidizer fluxes
5.91, 9.58, 18.59, 22.19 [kg/m2-s]). The data included, in total, 150 RGB
images and their corresponding manually segmented fuel masks. The U-
net models are then used to predict the segmented fuel masks from the
input images together with estimations of model uncertainty. The fuel
masks and uncertainty information are then used to measure the fuel
161

regression rate and are compared with values reported from the manual
Fig. 1. The 2D slab burner (a) overall experimental setup, and (b) side view of the
combustion chamber showing paraffin wax fuel [5].

rocess. Lastly, the network robustness and limitations are investigated
hrough an oxidizer flux independency and monochromatic data study.
The rest of this paper is organized as follows. Section 2 presents the

xperimental setup. Section 3 describes various methods to produce the
uel segmentation masks including the U-net architecture. Results and
ssociated discussion are presented in Section 4. Conclusions of this
tudy are in Section 5.

. Experimental setup

Fig. 1a shows the 2D slab burner experiment for paraffin wax-
aseous oxygen hybrid combustion. The experiments are conducted
n the setup that is based on [5] and [8]. The experiment uses solid
araffin wax (or candle wax) as the fuel because of its low cost and high
egression rate characteristics. The paraffin used is laboratory grade
anufactured by the Carolina Biological Supply Company. The oxidizer
s controlled using a solenoid valve and monitored using an Omega
MA 1744a mass flow meter. The oxidizer flows through a 2.54 cm
nner diameter stainless steel pipe with a length of 1.83 m to provide a
ully developed flow [8]. The oxidizer enters the combustion chamber
hown in Fig. 1b where the fuel sample is placed between two 3 mm
hick borosilicate glasses for optical access with stainless steel plates on
op and bottom.
A CMOS based Nikon D5600 DSLR camera focused on the entire

hamber is setup approximately 500 mm away, perpendicular to the
hamber. A digital stopwatch is setup in the frame of the image to
btain image time to a millisecond accuracy. The fuel is ignited with
thylene vinyl acetate (EVA) and steel wool attached to a nichrome
ire supplied with 12 V, as performed by [8]. The experimental time
anges from 5-10 s depending on the incoming oxidizer flux. Approxi-
ately 40 continuous images are taken for each case during this time.
he amount of images are limited by the flash’s ability to recharge.
The slab burner experiments are conducted at four different oxidizer

luxes (5.91, 9.58, 18.59, 22.19 [kg/m2-s]). As shown in Fig. 2, the wax
rofile is blocked by flame that brightens with increasing oxidizer flux.
o enable viewing the fuel through the flame, a high intensity flash is
sed to saturate the flame and illuminate the fuel surface, however a
lame ghost image remains. Fig. 3 shows a series of images captured
ith the high intensity flash. Although the flash allows for imaging of
he regressing fuel, it contains noise. With increasing oxidizer flux, the
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Fig. 2. An example of the side image of the wax without using a high intensity flash.

flame brightens and can exceed the intensity of flash, leading to flame
traces in the images (Fig. 3b). The flash intensity can be increased but it
results in over-saturation (Fig. 3c). Apart from these issues, the optical
indows are also prone to noise introduced by molten wax splashing
n the glasses and soot pitting (Fig. 3d). These issues, especially flame
interference and wax on the glass make it difficult to automate the
accurate tracing of the wax profile resulting error in regression rate
estimates. Thus, a neural network enables automating the tracing of
the fuel profile in the noisy images.

3. Methods of image processing

The regression rates are calculated by tracking the height of the
wax over time in successive images (from the fuel masks), fitting a
cubic polynomial curve, and finally taking its derivative, consistent
with [5]. The binary images are processed by starting from the top
of the image and stepping down each pixel vertically while searching
for the profile height. The profile is constrained to only regress or
162
remain constant, i.e. the height of the wax can only decrease or remain
constant. If the height increases in time, that data is neglected. Fig. 4
hows representative binary masks of the regressing fuel with the
rofile tracking in red lines with circles, the profile height (h) for each
olumn of pixels is used in the regression rate estimation. The accurate
egmented binary masks are essential to estimate accurate regression
ates. Four image processing methods are investigated and compared
or the accuracy in estimating the regression rates. The methods of the
mage processing techniques include using (i) threshold, (ii) Threshold
ast Image Subtraction (TLIS), (iii) spatial filtering, and (iv) U-net.
hresholding represents the least complex image processing method
nd has little to no ability to filter out noise. TLIS is a method that
emoves all of the noise but removes significant amounts of data in
oing so. The spatial filtering method removes all of the small clusters
f noise but amplifies large noise clusters. The U-net model artificially
hooses the best filters to apply, including image processing techniques
hat are not readily available, providing the best results, if trained well
nough. The resulting segmentation masks from each technique are
ompared with each other.

.1. Threshold

One simple and straightforward way to convert the experimental
mages into a binary segmentation mask is by using a pixel intensity
hreshold. Performed in [38] with the image processing toolbox, a
hreshold is chosen by using Otsu’s method that uses discriminant
nalysis to pick the optimal threshold for the best separation of objects
rom their background [39]. The resulting images are converted to
rayscale and each pixel falls below or above the threshold, converting
Fig. 3. Examples of side wax profile images using a high intensify flash from [5] with (a) no noise and noise from (b) wax on the glass, soot, pitting, (c) flame, and (d) over
aturation pointed out.
Fig. 4. An example of the masks of the regressing fuel with the profile height tracking. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
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Fig. 5. An example of the process of the thresholding method starting from top to bottom, (a) original, (b) grayscale, and (c) segmented images.
Fig. 6. An example of the process of the TLIS method starting from top to bottom, (a) original, (b) grayscale, (c) original segmented, (d) last segmented, and (e) original segmented
inus the last segmented images.
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ts pixel value to a ‘‘0’’ or ‘‘1’’, respectively. The grayscale images are
onverted by using the weighted sum formula 0.2989𝑅 + 0.5870𝐺 +
.1140𝐵 [40], where 𝑅, 𝐺, and 𝐵 are the corresponding red, green, and
lue channels, respectively (MATLAB’s standard method to convert to
rayscale). Pixels that have a value of ‘‘0’’ correspond to background,
nd pixels that have a value of ‘‘1’’ correspond to the fuel area. An
xample of this process is shown in Fig. 5. The thresholding method is
ery easy to quickly apply and provides good results if there is little to
o noise. However, if there is significant noise (such as the data used
163

i

n this paper), this method will classify it as fuel and cause high error
egression rate estimates.

.2. Threshold Last Image Subtraction (TLIS)

The TLIS technique reduces the noise that affects the mask data.
he last image in the series of images is assumed to have the maximum
oise originating from pitting/soot/wax on the glass. Thus, in TLIS this
ast image is subtracted from the rest of the images’ binary masks. TLIS
s helpful because it removes the locations with high amounts of noise,
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Fig. 7. An example of the process of the spatial filtering method starting from top to bottom, (a) original, (b) grayscale, (c) spatially filtered, and (d) segmented images.
Fig. 8. U-net neural network architecture with dropout in the intermediate layers based on [21] and [37]. The input images are 800 by 800 by 3, their size is reduced and their
depth increased in the contraction path of the U-net, and the opposite process takes place in the expansion path to arrive at the output binary segmentation mask of size 800 by
800 by 1.
to minimize the errors in the calculation of regression rate. An example
of this process is shown in Fig. 6. TLIS is very simple and relatively
easy to apply and does not classify any noise as fuel. However, this
method reduces the amount of data significantly and causes error in
the regression rate estimates.

3.3. Spatial filtering

Another image processing method that helps reduce the amount of
noise that affects the data, specifically by filtering out the small data
clusters, is spatial filtering. The images are first reduced in resolution
by 50% (∼300 by 2100) and then a 30 by 30 (∼0.1% of the original
164
image) sized square block sliding average filter is applied. The data is
reduced to enable, effectively, a larger window without being unrea-
sonably computationally expensive. A larger window could have been
chosen, but it is at the cost of more computational resources and at the
increasing cost of the definition of the fuel boundaries. An example of
this process is shown in Fig. 7.

3.4. U-net with Monte-Carlo dropout

The base U-net architecture was created using the Keras library
[41]. For additional details on U-net architecture, readers are referred
to [21]. U-net is the choice of network for this study because it is
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[

Fig. 9. Selected few of (a) the original images from the testing/validation set of various oxidizer fluxes, (b) the ground truth generated by the manual process, (c) the prediction
from the trained neural network, and (d) the associated uncertainty map.
Fig. 10. From the top to bottom, ground truth, threshold, TLIS, spatial filtering, and the U-net binary masks for (a) early, (b) mid, and (c) late times for an oxidizer flux of 5.91
kg/m2-s].
165
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[

Fig. 11. From the top to bottom, ground truth, threshold, TLIS, spatial filtering, and the U-net binary masks for (a) early, (b) mid, and (c) late times for an oxidizer flux of 9.58
kg/m2-s].
Fig. 12. From the top to bottom, ground truth, threshold, TLIS, spatial filtering, and the U-net binary masks for (a) early, (b) mid, and (c) late times for an oxidizer flux of 18.59
[kg/m2-s].
Fig. 13. From the top to bottom, ground truth, threshold, TLIS, spatial filtering, and the U-net binary masks for (a) early, (b) mid, and (c) late times for an oxidizer flux of 22.19
[kg/m2-s].
capable of handling a low number of training data and still have a high
success rate [21]. Fig. 8 shows a schematic of the U-net architecture
used in this study. The deep network has a data reduction down-branch
(contraction path) to locate the important features, followed by a data
dilation up-branch (expansion path) to return to higher resolutions. U-
net initially extracts the most important features from the image as
resolution reduces and depth increases in the contraction path. Then,
to acquire location information, the image is reconstructed by up-
sampling to return to higher resolutions [21]. The contraction path
consists of four sequences of two convolutions (3 by 3 kernels and
‘same’ padding so that the output image has the same height/width
as the input image), followed by batch normalization, ReLU activation,
and a max pooling operation (2 by 2 kernel and strides equal to 2). The
expansion path consists of four sequences of upsampling (2 by 2 kernels
166
and ‘same’ padding), followed by a concatenation with the feature map
from the corresponding level in the contracting path, two convolutions
(3 by 3 kernels and ‘same’ padding), batch normalization, and lastly a
ReLU activation. Finally, U-net includes a last convolution operation (1
by 1 kernel, ‘same’ padding) to arrive at a gray-scale image of equal
height and width as the original image (i.e., the fuel segmentation
mask). The selected layer settings are consistent with those in [21]
except for the extra padding in the convolutions to prevent the loss
of border pixels, which is common practice [42]. Additionally, batch
normalization is included which was not part of the original U-net
paper) to reduce covariant shift, as suggested in [43].

To capture model uncertainty information (i.e. how confident the U-
net is for each predicted pixel in the segmentation masks), the process

outlined in [37] utilizing Monte-Carlo Dropout is followed to generate
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Fig. 14. Relative spatial error between the ground truth mask profiles and the profiles from (a) the threshold, (b) TLIS, (c) spatial filtering, and (d) U-net.
Fig. 15. (a) Comparison to published data from [5] and (b) the absolute error for the imaging processing techniques assuming the manual data from [5] as truth (TLIS did not
give a feasible result for 22.19 [kg/m2-s] and therefore is not shown).
167
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Fig. 16. Leave-one-out cross-validation (LOOCV) process. In total, four different U-net models were built by using images from 3 out of 4 oxidizer fluxes as the training set each
ime, and images from the left-out oxidizer flux as the testing set. Image naming convention follows Table 1.
T
I
a
c

he associated uncertainty map for each predicted segmentation mask.
here are other approaches to quantify uncertainty in CNNs (e.g., using
ayesian networks that use distributions for the model weights [44]),
ut Monte Carlo Dropout is selected since the dropout layers can be
asily implemented as extensions to the original U-net architecture.
irst, the U-net is trained with a 50% dropout probability in the in-
ermediate layers to reduce overfitting according to [45]. The dropout
rocess randomly silences neurons in the intermediate layers of the U-
et by zero-ing the weights according to the set probability. Then at
nference, the trained model is sampled 20 times [37], and the predicted
egmentation masks are computed as the mean masks of the sampled
odel instances. The uncertainty map is then calculated as the entropy
f the averaged probability vectors for the two class dimensions (‘‘fuel’’
nd ‘‘noise’’), as described in [46, p. 309]:

= −
2
∑

𝑐=1
𝑝𝑐 log(𝑝𝑐) = −[𝑝

𝑓𝑢𝑒𝑙
log(𝑝

𝑓𝑢𝑒𝑙
) + 𝑝

𝑛𝑜𝑖𝑠𝑒
log(𝑝

𝑛𝑜𝑖𝑠𝑒
)] (1)

here 𝑈 is the uncertainty map, 𝑝
𝑓𝑢𝑒𝑙

is the predicted probability that
he pixel corresponds to fuel, and 𝑝

𝑛𝑜𝑖𝑠𝑒
is the predicted probability that

he pixel corresponds to noise/background.
In order to increase robustness and reduce biases, the training data

s initially augmented. Using the Albumentations library [47], each
raining image is rotated and flipped in random directions and mag-
itudes before each epoch. The total number of images after using the
ata augmentation is the same as before the augmentation, there are no
dditional artificial images. As a result, the training images are almost
ntirely augmented images as the chance of the network using original
mages (without flips and rotations) is very low but still possible. The
ost common loss function for binary image segmentation—binary
ross entropy loss function, is used here in combination with a sigmoid
ctivation layer. The binary cross entropy loss function is defined as,

(𝑥, 𝑦) = {𝑙1,… ., 𝑙𝑁}𝑇 , (2)

here 𝓁 is the loss function, the overbar corresponds to the mean all
𝑛, and

𝑛 = 𝑦𝑛 ⋅ log 𝜎(𝑥𝑛) + (1 − 𝑦𝑛) ⋅ log(1 − 𝜎(𝑥𝑛)) (3)

here, 𝑦𝑛 is the prediction, 𝜎 is the sigmoid activation function, and 𝑥𝑛
s the ground truth. Finally, the Adam optimization algorithm is used to
pdate the weights in the kernels. The algorithm is chosen for its ability
o handle noisy data [48,49] instead of stochastic gradient descent that
as used in the original U-net paper.

. Results and discussion

.1. Training on all available images

As an initial test, the 150 RGB images are split into the training
et (80% or 120 images) and the testing and validation set (20% or 30
168

mages). The images are randomly assigned a pseudorandom number
able 1
mage naming conventions with the letters corresponding to different oxidizer fluxes
nd the numbers corresponding to the chronological order that the images were
aptured at.
Oxidizer flux, 𝐺 [kg/m2-s] First captured

image
Last captured
image

Total images

5.91 A1 A37 37
9.58 B1 B36 36
18.59 C1 C39 39
22.19 D1 D38 38

Fig. 17. Leave-one-out cross-validation (LOOCV) accuracy measure for all images in
the testing oxidizer flux, corresponding to different experiment burn times.

Table 2
Confusion matrix for output of U-net predictions. 𝑛 represents the corresponding
number of pixels.

Predicted: Fuel Predicted: Noise

Truth: Fuel 𝑛1 𝑛2
Truth: Noise 𝑛3 𝑛4

generator to the training or validation sets, so that information from
all four fluxes are used both in training the U-net to correctly cap-
ture the experiment phenomena and validate the U-net model to test
whether it can reliably be used for fuel regression calculation. To train
and validate the U-net, the original experiment images and manually
traced masks are resized to 800 by 800 pixels to limit computational
expense. An aspect ratio of 1 ensures valid matrix operations during the
convolution and deconvolution operations in the deeper layers on the
U-net. The 150 RGB experimental images follow a naming convention
based on the oxidizer flux and the time of the experiment they are
captured shown in Table 1.
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Fig. 18. Spatial error between the ground truth mask profiles and the predicted profiles from U-net (a) trained on only 5.91, (b) trained on only 9.58, (c) trained on only 18.59,
and (d) trained on only 22.19 [kg/m2-s] RGB images.
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For the neural network parameters, the batch size was set to 5 to
ccount for possible model degradation in its ability to generalize due
o the small training set as shown by [50] and the starting learning rate
s 10−3, the default setting for the Adam optimizer (the learning rate is
dapted during the training process). For this initial training, the U-net
equired 6 𝐺𝐵 of memory, 3 cores, and runtime of 20.5 h.
A selected few examples of original resized images of the testing

et are shown in Fig. 9a, the associated ground truth binary masks
anually traced after the resolution reduction are shown in Fig. 9b, the
eural network’s predictions are shown in Fig. 9c, and the associated
ncertainty maps are shown in Fig. 9d.
The U-net model trained from images of all fluxes visually predicted

he segmentation masks successfully. For example, for images A34,
18, and B15, U-net correctly traces the fuel mask without including
he melted wax on the glass of the image. It also correctly predicts
he mask for the over-saturated images D15 and D23. Some abnormal
eometries (e.g., B8 and C25) are found to be the hardest to predict
orrectly. The uncertainty maps showed the largest level of uncertainty
o be on the fuel boundaries and around abnormal geometries in the
redicted masks (e.g., B8). The model uncertainties inside and outside
he identified fuel mask border are very small, showing that once U-
et identified the border of the fuel masks with some uncertainty, it
orrectly learned to classify the pixels inside and outside the border.
astly, U-net performed well for fuel mask predictions in all stages
169
f the experiment. Reliable prediction of the fuel masks over time is
n important feature if U-net is to be used for fuel regression rate
easurements because measurement requires tracking of the fuel mask
ver the entire burn duration.
Predictions from the oxidizer fluxes of 5.91, 9.58, 18.59, and 22.19

kg/m2-s] using threshold, TLIS, spatial filtering, and U-net at early
𝑡 ≈ 0 s), mid (𝑡 ≈ 5 s), and late (𝑡 ≈ 10 s) times are presented in
igs. 10–13. Visually, the U-net predictions to perform the best and the
imple image processing methods especially struggle with the oxidizer
lux of 22.19 [kg/m2-s] case in Fig. 13 most likely due to the over-
aturated data seen uniquely in only the 22.19 [kg/m2-s] case. The
hreshold, TLIS, and spatial filtering all have some advantages and do
rovide reasonable predictions, however, they do not provide the level
f reliable filtering that U-net provides.
Fig. 14 shows the total relative spatial error, (∑|ℎ − ℎ𝑡𝑟𝑢𝑡ℎ|∕ℎ𝑡𝑟𝑢𝑡ℎ)

𝑤𝑖𝑑𝑡ℎ𝑖𝑚𝑎𝑔𝑒 between the ground truth mask profiles and the profiles
rom the image processing techniques for each point in time (𝑤𝑖𝑑𝑡ℎ𝑖𝑚𝑎𝑔𝑒
s the sum of the number of pixels in the image in the horizontal
irection). The U-net results are resized into the native resolution of the
round truth images in order to compare the profiles. Overall, the U-net
roduced the lowest maximum error out of all four image processing
ethods. The U-net architecture is the only approach that performed
he most consistent out of the other image processing methods with
rror below 10−2 for all fluxes. Specifically, in the 22.19 [kg/m2-s]
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Fig. 19. (a) Regression rate measurements based on fuel mask predictions from the individual oxidizer flux U-net networks and comparison to published data from [5], (b) the
absolute error assuming the manual data from [5] as truth, and (c) the corresponding uncertainty in the fuel profile.
case, the U-net filtered the noise caused by over-saturation correctly,
whereas, the other image processing methods generated significant
errors, especially the TLIS method with errors over 100.

Fig. 15a shows the comparison between the regression rate obtained
rom the different image processing techniques and the ground truth
manually drawn data from [5]). The results from the manual process
re in black circles and the results from U-net are shown by the
ed circles. The regression rate error bars for the U-net approach are
alculated by first getting an average threshold value for each mask by
umming the entire uncertainty in the map and then normalizing by
he number of pixels in the mask. If a pixel’s uncertainty falls below
his threshold the pixel becomes a ‘‘0 (noise)’’ and if it falls above, it
ecomes a ‘‘1 (fuel)’’. This process creates another binary mask which
s added and subtracted to the original mean binary masks to get
wo new sets of regression rate data. The maximum deviation from
he original regression rate from the two new regression rates is then
alculated and this value is used for the error bars. The regression
ate measurements inferred from the measurement fuel mass before
nd after the burn are labeled as ‘‘Mass Reduction’’. The results from
he other image processing methods are also plotted. The TLIS method
id not provide feasible results for the data for the oxidizer flux of
2.19 [kg/m2-s] resulting in no data for this method at this oxidizer
lux. The black dashed and solid lines are regression rates obtained
y [51] and [52], respectively. Fig. 15b shows the total absolute error,
170
|𝑟̇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑟̇𝑡𝑟𝑢𝑡ℎ|∕𝑟̇𝑡𝑟𝑢𝑡ℎ, assuming the manual tracing, the black circles
in Fig. 15a, from [5] as truth. TLIS performs poorly for 5.91 and 9.58
[kg/m2-s] fluxes, but performs well for 18.59 [kg/m2-s] with an error
below 10%. As for the 22.19 [kg/m2-s] flux, the TLIS results do not
provide a feasible regression rate and therefore is not shown. The
threshold and spatial filtering have approximately the same accuracy
as the mass reduction method. Almost all of the regression rate data
points from all of the baseline image processing methods do not fall
in the error bars for the manual tracing. The U-net regression rate
estimates agree well and are all inside the manual tracing error bars
with regression rate error for all fluxes below 10%. The U-net error bars
as well encompass the manual tracing data points. U-net is the only
method that consistently predicts the regression rate for all oxidizer
fluxes.

4.2. U-net cross-validation

The results of the U-net architecture presented in the previous
section come from training the model with data from all available
oxidizer fluxes and showed that U-net accurately predicts the fuel
regression rate. However, the image quality varies significantly across
the four oxidizer fluxes (e.g., images from 22.19 [kg/m2-s] are over-
saturated as shown in Fig. 9). Therefore, to further validate the U-net
architecture and its capability to make accurate predictions on data
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Fig. 20. Relative spatial error between the ground truth mask profiles and the predicted profiles from U-net (a) trained on only 5.91 [kg/m2-s], (b) trained on only 9.58 [kg/m2-s],
(c) trained on only 18.59 [kg/m2-s], (d) trained on only 22.19 [kg/m2-s], and (e) trained on all fluxes, using grayscale images.
from different fluxes, a Leave-one-out cross-validation (LOOCV) [53]
approach is implemented. To complete the cross-validation process, the
dataset is initially split into 4 folds, one for each oxidizer flux. Then, a
U-net model is built by using 3 of the folds as the training set and the
last fold as the testing set [54] (i.e., train with images from 3 out of
171
4 oxidizer fluxes and test on images from the left-out flux as shown in
Fig. 16).

Each of the U-net models created during the cross-validation are
evaluated based on an accuracy metric that represents the number
of correctly classified pixels as fuel or noise for all images in the
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corresponding testing fold. For each testing image, a confusion matrix
is created (see Table 2).

The accuracy measure is the ratio of correctly classified pixels by
he model in the particular testing set, over the total number of pixels:

𝑖 =
𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑛𝑡𝑜𝑡𝑎𝑙

=
𝑛1 + 𝑛4
∑4

𝑖=1 𝑛𝑖
(4)

ollowing the validation process, the results are shown in Fig. 17.
The U-net architecture predicts the experimental images for the oxi-

izer fluxes 5.91, 9.58, and 18.59 [kg/m2-s] correctly with an accuracy
95%. However, the model that is trained without the over-saturated
mages of the 22.19 [kg/m2-s] oxidizer flux (U-net ABC) fails to make
orrect predictions past the initial phases of the experiment. The result
ndicates that when U-net has not learned features of images with
igh noise or over-saturation, it should not be used for predicting fuel
egmentation masks. Including images with high noise, improves the
redictive power of the architecture and in those cases, U-net is a viable
ption for predicting fuel segmentation masks for fuel regression rate
easurement.
The U-net ACD does not predict one particular image well, B8. The

mage includes large amounts of noise from the bottom plate of the
hamber and the model fails to classify that area as fuel. Even when
rained from data on all four fluxes, noise in B8 is not captured correctly
y the U-net, as shown previously in Fig. 9.
After training and validating the U-net architecture using all the

vailable images from the experiments, two practical applications of
uel regression rate measurement are investigated in the following
ections: (A) the availability of experimental images from only one
xidizer flux and (B) the availability of only grayscale images. These
wo scenarios may be frequent in fuel regression measurement re-
earch either due to laboratory equipment constraints, process data that
as not been manually processed, or an inability to repeat or collect
easurements.

.3. Application A: Oxidizer flux independency

The ability of the neural network to make satisfactory fuel mask
redictions independent of the oxidizer flux is investigated by training
he network on only one flux data set and testing on the remaining
hree. This application is particularly useful to explore when the data
or other oxidizer fluxes is to be processed without having access to the
anually traced fuel masks. For these cases, due to the low number of
raining images and to avoid overfitting, an additional stop criterion
s implemented: model training should stop when the model does not
mprove at predicting the remaining three fluxes for 20 consecutive
pochs. In total, four separately trained neural networks are produced
nd are used to predict all of the other oxidizer fluxes. Fig. 18 shows
he total relative spatial error, (∑|ℎ − ℎ𝑡𝑟𝑢𝑡ℎ|∕ℎ𝑡𝑟𝑢𝑡ℎ)∕𝑤𝑖𝑑𝑡ℎ𝑖𝑚𝑎𝑔𝑒 between
he ground truth mask profiles and the profiles from each network’s
rediction for each point in time (𝑤𝑖𝑑𝑡ℎ𝑖𝑚𝑎𝑔𝑒 is the sum of the num-
er of pixels in the image in the horizontal direction). Overall, each
etwork outperforms each of the basic image processing techniques.
he networks trained with the images from fluxes 5.91, 9.58, and
8.59 [kg/m2-s], predict the 22.19 [kg/m2-s] case with the largest error
>10−2), particularly during the later stages of the fuel burn, most likely
ue to the presence of over-saturated images. However, the model
rained on the data from the 22.19 [kg/m2-s] flux (Fig. 18d) is overall
etter at capturing the profile for all the fluxes, as the profile error for
ach does not exceed 10−2 in any case.
Fig. 19a shows the measurement of regression rates from the pre-

icted fuel masks for each of the four networks. Fig. 19b shows the total
bsolute error, |𝑟̇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑟̇𝑡𝑟𝑢𝑡ℎ|∕𝑟̇𝑡𝑟𝑢𝑡ℎ, assuming the manual tracing
represented as the black circles) from [5] as truth. Fig. 19c shows the
ncertainty for each network, derived from the uncertainty map of each
172

redicted fuel mask profile. The networks for 5.91, 9.58, and 18.59 r
kg/m2-s] predict the regression rate within first order accuracy for
ach other, but do not have satisfactory performance at predicting the
egression rate for the 22.19 [kg/m2-s] case. The network trained with
he 22.19 [kg/m2-s] images, has approximately a first order accuracy
or all of the oxidizer fluxes as discussed before, however, it also has
he overall highest uncertainty in the model. With monochrome data,
t is possible to get good regression rate predictions, however order
o get sufficiently accurate results the networks needs more training
ata. In such scenarios, the use of a high speed camera should provide
nough data to train the network and obtain improved regression rate
stimates.

.4. Application B: Monochrome study

To further explore the limits of satisfactory fuel mask predictions
ith the U-net, a study is performed on how the network performs
hen trained on lower depth image data. This study is useful in
pplications where only a monochrome camera is available, which costs
fraction compared to a color high speed camera. In this case, the
xperimental RGB images are first converted to grayscale images before
sing them as the training set. Similar to the individual flux cases,
o avoid overfitting due to the small training set, the additional stop
riterion to halt model training if it has not improved at prediction for
0 consecutive epochs is implemented. Fig. 20 shows the total relative
patial error, (∑|ℎ − ℎ𝑡𝑟𝑢𝑡ℎ|∕ℎ𝑡𝑟𝑢𝑡ℎ)∕𝑤𝑖𝑑𝑡ℎ𝑖𝑚𝑎𝑔𝑒 between the ground truth
asks profiles and the profiles from each network’s prediction for each
oint in time (𝑤𝑖𝑑𝑡ℎ𝑖𝑚𝑎𝑔𝑒 is the sum of the number of pixels in the
mage in the horizontal direction). The networks trained with the 5.19,
.58, and 18.59 [kg/m2-s] grayscale images, have the highest error
hen predicting fuel masks for the 22.19 [kg/m2-s] case particularly at
he later stages of fuel burn (shown in Figs. 20a to 20c). The network
rained with the 22.19 [kg/m2-s] grayscale images, also has the highest
rror when predicting fuel masks for the 22.19 [kg/m2-s] case and after
nspection of the results (shown in Fig. 20d and an example of the
redicted mask is shown in Fig. 21), there is significant noise most
ikely caused by the over-saturation in the experimental images for the
2.19 [kg/m2-s] flux that are problematic for the network predictions.
t the later stages of the burn, more noise is present as the combustion
rocess adds more deposits of wax, soot, and pitting on the glass of the
hamber, creating the increasing error as time advances trend seen in
igs. 20a to 20d. The network that is trained on all fluxes uses images
hat are randomly chosen using a pseudorandom number generator
similar to Section 4.1) out of the 150 total images. The all flux network
as the lowest error < 10−2 for all fluxes and experimental times
shown in Fig. 20e). For the all flux case, the training size is roughly
times larger (120 images) compared to the individual flux cases
about 30 images), that is expected to reduce the error in combination
ith a better generalization of the training data. Additionally, the all
lux network performs more consistently at late experimental times as
ompared to the other networks, suggesting that the training size of the
ndividual flux network may be too small.
Fig. 22a shows the comparison between the regression rate obtained

rom the networks trained on grayscale images from different oxidizer
luxes and the ground truth (manually drawn data from [5]). Fig. 22b
hows the total absolute error, |𝑟̇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑟̇𝑡𝑟𝑢𝑡ℎ|∕𝑟̇𝑡𝑟𝑢𝑡ℎ, assuming the
anual tracing (represented as the black circles), from [5] as truth.
ig. 22c shows the uncertainty for each network. The results for the net-
orks trained on grayscale images from 5.91, 9.58, and 18.59 [kg/m2-s]
ll have over first order error and do not provide good regression rate
esults consistently. The network trained on 22.19 [kg/m2-s] provides
he best results out of the four oxidizer flux independently trained
etworks, however falls short on predicting the regression rate for its
wn data, likely due to the noise seen in Fig. 21c. Even the network
rained on all the oxidizer fluxes has better results predicting fuel masks
or 5.91, 9.58, and 18.59 [kg/m2-s] with error less than 10−1 but still
as difficulty predicting the 22.19 [kg/m2-s] case. The networks trained
ith lower depth data, as expected, have higher error in predicting the

egression rate compared to the ones trained with RGB data.
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s

Fig. 21. An example of data from the 22.19 [kg/m2-s] network predicting the 22.19 [kg/m2-s] case where (a) is the resized grayscale image, (b) is the ground truth, and (c) is
he fuel mask prediction.
Fig. 22. (a) Grayscale network regression rate results comparison to published data from [5], (b) the absolute error assuming the manual data from [5] as truth, and (c) the
corresponding uncertainty.
5. Conclusion

In this study, for the first time, a CNN architecture, specifically,
U-net is applied to measure the solid fuel regression rate in a 2D
173

lab burner hybrid rocket combustion experiment. The slab burner
experiment consists of gaseous oxygen flowing through a rectangular
combustion chamber with optical access on both sides. Paraffin wax
is ignited in the chamber and is photographed continuously with a
high intensity flash. The resulting images are high in noise caused by

interference from wax, soot, pitting, and flame. Four different image
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segmentation techniques are applied and resulting regression rate error
estimates are quantified. The U-net neural network is found to perform
the best and the regression rate estimates are in very good agreement
with the values from literature. The uncertainty in regression rate
originating from the U-net architecture is quantified using a Monte
Carlo Dropout method. The U-net architecture training is independent
of the oxidizer mass flux and provides good estimates, even for noisy
data. The U-net network performs well in situations where the data can
be sparse, such as with monochrome images but the data must have a
minimum level of detail to which features can be detected and patterns
can be found. In situations where the data is overwhelmingly abundant,
such as having access to high speed imagery, the authors recommend
choosing a training set that is a uniformly distributed subset based on
experiment times (e.g., before ignition to capture the full fuel profile,
early stages after ignition to capture early combustion, middle stages to
capture steady state flame, and late stages to capture images with high
noise). Such selection would improve the network’s ability to generalize
well to images and fluxes outside the training data. Overall, the U-net
architecture and proposed techniques appear to successfully automate
manual fuel mask segmentation and provide accurate estimates of the
regression rate in slab burner experiments for hybrid rockets.
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