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Abstract—Space-time adaptive processing (STAP) is an effec-
tive method for multi-input multi-output (MIMO) radar systems
to identify moving targets in the presence of multiple interferers.
The idea of joint optimization in both spatial and temporal
domains for radar detection is consistent with the symbol-level
precoding (SLP) technique for MIMO communication systems,
that optimizes the transmit waveform according to instanta-
neous transmitted symbols. Therefore, in this paper we combine
STAP and constructive interference (CI)-based SLP techniques
to realize dual-functional radar-communication (DFRC). The
radar output signal-to-interference-plus-noise ratio (SINR) is
maximized by jointly optimizing the transmit waveform and re-
ceive filter, while satisfying the communication quality-of-service
(QoS) constraints and the constant modulus power constraint.
An efficient algorithm based on majorization-minimization (MM)
and nonlinear equality constrained alternative direction method
of multipliers (neADMM) methods is proposed to solve the
non-convex optimization problem. Simulation results verify the
effectiveness of the proposed DFRC scheme and the associate
algorithm.

Index Terms—Dual-functional radar-communication (DFRC),
space-time adaptive processing (STAP), symbol-level precoding
(SLP), multi-input multi-output (MIMO).

I. INTRODUCTION

Dual-functional radar-communication (DFRC) is regarded

as a promising solution to tackle the growing spectrum con-

gestion problem [1]. DFRC systems simultaneously perform

target detection and information transmission using the same

transmit waveforms from a given platform, which greatly

reduces total system cost and hardware complexity. Mean-

while, multi-input multi-output (MIMO) architectures have

been widely employed to implement DFRC for improving

the spatial-domain waveform diversity. Since the radar and

communication functionalities inevitably have conflicting re-

quirements, the waveform design is a crucial problem in

pursuing a better performance trade-off [2].
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Various radar functionality metrics, e.g., the Cramér-Rao

bound, the mutual information, the transmit beampattern mean

squared error, the waveform covariance similarity, etc., have

been considered for waveform designs in MIMO DFRC sys-

tems [3]-[5]. However, most existing research has focused on

designing the second-order statistics of the transmit waveform,

which can only provide limited degrees of freedom (DoFs)

in the spatial domain. Moreover, an overly simplified radar

sensing environment, in which the target is fixed and there is

no clutter or jamming signals, is usually assumed in the prior

literature. Therefore, the target detection performance of these

designs may not be satisfactory, and may even be unacceptable

in a hostile radar sensing environment.

Space-time adaptive processing (STAP) is an effective tech-

nique for target detection and clutter suppression, and has

been widely applied in airborne surveillance radar systems

[6]-[10]. With estimated or prior information about the clutter

and interference, STAP directly optimizes spatial-temporal

transmit waveforms, rather than their second-order statistics,

to maximize the output signal-to-interference-plus-noise ratio

(SINR). Since the waveform optimization utilizes the DoFs

in both the spatial and temporal domains, the performance of

identifying a moving target in the presence of strong clutter

over widely spread ranges and angular regions is significantly

improved.

Similar to STAP which optimizes the transmit waveforms

to improve radar functionality, symbol-level precoding (SLP)

also exploits available DoFs in both the spatial and temporal

domains to improve communications performance. In partic-

ular, SLP designs the transmit precoder in each time slot

(i.e., the transmit waveform samples) based on the specif-

ic transmitted symbols themselves rather than their second-

order statistics [11]-[13]. The advantages of SLP make it

a promising technique to consider for DFRC systems in

which the transmit waveform used for radar target detection

simultaneously carries wireless communications. The transmit

waveform can be designed to create constructive interference

(CI) that converts harmful multi-user interference (MUI) into

useful signal energy to improve the communication quality-

of-service (QoS), and to provide an increased SINR for radar

detection.

Motivated by the above discussion, in this paper we utilize
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STAP and CI-based SLP techniques for implementing DFRC

to combine their advantages for both radar and communication

functionalities. In particular, we consider a multi-antenna

base station (BS) that simultaneously detects a target in the

presence of multiple sources of clutter and transfers informa-

tion symbols to multiple single-antenna users. The transmit

waveform and receive filter of the BS are jointly optimized to

maximize the radar output SINR under communication QoS

and constant modulus power constraints. In order to efficiently

solve this non-convex optimization problem, we first employ

the majorization-minimization (MM) method and derive a

more tractable surrogate function, and then exploit the novel

nonlinear equality constrained alternative direction method of

multipliers (neADMM) method to handle the constant mod-

ulus power constraint after introducing an auxiliary variable.

Finally, efficient algorithms and derivations are developed for

obtaining the optimal solution to each sub-problem. Simulation

results illustrate the effectiveness of the proposed algorithm,

and verify the advantages of utilizing STAP and CI-based SLP

techniques to implement DFRC.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a colocated narrowband DFRC system, where a

BS is equipped with Nt transmit antennas and Nr receive

antennas arranged as uniform linear arrays (ULAs) with half-

wavelength spacing. The BS aims to detect a target in the

presence of K strong clutter returns and simultaneously pro-

vide downlink wireless communication services to Ku single-

antenna users. In order to achieve better performance in target

detection and clutter suppression, the BS utilizes the STAP

technique to design transmit waveforms in both the spatial

and temporal domains. Meanwhile, in order to simultaneously

realize communication functionality, the information symbols

are carried by transmit waveforms using the CI-based SLP

approach for better communication QoS.

We assume that the radar is interrogating the range-angle

position (r0, θ0) for a target in the presence of K point-

like clutter sources located at (rk, θk), k = 1, . . . ,K. The

range and angle domains are divided into N and L discrete

bins respectively indexed as rk ∈ {0, . . . , N} and θk ∈
{0, . . . , L} × 2π

L+1 , θk �= θ0. The number of range bins N
corresponds to the number of samples collected per radar

pulse. It is assumed that the location of the clutter sources is

known at the BS based on environmental databases or previous

adaptive estimation results. The origin of the range coordinates

is set at the target range, so that r0 = 0.

Let x[n] � [x1[n], . . . , xNt
[n]]T , n = 1, . . . , N , be the n-

th sample of the waveform transmitted from the Nt antennas.

Unlike prior work, we assume that the BS optimizes each

instantaneous waveform sample x[n] for target detection rather

than its second-order statistics. The baseband signals at the

receive antennas of the BS can be written as

y[n] = α0ar(θ0)a
T
t (θ0)x[n]e

j2π(n−1)ν0 + c[n] + z[n], (1)

where α0 represents the target radar cross section (RCS) with

E
{|α0|2

}
= σ2

0 and ν0 is the Doppler frequency of the target.

The vectors at(θ) and ar(θ) are the steering vectors for the

transmit and receive signals at angle θ, respectively:

at(θ) =
1√
Nt

[
e−jπ0 sin θ, . . . , e−jπ(Nt−1) sin θ

]T
. (2)

The vector ar(θ) is defined similarly. The signal c[n] rep-

resents the contribution from the K clutter points, and will

depend on the transmitted signal:

c[n] =
K∑

k=1

αkar(θk)a
T
t (θk)x[n− rk]e

j2π(n−1)νk , (3)

where αk is the complex amplitude of the k-th clutter reflec-

tion with E{|αk|2} = σ2
k, and νk is the corresponding Doppler

frequency. For simplicity, in this study we assume that both

the target and clutter are slowly-moving and set the Doppler

frequencies as zero, i.e., ν0 = νk = 0, ∀k. Finally, the signal

z[n] ∼ CN (0, σ2
z I) denotes the additive white Gaussian noise

(AWGN) at the receive antennas.

For conciseness, we define y � [yT [1], . . . ,yT [N ]]T , x �
[xT [1], . . . ,xT [N ]]T , and z � [zT [1], . . . , zT [N ]]T . Then, the

received signals can be re-written as

y = α0A0x+

K∑
k=1

αkAkx+ z, (4)

where Ak is related to the range-angle position (rk, θk), Ak �
[I⊗(ar(θk)a

T
t (θk))]Jrk , k = 0, 1, . . . ,K, and the shift matrix

Jrk ∈ R
NNt×NNt is defined by

Jrk(i, j) =

{
1, i− j = Ntrk,
0, otherwise.

(5)

Denote w ∈ C
NNr as the linear space-time receive filter whose

output can be expressed as

r = wHy = α0w
HA0x+wH

K∑
k=1

αkAkx+wHz. (6)

Thus, the radar output SINR is given by

γ =
σ2
0 |wHA0x|2

wH
[∑K

k=1 σ
2
kAkxxHAH

k

]
w + σ2

z w
Hw

. (7)

Since the target detection probability is generally monotoni-

cally increasing with the radar output SINR under Gaussian

noise, the joint transmit waveform and receive filter design

problem from the radar perspective aims to maximize the

radar output SINR (7). Since constant modulus waveforms

are usually desired in practical radar systems due to hardware

requirements, each element of the transmit waveform x should

satisfy

|xm| =
√
P/Nt, ∀m = 1, . . . , NNt, (8)

where P is the total available transmit power.

In addition to its radar function, the BS also attempts

to deliver information symbols to Ku users using the same

transmit waveform. In particular, denote the symbol vector to

be transmitted at time n as s[n] � [s1[n], . . . , sKu
[n]]T , where

each symbol is assumed to be independently selected from

an Ω-phase shift keying (PSK) constellation. Each waveform
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Fig. 1. CI-based SLP for QPSK constellation.

sample x[n] must be designed to carry the Ku different

information symbols in s[n]. The received signal at the ku-

th user can be expressed as

rku
[n] = hH

ku
x[n] + nku

[n], (9)

where hku
∈ C

Nt represents the Rayleigh fading channel from

the BS to the ku-th user, and nku
[n] ∼ CN (0, σ2

ku
) is AWGN

at the ku-th user. The nonlinear mapping from s[n] to x[n] is

achieved by the CI-based SLP design as presented below.

Without loss of generality, we take quadrature-PSK (QPSK)

constellation (i.e., Ω = 4) as an example to illustrate the CI-

based SLP approach as shown in Fig. 1, where Φ = π/Ω
is half of the angular range of the decision regions. Fig. 1

shows the case where the desired symbol of the ku-th user

is (1/
√
2, j/

√
2), whose decision boundaries are the positive

halves of x and y axes. Point D denotes the received noise-

free signal r̃ku
[n] = hH

ku
x[n]. Unlike conventional block-

level precoding approaches aiming to eliminate MUI, the

CI-based SLP approach attempts to exploit known symbol

information to convert MUI into helpful components that

enhance the communication QoS. In particular, let Γku
be

the QoS requirement of the ku-th user. If the MUI is entirely

eliminated, the received noise-free signal should be at point A

to satisfy r̃ku
[n] = σku

√
Γku

sku
[n], i.e.,

∣∣r̃ku
[n]

∣∣2/σ2
ku

= Γku
.

However, MUI in a CI-based SLP system pushes the received

noise-free signal deeper into the corresponding constructive

(green) region, where the QoS requirement Γku
is guaranteed

and the distance between the received noise-free signal and

its decision boundaries is further enlarged. Thus, better QoS

is achieved using the CI-based SLP approach.

The relationship governing the definition of the constructive

region can be geometrically expressed as |−−→BC| − |−−→BD| ≥ 0.

Due to space limitations, we omit the derivations and recom-

mend the readers to [11]-[13] for details. The QoS constraints

that guarantee that the noise-free received signal r̃ku
[n] lies in

the constructive region can be expressed as


{hH
ku
x[n]e−j∠sku [n] − σku

√
Γku

}
sinΦ

− ∣∣�{hH
ku
x[n]e−j∠sku [n]

}∣∣ cosΦ ≥ 0, ∀ku, ∀n. (10)

In order to represent (10) in a compact form, we define

h̃H
(2ku−2)N+n�eTn⊗hH

ku
e−j∠sku [n](sinΦ+e−jπ

2 cosΦ), (11a)

h̃H
(2ku−1)N+n�eTn ⊗hH

ku
e−j∠sk[n](sinΦ−e−jπ

2 cosΦ), (11b)

γ(2ku−2)N+n = γ(2ku−1)N+n � σku

√
Γku

sinΦ, (11c)

where the vector en ∈ R
N has a 1 in position n and zeros

elsewhere, and ⊗ denotes the Kronecker product. Then, the

communication QoS constraints are equivalently re-written as


{h̃H
i x

} ≥ γi, ∀i = 1, . . . , 2KuN. (12)

B. Problem Formulation

In this paper, we aim to jointly design the transmit waveform

x and the receive filter w to maximize the output SINR (7),

while satisfying the communication QoS requirements (10)

and the constant modulus power constraint (8). Therefore, the

optimization problem is formulated as

max
x,w

σ2
0 |wHA0x|2

wH
[∑K

k=1 σ
2
kAkxxHAH

k

]
w + σ2

z w
Hw

(13a)

s.t. 
{h̃H
i x

} ≥ γi, ∀i = 1, . . . , 2KuN, (13b)

|xm| =
√

P/Nt, ∀m = 1, . . . , NNt. (13c)

It can be observed that with a fixed transmit waveform x,

the original problem (13) becomes a well-known minimum

variance distortionless response (MVDR) problem:

min
w

wH
[ K∑
k=1

σ2
kAkxx

HAH
k + σ2

z I
]
w (14a)

s.t. wHA0x = 1. (14b)

The closed-form optimal solution w� in this case can be easily

obtained as

w� =

[∑K
k=1 σ

2
kAkxx

HAH
k + σ2

z I
]−1

A0x

xHAH
0

[∑K
k=1 σ

2
kAkxxHAH

k + σ2
z I
]−1

A0x
. (15)

Substituting w� into the original optimization problem (13)

leads to the concentrated transmit waveform design problem:

min
x

− xHAH
0

[ K∑
k=1

σ2
kAkxx

HAH
k + σ2

z I
]−1

A0x (16a)

s.t. 
{h̃H
i x

} ≥ γi, ∀i, (16b)

|xm| =
√
P/Nt, ∀m. (16c)

Since (16) is a complicated non-convex optimization prob-

lem due to the non-convex objective function (16a) and the

constant modulus power constraint (16c), a direct solution is

very difficult to obtain. In order to tackle these difficulties,

in next section we employ MM and neADMM methods to

convert problem (16) into two tractable sub-problems and

iteratively solve them.

III. TRANSMIT WAVEFORM DESIGN

In order to efficiently handle the complicated non-convex

objective function (16a), we utilize the MM method to find

a more tractable convex surrogate function that is an approx-

imate local upper-bound of (16a) in each iteration. Defining

f(x) � −xHAH
0

[∑K
k=1 σ

2
kAkxx

HAH
k + σ2

z I
]−1

A0x, the

derivation for a surrogate function of f(x) is based on the

following lemma [14].



f(x) ≤ Tr
{[ K∑

k=1

σ2
kAkX

H
t AH

k + σ2
z I
]−1

A0xtx
H
t AH

0

[ K∑
k=1

σ2
kAkX

H
t AH

k + σ2
z I
]−1[ K∑

k=1

σ2
kAkX

HAH
k + σ2

z I
]}

(17a)

− 2

{
xH
t AH

0

[ K∑
k=1

σ2
kAkX

H
t AH

k + σ2
z I
]−1

A0x
}
+ const

= Tr{DtX} − 
{bH
t x}+ const. (17b)

Lemma 1. For a positive-definite matrix M, sHM−1s is a
convex function of s and M, and its surrogate function at point
(st,Mt) is given by

sHM−1s ≥ 2
{sHt M−1
t s

}−Tr
{
M−1

t sts
H
t M−1

t M
}
+const,

where Tr{A} indicates the trace of a matrix A, and “const”
is a constant term that is irrelevant to the variables.

Inspired by Lemma 1, we define X � xxH , the affine

transformation s � A0x, and M �
∑K

k=1 σ
2
kAkXAH

k + σ2
z I.

Then, the surrogate function of f(x) can be calculated as (17)

presented at the top of this page, where we define

bt � 2AH
0

[ K∑
k=1

σ2
kAkXtA

H
k + σ2

z I
]−1

A0xt, (18a)

Dt �
K∑

k=1

σ2
kG

H
t,kXtGt,k, (18b)

Gt,k � AH
0

[ K∑
k=1

σ2
kAkXtA

H
k + σ2

z I
]−1

Ak. (18c)

Substituting X � xxH into (17) and ignoring the constant

term, the transmit waveform design problem at point xt can

be written as

min
x

xHDtx−
{bH
t x} (19a)

s.t. 
{h̃H
i x

} ≥ γi, ∀i, (19b)

|xm| =
√

P/Nt, ∀m. (19c)

It can be observed that although the objective function (19a)

is continuous and convex, problem (19) is still a non-convex

problem due to the constant modulus power constraint (19c).

While the classical ADMM method can only handle linear

equality constraints, the new neADMM approach [15] can

be applied to nonlinear equality constraints such as (19c).

Therefore, we develop an neADMM-based method to solve

this problem as follows.

We first introduce an auxiliary variable y � [y1, . . . , yNNt
]T

to decouple the convex constraint (19b) and the non-convex

constraint (19c) with respect to x, and convert (19) to

min
x,y

xHDtx−
{bH
t x} (20a)

s.t. 
{h̃H
i x

} ≥ γi, ∀i, (20b)

|xm| ≤
√

P/Nt, ∀m, (20c)

x = y, (20d)

|ym| =
√

P/Nt, ∀m. (20e)

To accommodate the neADMM framework, we define the

feasible region of the inequality constraints (20b) and (20c)

as set C, and an indicator function IC associated with C as

IC(x) =
{

0, x ∈ C,
+∞, otherwise.

(21)

Then, by removing the constraints on x and adding the

feasibility indicator function in the objective, problem (20)

is transformed to

min
x,y

xHDtx−
{bH
t x}+ IC(x) (22a)

s.t. x = y, (22b)

|ym| =
√
P/Nt, ∀m, (22c)

whose solution can be obtained by optimizing its augmented

Lagrangian (AL) function. Specifically, the AL function of

problem (22) is expressed as

L(x,y,λ,μ) � xHDtx−
{bH
t x}+ IC(x)

+
ρ

2

∥∥x− y + λ/ρ
∥∥2 + ρ

2

∥∥|y| −√
P/Nt + μ/ρ

∥∥2, (23)

where ρ > 0 is a penalty parameter, λ ∈ C
NNt and μ ∈ C

NNt

are dual variables, and | · | is an element-wise absolute value

operation. The AL function (23) is a more tractable function

with multiple variables, which can be alternately minimized

by updating x, y, λ, and μ as shown below.

1) Update x: With given y, λ and μ, the optimization

problem for updating x is formulated as

min
x

xHDtx−
{bH
t x}+ IC(x)+

ρ

2

∥∥x−y+λ/ρ
∥∥2. (24)

According to the definition of IC(x) in (21), problem (24) can

be equivalently transformed into a convex second-order cone

programming (SOCP) problem:

min
x

xHDtx−
{bH
t x}+ ρ

2

∥∥x− y + λ/ρ
∥∥2 (25a)

s.t. 
{h̃H
i x

} ≥ γi, ∀i, (25b)

|xm| ≤
√

P/Nt, ∀m, (25c)

whose optimal solution can be efficiently obtained by various

off-the-shelf algorithms or optimization tools, e.g., CVX.

2) Update y: With fixed x, λ and μ, the optimization

problem for updating y is given by

min
y

ρ

2

∥∥x− y+ λ/ρ
∥∥2 + ρ

2

∥∥|y| −√
P/Nt +μ/ρ

∥∥2. (26)

We observe that problem (26) is a non-convex problem due

to the absolute value operation. Fortunately, each element of

y is independent in problem (26). Thus we can equivalently



Algorithm 1 Transmit Waveform Design Algorithm

Input: A0, Ak, σk, ∀k, σz, h̃i, γi, ∀i, P , ρ, δth.
Output: x�.

1: Initialize x, y, λ, μ, δ = ∞.
2: while δ ≥ δth do
3: Update x by solving (25).
4: Update ym, ∀m, by (30).
5: Update λ by (31a).
6: Update μ by (31b).

7: δ =
∥∥x− y

∥∥2
+

∥∥y −√
P/Nt

∥∥2
.

8: end while
9: x� = x.

divide (26) into NNt sub-problems. The m-th sub-problem is

expressed as

min
ym

|ym − am|2 + ∣∣|ym| − bm
∣∣2, (27)

where am � xm+λm/ρ and bm �
√
P/Nt −μm/ρ. In order

to handle the absolute value function, the objective of (27) is

expanded as

|ym − am|2 + ∣∣|ym| − bm
∣∣2 (28a)

=2|ym|2 − 2
{(a∗mym + b∗m|ym|)}+ |am|2+ |bm|2 (28b)

= 2|ym|2−2|ym|
{(a∗mej∠ym+b∗m)
}
+|am|2+|bm|2. (28c)

Since |ym| ≥ 0, we can easily obtain the optimal angle of

ym as ∠y�m = ∠am. Substituting ∠y�m into (28c), the optimal

amplitude of ym can be obtained by solving

min
|ym|

2|ym|2 − 2|ym|(|am|+ 
{bm}), (29)

whose optimal solution is given by |y�m| = 0.5(|am|+
{bm}).
Therefore, the optimal solution to problem (27) is

y�m = 0.5
(|am|+ 
{bm})ej∠am . (30)

3) Update λ and μ: After obtaining x and y, the dual

variables are updated by

λ� := λ+ ρ(x− y), (31a)

μ� := μ+ ρ
(|y| −√

P/Nt

)
. (31b)

With above derivations, the transmit waveform design al-

gorithm is straightforward and summarized in Algorithm 1,

where δth is the threshold to judge the convergence and δ
is the primal residual. In summary, the transmit waveform

x is obtained by iteratively updating x, y, λ and μ via

(25), (30), (31a) and (31b), respectively, until the equality

constraints (22b) and (22c) are approximately met. Finally,

with the obtained transmit waveform x�, the optimal receive

filter w� can be calculated by (15).

IV. SIMULATION RESULTS

In this section, we provide simulation results to show the

effectiveness of the proposed joint transmit waveform and

receive filter design algorithm. The following settings are

assumed throughout our simulations. The BS is equipped with

the same number of transmit and receive antennas, denoted

by Na. The number of waveform samples for each radar
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Fig. 3. Radar output SINR versus communication QoS.

pulse is N = 20. The target is located at the range-angle

position (0, 15◦) with power σ2
0 = 20dB. The K = 3 clutter

sources are respectively located at (0,−50◦), (1,−10◦), and

(2, 40◦) with power σ2
k = 20dB, ∀k. The noise power is

σ2
z = 0dB. The BS is also transmitting QPSK signals to

Ku = 3 communication users, and the communication noise

power is set as σ2
ku

= −20dB, ∀ku. The communication QoS

for all Ku users is the same and is denoted by Γ. The penalty

parameter of the neADMM method is chosen as ρ = 2.

We first show the convergence performance of the algorithm

for the cases with different transmit powers and different

numbers of antennas in Fig. 2, where (x, y) denotes the

settings for Na and P . We see that in all cases convergence

is achieved within only 20 iterations, and the objective value

monotonically decreases with each iteration, consistent with

the behavior of the MM method.

The radar output SINR γ versus the communication QoS

requirements Γ is shown in Fig. 3. The performance of the

MIMO radar scheme in [10] is also plotted as a benchmark.

Not surprisingly, the achieved radar output SINR decreases

as the communication QoS requirements increase due to

the trade-off between target detection performance and wire-
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Fig. 5. Radar output SINR at each angle (Γ = 10dB).

less communication QoS. Additional transmit/receive antennas

provide a larger radar output SINR. In addition, it can be seen

that an increase in the number of antennas brings a larger

performance improvement to the proposed DFRC approach

than the conventional MIMO radar scheme. More importantly,

we observe that the BS can provide Ku = 3 users with

a Γ = 10dB communication QoS at the price of only

about 0.5dB in radar performance loss, which confirms the

advantages of utilizing STAP and CI-based SLP techniques

in DFRC systems. We also illustrate the radar output SINR

versus the transmit power P in Fig. 4. It is natural that the

radar output SINR increases with the increasing of transmit

power for all schemes. Moreover, it can be seen that with the

same transmit power, more transmit antennas provide a higher

performance gain for the DFRC system than the MIMO radar

counterpart, which verifies the advancement of the MIMO

architecture for DFRC systems.

Finally, the radar output SINR at each angle is presented

in Fig. 5. It can be observed that the achieved radar output

SINR of both the conventional MIMO radar and the proposed

DFRC approaches reaches its peak value at θ = 15◦ and drops

to very small values at the angles of the clutter. Moreover, we

see that the proposed DFRC algorithm has only a marginal

SINR loss for the radar, which ensures satisfactory target an-

gular resolution performance when simultaneously performing

communications.

V. CONCLUSIONS

In this paper, we investigated joint transmit waveform

and receive filter design for DFRC systems. The instanta-

neous radar output SINR was maximized under a constant

modulus power constraint and CI constraints that guarantee

the communication QoS is satisfied. An efficient algorithm

exploiting MM and neADMM methods was developed to solve

the resulting complicated non-convex optimization problem.

Simulation examples demonstrated the advantages of utilizing

STAP and CI-based SLP techniques to implement DFRC, as

well as the effectiveness of the proposed algorithm.
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