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Abstract— Dual-function radar-communication (DFRC), which
can simultaneously perform both radar and communication
functionalities using the same hardware platform, spectral
resource and transmit waveform, is a promising technique
for realizing integrated sensing and communication (ISAC).
Space-time adaptive processing (STAP) in multi-antenna radar
systems is the primary tool for detecting moving targets in
the presence of strong clutter. The idea of joint spatial-
temporal optimization in STAP-based radar systems is consistent
with the concept of symbol-level precoding (SLP) for multi-
input multi-output (MIMO) communications, which optimizes
the transmit waveform for each of the transmitted symbols.
In this paper, we combine STAP and SLP and propose a
novel STAP-SLP-based DFRC system that enjoys the advantages
of both techniques. The radar output signal-to-interference-
plus-noise ratio (SINR) is maximized by jointly optimizing
the transmit waveform and receive filter, while satisfying the
communication quality-of-service (QoS) constraint and various
waveform constraints including constant-modulus, similarity and
peak-to-average power ratio (PAPR). An efficient algorithm
framework based on majorization-minimization (MM) and non-
linear equality constrained alternative direction method of multi-
pliers (neADMM) methods is proposed to solve these complicated
non-convex optimization problems. Simulation results verify the
effectiveness of the proposed STAP-SLP-based MIMO-DRFC
scheme and the associate algorithms.

Index Terms— Dual-functional radar-communication (DFRC),
integrated sensing and communication (ISAC), space-time adap-
tive processing (STAP), symbol-level precoding (SLP), multi-input
multi-output (MIMO).
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I. INTRODUCTION

W ITH the exponential growth of wireless services and
the plethora of wireless devices, spectral resources are

becoming increasingly scarce, motivating the urgent need for
advanced spectrum sharing technologies. The radar frequency
bands, which have large portions of available spectrum, are
promising candidates for sharing with various communication
systems. Spectrum sharing between radar and communication
systems is consistent with the on-going convergence of inte-
grated sensing and communication (ISAC) functions [1]–[5],
and has led to substantial research interest in the coexistence,
cooperation, and co-design of these two systems [6]–[9].

Unlike radar and communication coexistence/cooperation
(RCC) which requires interference management and side-
information exchange, ISAC enables the co-design of the sens-
ing and communication functions. By efficiently sharing the
same spectral resources, a given hardware platform, and a joint
signal processing framework, ISAC can realize both sensing
and communication functions and even result in mutual ben-
efits [10]–[12]. ISAC can provide considerable gains in terms
of spectral/energy/hardware/cost efficiency and has attracted
significant research interest in both academia and industry.
It is believed that ISAC will become a promising technology
in future wireless communication systems to support various
application scenarios, such as vehicular networks, smart cities,
environmental monitoring, remote sensing, internet-of-things
(IoT), etc. Moreover, ISAC is also considered to be a key
enabling technology for next-generation cellular and Wi-Fi
systems.

ISAC systems can have different levels of integration. In a
looser configuration, these two functions are just physically
integrated on a given platform, but employ different sets of
hardware components and/or transmit waveforms. This loose
integration may only offer limited benefits such as lower
signalling overhead and better interference management. The
rationale of ISAC is that sensing and communication functions
are tightly integrated and can be simultaneously performed
using a fully-shared transmitter/receiver, the same frequency
bands, and the same dual-functional waveforms, which allows
for significantly greater improvements in efficiency [10].
An ISAC system with such tight integration is more often
referred to as a dual-functional radar-communication (DFRC)
system in the literature [13]–[19]. The main goal of a DFRC
system is to generate novel dual-functional waveforms to
simultaneously perform radar sensing and communication
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functions. Multi-input multi-output (MIMO) architectures have
been widely employed in DFRC systems to improve the
spatial-domain waveform diversity for radar sensing [20],
as well as to achieve beamforming gains and spatial multi-
plexing for multi-user communications. Thanks to advance-
ments in fully co-designed radar sensing and communication
waveforms, MIMO-DFRC is recognized as a key enabler
for ISAC systems to significantly improve spectral efficiency,
reduce device size, cost and power consumption, and enhance
performance, all of which are the focus of this paper.

Due to the inherently conflicting requirements of radar sens-
ing and communication functions, transmit waveform design
is pivotal in pursuing better performance trade-offs for MIMO-
DFRC systems [4]. Therefore, many researchers have devoted
their study to transmit waveform designs with various radar
sensing and communication metrics [13]–[19], [21]–[23],
e.g., average transmit beampattern, signal-to-interference-
plus-noise ratio (SINR), mutual information, similarity with
a reference waveform, achievable rate, etc. However, most
existing research for implementing MIMO-DFRC only
focuses on designing the spatial second-order statistics of
the transmit waveforms and ignores the Doppler bin in
the temporal domain. Moreover, an overly simplified radar
sensing environment without clutter is usually assumed in the
existing literature. Therefore, the target detection performance
of these designs may be not satisfactory, and could even be
unacceptable in a hostile radar sensing environment.

Space-time adaptive processing (STAP) is an effective
technique for achieving adaptive clutter suppression and
better target detection in multi-antenna radars [24]–[31].
STAP optimizes the spatial-temporal transmit waveforms
rather than their spatial second-order statistics to maximize
the output SINR performance, for the purpose of suppressing
the clutter. Since the waveform optimization exploits degrees
of freedom (DoFs) in both the spatial and temporal domains,
the performance of identifying a target in the presence of
strong clutter over widely spread ranges and angular regions
is significantly improved. Using a priori knowledge about the
clutter, e.g., the clutter covariance matrix (CCM) [32]–[34],
there has been growing interest in designing the waveforms
using knowledge-aided techniques to improve the STAP
performance.

In communications applications, the recently emerged
symbol-level precoding (SLP) technique also exploits available
DoFs in both the spatial and temporal domains to improve link
performance. In particular, SLP designs the transmit precoder
in each time slot (i.e., the transmit waveform samples) based
on the specific transmitted symbols themselves rather than
their second-order statistics. The transmit precoder/waveform
can be designed to convert harmful interference into bene-
ficial signal power, and such constructive interference (CI)
can improve the communication quality-of-service (QoS)
[35]–[40]. The flexibility offered by SLP in the time domain
and its ability to achieve better communication QoS make
SLP techniques a promising candidate for MIMO-DFRC
systems, in which the transmit waveform used for radar sens-
ing simultaneously carries information symbols for wireless
communications.

Very limited research has been conducted to exploit SLP for
joint radar-communication systems. In prior work [6], the SLP
technique was employed in an RCC system to take advantage
of interference exploitation. However, in RCC systems, the
SLP design only optimizes the communication performance
metric while simultaneously suppressing interference to the
radar system regardless of the specific radar waveforms.
Another very recent work [41] introduces SLP to MIMO-
DFRC systems for the first time and illustrates that SLP
can provide more accurate angle estimation and better target
detection performance, as well as lower symbol-error-rate
(SER) for multi-user communications compared with con-
ventional block-level precoding (BLP) schemes. Nevertheless,
this work only optimizes the transmit waveform based on
the beampattern similarity metric, and does not consider the
properties of the radar waveform in the temporal-domain. The
spatial-temporal receive filter and clutter suppression are also
not taken into account. Therefore, the flexibility of SLP has
not been fully exploited for MIMO-DFRC systems in the prior
literature.

Motivated by the above discussion, in this paper we leverage
STAP and CI-based SLP techniques for implementing MIMO-
DFRC to combine their advantages for both radar and commu-
nication functions. In particular, we consider a multi-antenna
base station (BS) that simultaneously uses active sensing to
detect a target in the presence of strong signal-dependent
clutter and transfers information symbols to multiple single-
antenna users. The transmit waveform and receive filter of the
BS are jointly optimized to maximize the radar output SINR
under communication QoS constraints and several different
radar waveform constraints. The main contributions can be
summarized as follows:

• For the first time, we integrate STAP and SLP techniques
to implement MIMO-DFRC in order to achieve consid-
erable improvements in target detection performance in
the presence of strong clutter, as well as to boost multi-
user communication performance by converting harmful
interference into beneficial signal power. Compared with
conventional BLP-based waveform designs, STAP and
SLP techniques impose quite different radar sensing
and communication constraints in the temporal domain
and consequently result in brand-new waveform design
problems.

• We first model the joint transmit waveform and receive
filter optimization problem for the novel STAP-SLP-
based MIMO-DFRC system. Then, focusing on the
constant-modulus constrained waveform design problem,
we employ the majorization-minimization (MM) method
and derive a tractable surrogate function, and then exploit
the novel nonlinear equality constrained alternative direc-
tion method of multipliers (neADMM) method to convert
the problem into manageable sub-problems. Detailed
derivations and efficient algorithms are developed to
obtain the optimal solutions for each sub-problem.

• Next, we generalize the proposed MM-neADMM
algorithm to waveform designs with constant-modulus
similarity and peak-to-average power ratio (PAPR)
constraints.
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Fig. 1. The considered MIMO-DFRC system.

• We provide extensive simulation results to verify the
advantages of jointly exploiting STAP and CI-based SLP
techniques to implement MIMO-DFRC and demonstrate
the effectiveness of the proposed algorithms under differ-
ent waveform constraints.

Notation: Boldface lower-case and upper-case letters indi-
cate column vectors and matrices, respectively. (·)T and (·)H

denote the transpose and the transpose-conjugate operations,
respectively. C and R denote the sets of complex numbers
and real numbers, respectively. |a|, ‖a‖, and ‖a‖∞ are the
magnitude of a scalar a, the 2-norm of a vector a, and the
infinity norm of a vector a, respectively. ∠a is the angle
of complex-valued a. R{a} and I{a} denote the real and
imaginary part of a scalar a, respectively. ⊗ denotes the
Kronecker product. E{·} denotes the expectation operation.
Tr{A} takes the trace of a matrix A and vec{A} vectorizes
the matrix A. IM indicates an M × M identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a colocated narrowband DFRC system as shown in
Fig. 1, where a BS is equipped with Nt transmit antennas and
Nr receive antennas arranged as uniform linear arrays (ULAs)
with antenna spacing dt and dr, respectively. The BS aims
to detect a target in the presence of strong signal-dependent
clutter and simultaneously provide downlink wireless com-
munication services to Ku single-antenna users. In order
to detect moving targets in the presence of strong signal-
dependent clutter over widely spread ranges, angular regions
and Doppler frequencies, the BS uses STAP to exploit all
available DoFs in both the spatial and temporal domains.
In other words, the BS, which can be thought of as a colocated
MIMO radar, uses STAP to jointly design the spatial-temporal
transmit waveform and receive filter for achieving better target
detection and clutter suppression performance. Meanwhile,
in order to simultaneously realize satisfactory communication
performance, the information symbols are carried by the same
transmit waveforms using CI-based SLP for better communi-
cation QoS.

We assume that the radar is interrogating a moving target
at the azimuth direction θ0 with a speed v0, in the presence
of strong clutter from neighboring range cells. Assume that

a burst of M pulses is transmitted from the radar transmitter
in a coherent processing interval (CPI) with a constant pulse
repetition frequency (PRF) fr, and hence a constant pulse rep-
etition interval (PRI) Tr = 1/fr. Let x̃nt(t) be the transmitted
waveform of the nt-th transmit antenna, nt = 1, . . . , Nt, and
define x̃(t) � [x̃1(t), . . . , x̃Nt(t)]T . It should be emphasized
that, due to the use of SLP, the transmit waveforms vary from
pulse-to-pulse to realize the multi-user communications, unlike
what is assumed in most conventional MIMO radar systems
that repeatedly transmit the same pulse.

A. Radar Received Signal and Radar Performance Metric

The radar received signal y in the cell under test (CUT) can
be expressed as one of two possible hypotheses:{

H0 : y = yc + z,
H1 : y = y0 + yc + z,

(1)

where y0 and yc respectively represent the received signal
returns reflected from the target and the clutter, and the
vector z ∼ CN (0, σ2

r I) denotes additive white Gaussian
noise (AWGN) at the receive antennas. The radar system
decides whether a target is observed by testing the binary
hypotheses in (1).

The received echo from the target with direction of arrival
(DoA) θ0 can be written as

ỹ0(t) = α0b(θ0)aH(θ0)x̃(t − τ0)ej2π(f0+fd)(t−τ0), (2)

where α0 represents the target amplitude with E
{|α0|2

}
=

σ2
0 , the scalar τ0 is the two-way propagation delay, f0 is the

carrier frequency of the transmit waveform, and fd = 2v0/λ
is the target Doppler frequency with λ = c/f0 denoting the
wavelength and c representing the speed of light. The vectors
b(θ) and a(θ) are the steering vectors for the receive and
transmit signals at angle θ, respectively:

b(θ) �
[
1, ej2πfs , . . . , e−j2π(Nr−1)fs

]T
, (3a)

a(θ) �
[
1, ej2πfsdt/dr , . . . , e−j2π(Nt−1)fsdt/dr

]T
, (3b)

where fs � dr sin θ/λ denotes the normalized spatial
frequency.

The received signal is first down-converted to baseband
and then passed through an analog-to-digital converter. For
simplicity, we absorb the constant phase terms associated with
τ0 into the target amplitude and assume the intra-pulse Doppler
shift is negligible. Thus, for the m-th pulse, the baseband
digital samples at the considered range gate can be expressed
in matrix form as

Y0,m = α0e
j2π(m−1)fdTrb(θ0)aH(θ0)Xm, (4)

where Xm = [x̃m,1, . . . , x̃m,Nt ]T ∈ CNt×N denotes the
waveform matrix, and x̃m,nt ∈ CN is a vector of samples
of x̃nt(t), where N samples are taken per pulse. Then,
we vectorize the received baseband digital samples in a CPI
by letting y0 = [vec{YT

0,1}T , . . . , vec{YT
0,M}T ]T , which can

be expressed as

y0 = α0X
(
d(fd) ⊗ b(θ0) ⊗ a(θ0)

)
, (5)
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where

X � blkdiag
{
INr ⊗ XT

1 , . . . , INr ⊗ XT
M

}
, (6)

and d(fd) � [1, . . . , ej2π(M−1)fdTr ]T denotes the Doppler
response vector. For simplicity, we define the spatial-temporal
steering vector as

u(fd, θ) � d(fd) ⊗ b(θ) ⊗ a(θ). (7)

The spatial-temporal steering vector of the target of interest is
denoted as u0 = u(fd, θ0). Thus, the received signal vector
y0 can be re-written in a concise form as

y0 = α0Xu0. (8)

In addition to the signal reflected from the target, the radar
receiver simultaneously receives unwanted clutter reflected by
trees, tall buildings, cars, etc., which are generally spread in
both the spatial (e.g., azimuth and range) and Doppler dimen-
sions. Since the signal-dependent clutter is possibly stronger
than the target return and deteriorates the target detection
performance, it should be carefully taken into consideration
in waveform designs. We assume that the clutter is generated
from the CUT and 2L other adjacent range cells, each of which
is approximated by Nc clutter patches randomly distributed in
azimuth. The origin of the range coordinates is set at the target
range bin.

Similar to (4), for the m-th pulse, the baseband digital
samples of the return from the k-th clutter patch in the l-th
range cell can be written as

Yc,m,l,k = αc,l,kej2π(m−1)fc,l,kTrb(θc,l,k)aH(θc,l,k)XmJl,

(9)

where αc,l,k, fc,l,k, and θc,l,k respectively denote the ampli-
tude, Doppler frequency, and DoA of the k-th clutter patch
in the l-th range cell, k = 1, . . . , Nc, l = −L, . . . , L, and
E
{|αc,l,k|2

}
= σ2

c . The shift matrix Jl ∈ R
N×N is defined by

Jl(i, j) =

{
1, i − j + l = 0,

0, otherwise,
(10)

and J−l = JT
l . The received signal vector from

the k-th clutter patch in the l-th range cell yc,l,k =
[vec{YT

c,1,l,k}T , . . . , vec{YT
c,M,l,k}T ]T can be expressed as

yc,l,k = αc,l,k
(
INr ⊗ IM ⊗ JT

l )Xu(fc,l,k, θc,l,k). (11)

Defining Jl � INr ⊗IM ⊗JT
l and the spatial-temporal steering

vector uc,l,k � u(fc,l,k, θc,l,k) as given in (7), the clutter
returns from all the clutter patches can be expressed as

yc =
L∑

l=−L

Nc∑
k=1

yc,l,k =
L∑

l=−L

Nc∑
k=1

αc,l,kJlXuc,l,k. (12)

The clutter covariance matrix (CCM) is thus given by

Rc = E{ycyH
c } =

L∑
l=−L

JlXMlX
H
J

H

l , (13)

where the inner CCM for the l-th range cell is defined by [30]

Ml = E

{ Nc∑
k=1

|αc,l,k|2uc,l,kuH
c,l,k

}
. (14)

We note that some prior work such as [25]–[27], [31] is
developed based on the assumption that the spatial-temporal
steering vectors uc,l,k of the clutter are known a priori, or in
other words that the azimuths, ranges, and Doppler frequencies
of the clutter patches are exactly known. In practice, however,
it is difficult to obtain parameters such as these for the signal-
dependent clutter. Thus, in this paper, we assume that only the
inner CCMs Ml must be known (or estimated from the data),
which is a more realistic assumption [32]–[34].

Denote w ∈ CMNNr as the associated linear spatial-
temporal receive filter whose output can be expressed as

r = wHy = wH (y0 + yc + z) (15a)

= α0wHXu0 + wH
L∑

l=−L

Nc∑
k=1

αc,l,kJlXuc,l,k + wHz.

(15b)

Thus, the radar output SINR is given by

SINR =
σ2

0 |wHXu0|2
wH

[ ∑L
l=−L JlXMlX

H
J

H

l + σ2
r I

]
w

. (16)

In order to facilitate the discrimination between the two
hypotheses in (1) for better target detection performance, the
joint transmit waveform and receive filter design problem
from the radar perspective aims to maximize the radar output
SINR (16).

In maximizing the SINR (16), the transmit radar waveforms
are subject to certain constraints due to hardware limitations
and other radar sensing requirements. For notational sim-
plicity, we define the waveform matrix in a CPI as X �
[X1, . . . ,XM ], and the waveform vector x � vec{X}, x =
[x1, . . . , xMNNt ]T . To achieve the best possible performance,
we assume the total power constraint is satisfied with equality:

‖x‖2 = P, (17)

where P is the total available transmit power for a CPI.
Considering the hardware requirements, constant-modulus
waveforms are more preferred in practical radar systems to
avoid nonlinear distortion:

|xi| =
√

P/(MNNt), ∀i = 1, . . . , MNNt. (18)

The PAPR constraint compromises the strict constant-
modulus constraint (18) by allowing power variation within
a certain level and can provide a higher radar output SINR.
The PAPR and its constraint are usually defined by

PAPR =
max

1≤i≤MNNt

{|xi|2}
‖x‖2/(MNNt)

≤ 1 + ε, (19)

where ε > 0 is a predefined parameter to control the PAPR
level. Substituting the total power constraint (17) into (19), the
PAPR constraint can be re-written as

|xi| ≤
√

(1 + ε)P/(MNNt), ∀i = 1, . . . , MNNt. (20)
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Fig. 2. CI-based SLP for QPSK constellation.

Moreover, similarity between the designed waveform and
a reference waveform may also be necessary to achieve
some desired ambiguity function or pulse compression prop-
erties. If we denote the reference waveform as x0 �
[x0,1, . . . , x0,MNNt ]T , the similarity constraint is formulated
as

‖x0 − x‖∞ ≤ ξ, (21)

where ξ determines the level of allowable similarity deviation.
Alternatively, the similarity constraint can be re-written as

|x0,i − xi| ≤ ξ, ∀i = 1, . . . , MNNt. (22)

B. User Received Signal and Communication
Performance Metric

In addition to its radar sensing function, the BS also
attempts to simultaneously deliver information symbols to Ku

single-antenna users using the same transmit waveform. In par-
ticular, we denote the symbol vector to be transmitted by the n-
th sample of the m-th pulse as sm,n � [sm,n,1, . . . , sm,n,Ku ]T ,
where each symbol is assumed to be independently selected
from an Ω-phase shift keying (PSK) constellation. The wave-
form sample xm,n, which is the n-th column of Xm, must
be designed to carry the Ku different information symbols in
sm,n. The corresponding received signal at the ku-th user can
be expressed as

rm,n,ku = hH
ku

xm,n + zm,n,ku , (23)

where hku ∈ CNt represents the Rayleigh fading channel
between the BS and the ku-th user, and zm,n,ku ∼ CN (0, σ2)
is AWGN at the ku-th user. The nonlinear mapping from sm,n

to xm,n is achieved by the CI-based SLP design as briefly
presented below.

We use the quadrature-PSK (QPSK) constellation (i.e.,
Ω = 4) as an example to illustrate the CI-based SLP
approach as shown in Fig. 2, where Φ = π/Ω is half
of the angular range of the decision regions. Fig. 2 shows
the case where the desired symbol of the ku-th user is
(1/

√
2, j/

√
2), whose decision boundaries are the positive

halves of x and y axes. Assume point D denotes the received
noise-free signal r̃m,n,ku = hH

ku
xm,n. Unlike conventional

block-level precoding approaches aiming to eliminate the
interference, the CI-based SLP approach attempts to exploit
known symbol information to convert the multi-user inter-
ference into constructive components, which can enhance
the communication QoS. In particular, let Γku be the QoS
requirement of the ku-th user. If the interference is entirely
eliminated, the received noise-free signal should be at point
A to satisfy r̃m,n,ku = σ

√
Γkusm,n,ku , i.e.,

∣∣r̃m,n,ku

∣∣2/σ2 =
Γku . Instead of interference elimination/suppression, the CI-
based SLP approach can utilize the interference to push
the received noise-free signal deeper into the corresponding
constructive (green) region, where the QoS requirement Γku is
guaranteed and the distance between the received noise-free
signal and its decision boundaries is further enlarged. Thus,
lower SER and better QoS can be achieved using this CI-based
SLP approach.

The relationship governing the definition of the constructive
region can be geometrically expressed as |−−→BC| − |−−→BD| ≥ 0.
Due to space limitations, we omit the derivations and recom-
mend the readers to [37]–[40] for details. The QoS constraints
that guarantee that the noise-free received signal r̃m,n,ku lies
in the constructive region can be expressed as

�{
hH

ku
xm,ne−j∠sm,n,ku − σ

√
Γku

}
sin Φ

− ∣∣�{
hH

ku
xm,ne−j∠sm,n,ku

}∣∣ cosΦ ≥ 0, ∀ku, m, n. (24)

In order to represent (24) in a compact form, we define

h̃H
(2ku−2)MN+j � eT

j,MN

⊗hH
ku

e−j∠sm,n,ku (sin Φ + e−j π
2 cosΦ),

h̃H
(2ku−1)MN+j � eT

j,MN

⊗hH
ku

e−j∠sm,n,ku (sin Φ − e−j π
2 cosΦ),

γ(2ku−2)MN+j � σ
√

Γku sin Φ,

γ(2ku−1)MN+j � σ
√

Γku sin Φ,

where the vector ej,MN ∈ R
MN indicates the j-th column

of an MN × MN identity matrix. Then, the communication
QoS constraints are equivalently re-written as

�{
h̃H

i x
} ≥ γi, ∀i = 1, . . . , 2KuMN. (25)

C. Problem Formulation

In this paper, we aim to jointly design the transmit wave-
form x and the receive filter w to maximize the radar
output SINR (16), while satisfying the communication QoS
requirements (25), the total power constraint (17), and one of
the waveform constraints (18), (20), or (22). Therefore, the
optimization problem is formulated as

max
x,w

σ2
0 |wHXu0|2

wH
[ ∑L

l=−L JlXMlX
H
J

H

l + σ2
r I

]
w

(26a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i = 1, . . . , 2KuMN, (26b)

‖x‖2 = P, (26c)

x ∈ X , (26d)

where set X contains the feasible solutions under certain
waveform constraints (18), (20), or (22), not all of which
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are convex. We should emphasize that since the radar system
usually requires relatively high transmit power, the communi-
cation QoS requirements (26b) are usually satisfied and thus
problem (26) has a feasible solution.

It can be observed that with a fixed transmit waveform x,
the original problem (26) becomes a well-known minimum
variance distortionless response (MVDR) problem [27], [31]:

min
w

wH
[ L∑

l=−L

JlXMlX
H
J

H

l + σ2
r I

]
w (27a)

s.t. wHXu0 = 1. (27b)

The closed-form optimal solution w� in this case can be easily
obtained as

w� =

[ ∑L
l=−L JlXMlX

H
J

H

l + σ2
r I

]−1
Xu0

uH
0 X

H[∑L
l=−L JlXMlX

H
J

H

l + σ2
r I

]−1
Xu0

. (28)

Unlike the cyclic optimization algorithms of [25]- [27],
we propose to directly optimize the joint transmit waveform
and receive filter by substituting w� into the original optimiza-
tion problem (26), which leads to the concentrated transmit
waveform design problem:

min
x

− uH
0 X

H
[ L∑

l=−L

JlXMlX
H
J

H

l + σ2
r I

]−1

Xu0 (29a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (29b)

‖x‖2 = P, (29c)

x ∈ X . (29d)

We observe that (29) is a complicated non-convex optimiza-
tion problem due to the non-convex objective function (29a)
and the non-convex waveform constraints (29c), (29d), which
prevent a direct closed-form solution. In order to tackle these
difficulties, in the following sections we employ the MM
and neADMM methods to covert the waveform design prob-
lems under different constraints into tractable sub-problems,
and then develop efficient algorithms to iteratively solve
them.

III. CONSTANT-MODULUS WAVEFORM DESIGN

In this section, we focus on constant-modulus waveform
design for the considered STAP-SLP-based MIMO-DFRC
system by developing an MM-neADMM based algorithm.
As shown in the next section, this approach can be generalized
to handle the other waveform constraints discussed earlier.
Substituting the constant-modulus waveform constraint (18)
into (29d), the constant-modulus waveform design problem
can be formulated as

min
x

− uH
0 X

H
[ L∑

l=−L

JlXMlX
H
J

H

l + σ2
r I

]−1

Xu0 (30a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (30b)

|xj | =
√

P/(MNNt), ∀j, (30c)

where we drop the total power constraint (29c) since the
constant-modulus constraints in (30c) naturally satisfy it.

A. Reformulation

In the objective function (30a), the matrix X contains the
variable x to be optimized, but the relationship between them
is not explicit. Moreover, the matrix form of X is not amenable
for optimization. Therefore, in order to facilitate the algorithm
development, we reformulate the objective function (30a) into
a more favorable expression with respect to the waveform
vector x.

Recalling the expression for X in (6), we can re-write the
term Xu0 as

Xu0 =

⎡⎢⎣ INr ⊗ XT
1

. . .
INr ⊗ XT

M

⎤⎥⎦
⎡⎢⎣ u0,1

...
u0,M

⎤⎥⎦ (31a)

=

⎡⎢⎣ (INr ⊗ XT
1 )u0,1

...
(INr ⊗ XT

M )u0,M

⎤⎥⎦ , (31b)

where u0 = [uT
0,1, . . . ,u

T
0,M ]T with m-th subvector u0,m ∈

C
NtNr . Using the properties of the Kronecker product [42], the

m-th term in (31b) can be re-arranged as

(INr ⊗ XT
m)u0,m = vec{XT

mU0,m} (32a)

= (UT
0,m ⊗ IN )vec{XT

m}, (32b)

where the matrix U0,m ∈ CNt×Nr is a reshaped version of
u0,m and u0,m = vec{U0,m}. We can establish the following
relationship between vec{XT

m} and vec{Xm}:

vec{XT
m} = Tvec{Xm}, (33)

by employing a permutation matrix T ∈ CNNt×NNt , which is
defined by [43]

T =
Nt∑
i=1

N∑
j=1

(ej,N ⊗ ei,Nt)(ei,Nt ⊗ ej,N )T . (34)

Thus, we have

(INr ⊗ XT
m)u0,m = A0,mxm, (35)

where we define A0,m � (UT
0,m⊗IN )T and xm � vec{Xm}

for brevity. Substituting (35) into (31), the term Xu0 becomes

Xu0 =

⎡⎢⎣ A0,1x1

...
A0,MxM

⎤⎥⎦ = A0x, (36)

where we define A0 �

⎡⎢⎣A0,1

. . .
A0,M

⎤⎥⎦, and x �

vec{X} = [xT
1 , . . . ,xT

M ]T .
Since the inner CCM Ml is a semi-definite matrix by its

definition in (14), it can be expressed as

Ml =
Rl∑

r=1

λl,rũl,rũH
l,r =

Rl∑
r=1

ul,ruH
l,r , (37)

where Rl is the rank of Ml which generally is a small number
in practice, λl,r and ũl,r are the r-th nonzero eigenvalue and its
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corresponding eigenvector, respectively, and ul,r �
√

λl,rũl,r.
Hence, similar to the derivations in (31)-(36), we can re-write
the term JlXMlX

H
J

H

l as

JlXMlX
H
J

H

l =
Rl∑

r=1

JlXul,ruH
l,rX

H
J

H

l (38a)

=
Rl∑

r=1

Al,rxxHAH
l,r (38b)

Al,r � Jl

⎡⎢⎣ Al,r,1

. . .
Al,r,M

⎤⎥⎦ , (39)

where Al,r,m � (UT
l,r,m ⊗ IN )T and Ul,r,m ∈ C

Nt×Nr is
a reshaped version of the m-th sub-vector of ul,r , namely
ul,r,m ∈ CNtNr . Based on the results in (36) and (38b), the
objective function (30a) can be equivalently re-formulated as

−xHAH
0

[ L∑
l=−L

Rl∑
r=1

Al,rxxHAH
l,r + σ2

r I
]−1

A0x. (40)

B. MM Transformation

In order to efficiently solve the waveform design problem,
we first utilize the MM method to convert it into a sequence of
simpler problems to be solved until convergence. Specifically,
given the obtained solution xt in the t-th iteration, we attempt
to construct a more tractable surrogate function that approxi-
mates the complicated non-convex objective function (40) at
the current local point xt and serves as an upper-bound to be
minimized in the next iteration. The following lemma [44] is
utilized to find a surrogate function for (40).

Lemma 1: For a positive-definite matrix W, the function
−sHW−1s is concave in s and W, and is therefore upper-
bounded by its first-order linear expansion around (st,Wt)
as

−sHW−1s ≤ Tr
{
W−1

t stsH
t W−1

t W
} − 2�{

sH
t W−1

t s
}

+ c,

where c is a constant term that is irrelevant to the variables.
�

In order to utilize the findings in Lemma 1, we define
following notation:

s � A0x, (41a)

X � xxH , (41b)

W �
L∑

l=−L

Rl∑
r=1

Al,rXAH
l,r + σ2

r I, (41c)

and we write the objective function in (40) as f(x,X). Then,
the surrogate function of f(x,X) at point (xt,Xt), where xt

is the obtained solution in the t-th iteration and Xt � xtxH
t ,

can be calculated as in (42), as shown at the bottom of the
page, where for brevity we define

bt � 2AH
0

[ L∑
l=−L

Rl∑
r=1

Al,rXtAH
l,r + σ2

r I
]−1

A0xt, (43a)

Dt �
L∑

l=−L

Rl∑
r=1

GH
t,l,rXtGt,l,r, (43b)

Gt,l,r � AH
0

[ L∑
l=−L

Rl∑
r=1

Al,rXtAH
l,r + σ2

r I
]−1

Al,r. (43c)

The constant terms c1 and c2 are irrelevant to the variables
x and X, and thus their detailed expressions are omitted.
Equation (42c) is obtained by substituting X � xxH back
into (42b).

Based on above derivations, the transmit waveform design
problem at point xt can be formulated as

min
x

xHDtx −�{
bH

t x
}

(44a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (44b)

|xj | =
√

P/(MNNt), ∀j. (44c)

It can be observed that although the objective function (44a)
is continuous and convex, problem (44) is still a non-convex
problem due to the constant-modulus constraint (44c). While
relaxing the non-convex equality constraint (44c) is an obvious
approach, solving the problem with the relaxed constraint
and then projecting the solution onto the constraint leads
to a significant performance loss, so we propose to directly
cope with the equality constraint by employing the neADMM
method. While the classical ADMM method can only handle
linear equality constraints, the new neADMM approach [45]
can be applied to nonlinear equality constraints such as (44c).
Therefore, we develop an neADMM-based method to solve
this problem as follows.

C. neADMM Transformation

We first introduce an auxiliary variable y �
[y1, . . . , yMNNt ]T to decouple the convex constraint (44b)
and the non-convex constraint (44c) with respect to x, and

f(x,X) ≤ Tr

{[ L∑
l=−L

Rl∑
r=1

Al,rXtAH
l,r + σ2

r I
]−1

A0xtxH
t AH

0

[ L∑
l=−L

Rl∑
r=1

Al,rXtAH
l,r + σ2

r I
]−1[ L∑

l=−L

Rl∑
r=1

Al,rXAH
l,r + σ2

r I
]}

− 2�
{
xH

t AH
0

[ L∑
l=−L

Rl∑
r=1

Al,rXtAH
l,r + σ2

r I
]−1

A0x
}

+ c1 (42a)

= Tr
{
DtX

} −�{
bH

t x
}

+ c2, (42b)

= xHDtx −�{
bH

t x
}

+ c2. (42c)
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convert problem (44) to

min
x,y

xHDtx −�{
bH

t x
}

(45a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (45b)

|xj | ≤
√

P/(MNNt), ∀j, (45c)

x = y, (45d)

|yj | =
√

P/(MNNt), ∀j. (45e)

To accommodate the neADMM framework, we define the
feasible region of the inequality constraints (45b) and (45c)
as set C, and an indicator function IC associated with the set
C as

IC(x) =

{
0, x ∈ C,

+∞, otherwise.
(46)

Then, by removing the constraints on x and adding the
feasibility indicator function in the objective, problem (45)
is transformed to

min
x,y

xHDtx−�{
bH

t x
}

+ IC(x) (47a)

s.t. x = y, (47b)

|yj | =
√

P/(MNNt), ∀j, (47c)

whose solution can be obtained by optimizing its augmented
Lagrangian (AL) function. Specifically, the AL function of
problem (47) is expressed as

L(x,y, λ, μ) � xHDtx −�{
bH

t x
}

+ IC(x)

+
ρ

2

∥∥x−y+λ/ρ
∥∥2 +

ρ

2

∥∥|y|−√
P/(MNNt)+μ/ρ

∥∥2
, (48)

where ρ > 0 is a penalty parameter, λ ∈ CMNNt and
μ ∈ CMNNt are dual variables, and | · | is an element-
wise absolute value operation. The AL function (48) is a
more tractable function with multiple variables, which can be
minimized by alternately updating x, y, λ, and μ as shown
below.

D. Block Update

1) Update x: With y, λ and μ given, the optimization
problem for updating x is formulated as

min
x

xHDtx −�{
bH

t x
}

+ IC(x) +
ρ

2

∥∥x − y + λ/ρ
∥∥2

.

(49)

According to the definition of IC(x) in (46), problem (49) can
be equivalently transformed into a convex second-order cone
programming (SOCP) problem:

min
x

xHDtx −�{
bH

t x
}

+
ρ

2

∥∥x − y + λ/ρ
∥∥2

(50a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (50b)

|xj | ≤
√

P/(MNNt), ∀j, (50c)

whose optimal solution x� can be readily obtained by various
off-the-shelf algorithms and optimization tools such as those
proposed in [46], [47]. In addition, the algorithm [41] that
employs the Lagrangian dual with the aid of the Hooke-Jeeves
Pattern Search method can be utilized to offer an efficient
solution.

2) Update y: With fixed x, λ and μ, the optimization
problem for updating y is given by

min
y

ρ

2

∥∥x − y+λ/ρ
∥∥2 +

ρ

2

∥∥|y|−√
P/(MNNt) + μ/ρ

∥∥2
.

(51)

We observe that problem (51) is a non-convex problem due
to the absolute value operation. Fortunately, problem (51) is
separable in the elements of y, and thus we can equivalently
divide (51) into MNNt sub-problems. The i-th sub-problem
is expressed as

min
yi

|yi − ai|2 +
∣∣|yi| − bi

∣∣2, (52)

where ai and bi are the i-th element of x + λ/ρ and√
P/(MNNt) − μ/ρ, respectively. In order to handle the

absolute value function, the objective of (52) is expanded as

|yi − ai|2+
∣∣|yi| − bi

∣∣2 (53a)

= 2|yi|2 − 2�{
(a∗

i yi + b∗i |yi|)
}

+ |ai|2 + |bi|2 (53b)

= 2|yi|2 − 2|yi|�
{
(a∗

i e
j∠yi + b∗i )

}
+ |ai|2 + |bi|2. (53c)

Since |yi| ≥ 0, we can easily obtain the optimal angle of
yi as ∠y�

i = ∠ai. Substituting ∠y�
i into (53c), the optimal

amplitude of yi can be obtained by solving

min
|yi|

2|yi|2 − 2|yi|(|ai| + �{bi}), (54)

whose optimal solution is given by |y�
i | = 0.5(|ai| + �{bi}).

Therefore, the optimal solution to problem (52) is

y�
i = 0.5

(|ai| + �{bi}
)
ej∠ai . (55)

3) Update λ and μ: After obtaining x and y, the dual
variables λ and μ are updated by

λ� := λ + ρ(x − y), (56a)

μ� := μ + ρ
[|y| − √

P/(MNNt)
]
. (56b)

Algorithm 1 Proposed MM-neADMM Algorithm for
Constant-Modulus Waveform Design

Input: A0, Al,r , ∀l, ∀r, h̃i, γi, ∀i, P , σ2
r , ρ.

Output: x�.
1: Initialize x by solving (57), y := x, λ := 0, μ := 0.
2: while no convergence do
3: Update x by solving (50).
4: Update yi, ∀i, by (55).
5: Update λ and μ by (56).
6: end while
7: Return x� = x.

E. Summary, Initialization, and Complexity Analysis

With the above derivations, the proposed MM-neADMM
algorithm for constant-modulus waveform design is straight-
forward and summarized in Algorithm 1. In summary, the
transmit waveform x is obtained by iteratively updating x,
y, λ and μ via (50), (55), (56a) and (56b), respectively, until
the relative increase of the achieved radar output SINR is less
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than a given convergence threshold. Finally, with the obtained
transmit waveform x�, the optimal receive filter w� can be
calculated by (28).

Since a good starting point is preferable for the proposed
alternating optimization algorithm, we investigate how to
properly initialize x before the iterations. In order to retain
DoFs to maximize the radar output SINR under the given
communication QoS constraints, we propose to use the intu-
itive approach of initializing x by maximizing the minimum
QoS of the communication users using the available transmit
power. Therefore, the optimization problem for initialization
is formulated as

max
x

min
i
�{

h̃H
i x

}
(57a)

s.t. |xj | ≤
√

P/(MNNt), ∀j, (57b)

where the power constraint (57b) is a relaxed convex version
of the constant-modulus constraint (18) for the purpose of
simplifying the solution. It is obvious that problem (57) is
convex and can be efficiently solved by the interior point
method, CVX, etc.

Next, we briefly analyze the computational complexity of
the proposed waveform design algorithm. We assume that
the typical interior point method is employed to solve the
SOCP problem (50). Since problem (50) has an MNNt-
dimensional variable with 2KuMN linear matrix inequal-
ity (LMI) constraints and MNNt second-order cone (SOC)
constraints, the computational complexity to update x is of
order O{ln(1/)

√
(4Ku + Nt)MNM2N2Nt(2Ku + Nt +

2MNN2
t } with  representing the convergence threshold.

The closed-form update for y in (55) or for λ and μ
in (56) requires the same order of computational complexity
O{MNNt}. Thus, the total computational complexity to solve
for the waveform vector mainly depends on the update for x,
which emphasizes the need for low-complexity algorithms that
handle large-scale SOCP problems.

Algorithm 2 Proposed MM-neADMM Algorithm for PAPR-
Constrained Waveform Design

Input: A0, Al,r , ∀l, ∀r, h̃i, γi, ∀i, P , σ2
r , ρ.

Output: x�.
1: Initialize x, y := x, λ := 0.
2: while no convergence do
3: Update x by solving (61).
4: Update y by (63).
5: Update λ by (56a).
6: end while
7: x� = x.

IV. GENERALIZATIONS TO OTHER

WAVEFORM CONSTRAINTS

In this section, we generalize the proposed MM-neADMM
algorithm when other waveform constraints such as the PAPR
constraint (20) or the similarity constraint (22) are employed.

A. PAPR-Constrained Waveform Design

Substituting the PAPR constraint (20) into (29d), the wave-
form design problem (29) is re-formulated as

min
x

− uH
0 X

H
[ L∑

l=−L

JlXMlX
H
J

H

l + σ2
r I

]−1

Xu0 (58a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (58b)

|xj | ≤
√

(1 + ε)P/(MNNt), ∀j, (58c)

‖x‖2 = P. (58d)

We can observe that problem (58) is similar to the constant-
modulus waveform design (30) except that all elements of x
are jointly constrained in the equality constraint (58d), which
requires some modifications to the proposed MM-neADMM
algorithm framework as described below.

First, following the derivations in the previous section,
we replace the objective (58a) with its surrogate function
and introduce an auxiliary variable y to decouple the convex
constraints (58b), (58c), and the non-convex total power
constraint (58d):

min
x

xHDtx −�{
bH

t x
}

(59a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (59b)

|xj | ≤
√

(1 + ε)P/(MNNt), ∀j, (59c)

‖x‖2 ≤ P, (59d)

‖y‖2 = P, (59e)

x = y. (59f)

Then, defining the feasible region of the constraints
(59b)-(59e) as set E and the associated indicator function
IE(x), the AL function of problem (59) can be expressed as

L(x,y, λ) � xHDtx−�{
bH

t x
}

+ IE(x)

+
ρ

2

∥∥x − y + λ/ρ
∥∥2

. (60)

We again propose to iteratively update each variable. Based
on (60), the variable x is updated by optimizing

min
x

xHDtx −�{
bH

t x
}

+
ρ

2

∥∥x − y + λ/ρ
∥∥2

(61a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (61b)

|xj | ≤
√

(1 + ε)P/(MNNt), ∀j, (61c)

‖x‖2 ≤ P, (61d)

which is also a convex SOCP problem and can be easily solved
using various existing algorithms. The optimization problem
for updating the auxiliary variable y is formulated as

min
y

ρ

2

∥∥x − y + λ/ρ
∥∥2

(62a)

s.t. ‖y‖2 = P, (62b)

whose optimal solution is given by

y� =
√

P (x + λ/ρ)
‖x + λ/ρ‖ . (63)

Finally, the dual variable λ is updated by (56a).
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Given the above derivations, the proposed MM-neADMM
algorithm for the PAPR-constrained waveform design
is straightforward and summarized in Algorithm 2. The
initialization is obtained by solving a convex problem that
has the PAPR constraint (59c) and the total power constraint
(59d) similar to (57). In each iteration, the variable x is
updated by solving an MNNt-dimensional SOCP problem
with 2KuMN LMI constraints and (MNNt + 1) SOC
constraints, whose computational complexity is of order
O{ln(1/)

√
(4Ku + Nt)MN + 1MNNt(2MNNt(MNNt

+ 1) + 2KuMN)}. The computational complexity of the
closed-form update for y and λ are of the same order
O{MNNt}, which is much lower than that of updating x.

B. Constant-Modulus and Similarity-Constrained
Waveform Design

Here we investigate the waveform design taking into
account both the constant-modulus constraint and the simi-
larity constraint between the designed waveform and a given
reference. Substituting the constant-modulus constraint (18)
and similarity constraint (22) into (29d), the waveform design
problem becomes

min
x

− uH
0 X

H
[ L∑

l=−L

JlXMlX
H
J

H

l + σ2
r I

]−1

Xu0 (64a)

s.t. �{
h̃H

i x
} ≥ γi, ∀i, (64b)

|xj | =
√

P/(MNNt), ∀j, (64c)

|xj − x0,j | ≤ ξ, ∀j. (64d)

We observe that the optimization problem (64) is very sim-
ilar to the constant-modulus waveform design problem (30),
except for the additional tractable convex similarity constraints
(64d). Thus, following the procedure in Sec. III, we first re-
formulate the objective function in a vector form and derive
its convex surrogate function. Then, an auxiliary variable
y is introduced to decouple the convex constraints (64b),
(64d) and the non-convex equality constraint (64c) with
respect to x, as in (45). The neADMM algorithm is finally
employed to iteratively update x, y, and the dual variables.
Compared with (50), the solution for the update to x must
consider the additional convex similarity constraint in (64d)
on each element in x. This results in an MNNt-dimensional
SOCP problem with 2KuMN LMI constraints and 2MNNt

SOC constraints, whose computational complexity is of order
O{ln(1/)

√
2MN(2Ku + Nt)M2N2Nt(3MNN2

t + 2Nt +
2Ku}. The details are omitted here due to space limitations.

V. SIMULATION RESULTS

In this section, we provide simulation results to show the
effectiveness of the proposed joint transmit waveform and
receive filter design algorithms. The following settings are
assumed throughout our simulations. The BS is equipped with
the same number of transmit and receive antennas Nt = Nr =
6 with antenna spacing dt = 2λ and dr = λ/2, respectively.
A CPI has M = 4 pulses with the PRF fr = 1000Hz, and
each pulse is sampled N = 8 times. The carrier frequency

Fig. 3. Convergence illustration (Γ = 5dB, θ0 = 0, fd = 0.3, P = 30W,

ξ = 1.5
�

P
MNNt

, ε = 1).

Fig. 4. Radar output SINR versus communication QoS (θ0 = 0, fd = 0.3,

P = 70W, ξ = 1.5
�

P
MNNt

, ε = 1).

Fig. 5. Radar output SINR versus the number of users Ku (Γ = 5dB,

θ0 = 0, fd = 0.3, P = 100W, ξ = 1.5
�

P
MNNt

, ε = 1).

of the transmit waveform is f0 = 2.4GHz and the noise
power of the echoes is σ2

r = 0dB. The target of interest is
at the azimuth θ0 = 0◦ with a normalized Doppler frequency
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Fig. 6. Radar output SINR versus total transmit power (Γ = 5dB, θ0 = 0,

fd = 0.3, ξ = 1.5
�

P
MNNt

, ε = 1).

Fig. 7. Radar output SINR versus the number of antennas Na (Γ = 5dB,

θ0 = 0, fd = 0.3, P = 70W, ξ = 1.5
�

P
MNNt

, ε = 1).

Fig. 8. Radar output SINR versus normalized Doppler frequency (Γ = 5dB,

θ0 = 0, P = 30W, ξ = 1.5
�

P
MNNt

, ε = 1).

fd = 0.3 and power σ2
0 = 0dB unless otherwise stated.

The clutter is assumed to be returned from the CUT and the
nearest 4 adjacent range cells with power σ2

c = 0dB, each of

Fig. 9. Radar output SINR versus PAPR ε (Γ = 5dB, θ0 = 0, fd = 0.3).

Fig. 10. Radar output SINR versus similarity level ξ (θ0 = 0, fd = 0.3,
P = 80W).

which consists of Nc = 60 clutter patches evenly distributed
in azimuth. The BS also transmits information symbols to
Ku = 3 communication users, and the communication noise
power is set as σ2 = −20dB. The communication QoS for
all Ku users is the same and is denoted by Γ. The penalty
parameter is set as ρ = 1. Typical orthogonal linear frequency
modulated (LFM) waveforms [20], [26], [31] are chosen
as the reference waveforms since they achieve good pulse
compression and ambiguity function properties. The samples
of the LFM waveforms are denoted by X0 ∈ CNt×MN , each
element of which is given by

X0(i, j)

=
√

P

MNNt
exp{j2πi(j − 1)/Nt} exp{jπ(j − 1)2/Nt},

and the reference waveform vector is x0 = vec{X0}. In the
following, the proposed DFRC waveform designs under the
constant-modulus constraint, the combined constant-modulus
and similarity constraints, and the PAPR constraint are referred
to as “Proposed, CM”, “Proposed, CMS”, and “Proposed,
PAPR”, respectively. For comparison, the STAP-based MIMO
radar-only schemes under these constraints are also included
and referred to as “Radar, CM”, “Radar, CMS”, and “Radar,
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Fig. 11. Space-time cross-ambiguity function under different waveform constraints (Γ = 5dB, θ0 = 0, fd = 0.3, P = 30W, ξ = 1.5
�

P
MNNt

, ε = 1).

PAPR”, respectively. In order to illustrate the advantages of the
proposed CI-based SLP approach in DFRC systems, we also
include the results for a zero-forcing (ZF) approach that
implements the optimization of (26) with an equality constraint
for the communication QoS constraint (26b). This approach,
which we refer to as “Non-CI ZF”, eliminates the MUI at the
receivers but does not exploit it.

We first show the convergence performance of the proposed
algorithms in Fig. 3, where the communication QoS is set as
Γ = 5dB, the total transmit power is P = 30W, the similarity

threshold is ξ = 1.5
√

P
MNNt

, and the PAPR threshold is ε = 1.
We see that the stricter the waveform constraint, the slower
the algorithm convergence, with the PAPR constraint resulting
in the fastest convergence and highest SINR, while the CMS
constraint yields the slowest convergence and lowest SINR.
Moreover, we see that the radar SINR monotonically increases
with the iterations, which is consistent with the behavior of
the MM method.

The radar output SINR versus the communication QoS
requirement Γ is shown in Fig. 4. Not surprisingly, the radar
output SINR achieved by the proposed MIMO-DFRC system
decreases as the communication QoS requirement increases
due to the trade-off between radar sensing performance and
wireless communication QoS. As already noted, the PAPR-
constrained waveform design achieves the highest radar SINR
since it has the most relaxed waveform constraint, while the
constant-modulus and similarity-constrained waveform design
has the lowest radar SINR since it not only imposes the
constant-modulus constraint on each transmit antenna, but also
attempts to match the desired reference waveform in order to
achieve other desired radar sensing properties in addition to
the output SINR. The performance of the constant-modulus
waveform design lies in between. In addition, we observe
that the BS can provide 3 users with a communication QoS
Γ = 10dB at the price of about 2dB in radar performance loss
and the proposed CI-based approach has about 2dB perfor-
mance improvement compared with the non-CI approach. This
phenomenon confirms the advantages of utilizing STAP and
CI-based SLP techniques in MIMO-DFRC systems. In Fig. 5,
we present the radar output SINR versus the number of
communication users. The trade-off between the radar sensing
performance and the wireless communication requirement can
be clearly observed. Moreover, the gap between the proposed

CI-based schemes and the non-CI approaches becomes larger
as Ku increases, which demonstrates the advantage of the
proposed CI-based approach in exploiting MUI in dense-user
cases.

Then, we illustrate the radar output SINR versus the total
transmit power in Fig. 6. Clearly, a higher transmit power
provides a larger radar output SINR. Moreover, the perfor-
mance relationship is the same as shown in Fig. 4 and similar
conclusions can be drawn. We also present the radar output
SINR versus the number of antennas Na = Nt = Nr in Fig. 7.
It is clear that adding antennas achieves better performance
owing to the increased waveform diversity and higher beam-
forming gains. Fig. 8 illustrates the radar output SINR for
the proposed waveform designs under different normalized
Doppler frequencies from −0.5 to 0.5. As expected, there
is a significant SINR notch when the normalized Doppler
frequency tends to zero, since the reflected signal from a
slowly-moving target is difficult distinguish from the strong
clutter returns.

In Fig. 9, we plot the radar output SINR versus the
PAPR ε for different levels of total transmit power for the
proposed STAP-SLP-based DFRC approach and the standard
MIMO radar scheme. The radar output SINR increases with ε
since the power constraint on each transmit antenna becomes
less strict. Moreover, we observe that both the performance
improvement and the gap between different schemes becomes
smaller as ε increases. Fig. 10 illustrates the radar output SINR
versus the similarity level ξ with different communication QoS
constraints. The radar output SINR of all of the algorithms
increases with increasing ξ considering the trade-off between
the radar output SINR metric and the other radar properties
endowed by the reference waveform.

Finally, in order to illustrate the capabilities of the designed
DFRC waveform in target detection and clutter suppression,
we plot the space-time cross-ambiguity functions of the three
scenarios in Fig. 11, where the white circles denote the target
location (0 normalized spatial frequency and 0.3 normalized
Doppler frequency) and the number of clutter patches in each
cell is set as Nc = 100. The space-time cross-ambiguity
function is defined by

Pw,x(fd, θ) =
∣∣wHXu(fd, θ)

∣∣2 . (65)
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In these colormaps, it can be seen that the mainlobes are
located at the target locations while the deep nulls span the
clutter ridge. This phenomenon verifies that the proposed
STAP-SLP-based MIMO-DFRC system and waveform design
can effectively suppress the signal-dependent clutter and
achieve satisfactory target detection performance.

VI. CONCLUSION

In this paper, we investigated STAP and SLP-based joint
transmit waveform and receive filter designs for MIMO-DFRC
systems. The radar output SINR was maximized under differ-
ent waveform and CI constraints that guarantee satisfactory
communication QoS. Efficient algorithms exploiting MM and
neADMM methods were developed to solve the resulting
complicated non-convex optimization problems. Simulation
examples demonstrated the advantages of utilizing STAP
and CI-based SLP techniques to implement MIMO-DFRC,
as well as the effectiveness of the proposed joint transmit
waveform and receive filter design algorithms. Motivated by
this initial work, we will further investigate other issues related
to the implementation of STAP and SLP techniques in prac-
tical MIMO-DFRC systems, e.g., low-complexity algorithms,
hardware imperfections, robust designs, etc.
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