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Searching for Unknown Anomalies in Hierarchical
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Abstract—We consider the problem of anomaly detection among
a large number of processes, where the probabilistic models of
anomalies are unknown. At each time, aggregated noisy obser-
vations can be taken from a chosen subset of processes, where
the chosen subset conforms to a tree structure. The observation
distribution depends on the chosen subset and the absence/presence
of anomalies. We develop a sequential search strategy using a
hierarchical Kolmogorov-Smirnov (KS) statistics. Referred to as
Tree-based Anomaly Search using KS statistics (TASKS), the pro-
posed strategy is order-optimal with respect to the size of the search
space and the detection accuracy.

Index Terms—Anomaly detection, dynamic search, sequential
design of experiments.

I. INTRODUCTION

H IERARCHICAL search algorithms provide an effective
approach for a quick and reliable inference of abnormal

behaviour, including applications in financial transactions [1],
computer vision [2], and computer and communication network-
ing [3], [4]. A common model is a tree structure, which allows
easy aggregation of data flows (e.g., based on their IP-prefix). In
this work, we develop a sequential search strategy for detecting
unknown anomalies in massive data streams based on noisy
hierarchical observations (see Fig. 1). Due to the unknown
distributions of anomalous processes, the problem belongs to
the domain of goodness-of-fit tests [5], in which fit between
samples is often measured by the Kolmogorov-Smirnov (KS)
statistics [6]–[8]. Departing from the classical goodness-of-fit
tests is the hierarchical observation structure, which adds in-
triguing complexity in terms of how to zoom in and out on the
observation tree to achieve the optimal sample complexity with
respect to both the detection accuracy and the size of the search
space. We develop a novel sequential search strategy using
a hierarchical KS statistics for reliable and efficient anomaly
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Fig. 1. A binary-tree observation model.

detection. Referred to as Tree based Anomaly Search using
KS statistics (TASKS), the proposed strategy is shown to offer
order-optimal sample complexity with respect to the size of the
search space and the detection accuracy.

Hierarchical search has an intrinsic connection to the group
testing problem [9]–[17]. Most existing works on group testing
assume error-free test outcomes, with a few exceptions focusing
on binary noisy outcomes with known noise models [18]–[20].
A recent work in [21] tackles unknown noise, but considers
only discrete observations. The adaptive nature of the search
strategy also shares similarities with adaptive sensing problems
for sparse signal detection and support estimation [22]–[24], and
to the pure-exploration bandit problems [25], [26]. Using KS
statistics, the algorithm proposed in this work is fundamentally
different from these existing results.

The active search problem is also within the umbrella of
active hypothesis testing pioneered by Chernoff in [27] (with
extensive follow-up works, e.g., [28]–[34]). Recently, Cher-
noff’s framework was extended to handle the anomaly de-
tection framework [35]–[42]. However, these studies either
assumed known/parametric models or adopted a linear (i.e.,
non-hierarchical) search structure. The problem of detecting
anomalies or outlying sequences has also been studied under
different formulations, assumptions, and objectives in [43]–[50].
The recent works in [51], [52] considered hierarchical search
under unknown observation models. The key difference is that
the search strategies in [51], [52] are based on sample mean
statistics, in contrast to the KS test statistics used in this work.
We show in Sec. V the superior performance of TASKS over
these existing strategies.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the problem of detecting an anomalous process
(i.e., a target) among a large number M of processes (i.e.,
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cells). If the target is in cell m, we say that hypothesis Hm

is true. We assume a tree-structured hierarchy among the pro-
cess distributions, denoted by T , as illustrated in Fig. 1. Let
(l, k) (l = 0, . . . , log2 M,k = 1, . . . , 2log2 M−l) denote node k
at level l of the tree, and let g0 and f0 denote, respectively, the
distribution of the anomalous process and the normal processes.
Let gl (l = 1, . . . , log2 M) denote the distribution of the mea-
surement that aggregates the anomalous process and 2l − 1
normal processes, and fl (l = 1, . . . , log2 M) the distribution
of the measurement that aggregates 2l normal processes.

For all l we assume that fl is known, but gl is unknown.
Also, the tree structure is known. Let Fl, Gl be the cumulative
distribution function (CDF) of fl, gl, respectively. We assume
that gl satisfies:

{gl : sup
x
|Fl(x)−Gl(x)| ≥ Δ} ∀l, (1)

meaning that the distributions are distinguishable by Δ > 0 for
all l, and Δ is independent of M (note that Δ is a known
lower bound on the KS distances in all levels l). Let Pm be
the probability measure under hypothesis Hm and Em the
operator of expectation with respect to the measure Pm. We aim
to develop an active search strategy Γ = ({an}τ−1

n=1, τ, δ) that
determines whether to terminate the search (at stopping time τ ),
and if not (for time 1 ≤ n < τ ), which node on the tree to probe
next, defined by action an ∈ {l, k}, l = 0, . . . , log2 M,k =
1, . . . , 2log2 M−l. A terminal decision rule δ ∈ {1, 2, . . .,M}
denotes the detected location of the target declared at time τ . We
define the Bayes risk as follows: A sampling cost of c ∈ (0, 1) is
incurred for each observation, the loss for wrong declaration is 1,
and πm is the a-priori probability that process m is anomalous.
Then, the error probability is given by:

Pe(Γ) �
M∑

m=1

πmPm(δ �= m|Γ), (2)

the sample complexity E[τ |Γ] is given by:

E[τ |Γ] �
M∑

m=1

πmEm[τ |Γ], (3)

and the Bayes risk is defined as:

R(Γ) � Pe(Γ) + c · E[τ |Γ]. (4)

III. THE TREE-BASED ANOMALY SEARCH USING KS
STATISTICS (TASKS) ALGORITHM

The TASKS algorithm is executed in two interleaving phases
as described next.

The inference phase: This phase is carried out on a specific
node (random process) {X(n)}∞n=1 on level l. The goal is to
quantify the degree of normality of the node using the KS
statistics. We take a fixed number of samples Nl from the node,
and generate the empirical CDF:

F̂Nl

l (x) =
1

Nl

Nl∑
n=1

1[−∞,x](Xn), (5)

where 1[−∞,x](Xn) is the indicator function, equals to 1 if
Xn ≤ x and 0 otherwise. Next, we derive the KS statistics which

quantifies the distance between the empirical CDF from the
reference distribution:

DNl
= sup

x
|F̂Nl

l (x)− Fl(x)|. (6)

A high value of DNl
indicates a higher probability that the

node is anomalous, and vice versa. The choice of Nl should
ensure that the search phase is more likely to move towards the
target with a desired probability, as we discuss next.

The search phase: Based on the output of the inference phase,
we specify the searching strategy of the TASKS algorithm. We
start from the root, and for each stage of the walk at level l ≥ 1
we formulate a ternary hypothesis testing problem– H̃0 refers to
that the currently sampled node does not contain the target; H̃1

refers to that the left child of this node contains the target, and
H̃2 refers to that the right child of the node contains the target.

Suppose that we test node i at level l ≥ 1. We compute DNl−1

for the left and right child of the node, as described in the
inference phase. If DNl−1

of both children is smaller then a
pre-determined threshold γl−1, then hypothesis H̃0 is chosen,
and we go back to the parent of node i. Otherwise, we zoom into
the child node that has the larger KS statistics. On level l > 1,
the probability to zoom correctly into a child node should be
larger then 0.5, to ensure that the search phase is biased towards
the leaf target. On level l = 1, if the KS statistics for the tested
leaf is larger than a threshold γ0, we declare that the leaf contains
the target and terminate the search. Here the number of samples
taken for generating the KS statistics should ensure the desired
accuracy.

IV. PERFORMANCE ANALYSIS

Theorem 1: Let Nl > max{ 1.38
γ2
l−1

, 1.38
(Δ−γl−1)2

} for 2 < l <

log2 M , and N1 > 1
2γ2

0
· ln( log2 M

c ), where 0 < γl < Δ, ∀l,
and Δ is defined in (1). Then, the Bayes risk under the TASKS
algorithm is bounded by:

R(ΓTASKS) ≤ A · c · log2 M +B · c · ln
(
log2 M

c

)
+O(c),

(7)
where A and B (given in (23)) are constants independent of M
and c.

The optimality of the Bayes risk of TASKS in both c and M
directly carries through to the sample complexity of TASKS.
Specifically, from (7), we have the following upper bound on
the sample complexity:

E[ΓTASKS] ≤ A · log2 M +B · ln
(
log2 M

c

)
+O(1). (8)

Using the lower bound on the sample complexity which was
developed in Theorem 2 in [33], for any policy Γ, we have:

E[ΓTASKS] ≥
log2 M

Imax
+

log((1− c)/c)

D(g0||f0)
+O(1), (9)

where Imax denotes the maximum mutual information between
the true hypothesis and the observation under an optimal action,
and D(g0||f0) is the KL divergence between g0 and f0. As a
result, we get that TASKS is order optimal in c and M .

We note that the distributions of the aggregated observations
is a function of the distributions of the children. However, this
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does not violate our assumptions in evaluating the performance,
since at each inference phase, the TASKS algorithm collects new
samples from the tested nodes. We next prove Theorem 1.

Proof: First, we analyze the sample complexity of the infer-
ence phase, and then analyze the search phase to establish the
number of times that the inference phase is carried out. This
yields the sample complexity of TASKS. Finally, we bound the
probability of error, and get the desired bound for the Bayes risk.

Step 1: The sample complexity of the inference phase:
We start by presenting two lemmas, which bound the type 1
error (rejection of a true null hypothesis) and type 2 error (non-
rejection of a false null hypothesis).

Lemma 1: Given a natural number N , let X1, X2, . . . , XN

be real valued i.i.d r.v with CDF F (·). Let F̂N (x) denote the as-
sociated empirical CDF as defined in (5). Then, for every γ > 0:

P (sup
x
|F̂N (x)− F (x)| > γ) ≤ 2e−2Nγ2

(10)

Proof: The bound can be derived by applying the Dvoretzky-
Kiefer-Wolfowitz inequality [53].

We now bound the type 2 error under the distinguishable
assumption between the distributions (1).

Lemma 2: Given a natural number N , let X1, X2, . . . , XN

be real valued i.i.d r.v. with CDF G(·), and let ĜN (x) denote
the associated empirical CDF. Assume also that there exists a
constant Δ > 0 such that

sup
x
|F (x)−G(x)| ≥ Δ. (11)

Then, for every 0 < γ < Δ we have:

P (sup
x
|ĜN (x)− F (x)| < γ) ≤ 2e−2N(Δ−γ)2 . (12)

Proof: Note that given (11), sup
x
|ĜN (x)− F (x)| < γ im-

plies:
sup
x
|ĜN (x)−G(x)| = sup

x
|ĜN (x)− F (x) + F (x)−

G(x)| ≥ sup
x
|F (x)−G(x)| − sup

x
|ĜN (x)− F (x)| > Δ− γ,

and hence
{sup

x
|ĜN (x)− F (x)| < γ} ⊆ {sup

x
|ĜN (x)−G(x)| >

Δ− γ}.
Combining with (10) we have:
P (sup

x
|ĜN (x)− F (x)| < γ) ≤ P (sup

x
|ĜN (x)−G(x)| >

Δ− γ) ≤ 2e−2N(Δ−γ)2 . �
Based on Lemmas 1 and 2 we determine the number of

samples we need to take in the inference phase in order to ensure
a biased random walk towards the target. We define p

(g)
l as the

probability that we zoom in correctly to the anomalous child of
a node at level l. Thus,

p
(g)
l � P (sup

x
|ĜNl

l−1(x)− Fl−1(x)|

> max{sup
x
|F̂Nl

l−1(x)− Fl−1(x)|, γl−1}),
(13)

where ĜNl

l−1(x) and F̂Nl

l−1(x) are the empirical CDF for the
abnormal process gl−1 and the normal process fl−1, respectively,
and 0 < γl−1 < Δ is a fixed tuning parameter. p(f)l is defined as
the probability that we return to the parent of the node when the
node is normal, i.e. identifying correctly that both children are

normal:

p
(f)
l � [P (sup

x
|F̂Nl

l−1(x)− Fl−1(x)| < γl−1)]
2. (14)

At level l > 1, we can choose p(g)l = p
(f)
l > 0.5, so the random

walk drifts towards the target.
We now determine the number of samples we need to take in

each test. From (14) we get:√
p
(f)
l = P (sup

x
|F̂Nl

l−1(x)− Fl−1(x)| < γl−1)

= 1− P (sup
x
|F̂Nl

l−1(x)− Fl−1(x)|≥γl−1)≥1−2e−2Nlγ
2
l−1 ,

where the last inequality is due to (10). To ensure p
(f)
l > 1

2 we

have 1− 2e−2Nlγ
2
l−1 > 1√

2
, which implies

Nl >
0.96

γ2
l−1

. (15)

Similarly, by applying Lemma 2 and some algebraic manipula-
tions, in order to have p

(g)
l > 1

2 , we need:

Nl > max

{
1.38

γ2
l−1

,
1.38

(Δ− γl−1)2

}
, (16)

and for both (15) and (16) to hold we take:

Nl > max

{
1.38

γ2
l−1

,
1.38

(Δ− γl−1)2

}
. (17)

Finally, we define Nmax = max
l>1

{Nl}.

For the leaf nodes,1 we should bound the probability of
detection error. We design the type 1 error to be smaller than

2c

log2 M
(as will be explained later):

P (sup
x
|F̂N1

0 (x)− F0(x)| > γ0) ≤ 2e−2N1γ
2
0 ≤ 2c

log2 M
,

and therefore:

N1 >
1

2γ2
0

· ln
(
log2 M

c

)
. (18)

Step 2: Upper bound on the number of times the inference
phase is called:

First, we consider a sequence of sub-trees T1, T2, . . . , Tlog2 M

of the tree T . Sub-tree Tlog2 M is obtained by removing the
biggest half-tree containing the target from T . Sub-tree Tl is
iteratively obtained by removing the biggest half-tree containing
the target from the half-tree containing the target in the previous
step. For example, in Fig. 1, Tlog2 M = T3 is the sub-tree con-
taining the four most right leaves, T2 is the sub-tree containing
the third and fourth leaves (counted from the left), and T1 is
the second leaf (counted from the left). Next, we consider the
last passage time τl of the search phase from each sub-tree Tl.
We prove an upper bound on each E[τl]. For this, we define the
distance of the search phase to the anomalous process as the sum
of the discrete distance on the tree. The search initially starts at
distance log2 M from the target. The parameter Wn is a r.v.
defined as the step of the search phase at time n. Depending on
the current level l, Wn is distributed as:

P (Wn = −1) = p
(f)
l ; P (Wn = 1) = 1− p

(f)
l (19)

1The analysis of the leaf node detection can be used to analyze related linear
search settings in future studies, as linear search can be viewed as a constrained
model, in which only the leaf nodes can be probed.
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if the node is located at a sub-tree that does not contain the target,
or:

P (Wn = −1) = p
(g)
l ; P (Wn = 1) = 1− p

(g)
l (20)

if the node is located at a sub-tree that contains the target. Since
p
(g)
l , p

(f)
l > 1

2 for all l > 1 we have: E[Wn] = 1− 2p
(g)
l or 1−

2p
(f)
l which are both less then 0. In order to bound E[τl], we

first bound P (τl > t). We first prove this for τlog2 M . Note that
if the search phase is within the sub-tree Tlog2 M at step n, we
have

∑n
s=1 Ws ≥ 0. Using Hoeffding inequality for Bernoulli

distributions, we have:
P (τlog2 M > t) ≤ P (sup{n ≥ 1 :

∑n
s=1 Ws ≥ 0} > t)

≤
∑∞

n=t P (
∑n

s=1 Ws ≥ 0) ≤
∑∞

n=t e
−2n(1−2pmin)

2

=
e−2t(1−2pmin)

2

1− e−2(1−2pmin)2
,

where pmin � min1<l<log2 M{p(g)l , p
(f)
l }. Based on the sum

of tail probabilities we get:
E[τlog2 M ] =

∑∞
t=0 P{τlog2 M > t}

≤
∞∑
t=0

e−2t(1−2pmin)
2

1− e−2(1−2pmin)2
=

1

(1− e−2(1−2pmin)2)2
� D.

From the symmetry of binary tree, it can be seen that
E[τl] < D for all l < log2 M (since E[τl] depends on
{p(g)l , p

(f)
l }log2 M−1

l=1 which are bounded above by pmin). The
number of times that the inference phase is called (and applied
to both children) is no bigger than 2

∑log2 M
l=1 E[τl], hence, for

l ≥ 1 the expected number of points visited is upper bounded
by 2D log2 M .

Step 3: The sample complexity of TASKS:
Finally, by summing the sample complexity over the sub-trees

and the leaf node, we get:

E[τ ] ≤ 2NmaxD (log2 M − 1) +N1. (21)

It remains to bound the probability of detection error. The
number of times of visiting non-target leaf nodes is upper
bounded by 2 ·D · log2 M . As discussed above, (18) ensures

that the type1 error in the leaf level is upper bounded by
2c

log2 M
.

Thus,

Pm(δ �= m|Γ) ≤ 2 ·D · log2 M · 2c

log2 M
=

4

D
· c = O(c).

(22)
Finally, we choose:

A = 2Nmax ·D, B =
1

2γ2
0

(23)

and (7) holds. �
Finally, we discuss the considerations for choosing {Nl} and

{γl}. {Nl} captures the trade-off between the sample complex-
ity of the inference phase (increases when {Nl} increases),
and the number of times that the inference phase is called
(decreases when {Nl} increases). The thresholds {γl} capture
the trade-off between p

(f)
l (increases when {γl} decreases) and

p
(g)
l (decreases when {γl} decreases). In the next section we

provide the specific values that we chose for these parameters
in the numerical experiments.

Fig. 2. The Bayes risk as a function of M (c = 10−2).

V. SIMULATION RESULTS

We simulated the case where the aggregated flows fol-
low exponential distributions with the parameters equal to
the sum of the parameters of their children at the leaf level
(λ = 0.1), and a Bernoulli random interference Z ∈ {−6, 10}
with equal probabilities is present in the measurements that
aggregate the anomalous leaf. In Fig. 2, we compared the
following algorithms: (i) The Chernoff test [27] (with Θ0 =
{0},Θ1 = {10, 5, 1}), (ii) the DS algorithm [38] (with the same
parameters as in (i)), (iii) the CBRW algorithm [51] (with
α = β = 0.2, ξ = 0.05, η = 1), and (iv) the proposed TASKS
algorithm (with Nl = 5, l = 2, 3, . . . , log2 M , N1 = 10, γl =√

1.38/Nl.). For all the simulations we used 1000 Monte-Carlo
rounds.

We point out that even with the hierarchical observations
available to the Chernoff test, it reduces to probing the leaf
nodes only. The DS algorithm improves the Chernoff test by
judiciously allocating exploration and exploitation phases when
searching over the leaf nodes. The CBRW algorithm exploits
the hierarchical structure of the flow aggregation to obtain a
logarithmic search order, similarly to TASKS. It can be seen
that when the number of processes is small (M < 80) the
DS algorithm performs the best. However, as M increases the
optimal logarithmic order of TASKS dominates the search, and
TASKS significantly outperforms all other algorithm, including
the logarithmic rate of CBRW. While CBRW was shown to
be order optimal in [51], the above simulation results show
that when anomaly is not prominently reflected in a mean
deviation, the finite-time performance of CBRW is inferior to
TASKS.

VI. CONCLUSION

We developed a novel sequential search strategy for the hi-
erarchical non-parametric anomaly detection problem, dubbed
TASKS. It uses the Kolmogorov-Smirnov statistics to de-
sign a biased random walk for a quick detection of the
anomaly process. TASKS is shown to be order-optimal with
respect to the size of the search space and the detection
accuracy.
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