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Label‑free flow cytometry of rare 
circulating tumor cell clusters 
in whole blood
Nilay Vora1, Prashant Shekhar2, Michael Esmail3, Abani Patra4 & Irene Georgakoudi1*

Circulating tumor cell clusters (CTCCs) are rare cellular events found in the blood stream of metastatic 
tumor patients. Despite their scarcity, they represent an increased risk for metastasis. Label-free 
detection methods of these events remain primarily limited to in vitro microfluidic platforms. Here, 
we expand on the use of confocal backscatter and fluorescence flow cytometry (BSFC) for label-free 
detection of CTCCs in whole blood using machine learning for peak detection/classification. BSFC uses 
a custom-built flow cytometer with three excitation wavelengths (405 nm, 488 nm, and 633 nm) and 
five detectors to detect CTCCs in whole blood based on corresponding scattering and fluorescence 
signals. In this study, detection of CTCC-associated GFP fluorescence is used as the ground truth to 
assess the accuracy of endogenous back-scattered light-based CTCC detection in whole blood. Using a 
machine learning model for peak detection/classification, we demonstrated that the combined use of 
backscattered signals at the three wavelengths enable detection of ~ 93% of all CTCCs larger than two 
cells with a purity of > 82% and an overall accuracy of > 95%. The high level of performance established 
through BSFC and machine learning demonstrates the potential for label-free detection and 
monitoring of CTCCs in whole blood. Further developments of label-free BSFC to enhance throughput 
could lead to important applications in the isolation of CTCCs in whole blood with minimal disruption 
and ultimately their detection in vivo.

Tumor growth from a localized to a distant or metastatic state in cancer patients significantly reduces the five-
year survival rate1. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are 
considered primary vehicles of metastatic tumor formation2,3. CTCCs, in particular, are 23–50 times more likely 
to lead to a metastasis in comparison to individual CTCs4. Since their discovery in the 1970s, little progress 
has been made to address the clinical value and metastatic advantage of CTCCs5,6. Thus, there is an interest in 
detecting and isolating CTCCs to further understand their increased metastatic potential and to develop new 
treatments to target CTCCs. A key limitation in detection and isolation of CTCCs is their prevalence in the 
blood stream of patients, with CTCCs occurring at a rate of less than 3.75 events/7.5 mL of blood in metastatic 
tumor patients7. In comparison, there are 37.5 billion red blood cells (RBCs) and 56.25 million white blood cells 
(WBCs) typically present in 7.5 mL of whole blood8.

To date, the only FDA-approved platform for CTC detection is CellSearch, which uses magnetic-activated 
cell sorting for positive detection and isolation of CTCs and CTCCs2,7,9,10. While CellSearch has become the 
diagnostic standard for CTCs, the platform’s reliance on targeting the epithelial cell adhesion molecule (which 
is not always present on all CTCs and CTCCs), inability to detect CTCs in ~ 30–35% of metastatic breast cancer 
patients, and poor correlation with prognosis limits its application2,9,11,12.

Recent work in microfluidic technology has provided innovative methods for CTC and CTCC capture, such as 
the deterministic lateral displacement (DLD) chip and the non-equilibrium inertial separation array (NISA-XL) 
chip13,14. These platforms demonstrate high levels of in vitro sorting of CTCCs from whole blood, improving the 
detection sensitivity in comparison to CellSearch. However, these platforms rely on blood draws, which limit 
interrogation volume and can lead to over or underestimation of events.

To overcome this, several groups have explored in vivo flow cytometry (IVFC) to monitor circulating events 
such as CTCs and CTCCs in vivo15–21. A majority of these techniques utilize exogeneous fluorescence-based con-
trast to detect CTCCs, limiting their clinical translatability, at least in the short term. The only IVFC technique to 
collect label-free data in vivo for CTCC detection to our knowledge is the photoacoustic flow cytometer designed 
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by Galanzha et al.21. This platform successfully demonstrated detection of cluster events in vivo in humans; 
however, its application for cancer cell detection is limited to melanoma patients, as the technology relies on the 
strong absorbance of melanoma cells to detect their presence in flow21. There are also a limited number of stud-
ies that have detected CTCs in a label-free manner based on endogenous fluorescence and coherent anti-stokes 
Raman; however, none of these methods have been used for CTCCs18.

Previously, our group demonstrated through in vitro label-free flow cytometry that CTCCs have unique 
scattering signatures in comparison to white blood cells9. In this study, we build on our work with backscatter 
flow cytometry (BSFC) to assess the potential of detecting unique endogenous scattering signatures of CTCCs in 
whole blood. To meet this objective, fresh whole blood samples from rodents were spiked with GFP-expressing 
CTCCs and flowed through microfluidic channels. Light scattering and fluorescence data collected in these flow 
cytometry studies were used to train and evaluate the performance of a machine learning algorithm, relying 
on the GFP-detected CTCC peaks as ground truth. Validation and testing of this algorithm demonstrate that 
unique endogenous scattering CTCC signatures can be identified to enable label-free detection of CTCCs in 
whole blood with high accuracy.

Results
Whole blood samples from non-tumor bearing rodents were spiked with CTCCs and flowed through the 
30 × 30 μm2 channels of a microfluidic device (Fig. 1a,c, Supplementary Fig. S2 online). To interrogate the sam-
ple, three laser light sources were used to irradiate the sample: a 405 nm, 488 nm, and 633 nm laser (Fig. 1b). The 
illumination beam was focused into a sharp slit using a cylindrical lens, which was re-imaged by an objective 
lens to traverse the microfluidic channel (Fig. 1c). Backscattered and fluorescence light was collected by the same 
objective and directed to five photomultiplier tubes. Scattered signals from the three illumination wavelengths 
were detected by PMT1, PMT2, and PMT5; additionally, green (500–550 nm) and red (650–690 nm) fluorescence 
signals were collected by PMT3 and PMT4, respectively (Fig. 1b). CTCCs were engineered to express green 
fluorescence protein (GFP) for ground truth comparison. GFP signal was collected by PMT3. Sample data traces 
from flowing whole blood specimens spiked with GFP labeled CTCs and various size CTCCs are shown in Fig. 2. 
As expected, the strong GFP signal even from single cells yielded high signal to noise ratio (SNR) peaks (green 
traces). Sample whole blood time traces collected from the same rat are shown, with one sample being spiked with 
cancer cells (Fig. 2a) and the other flowed as collected (Fig. 2b). Since the flow speed of the sample was known, 
the width of the peaks could be associated with the cross-sectional diameter of the object from which each peak 
originated. Based on this width, the peaks shown were attributed to a CTC (Fig. 2c), and CTCCs of 3–4 or more 
than 6 cells (Fig. 2d,e, respectively). While many GFP peaks corresponded to similar peak features detected in 
two or three of the scattering channels (Fig. 2c–e), some GFP peaks did not yield any distinct detectable features 
in any of the scattering channels (Fig. 2f). An observed limitation of detecting CTCCs in whole blood was the 
increased background scattering signal. A sample 3–4 cell CTCC time trace collected from CTCCs in cell growth 
media (Fig. 2g) demonstrates the impact of blood scattering on SNR in comparison to a similarly sized cluster in 
whole blood (Fig. 2d). In addition, there were several instances where the scattering channels exhibited changes 
that appeared similar to those observed in Fig. 2c–e but did not correspond to a peak detected in the GFP chan-
nel (Fig. 2h). We refer to the latter peaks as non-CTCC (NC) peaks. 

Such data were acquired from 18 distinct experiments and were used as training and testing datasets for the 
development of a machine learning model to assess the accuracy with which we can identify CTCC-associated 

Figure 1.   (a) Microfluidic device. (b) Flow cytometer schematic. D dichroic, L lens, M mirror, BP bandpass 
filter, BS beam splitter, PMT photomultiplier tube, Pol polarizer, CAM CCD camera, ND neutral density filter, 
Cyl Lens cylindrical lens. (c) Schematic of experimental design for detection of CTCCs in whole blood flowed 
through a 30 × 30 μm2 microfluidic channel.
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peaks, relying on the GFP-detected peaks as the gold standard. The machine learning model was composed of 
two parts—the first part was an initial peak detection algorithm; the second part was a classification algorithm. 
During each experiment, data were acquired from ~ 135 μL of spiked blood samples, collected typically over 
45 min. A second order Butterworth filter was applied to the detected scattering and fluorescence signals (Fig. 3a) 
to remove high frequency noise, before data from the three scattering channels was normalized based on daily 
power measurements and a 99% reflectance standard (Fig. 3b). Following a previously established data analysis 
workflow, signals from the three scattering channels were summed together, while the green fluorescence signal 
was processed independently (Fig. 3c)9. Peak locations were determined using the built-in MATLAB func-
tion findpeaks.m in the same step. An intensity threshold (3σ) was used to define peak event ranges based on 
where the cumulative scattering and FP1 only traces crossed the threshold value (Fig. 3d). Each peak range was 
inspected to determine if multiple peaks were located within a single range. If multiple peak events were found 
within the same peak range, only the maximum peak was saved; all other peaks in the range were deleted. Any 
peak that failed to cross the 3σ threshold was also deleted and assumed to be a noise event. The peak detection 
algorithm extracted characteristics from the remaining peaks such as peak width, area-under-the-curve, loca-
tion, and intensity (Fig. 3e). While all these peak metrics were calculated and stored, for the studies discussed 
here, only peak width and location were used. This marked the end of the peak detection algorithm. Prior to 

Figure 2.   Raw data traces of CTCs/CTCCs and false positive events detected in sample. (a) A 5-s-long time 
trace of scattering and fluorescence signals collected from a whole blood sample spiked with CTCs/CTCCs and 
(b) an unspiked whole blood sample from the same animal. (c) A single CTC with a narrow FWHM (11 points) 
suggesting this belongs to an individual cell. (d) A small CTCC with a peak width of 24 points representing a 
small cluster 3–4 cells in size. (e) A large CTCC with a peak width of 30 points representing a large cluster 6+ 
cells in size. These events are labeled as CTCs/CTCCs based on their broad peak widths and green fluorescence 
signal, which is being used as our ground truth label. (f) Shows a peak event with a strong green fluorescence 
signal with no clear scattering signal. (g) A local trace from a 3–4 cell cluster with a peak width of 24 points 
from flowing CTCCs in cell growth media. (h) A local trace from an event that is incorrectly labeled as a CTCC 
by the initial peak detection algorithm.
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implementing the classification algorithm, we calculated the detection purity of the peak detection algorithm to 
determine if additional processing was necessary. The peak detection algorithm demonstrated a purity value < 1%, 
leading us to explore alternative methods to further reduce the number of false positive events. To accomplish 
this, we examined multiple machine learning based models to optimize the detection of CTCCs while minimiz-
ing false positive peak detection.

Feature vectors for the classification algorithm were developed based on peak locations determined by the 
peak detection algorithm. Peaks with widths less than 20 points were removed as they could potentially originate 
from large single cells or WBCs. This threshold also included a majority of two cell events, which we could not 
reliably sort from large single cell events. As such, results for classification are focused on clusters greater than 
2 cells in size. Locations from the FP1 only channel were used to generate feature vectors for the CTCC events. 
Peak locations in the cumulative scattering channel that did not have a corresponding green fluorescence event 
were used to generate the feature vectors for the NC events. In each feature vector, raw data were normalized 
(see “Model selection”) before features were selected for the model (see “Examination of data normalization 
techniques”). Feature vectors were composed of various combinations of scattering channel data. For each scat-
tering channel, ± 13 points from the peak location were set aside for the feature vector. For example, when the 
three scattering channels were included in the feature vector, features 1–27 corresponded to data from the 405 
channel, features 28–54 corresponded to data from the 488 channel, and features 55–81 corresponded to data 

Figure 3.   Machine learning model workflow. (a) Collected scattering and fluorescence data were analyzed to 
find the location of all cluster events. FP1 represents GFP used for ground truth labeling. (b) Data were initially 
normalized using power measurements and a second order Butterworth filter. (c) Data from FP1 was processed 
separately from the cumulative scattering data (405 + 488 + 633). The built in findpeaks.m function was used 
to find all local maximums in the 1.5-min data traces in both FP1 only and cumulative scattering data sets. 
(d) An intensity threshold was used to define the start and end of a peak. The threshold value was defined as 
being three times the standard deviation of the entire 1.5-min data trace in the FP1 and cumulative scattering 
channel. (e) Peak locations and characteristics were recorded for both the ground truth (FP1) data and the 
cumulative scattering data. (f) Using the locations of these clusters, a window of ± 13 points per scattering 
channel were reorganized into an 81-point feature vector. Based on FP1, we generated the labels for peaks as 
either being CTCC and NC events. (g) The generated features and labels were used to train a Gentle Adaptive 
Boost, Ensemble Boosted Tree classification algorithm to classify peaks. The training set included measurements 
from 10 days of collections while the test set was composed of 5 separate days of data. The final model was an 
ensemble of 50 models trained on fifty different data sets composed of the same CTCC peaks and an equal 
number of randomly selected NC peaks. (h) The test set was evaluated following training and used to classify 
peaks based on similarly formatted feature vectors (pseudocode can be found as Supplementary Fig. S1). (i) 
Performance metrics were calculated based on test set performance.
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from the 633 channel (Fig. 3f). 50 independent models were trained on fifty data sets composed of the 2285 
CTCC peaks and fifty different combinations of an equal number of NC peaks selected randomly from a total of 
44,964 NC peaks identified by the peak detection algorithm (Fig. 3g). After training, an unseen test set composed 
of similarly formatted feature vectors from five independent experiments was used to evaluate the performance 
of the ensemble of models. The test set was evaluated in a non-specific order by each of the 50 models (Fig. 3h). 
The initial test set was assessed by the first trained model with events predicted to be CTCC events, regardless of 
if they were actually CTCC events, being redefined as the new test set for the subsequent model; this process was 
repeated for all 50 trained models. Performance metrics were calculated based on the cumulative performance 
of the ensemble of models (Fig. 3i). Greater detail regarding the peak detection and classification algorithms can 
be found in “Methods: data processing” and “Methods: machine learning”. Additionally, pseudocode is available 
in Supplementary Fig. S1 online.

GFP peak detection sensitivity assessment.  Using known concentrations of CTCs spiked in whole 
blood, an estimated number of CTC events in a given time trace were calculated. The number of events detected 
in the GFP channel were also calculated. These values, when compared, allow for the assessment of GFP detec-
tion sensitivity and validation of GFP peak use as a ground truth signal. Over the course of five independent 
days an average sensitivity (± standard deviation) of 96.8 ± 3.44% for fluorescently-labeled CTCs was observed 
(Table 1). We note that in three of the five experiments, sensitivity was higher than 98.7%. Estimation errors 
of cell concentrations and inconsistent flow conditions (and thus interrogated blood volume estimates) may 
account for some of the observed differences, especially for the two days with lower sensitivity. We also note that 
CTCs are expected to have lower SNR than CTCCs primarily due to their size. Thus, this number represents a 
lower bound for the sensitivity with which GFP-labeled CTCCs were detected in our study. As the number and 
size of the spiked CTCCs can change as a result of processing and flow, it was not possible to acquire a robust 
sensitivity metric for CTCC GFP peak detection.

Model selection.  Three machine learning (ML) algorithms were assessed—a narrow neural network 
(NNN), a fine k-Nearest Neighbors (kNN) model, and an ensemble boosted tree model (EBT). These models 
were selected as kNN models are simple to implement and a good starting point for most machine learning 
problems. NNN’s are highly flexible and can provide reliable performance when provided enough data. Finally, 
EBT models are well known to work on complex, noisy data, combing multiple weak models to generate superior 
performance all together22. All machine learning models were trained and evaluated to determine the optimal 
combination of feature vectors, normalization techniques, and algorithms needed to achieve high levels of per-
formance. Performance was calculated using four metrics: Sensitivity, Specificity, Purity, and Accuracy; these 
values were calculated based on established formulas described in detail in “Methods: metrics” (Fig. 3i). Models 
were trained on a data set collected during ten experiments from a total of 13 experiments and tested on a sepa-
rate data set from five experiments. The average performance of all three models demonstrated that the EBT 
model provided the strongest classification (Table 2). Closer examination of these models supports this result as 
kNN and NNN models are known to overfit noisy datasets, and, as such, performance suffers22. The EBT model 
likely outperformed the other models on this dataset because of its ability to combine multiple weak models and 
classify events based on a consensus of multiple models22. This limited the effects of overfitting and allowed the 
model to learn features of CTCCs that were difficult to discern from NC events and classify both types of events 
accurately. Thus, the EBT model was used in further steps.

Table 1.   Detection of GFP-associated CTCs in whole blood by the BSFC (± standard deviation).

Day # Concentration (CTC/μL) Volume (μL) Expected # of CTCs Detected # of CTCs % error in detection

1 7.08 135 956 944 1.27

2 3.13 160 500 468 6.84

3 5.56 180 1000 997 0.30

4 8.13 124 1008 933 8.04

5 12.28 135 1657 1648 0.55

Avg 7.2 ± 3.4 146 ± 23 1024 ± 413 998 ± 421 3.4 ± 3.7

Table 2.   Average performance (± standard deviation) of three ML classification models. All models were 
trained and tested based on the described pseudocode (see Supplementary Fig. S1) with the only variation 
being the classification model used.

ML model Mean purity Mean specificity Mean sensitivity Mean accuracy

NNN 95.2 ± 0.8 99.3 ± 0.1 64.9 ± 5.3 93.4 ± 0.9

Fine kNN 88.1 ± 1.8 98.1 ± 0.4 65.1 ± 4.3 92.4 ± 0.7

EBT 82.8 ± 2.1 95.9 ± 0.7 92.5 ± 2.3 95.4 ± 0.3
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Examination of data normalization techniques.  A crucial step towards ensuring uniform analysis of 
data collected on multiple days was ensuring all data were normalized appropriately. To develop a model that 
could be potentially implemented independently of the illumination power values which varied from day to day, 
we sought a new normalization technique. Four methods were examined to normalize each subset of 1.5 min of 
data—normalizing peak intensity against maximum peak (Max Peak), normalizing against the average intensity 
of all peaks (Mean Peak > 5σ(x)), normalizing a zero-mean dataset by the standard deviation of all raw data 
(Zero Mean), and normalizing a zero median dataset by the standard deviation of all raw data (Zero Median). 
Each normalization technique was implemented prior to training the EBT model and then before testing its per-
formance with a distinct data set. The same sets of data were used for training and testing when evaluating the 
impact of each normalization method. The optimized hyperparameters for the EBT model included 102 splits, 
with 84 learning cycles, and a learning rate of 0.899. Gentle adaptive boosting was also used to maximize perfor-
mance on the noisy data. Results from these studies indicated that normalizing the data by subtracting the mean 
signal and then dividing by the standard deviation of the signal (Zero Mean) led to the overall best performance, 
corresponding to a sensitivity of 92.5%, specificity of 95.9%, purity of 82.8%, and accuracy of 95.4% (Fig. 4). 
This supported previous results we obtained when training and testing different normalization techniques on 
the NNN and kNN models, where the Zero Mean method also provided the best overall performance (data not 
shown).

Feature space selection.  Using correlation and SNR measurements, we observed the scattering signal 
intensity from CTCCs originated primarily from the 405 nm light scattering channel. Localized traces showed 
that locations with CTCC peaks had strong 405 nm light scatter (Fig. 2c–e), while random scattering events did 
not typically have a strong 405 scattering signal (Fig. 2f). This led us to vary the inclusion of other scattering 
signals to determine if they introduced noise to the analysis or benefit it. Multiple models were trained to include 
and exclude different combinations of scattering signals to find the optimal combination of signals needed to 
improve performance. Interestingly, we observed minimal differences between the models using data from the 
405 and 488 nm channels (Purity: 82.58%, Specificity: 96.12%, Sensitivity: 87.58%, and Accuracy: 94.64%), the 
488 and 633 nm channels (Purity: 83.56%, Specificity: 96.20%, Sensitivity: 91.23%, and Accuracy: 95.34%), and 
all three scattering channels (Purity: 82.78%, Specificity: 95.94%, Sensitivity: 92.51%, and Accuracy: 95.35%) 
(Table 3). This suggested that the model only needed two out of the three scattering channels to accurately sort 
CTCC from NC scattering events. To maximize detection sensitivity, we determined the optimal feature space to 
use for the model would combine all three scattering channels.

Examining final model performance.  To validate that we had successfully learned the features of the 
CTCCs, we further retrained the ensemble of models using different combinations of independent experimen-
tal datasets, generating 286 training sets. All 286 training sets were used to train an ensemble of 50 models 
before the test set was evaluated. The final performance values from all 286 combinations of trained models 
were averaged and reported (Pseudocode is provided in Supplementary Fig. S1 along with line-by-line discus-
sion in Supplementary Discussion 1 online). The testing set was composed of 4091 CTCC events and 19,534 

Figure 4.   Using an identical experimental setup as the one described in Table 2, four normalization methods 
were applied to the dataset. However, a key difference is the classification algorithm (EBT) was fixed with the 
only varying variable being the normalization techniques. The Zero Mean method demonstrated consistently 
higher performance across all metrics indicating it is best suited for our datasets. Error bars represent one 
standard deviation across the 286 ensemble of models. Pseudocode of the applied method can be found as 
Supplementary Fig. S1.
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NC events acquired from five distinct experiments. All data were processed and normalized identically to the 
training set. The testing set was fed into the trained ensemble of models to evaluate sensitivity, specificity, purity, 
and accuracy. To this end, the average performance (± standard deviation) across all trained classification algo-
rithms yielded a sensitivity of 92.51 ± 2.29%, specificity of 95.94 ± 0.69%, purity of 82.78 ± 2.05%, and accuracy 
of 95.35 ± 0.28% (Fig. 5).

Discussion and conclusions
In vitro microfluidic cell sorting has improved the isolation of CTCs and CTCCs from whole blood samples. At 
the forefront of cell sorting microfluidic chips are the DLD chip and NISA-XL chip13,14. The DLD chip capital-
ized on the size and asymmetry of CTCCs to isolate them from whole blood samples. This method showed a 
sorting sensitivity of 98.7% for clusters greater than 9 cells in size and a sorting sensitivity of 65.5% for clusters 
ranging from 2 to 9 cells in size14. Overall, the sorting sensitivity of the DLD chip was found to be 66.7% for 
all sizes of CTCCs. While the DLD chip was efficient at sorting larger clusters, limitations in sorting of smaller 
clusters impact its diagnostic potential. To the best of our knowledge, no study has demonstrated a correlation 
between cluster size and metastatic potential, as such, detection of all CTCCs in a blood sample is important.

The NISA-XL chip sought to address this limitation of the DLD chip by using inertial separation to isolate 
clusters, with an emphasis on smaller clusters (2–3 cells in size)13. Edd et al. demonstrated a sorting sensitivity 
of 84% for clusters consisting of 2–3 cells. The authors implied the NISA-XL can deliver comparable, if not, 
superior sensitivity for larger clusters but no studies have been conducted to date. Additionally, sorted samples 
demonstrated a poor sorting purity of 5.5% with most of the sorted sample being a mixture of WBCs and RBCs. 
A limitation of the DLD and NISA-XL chips remains their reliance on limited volumes of blood isolated via 
venipuncture at distinct time points, potentially leading to over or under estimation of CTCCs present. Addition-
ally, shear stress experienced within a microfluidic channel can impact cell cluster viability and disaggregation23. 
Optical interrogation may alleviate the shear stresses experienced by CTCCs, allowing for isolation of intact, 
live clusters.

Table 3.   Feature vectors examined along with average performance (± standard deviation). All models were 
trained and tested based on the described pseudocode (see Supplementary Fig. S1) with a fixed EBT model and 
zero-mean normalization method. The only variation introduced was the features used to develop the model.

Features included Mean purity Mean specificity Mean sensitivity Mean accuracy

405 ONLY 79.5 ± 3.8 97.8 ± 0.5 40.3 ± 3.0 87.8 ± 0.6

405 + 488 82.6 ± 1.4 96.1 ± 0.5 87.6 ± 2.0 94.6 ± 0.3

405 + 633 79.0 ± 2.1 95.0 ± 0.8 90.2 ± 3.3 94.1 ± 0.5

488 + 633 83.6 ± 2.6 96.2 ± 0.9 91.2 ± 2.4 95.3 ± 0.4

405 + 488 + 633 82.8 ± 2.1 95.9 ± 0.8 92.5 ± 2.3 95.4 ± 0.3

Figure 5.   An ensemble of models were trained for classification based on data from 10 days out of a total of 
13 days of data. The testing set featured 5 days of unseen data which was formatted identically to the training 
set. The test set was evaluated in a non-specific sequence with the predictions of first model dictating the inputs 
into the next model until all 50 models had evaluated the data. As we increased the number of models used, 
we observed a convergence in performance to a maximal limit. Error bars represent one standard deviation 
across the 286 ensemble of models.
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Using the principles of flow cytometry, Nitta et al. and Isozaki et al. described a custom intelligent image-
activated cell sorter (iIACS) which combines high throughput cell sorting, deep learning methods, and imaging 
flow cytometry for real time identification of rare cellular events using both FITC-conjugated concanavalin 
A-labeled and unlabeled samples24,25. The iIACS system’s original classification algorithm was built around a con-
volutional neural network which could sort ~ 100 events per s24. Using this platform, Nitta et al. sorted unstained 
platelet aggregates in 100 μL of fixed, hemolyzed whole blood with a specificity of 99%, sensitivity of 82%, and a 
high sorting purity of 79.5%24. While these results are from sorting platelets, leukocytes, and platelet aggregates, 
this study suggests that a similar approach could be used to sort CTCs and CTCCs from other whole blood cell 
components. Further advances and improvements to the iIACS system and sorting algorithm has increased 
the sorting rate up to ~ 2000 events per second, which suggests a 20 fold increase in blood volume processing 
(up to 2 mL of blood was possible based on the platelet aggregate sorting studies)25. In the most recent studies, 
Isozaki et al. demonstrated with budding yeast cells labeled with FITC-conjugated concanavalin A, a sorting 
sensitivity up to 96.3%. The high throughput and sorting sensitivity/specificity of the iIACS demonstrated the 
potential of applying deep learning methods for cell identification and sorting. However, while these studies have 
demonstrated sorting cluster like events, to the best of our knowledge, no reports on the sorting performance of 
CTCs and CTCCs in whole blood have been made. Additionally, the design of the iIACS is complex, requiring 
multiple experts spanning a range of fields from optics to electronics to flow cytometry, increasing the difficulty 
for a clinician to use the system26.

Advances in IVFC have opened the door for new, highly specific, and sensitive detection of rare circulating 
events such as CTCCs. Current advances in the field have focused on fluorescently labeled (DiD, CellTrace™ Far 
Red, and GFP) CTCs limiting clinical translation of IVFC15,17,19,20. Initial IVFC studies were performed with 
DiD-labeled blood and cancer cells following tail vein injections to monitor circulation kinetics15,27. Results from 
these studies demonstrated a clear relationship between injected cells and number of detected events per minute 
when as few as 1000 cells were injected. In addition, there was a correlation between the metastatic potential of 
the cancer cells and their depletion kinetics. While these studies highlighted the potential of IVFC to perform 
dynamic measurements with high sensitivity, staining of CTCs was required and completed ex vivo prior to tail 
vein injection. Prior work by our group has explored use of IVFC for detection of GFP-labeled CTCs in NOD/
SCID mice19,20. Results from these studies demonstrated detection of GFP associated events with SNR values up 
to 34 dB and a similar ability to monitor depletion kinetics of injected CTCs as the original studies19. We dem-
onstrated that the number of GFP-labeled CTCs detected early in tumor growth is correlated to the formation of 
micro-metastases detected weeks later20. Further, these studies highlighted the high detection sensitivity of IVFC 
for detection of GFP-labeled CTCs. Finally, such an IVFC set-up was used in studies by Aceto et al. to monitor 
the circulatory clearance rate of DiD-labeled MDA-MB-231-LM2 cells and clusters (a lung metastatic variant of 
MDA-MB-231 human breast cancer cells) in NOD SCID Gamma mice4. Notably, CTCCs had a higher clearance 
rate from the blood stream when compared to single CTCs. This, along with their increased cellular viability, 
could potentially explain their higher metastatic potential. While fluorescence-based in vivo flow cytometers 
can provide important new insights regarding the role of CTCs and CTCCs in metastasis formation, without 
highly specific tags for labeling of tumor cells, these methods remain only useful for experimental studies in 
animal models.

Tan et al. alternatively proposed a diffuse light flow cytometer (DiFC) to detect CellTrace™ Far Red-labeled 
multiple melanoma CTCs in athymic NCr-nu/nu nude mice with a sample rate of 284 μL per min, a false alarm 
rate (FAR) of 0.014 per min, and average SNR of ~ 22 dB17. FAR is a ratio of the number of false positive events 
detected per unit time. The reported DiFC sample rate was two orders of magnitude greater than previous 
reported IVFCs, including the discussed in vitro BSFC, which have a sample rate of 0.1–3 μL per min. High 
sampling rates allow for greater blood volume processing and detection of rare events in shorter time windows. 
A temporal matching algorithm in combination with the built-in findpeaks.m function was used in this study 
to improve the FAR by minimizing false positives. However, key disadvantages of the DiFC include its reliance 
on exogenous fluorescence which limits its application to animal models and higher non-specific background 
signal which impacts its ability to detect weaker fluorescent cell events.

Other groups have explored the use of photoacoustic, photothermal, and spontaneous Raman scattering 
for label-free IVFC; however, only the photoacoustic flow cytometer (PAFC) has ever been used for clinical 
acquisition of data16,21. Specifically, Galanzha et al. demonstrated in an in vivo clinical study of 19 healthy and 
28 melanoma patients that PAFC had a detection sensitivity of 62 ± 18% and a specificity of 94.74% for CTCs21. 
CTCCs were also identified in circulation by Galanzha et al. based on broader peak width and complex peak 
shapes that have been associated with CTCCs; however, CTCC counts and measurements of CTCC detection 
sensitivity or specificity were not provided. PAFC utilized the higher absorbance of melanoma cells compared 
to red and white bloods cells to detect melanoma CTCs and CTCCs without exogenous labeling. In addition, 
due to the increased penetration depth of ultrasound waves, PAFC was able to interrogate larger blood vessels 
(up to 1 mm in size) for acquisition of larger blood volume data. Results from this study were significant as they 
demonstrated highly specific detection (specificity > 94%) of melanoma cells in humans using positive contrast; 
the achieved sensitivity was also highly promising, given that it was primarily impacted by single CTCs, which 
are smaller than CTCCs. However, its application for label-free detection of CTCs/CTCCs was limited solely 
to melanoma cells21. PAFC has also been used to demonstrate in vitro and non-invasively in vivo detection of 
circulating blood clots, which ranged from 12 to 20 μm in size, using negative contrast from blood background 
for white blood cell clots and positive contrast from blood background for red blood cell clots28–30. Galanzha 
et al. demonstrated a similar detection of rare circulating blood clots (CBCs) in both healthy and melanoma 
patients and even rarer CTC-CBC aggregates in melanoma patients which demonstrated both negative and 
positive contrast as a result of the white blood cell CBCs and CTCs, respectively21. CBCs could be a potential 
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source for the observed broader NC events detected in our scattering channels that did not have a correspond-
ing fluorescent event.

While the results of the study discussed in this paper were from an in vitro model and solely focused on 
CTCCs, we demonstrated higher detection sensitivity and specificity compared to the PAFC, which reports 
combined detection of CTCs and CTCCs and in vitro microfluidic chip platforms along with comparable per-
formance to the iIACS. Additionally, in comparison to the iIACS, we achieved higher levels of detection purity 
while using endogenous signals. Finally, utilizing backscatter signals to classify CTCCs in whole blood addresses 
the limitations of current fluorescence based IVFC. To the best of our knowledge, no prior study has examined 
the detection of CTCCs in whole blood using endogenous scattering signal. The data analysis pipeline described 
in this study was critical for the detection of CTCCs in whole blood based on backscatter signals.

Application of zero-mean normalization on all three scattering wavelengths, in combination with an ensemble 
of EBT models, yielded an average sensitivity (± standard deviation) of 92.51 ± 2.29%, specificity of 95.94 ± 0.69%, 
purity of 82.78 ± 2.05%, and accuracy of 95.35 ± 0.28%. These results demonstrated the presence of unique light 
scattering signatures of CTCCs as the model reliably distinguishes CTCC events from NC events, independent 
of which combination of experimental days were used to train the ensemble of models. We also note that training 
with data from only two scattering channels yielded comparable levels of performance as the three scattering 
channels on the test set. This is beneficial for development of potentially simpler and cheaper systems, improving 
the potential for clinical translation.

A key limitation of the current BSFC implementation is the limited throughput of the system. In vitro pro-
cessing of whole blood samples from a patient (usually 7.5 mL in volume) would take an excess of 40 h based on 
the described flow rates. Multichannel detection could improve processing times by allowing for simultaneous 
interrogation. Application of a multichannel detection system comes with increased cost and complexity for 
detection of signal from multiple channels. Large channels with higher flow rates could also improve throughput. 
However, to keep the flow parameters relevant to potential in vivo imaging targets of non-invasive, label-free 
BSFC, such changes would likely yield prohibitively low SNR. Thus, development of multi-capillary detection 
will likely be needed to provide clinically useful measurements in a reasonable time in vivo. As further develop-
ment of label-free BSFC occurs, we plan to investigate such methods for improving throughput. In its current 
form, interrogation of superficial vessels in nailfold, volar forearm, gingival cavity, and eyes would likely be the 
best potential targets for the system in a clinical setting.

To achieve real-time monitoring, we need to optimize the algorithm for predicting CTCCs from raw data 
without the need for exogenous labels. In our current studies, green fluorescence was used to determine the loca-
tion of CTCCs and NCs. This requires time processing the data and generating feature vectors for CTCCs and 
NCs. However, to achieve fully label-free detection of CTCCs, we ultimately need to demonstrate the algorithm’s 
ability to find CTCC peaks without being instructed where to look. This step is important for in vivo and in vitro 
studies as label-free detection of CTCCs requires no exogenous fluorescence. To this end, this paper serves as an 
important first step in demonstrating the CTCCs have unique detectable scattering signatures in whole blood. 
To develop a label-free, real-time detection algorithm, we will continue to build on the data set of CTCC events 
and explore deep learning techniques to further learn and identify the features corresponding to CTCCs in whole 
blood. In addition, we will consider improved approaches for the combination of the light scattering signals from 
multiple channels for peak identification. In some cases, there is a time shift in the peak locations of the traces 
from different wavelengths, which likely impacts adversely the overall SNR of the summed intensity traces we 
currently use in our data processing workflow.

Additional work will focus on improving the current model by shifting to a more versatile program for 
greater optimization. Currently, our implementation relies on all events having the same feature vector length. 
This can have limitations as clusters can range in size; a larger cluster is cut off when included in the model as 
we are only using 27 points from a cluster event to make a prediction. To overcome this, we need to be able to 
vary the feature vectors based on a cluster event size. In this way, the algorithm is not predicting based on a small 
portion of a cluster, but the entire cluster. Additionally, more complex algorithms and hyperparameter options 
exist in programs using the Python language compared to MATLAB allowing for further improvement in model 
performance. Using such a model, we anticipate to be able to generate feature vectors and classify peaks rapidly 
for real-time detection of CTCCs in whole blood.

In these studies, a high-performance cluster computer was used to train and test all data. The total runtime 
for a single ensemble of 50 models to predict cluster locations was estimated as less than 20 s. However, this run 
time was based on formatting of the desired feature vectors prior to making predictions. In the algorithm’s current 
form, real-time implementation would not be possible. Future improvements to the peak detection algorithm in 
conjunction with deep learning models could provide rapid classifications, similar in scale to what has previously 
been reported for the iIACS of less than 32 ms24.

In summary, this study demonstrated that backscatter flow cytometry provides a new potentially power-
ful method for label free detection and monitoring of CTCCs in whole blood. The use of machine learning 
approaches was critical in our ability to identify features that can be used to identify CTCC peaks based on scat-
tering with very high accuracy. Backscatter flow cytometry for CTCC detection is currently limited to in vitro 
studies, but as we develop new algorithms and grow the training and testing sets, we plan to present a more 
comprehensive model for label-free detection of CTCCs in an in vivo animal model to demonstrate BSFC’s 
capability for clinical use. Even in the context of in vitro CTCC detection, label-free BSFC may offer a useful 
modality for CTCC isolation requiring minimal processing and yielding CTCCs with genomic and proteomic 
profiles that represent more accurately their state while circulating in vivo.
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Methods
Sample preparation.  Blood from healthy non-tumor bearing, non-experimentally manipulated mice and 
rats from other studies was drawn using cardiac puncture immediately following euthanasia via CO2 inhalation. 
500 μL of whole blood was collected in K2EDTA BD Microtainer blood collection tubes. All animal procedures 
were done in accordance with the Institutional Animal Care and Use Committee (IACUC) at Tufts Univer-
sity and Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Using non-experimentally 
manipulated rodents slated for euthanasia from other studies reduced the need to obtain new animals for this 
study. All collected blood samples were processed within 24 h of drawing. Samples were stored at room tempera-
ture until they were flowed through microfluidic channels.

Cells clusters were generated from a known and well characterized human triple negative metastatic breast 
cancer line, MDA-MB-231, using an established protocol for cell cluster generation14. Briefly, cells were plated on 
a standard 10 cm dish and allowed to reach 90% confluency. Once confluency was achieved, cells were lifted into 
solution using 1.5 mL of 0.25% trypsin (Gibco). During the process, detached cells interacted with one another 
generating cell clusters. Excess trypsin was deactivated using 8.5 mL of fully prepared media (10% FBS and 1% 
penicillin–streptomycin) after 3–5 min. Clusters were gently transferred into a 1.5 mL Eppendorf tube; care was 
taken to minimize mechanical dissociation of clusters. In studies focused on assessing green fluorescence peak 
detection sensitivity, clusters were mechanically dissociated by pipetting the sample up and down to yield single 
cells. 100 μL of tumor cell clusters or 300 μL of CTCs were spiked into a tube of whole blood containing 500 μL 
of blood. The sample was then placed on a tube rotator (VWR Tube Rotator) to mix the clusters/CTCs gently into 
the blood for 2–5 min. For the studies described in this paper, the mean distributions of cluster sizes and CTC 
concentrations were visually counted using a standard fluorescence microscope (Nikon Eclipse Ti2). Over the 
course of 18 days, the average distribution of clusters sizes (± standard deviation) was found to be 65.8 ± 6.5% sin-
gle cells, 17.1 ± 6.5% 2 cell clusters, 15.0 ± 4.9% 3–6 cell clusters, 1.4 ± 1.1% 7–9 cell clusters, and 0.7 ± 0.9% 9+ cell 
clusters. Mixed samples were flowed through a 30 × 30 µm2 microfluidic channel made of polydimethylsiloxane 
(PDMS) bonded to a glass microscope slide, as previously described9,31. Flexible tubing on one end of the device 
was connected to a reservoir to collect the flowed samples, tubing on the other end of the device was connected 
to a syringe containing the mixed sample. The syringe was placed on a syringe pump (Harvard Apparatus) set to 
push the sample at a flow rate of 3 μL/min. Channels were pre-wetted by manually injecting phosphate buffered 
saline (PBS). Samples were flowed for up to two hours or until the sample was completely used. A sample image 
of cells flowing in cell growth media through the microfluidic channel is included in Supplementary Fig. S2 
(online). All experimental studies were approved by the Tufts University Institutional Biosafety Committee.

Flow cytometer and data collection.  For the BSFC setup, a 20  mW 405  nm laser diode assembly 
(56-ICS-425; Melles Griot), 20 mW 488 nm diode-pumped solid-state laser (PC13589; Spectra Physics), and 
a 20 mW 633 nm HeNe laser (1144P; JDS Uniphase) were used. The 405 nm laser was poorly collimated so 
a telescope was setup to collimate the beam. The 405 nm laser was first directed towards a f = 35 mm plano-
covex lens (L1; LA1027-A; Thorlabs) followed by a 100 μm pinhole (Pinhole; P100S; Thorlabs), and then finally 
a second f = 35  mm plano-convex lens (L2; LA1027-A; Thorlabs). After careful alignment of the telescoping 
lens, it was confirmed that the 405 beam was collimated using a beam propagation analyzer (Modemaster M2; 
Coherent Inc.). All beams were directed towards mirrors to redirect the beams orthogonally (M1-4; BB1-E02; 
Thorlabs). In the illumination paths of the 405 nm and 488 nm lasers, neutral density (ND) filters (ND1 = 0.2 and 
ND2 = 0.8; Thorlabs) were used to reduce the power delivered to the sample from these lasers; an additional ND 
filter (ND3 = 0.5; Thorlabs) was used to reduce the combined 488 nm and 633 nm laser power. Dichroic filters 
(D1; 620DCXXR and D2; 465DCXR; Chroma) were used to combine the 488 nm and 633 nm lasers and the 405, 
488, and 633 nm lasers together; respectively. All beams were carefully aligned to be colinear. A linear polarizer 
(Pol1; 03FPG021; Melles Griot) was used to control the polarization of input light from the colinear 405, 488, 
and 633 nm laser light. Vertically polarized light was directed towards a f = 150 mm MgF2 cylindrical lens (Cyl 
Lens; NT48-367; Edmund Optics) to form a horizontal slit. This horizontal slit was refocused 300 mm from 
the Cyl Lens by a f = 150 mm achromatic lens (L3; NT32-494; Edmund Optics) to infinity. A 50:50 beamsplitter 
(BS1; Chroma) was placed after L3 for later use in detection and for verification of alignment by projecting the 
input beam off a mirror (M5; Thorlabs) to a faraway screen. Transmitted light was reflected off a mirror (M6; 
Thorlabs) secured on a 45°-degree mount towards the sample stage. M6’s mount was secured to a single-axis 
translation stage with a standard micrometer (Thorlabs) to vary the illumination and detection angle between 
0° and 18°. A filter cube was situated above M6 to hold a 40×, NA = 0.6 objective (LUCPLFLN; Olympus) and 
internally another 50:50 beamsplitter (BS2; Chroma) for transillumination. For all studies, a xyz-translation 
stage was built around the objective to position the sample across the slit and set the focal depth of collection. 
All power measurements were taken at the sample stage used a photodiode Si sensor (PM16-120; Thorlabs). The 
position of samples was verified using transillumination by a green LED (Luxen V), whose transmitted light 
reached BS2 through the objective, and reflected to form an image of the device channel and illumination slit on 
a CCD camera (Watec) through a f = 150 mm achromatic lens (L4; Edmund Optics). Backscattered light from 
the channel was collected through the same objective. A beam block was secured to a secondary micrometer and 
placed immediately below the filter cube. The beam block was advanced to restrict the collection of backscatter 
signal between 0° and 18° (identical to the illumination beam) and block specular reflection. This was confirmed 
by imaging the illumination slit as we adjusted the beam block position until we observed clipping of the slit. 
This process was carried out in order to improve the SNR of the data by reducing the background intensity 
from glass reflections. Backscattered and fluorescence light that followed the illumination path were focused 
onto a 150 × 3000 μm slit aperture (Confocal Slit; S15OR; Thorlabs) using a f = 150 mm achromatic lens (L5; 
Edmund Optics). Focused backscattered and fluorescence light exited the slit and was refocused using another 
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f = 150 mm achromatic lens (L6; Edmund Optics) to infinity while unfocused light was blocked. The polariza-
tion of the detected light was ascertained by a second linear polarizer (Pol2; Melles Griot) that was set to be 
colinear with Pol1. Finally, signals were separated using dichroic mirrors (D3-D6; Chroma) and directed toward 
five photomultiplier tubes (PMTs). The first dichroic mirror (D3; 460DCXRU; Chroma) was used to isolate the 
405 nm signal to PMT1. The second dichroic mirror (D4; 629DXR; Chroma) was used to isolate the 633 nm 
and deep red fluorescence signal from the 488 nm and green fluorescence signal. The third dichroic mirror (D5; 
500DXR; Chroma) was used to split the 488 nm signal from the green fluorescence signal, delivering each to 
PMT2 and PMT3, respectively. Finally, the fourth dichroic mirror (D6; ZT647rdc; Chroma) was used to split the 
633 nm signal from the deep red fluorescence, sending the signal to PMT5 and PMT4, respectively. A bandpass 
filter (Chroma) was placed in front of each PMT (R3896; Hamamatsu) to collect scattered light in the ranges of 
405 ± 5 nm (BP1; Z405/10×), 488 ± 5 nm (BP2; Z488/10×), and 633 ± 5 nm (BP5; Z633/10×), and fluorescence in 
the 500–550 nm (BP3) range and 650–690 nm (BP4) range. Additionally, due to signal saturating the PMTs for 
the three scattering wavelengths (PMT1, PMT2, PMT5), ND filters (ND4 = 0.6, ND5 = 1.2, ND6 = 0.9; Thorlabs) 
were added before each PMT, respectively, to ensure we could collect high SNR data without damaging the 
detectors.

Data processing.  Data were sampled at 60 kHz and digitally recorded using a data acquisition unit (USB-
6341; National Instruments) into LabVIEW (v18.0; National Instruments) before being transferred into MAT-
LAB. Raw data were read in 1.5-min data increments to ensure drifts in baseline signal could be readily normal-
ized. A second order Butterworth filter was used to remove high frequency noise and normalize the baseline 
signal (50–6000 Hz). After filtering, signal intensities from the three scattering wavelengths (405 nm, 488 nm, 
and 633 nm) were normalized based on incident power on the sample ( Power�,Sample ), reduced incident power 
on the spectralon ( Power�,Spectralon ), and corresponding intensities backscattered from a 99% spectralon using 
the reduced power ( Intensity�,Spectralon ). Power was reduced using a ND filter with an OD = 1.0. The normaliza-
tion factor was calculated daily for each of the scattering wavelengths using Eq. (1):

Signals from the three scattering channels were summed into a single cumulative signal (405 nm sig-
nal + 488 nm signal + 633 nm signal). The sum of all three scattering signals improved the SNR for peak detec-
tion, with spurious peaks averaged out9. The cumulative signal of each 1.5 min segment was analyzed using the 
built in MATLAB function findpeaks.m in the Signal Processing Toolbox to identify peaks. As a ground truth 
comparison to the scattering channel data, green fluorescence peak locations were also interrogated using the 
same algorithm. The premise of this step was to use the ground truth signal (green fluorescence) to identify the 
locations in the cumulative scattering channel that corresponded to CTCCs. To label peak events, an intensity 
threshold of 3σ was applied to both the cumulative scattering and green fluorescence channel. Peaks that failed 
to meet this threshold were removed from further processing. A 5σ threshold was also explored for the green 
fluorescence channel but yielded identical peaks. Data from FP2 (red fluorescence) channel were also collected 
in order to determine if endogenous red fluorescence signatures from CTCCs were present. However, further 
examination of the red fluorescence signal revealed crosstalk from the GFP label; as such, FP2 was omitted from 
all analysis.

Once the location of peaks in both the cumulative scattering and green fluorescence channels were identified, 
peak characteristics were extracted and saved. The full width at half maximum (FWHM), scattering intensity of 
each of the five acquisition channels at the specified location, the area-under-the-curve (AUC), cumulative scat-
tering intensity, and FWHM and AUC of peaks within the five individual acquisition channels were calculated. 
These values along with location of the peak were stored for further analysis using the classification algorithm. For 
the discussed studies, only the FWHM and peak locations were used. Other values were stored for potential fur-
ther analysis and/or model development. Figure 3 provides a general overview of the data processing steps used.

Assessment of GFP sensitivity detection.  GFP labeled CTCs were used to validate the sensitivity of 
GFP peak detection when flowing cells in whole blood. CTC concentrations were measured during five inde-
pendent experimental days before a fixed concentration was spiked into whole blood samples. As samples were 
flowed at a fixed flow rate, estimates of blood volume interrogated and concentration of CTCs in blood were 
used to predict the number of CTC events that should be present in the green fluorescence data. The expected 
counts and actual number of GFP peaks detected using our peak detection workflow were compared. Expected 
# of CTCs were calculated by multiplying the concentration by the volume flowed. Detected # of CTCs were 
calculated by counting the number of fluorescent peaks in the green fluorescence data channel for the same 
estimated flow volume.

Machine learning.  Three ML models were assessed—a NNN, a Fine kNN model, and an EBT model. All 
ML models were trained and evaluated to determine the optimal combination of feature vectors, normalization 
techniques, and algorithms needed to achieve high levels of performance. All pre-processing of data were com-
pleted in MATLAB R2021a with four different normalization techniques being applied to generate four master 
sets of feature vectors for all peaks. As described above, using the peak locations defined by the peak detection 
code, we normalized each subset of 1.5 min of data in four different ways –Max Peak, Mean Peak > 5σ(x), Zero 
Mean, and Zero Median. After the data were normalized, for each method, we selected ± 13 points on either 
side of each peak from the three scattering channels. The center of the peak was selected based on the output of 

(1)Norm(�) = Intensity�,Spectralon ·
Power�,Sample

Power�,Spectralon
,where� = 405, 488, or 633 nm
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peak locations in the cumulative scattering and green fluorescence channel from the peak detection algorithm. 
This allowed for a holistic determination of peak center for the three scattering channels as the maximum peak 
location could vary per wavelength. The selection of ± 13 points was based on the expected minimum FWHM 
of a cluster event being 20 points allowing us to ensure the full range of points for the smallest CTCCs was 
included. We were able to calculate the minimum FWHM of a cluster event based on the sample flow rate and 
cross-sectional area of the channel which gave us an estimate of the flow velocity. Using the expression v = Q/A, 
where Q is the sample flow rate, A is cross sectional area, and v is the flow velocity, we determined that the flow 
velocity was 55.6 mm/sec (Q = 3 μL/min and A = 900 μm2). Next, we estimated the time for a large CTC or WBC 
(~ 12–15 μm) to cross the illumination slit which had a width of 5 μm. This was calculated by the expression 
Δt = deff/v, where Δt is the time, deff is the effective diameter of the expected event, and v is the flow velocity. 
Using the largest single cell size expected (15 μm), we calculated Δt to be 3.6e − 4 s (deff = 15 + 5 = 20 μm and 
v = 55.6 mm/s). With a sample rate of 60,000 samples per second, this corresponded to a width of ~ 21 points, as 
such we anticipated events ≥ 20 points in width to be a cluster event. Two cell clusters presented a unique chal-
lenge for detection as their orientation when crossing the illumination slit could affect the size of the detected 
peak. Thus, we could not reliably identify two cell clusters from single cells and report algorithm performance 
for clusters of 3 cells or larger in size. This also means for small clusters, a window of ± 13 points will capture 
the full cluster. The three sets of 27 points of data from each scattering channel were finally organized as a vec-
tor of features (405 nm channel = features 1–27, 488 nm channel = features 28–54, 633 nm channel = features 
55–81). This process was repeated for all normalization methods. Peak locations corresponding to single cells 
were removed before further processing as we were solely interested in CTCCs. To remove CTC events, a simple 
threshold was used to remove detected events with FWHM’s less than 20 points in size (corresponding to a cell 
size of ~ 14 μm, see calculation above). This value was selected based on the maximum size of both white blood 
cells and CTCs we expected to see in the sample. The remaining events were labeled as being potentially CTCCs. 
The total number of CTCC events detected per day was determined from the green fluorescence channel (FP1) 
which served as the ground truth (see Supplementary Table S1 online). As only the CTCCs exhibit green fluo-
rescence, we classified any detected scattering event that did not show a corresponding peak in the FP1 chan-
nel as a NC scattering event. CTCC feature vectors were developed for all events detected in the FP1 channel. 
NC feature vectors were taken from the cumulative scattering data by extracting all locations where there was 
no green fluorescence peak present (Fig. 2F). From a total of 18 days of experimental data available, data from 
13 days was set aside for training and data from 5 days was set aside for testing. During training, 10 days of data 
from the total of 13 days was used in training with the remaining ~ 25% used for validation. Validation sets were 
used to ensure the model was successfully trained. To improve on processing time, we utilized the Tufts High 
Performance Cluster, where a single 8 core CPU with 50 GB of memory was allocated for all computations. 
On the cluster, the master feature vector set was uploaded for all normalization techniques along with scripts 
for three different machine learning algorithms written by the built in Statistics & Machine Learning toolbox 
in MATLAB R2021a. Finally, an evaluation script was uploaded to train 286 combinations of 10 experimental 
days of training data out of 13 possible days before being tested on an unseen 5 experimental days of testing data 
(pseudocode can be found in Supplementary Fig. S1 online). Average testing performance was calculated from 
all 286 different combinations of training days and reported with standard deviation in performance (Fig. 5). 
Several combinations of peak features from different scattering wavelengths were assessed by the machine learn-
ing model to identify the feature combination that yielded optimal CTCC detection. For example, if only the 
405-channel data were desired, we selected columns 1–27 and column 82 which contained the peak labels for 
CTCCs and NCs. For any trained model, the maximum number of true CTCC cases was 2285 events with a total 
number of 44,964 NC peaks. These values were calculated by summing together the number of events present in 
a training set that were labeled as CTCCs and NCs based on their signal in FP1. An ensemble of 50 models was 
used to minimize bias due to the disparity in the number of NC peaks to CTCC peaks. To generate the ensem-
ble of models, we started by training 50 random models using the same CTCC events and an equal number of 
randomly selected NC peaks. This ensured that the model learned a wider range of features from the NC peaks 
while maintaining its ability to detect CTCC events. The trained ensemble of 50 models was used to evaluate 
the test set. Using a non-specific sequence, we fed the test set into one model at a time and collected all events 
predicted to be CTCCs. Using only the predicted CTCC events, we called the next model to make a new predic-
tion on these events. This process was conducted repetitively until all 50 models were exhausted. The overall 
classification performance after all 50 models was tabulated by summing together the total number of NC peaks 
correctly predicted as NC peaks and the total number of CTCCs incorrectly predicted as NC peaks to determine 
the final model performance. This process was repeated for all the 286 ensemble of models with performance 
being tracked each time a new model was introduced. Pseudocode is provided in Supplementary Fig. S1 online 
with a line-by-line explanation of this process (See Supplementary Discussion S1 online).

Metrics.  To evaluate a model’s classification performance, four metrics were examined—Purity (also referred 
to as precision), Sensitivity, Specificity, and Accuracy defined as:

(2)Purity =
True Positive

True Positive + False Positive

(3)Sensitivity =
True Positive

True Positive + False Negative
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From these metrics we assessed the model’s ability to learn the features of the CTCCs in comparison to NC 
events. Measured values were compared against values from existing technologies for CTCC detection. Metrics 
were calculated for a wide range of models, feature vectors, and normalization techniques.

Data availability
The raw datasets used for model generation in the current study along with the trained classifier and scripts 
(written in MATLAB) are available from the corresponding author on reasonable request.
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