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Abstract: Public health agencies routinely collect time-referenced records to describe and compare
foodborne outbreak characteristics. Few studies provide comprehensive metadata to inform re-
searchers of data limitations prior to conducting statistical modeling. We described the completeness
of 103 variables for 22,792 outbreaks publicly reported by the United States Centers for Disease
Control and Prevention’s (US CDC’s) electronic Foodborne Outbreak Reporting System (eFORS)
and National Outbreak Reporting System (NORS). We compared monthly trends of completeness
during eFORS (1998-2008) and NORS (2009-2019) reporting periods using segmented time series
analyses adjusted for seasonality. We quantified the overall, annual, and monthly completeness
as the percentage of outbreaks with blank records per our study period, calendar year, and study
month, respectively. We found that outbreaks of unknown genus (n = 7401), Norovirus (n = 6414),
Salmonella (n = 2872), Clostridium (n = 944), and multiple genera (n = 779) accounted for 80.77% of
all outbreaks. However, crude completeness ranged from 46.06% to 60.19% across the 103 variables
assessed. Variables with the lowest crude completeness (ranging 3.32-6.98%) included pathogen,
specimen etiological testing, and secondary transmission traceback information. Variables with low
(<B85%) average monthly completeness during eFORS increased by 0.33-0.40%/month after transi-
tioning to NORS, most likely due to the expansion of surveillance capacity and coverage within the
new reporting system. Examining completeness metrics in outbreak surveillance systems provides
essential information on the availability of data for public reuse. These metadata offer important
insights for public health statisticians and modelers to precisely monitor and track the geographic
spread, event duration, and illness intensity of foodborne outbreaks.

Keywords: data completeness; electronic Foodborne Outbreak Reporting System (eFORS); foodborne
outbreaks; National Outbreak Reporting System (NORS); precision public health; time series analyses

1. Introduction

Worldwide, public health agencies routinely collect time-referenced records to mon-
itor ~600 million foodborne or waterborne outbreaks occurring annually [1-5]. In the
United States (US) alone, approximately 1 in 6 Americans suffer from a foodborne illness
resulting in ~48 million cases, ~128,000 hospitalizations, and ~3000 deaths annually [6].
Nearly 90% of these illnesses and hospitalizations are caused by five pathogens, including
Salmonella, Toxoplasma, Staphylococcus aureus, Norovirus, and Campylobacter [6]. In 2013, the
US Department of Agriculture (USDA) Economic Research Service (ERS) estimated that
the frequency and severity of foodborne illnesses culminate in ~$15.5 billion (USD 2013)
of losses annually attributed to medical costs, productivity losses, and economic burden
due to death [7]. A recent 2021 report suggests that these expenses have risen by 13% to an
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estimated ~$17.6 billion per year (USD 2018) [7]. Much of these costs have been associated
with food recalls and outbreaks attributed to salmonellosis (~$4.14 billion), toxoplasmosis
(~$3.74 billion), listeriosis (~$3.19 billion), Norovirus (~$2.57 billion), and campylobacte-
riosis (~$2.18 billion) [8]. The high economic and health burdens of foodborne illnesses
have demanded extensive passive surveillance to effectively monitor, track, and contain
outbreaks. The compilation of complete and comprehensive information on causal agents
and contributing factors is a challenging task, and few countries have a well-integrated
surveillance system for foodborne infections due to the challenges of managing data ef-
fectively, the absence of early disease detection, inadequate computing resources, lack of
financial support, and staff shortages [9-12].

The US Centers for Disease Control and Prevention (CDC) define foodborne outbreaks
as two or more illnesses occurring in a short period of time due to the consumption of a
common food or water source [13]. National outbreak surveillance began in 1971 with the
Waterborne Disease Outbreak Surveillance System (WBDOSS), followed by the Foodborne
Disease Outbreak Surveillance System (FDOSS) in 1973 [14]. Both systems used paper
records to conduct event-based surveillance (pFORS) until 1998 when transitioning to
the electronic Foodborne Outbreak Reporting System (eFORS) [14]. In 2009, the CDC
integrated eFORS with other outbreak reporting systems under a single National Outbreak
Reporting System (NORS), which also expanded to monitor outbreaks associated with
person-to-person, animal, environmental, and unknown modes of transmission [14]. NORS
has permitted cross-agency integration of other databases, including OHHABS (the One
Health Harmful Algal Bloom System), CaliciNet (national Norovirus surveillance network),
PulseNet (local, state, and federal public health laboratory network), and NARMS (the Na-
tional Antimicrobial Resistance Monitoring System) [15]. NORS has continuously enhanced
data collection and reporting protocols while improving the functionality and usability
of available data [14]. Health departments report outbreaks using NORSDirect, which
automatically uploads and registers single or multi-location outbreaks [16]. The transition
to the NORS electronic system integrates and streamlines outbreak surveillance, enhances
state and local outbreak reporting, and provides key temporal and spatial information
to accompany illness counts, symptoms, pathogen etiology, and food/drink sources [14].
Electronic health records permit greater public sharing and extended longevity and us-
ability of historical data [17]. Yet, public health professionals fail to compile complete and
comprehensive records due to limited time and resources for traceback investigations, the
complexity of these investigations, and challenges linking illness exposure, symptomes,
and healthcare site services [18-20]. Furthermore, as a passive surveillance system, state,
and local health agencies are encouraged but not required to report outbreak records to
NORS [14]. While electronic reporting improves the precision of temporal and spatial in-
formation to accompany outbreak characteristics [14], national reports indicate significant
underreporting of outbreaks due to this passive design [21].

Studies utilizing NORS have commonly explored three categories of available data:
epidemiologic, contaminant traceback, and food /environmental testing [22]. Epidemiologic
studies have described differences in outbreak characteristics by the geographic distribution
of illnesses, time of exposure and illness onset, location of exposure, incubation periods,
or food sources associated with illness [22]. Traceback studies have compared pathways
of infection across outbreaks, including primary and secondary transmission contacts
and how pathogens enter the food supply and spread once contaminating foods [22].
Lastly, food and environmental testing studies have evaluated differences in the burden of
outbreaks according to etiological information such as pathogen genera or subtypes [22].
Despite its utility in exploring foodborne outbreak characteristics, some studies have
noted the incompleteness of NORS records [23-25]. Completeness reflects the usability of
available data, and its patterns influence the credibility of statistical analyses [26]. Patterns
of incomplete records may distort seasonal patterns of infections, inhibiting researchers’
ability to track shifts in seasonal peak timing or assess associations between illness incidence
and environmental drivers of infection [27]. We expand on this research by modifying
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completeness metrics to evaluate the credibility and usability of event-based surveillance
data.

In this study, we developed a framework to perform systematic screening of data
completeness to serve as metadata for outbreak surveillance systems. We evaluated the
completeness of publicly reported foodborne outbreak data in eFORS and NORS event-
based electronic surveillance systems and explored how the implementation of NORS
improved data completeness. We extracted, aligned, and merged 25 data tables containing
213 variables for 22,792 outbreaks publicly reported from 1 January 1998 through 31
December 2019. We compared the patterns of completeness for 103 variables before and
after the transition from eFORS (1998-2008) to NORS (2009-2019) using segmented linear
regression models adapted to time-referenced monthly values and controlled for outbreak
seasonality. Our results provide the basis for a standardized metadata report to accompany
publicly available surveillance system data downloads to assist data users in effectively
utilizing reported electronic health records.

2. Methods
2.1. Data Source

On 4 March 2021, we requested and received integrated NORS data for all available
foodborne outbreak records from 1 January 1998 through 31 December 2019 [28], where
records between 1 January to 31 December 2008 were collected by eFORS. Data were
unavailable for 2020 and 2021 due to a ~12-18-month delay in the public distribution
of outbreak records. Extracted data included 213 variables in 25 data tables broadly
categorized by general (109 variables in 5 tables), etiological (48 variables in 2 tables),
and food-related (56 variables in 18 tables) outbreak characteristics. As an event-based
surveillance system, NORS recorded outbreaks using identification numbers (CDCID) to
permit alignment and merging of variables across data tables.

NORS records related to general outbreak information (e.g., location, illness date,
incubation time, and case information) categorized primary cases by health outcomes (e.g.,
hospitalization, ER visits, etc.), age group (groups vary between eFORS and NORS), gender
(i.e., male, female, unknown), and case definition (e.g., confirmed, probable, estimated).
NORS etiological information described clinical and environmental testing procedures,
sampling techniques, and pathogen etiology. Food-related characteristics pertained to the
suspected modes of infection transmission, point of contamination in the supply chain,
and where the contaminated foods were prepared or consumed. Some tables described
only small subsets of observations, such as school-related outbreaks (3 tables), ground beef
information (1 table), or egg information (1 table). Given the variability of food ingredients
per outbreak, NORS provided an implicated food identification number (FID) for merging
7 ingredient-related data tables.

2.2. Data Preparation

NORS reported 3 types of variables, including strings (dates, text answers, notes),
binary choice (dichotomous—O for absent, 1 for present), and multiple-choice responses.
During data pre-processing, the CDC converted multiple-choice questions either to numer-
ous binary-choice variables or repeated outbreak observations under the same CDCID for
each categorical option selected. The latter introduced a repeated observation structure that
duplicated outbreak records within our dataset and required more extensive data cleaning
and transposition to create a uniformly structured dataset. For these multiple-choice ques-
tions, data completeness depended on the ratio of options selected to the total response
options available. For example, incomplete “case information for signs or symptoms of
illnesses” could not exceed the number of “signs or symptoms” available for reporting per
outbreak. Similarly, ingredient-related variables depended on the number of ingredients
involved in an outbreak. We define these variables whose completeness depended on
the ratio of categorical options selected to all those available per outbreak as conditional
variables.
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To generate a single dataset, we cleaned and merged the 213 variables in all 25 data
tables across 22,792 outbreaks (Supplementary Table S1). During our cleaning process, we
first excluded:

e 26 variables generated by CDC personnel to track the reporting of electronic records
(e.g., data recorder ID, local report date, CDC report date, etc.);

e 12 variables providing reporter contact information and optional comments written
during reporting (e.g., recall comments, agency title, reporting site, etc.);

e  9variables providing clarification responses to specific questions asked only for spe-
cific outbreaks (e.g., clarification of supply chain stage of contamination, questions
regarding antimicrobial resistance testing, etc.); and

e 17 variables unavailable for the entire study period duration (e.g., illness attack rate,
percentage of illnesses by age group, food contaminant infecting exposed persons, age
percentage, etc.).

Next, we collapsed 60 variables relating to multiple-choice questions into 14 variables
estimated as the count of multiple-choice options per question. After completing this
process, the final dataset consisted of 103 variables (Figure 1). We calculated completeness
as the ratio for which variable information was reported per outbreak.

2.3. Crude Completeness Estimation

For each outbreak, we determined whether any of the 103 variables had a complete,
partial, or absent record. We differentiated between incomplete records as no information
available for a variable (e.g., blanks) and values of 0. For all but conditional variables, we
created a dichotomous indicator defined as 1 if an outbreak had complete information
for that variable and 0 if not. Dichotomous indicators were left blank if variables did not
pertain to an outbreak, such as clarification questions asked only to a subset of outbreaks
(i.e., the handling of beef food products for non-beef-associated outbreaks). Indicator
blanks properly corrected completeness estimates for only those outbreaks eligible to report
information on a given variable. For conditional variables, we estimated completeness as
the ratio of reported categorical responses to the total responses available per outbreak.
Dichotomous indicators contained 4 types of information: completely missing (0), partially
missing (ranging 0-1), and non-missing records (1), and records where completeness
information was not applicable for a given outbreak (blanks).

Comparing variables’ completeness between eFORS and NORS required additional
data aggregation for some variables. We identified differences in age group definitions
between eFORS (6 groups: <1, 1-4, 5-19, 2049, >50, unknown years) and NORS (8 groups:
<1, 1-4, 59, 10-19, 2049, 50-74, 75+, unknown years). To standardize completeness
estimates across surveillance periods, we calculated the average completeness across all
age groups.

We measured crude completeness across outbreaks and variables. Crude outbreak
completeness (C;) reflected the percentage of variables with complete information per
outbreak, while crude variable completeness (C)) reflected the percentage of outbreaks with
complete information per variable, such that:

Ci = ]7’ +100% )

1"
Ci= 7’ * 100% 2)

where C; and Cj—completeness of i-outbreak or j-variable; j—the sum of variables re-
porting complete information for i-outbreak; [—the total number of variables for which
information was collected; i;—the sum of outbreaks reporting complete information for
j-variable; and [—the total number of outbreaks for which information was collected.
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Figure 1. NORS foodborne outbreak data structure. CDCID is the unique identifier for each foodborne
outbreak, characterized by 213 variables for 3 types of information and resulted in 103 variables after

data cleaning and merging: general (1 = 56 variables), etiological (n = 13 variables), and food-related

(n = 34 variables). Variables were distributed over 13 sub-categories and data tables containing

conditional (depicted in blue), combined (in purple), and unchanged variables (in gray). Numbers

within the parentheses represent the original number of variables in each data table. Subcategories and

data tables marked with an asterisk (*) indicate information only available for applicable outbreaks.

2.4. Measuring Temporal Changes in Completeness

To examine trends in variable completeness over time, we sorted all 103 variables in
descending order by crude completeness and grouped variables into 5 near-equal-sized
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categories (Supplementary Table S2). We defined category boundaries as follows: Category
1 (100-95% completeness; 18 variables), Category 2 (94-70% completeness; 21 variables),
Category 3 (69-35% completeness; 22 variables), Category 4 (34-25% completeness; 20 vari-
ables), and Category 5 (24-0% completeness, 22 variables).

Next, we calculated annual and monthly completeness for all outbreaks and for se-
lected pathogens using monthly and yearly time series of outbreak counts and completeness
values. We selected only 6 pathogen subgroups of interest: the 3 most reported pathogens
in the study period (Norovirus, Salmonella, and Clostridium), 2 unique groups (outbreaks
associated with unknown and multiple etiologies), and all pathogens (total reported out-
breaks). We used yearly time series to examine trends in completeness across study years
while monthly time series described the seasonality of completeness by Gregorian calendar
month. We created yearly and monthly time series using the date of first reported outbreak
illness. We calculated variable-based completeness for all outbreaks N; and each selected

pathogen (N ), as:
”
Cit = ﬁ: * 100% 3)
Cirp = 7 4 100% 4
itp — Nt,p * (] ( )

where C;; and C; ; ,—completeness for i-variable in ¢-time unit (f = 1-22 for annual com-
pleteness, t = 1-264 for seasonal completeness) for p-pathogens; r;; and r; ; ,—outbreak
records with complete information for i-variable in ¢-time unit for p-pathogen; N; and
Nt p—total count of outbreaks reported in t-time unit for p-pathogen.

Once creating a time series of monthly completeness, we examined patterns of com-
pleteness over time, by a reported pathogen, and according to completeness categories, by
estimating average completeness as:

Set,
Ag,t,p = il (5)

where Ag; ,—average completeness of g-category in t-month for p-pathogen; St ,—sum
of monthly completeness of g-category in t-month for p-pathogen; and L,—total number of
variables included in g-category (ranging from 18 to 22).

2.5. Temporal Trend Analyses

To best capture trend differences between eFORS and NORS, we defined the seg-
mented regression analysis critical point as January 2009 (onset of NORS reporting). We
used segmented negative binomial regression models adjusted for linear monthly trends to
estimate counts of outbreaks under both surveillance systems (Equation (6)):

In(E[Ntp]) = Bo + Boty + Bata (6)

where N; ,—monthly number of outbreaks at t-month for p-pathogen; exponential of Bo—
outbreak counts at the critical point (January 2009); 8, and B,—linear trend estimates for
periods before and after the critical point, respectively; and #, and t,—continuous time
series of study months from onset to the critical point and critical point to conclusion,
respectively.

To examine trends in average monthly completeness, we used a segmented linear
regression model adjusted for linear monthly trends and outbreak counts (Equation (7)) as
well as harmonic regression terms (Equation (8)):

Agtp = Bo+ Bity + Bata + B3Nty ?)

Agip = Bo+ Bpty + Bep cos(2mwty) + Bsp sin(27twty ) +Bata + Bea cos(2mwty) + Bs,q sin(27mwt,) (8)
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where Ag s ,—average completeness of g-category in t-month for p-pathogen; Bp—average
completeness at the critical point (January 2009); B, and 8, —estimates of linear trends
in completeness before and after the critical point, respectively; t, and t,—continuous
study time series before and after January 2009, respectively; 8. and fs—harmonic trend
coefficients for each critical period such that w = 1/ M, where M is the length of the annual
cycle in Gregorian calendar months (12). We determined seasonality by the presence of a
significant sinusoidal or co-sinusoidal regression term.

We used Akaike Information Criterion (AIC) to examine model fit in Equation (6) and
R? values to examine model fit in Equations (7) and (8). We defined statistical significance
in all analyses as « < 0.05. We performed data extraction, alignment, management, and
cleaning using Excel 2016 Version 2103, Stata SE/16.1, and R (1.2.5033) software. We
conducted statistical analyses using R (1.2.5033) software and created visualizations using
R (1.2.5033) and Adobe Illustrator (25.4.1) software.

3. Results
3.1. Outbreak Frequency and Completeness by Pathogen

The 22,792 outbreaks in the study period were attributed to 41 contaminant groups:
bacteria (n = 14), chemicals/toxins (n = 12), parasites (n = 7), viruses (n = 6), unknown
etiology (n = 1), multiple etiologies (n = 1) (Table 1). Bacterial and viral outbreaks each
accounted for ~30% of all outbreaks, followed by chemicals/toxins (~5%), and parasitic
outbreaks (~1%). The most common pathogens were Norovirus (n = 6416, ~28%), Salmonella
(n = 2872, ~13%), and Clostridium (n = 944, ~4%). Yet, most outbreaks reported unknown
genus (n = 7401, ~32%) while the 5th ranked contaminant group was outbreaks with
multiple genera (n = 779, ~3%).

Table 1. Frequencies of outbreaks and completeness estimates for 41 contaminant groups publicly
reporting data to the National Outbreak Reporting System (NORS) in 1998-2019. Completeness
categories group variables by average crude completeness and are defined as: Category 1 (100-95%
completeness; 18 variables), Category 2 (94-70% completeness; 21 variables), Category 3 (69-35%
completeness; 22 variables), Category 4 (34-25% completeness; 20 variables), and Category 5 (24-0%
completeness, 22 variables).

Crude Completeness Completeness Category
Contaminant Name  Number of Outbreaks per Outbreak _ per Variable 1 5 3 4 5
All Outbreaks 22,792 59.45 53.65 98.45 81.00 5248 29.01 14.46
Multiple Etiologies 779 64.54 60.19 98.61 8772  60.09 3491 25.56
Unknown Etiologies 7401 51.22 46.06 96.42 7519 4060 18.46 7.60
Bacterial Pathogens
Salmonella 2872 58.94 53.90 9716 7720 5212  27.08 2241
Clostridium 944 62.37 56.90 98.83 8591  59.62  32.99 13.91
Escherichia 649 58.69 56.18 97.69 7528 5129  30.69 32.07
Staphylococcus 625 56.02 49.69 98.84 7839  48.04 2157 9.29
Campylobacter 510 62.93 58.76 98.25 8353 6044  39.52 18.61
Bacillus 376 59.69 53.95 98.30 8250 5527  31.13 9.84
Vibrio 220 67.38 66.18 98.09 8457 6432  44.25 27.67
Shigella 195 53.61 48.23 97.08 7477 4632  18.78 7.92
Listeria 95 57.63 52.45 9749  68.12 4418 34381 17.79
Yersinia 17 50.83 49.33 9715 6975  38.69  17.23 10.11
Brucella 61.39 59.13 99.07 7857 6396 3214 6.25
Streptococcus 5 65.87 65.90 100.00 79.05  69.25  45.71 23.75
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Table 1. Cont.
) Crude Completeness Completeness Category
Contaminant Name  Number of Outbreaks per Outbreak  per Variable 1 2 3 1 5
Enterococcus 1 74.42 73.03 100.00 100.00 8500 57.14 625
Other—Bacterium 138 57.87 54.66 98.00 8834 5153 2783 1055
Subtotal 6653 59.55 54.59 97.81 7940 5359 2931  19.54
Viral Pathogens
Norovirus 6416 60.36 54,54 9852 8503 5677 2519  13.90
Hepatitis 103 47.08 44.13 9655 6223 3407 1973  8.00
Rotavirus 15 55.54 52.22 97.01 7683 4811 2367 1333
Sapovirus 15 73.41 66.79 9630 9175 67.84 3333 4275
Astrovirus 2 58.43 57.02 100.00 8810 5125 17.86  9.38
Other—Virus 102 4559 38.64 97.26  67.65 29.86  2.84 0.88
Subtotal 6653 59.95 54.11 98.46 8441 5601 2477  13.68
Parasitic Pathogens
Cyclospora 112 70.58 72.49 9854 8563 6779 6210 4695
Cryptosporidium 32 61.59 60.36 9630 7813 5990 3259 2148
Trichinella 23 62.58 61.01 9754 8489 5504 4130  13.32
Giardia 2 53.63 48.42 9894 7165 4570 1386 1043
Toxoplasma 3 85.37 85.86 100.00 100.00 8875 7619  56.25
Anisakis 1 4457 43.07 100.00 57.14 3667  7.14 0.00
Other—Parasite 2 41.96 38.86 100.00 5238  27.92  0.00 0.00
Subtotal 195 66.05 64.10 98.15 8247 6169 4300 3332
Chemicals and Toxins
Scoré‘zrt‘;fﬂﬁ’exm/ 505 58.51 55.08 9831 83.88 4866 2948 1213
Ciguatoxin 349 61.97 59.12 98.74 8484 4961 4198  13.39
Mycotoxins 35 62.78 57.25 9824 8803 5827 2657  10.59
Paralytic shellfish 17 56.43 54.45 9477 8095 4494 2563 1140
poison
Heavy metals 51.10 4435 10000 7937 3594  4.44 0.00
Cleaning agents 8 57.72 55.35 10000 7024 5443 3393 547
Neurotoxic shellfish 7 57.44 54.86 100.00 8231 4699 1735 1071
poison
Pesticides 4 64.24 63.20 10000 9524 7000 2857 156
t:t‘r‘(f)?é tf(i)i}iln 3 62.65 60.54 99.79 9206 5792 3333 2.8
Amnesic shellfish 1 66.57 64.33 10000 9524 5125 5714 625
poison
Monosodium 1 57.36 55.43 100.00 9524 5667  0.00 0.00
glutamate (MSG)
Other— 172 56.37 50.73 98.65 8319 4795 2376  7.83
Chemical/ Toxin
Subtotal 1111 59.34 53.09 98.49 8410 4881 3038  11.26

Bacterial, and certain viral and parasitic genes are italicized due to scientific nomenclature.
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We found that NORS reported 88-103 variables per outbreak with variable-based
crude completeness ranging 3.05-100.00% (Supplementary Table S2). Average crude com-
pleteness per outbreak varied from 41.96% to 85.37% for all contaminants (Table 1). Among
pathogen groups, estimates were high for parasitic pathogens for both crude completeness
per outbreak and per variable (66.05% and 64.10%, respectively). In contrast, outbreaks of
unknown etiology had the lowest variable-based and outbreak-based crude completeness
(51.22% and 46.06%, respectively). Within each pathogen group, variable-based complete-
ness varied greatly: from 72.49% for Cyclospora to nearly half of this value at 38.86% for the
other-parasite group. We found similar variation within the bacterial group, with 73.03%
crude variable completeness for Enterococcus and only 48.23% completeness for Shigella.

We found distinct behaviors across completeness categories when examining out-
break completeness by pathogen groups (Table 1). Category 1’s completeness had the
narrowest range (94.77-100.00%) across variables compared to other categories (Cate-
gory 2: 52.38-100.00%, Category 3: 27.92-88.75%, Category 4: 0.00-76.19%, Category 5:
0.00-56.25%). Within each pathogen group, completeness per category varied broadly,
especially in Category 5. For example, within the bacterial group, Brucella received 99.07%
and 78.57% in Category 1 and 2, but only 6.25% in Category 5 whereas Escherichia re-
ceived 97.69%, 75.28%, and 32.07% in these three categories, respectively. All contaminants
showed a steady declining in completeness from Category 1 to Category 5. Furthermore,
contaminants with higher completeness in Category 5 tended to have high completeness in
other categories (e.g., Toxoplasma, Cyclospora, and Sapovirus).

Location-related variables and total case counts reached 100.00% completeness across
pathogens with >95% completeness for epidemiologic information related to illness symp-
toms. School-, beef-, and egg-related information had much lower completeness (ranging
10.00-20.00%) despite only being asked for a subset of outbreaks. Category 5’s variable on
the secondary mode of illness transmission had the lowest completeness (3.05%) followed
by etiology serotype and variables related to specimen testing types (6.98-9.42%).

3.2. Annual Completeness

We identified an increased annual trend in average completeness for 21-31 pathogens
consistently reporting outbreak characteristics (Figure 2). We found the lowest annual
completeness in 1999 (36.99%, averaged from 26 pathogens) and highest in 2017 (78.18%,
averaged from 27 pathogens). Average annual completeness increased by ~13% between
the transition from eFORS in 2008 (50.15%) to NORS in 2009 (62.95%) (Figure 2, top panel).

We found steadily increasing annual completeness patterns among pathogens with
high outbreak counts when comparing across pathogens (Figure 2, bottom panel). We
found the highest completeness of cases across pathogens after 2009, while the lowest cases
always appeared before the critical point. For example, the top three annual completeness
estimates were for Giardia in 2017 (n = 1, 97.75%), Giardia in 2019 (n = 1, 96.49%), and
Rotavirus in 2019 (n = 1, 95.50%) while the lowest three annual completeness estimates
were Cyclospora in 1998 (n = 1, 17.24%), other-bacterium outbreaks in 1998 (n = 1, 20.69%),
and paralytic shellfish poison in 1999 (n = 1, 24.52%). Although the average annual
completeness increased when surveillance transitioned from eFORS to NORS, not all
pathogens demonstrated an instantaneous upward shift in completeness. For example,
Shigella had 41.04% completeness in 2008 compared to 67.42% in 2009 whereas Norovirus
had 55.16% completeness in 2008 compared to 57.44% in 2009.

We found as total outbreak counts of individual pathogens went down, the fluctuation
of annual completeness went up. For example, Streptococcus outbreaks received 52.95%
completeness in 2015 compared with 65.31% in 2017 and 87.64% in 2014. For single reported
outbreak across the whole study period, Monosodium glutamate (MSG) received 55.43%
average completeness and Enterococcus received 73.03% average completeness. Therefore,
pathogens with insufficient outbreak counts were not adequate to perform systematic
completeness trend study.
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Figure 2. Average annual completeness across 103 variables by contaminant and contaminant type as
reported by the National Outbreak Reporting System (NORS) in 1998-2019. The top panel provides a
time series plot reporting the average annual completeness for all etiologies with the annualized mean
indicated by the dashed red line. The bottom panel provides a heatmap with annual completeness
estimates (left) and their average (right) for each of 41 contaminants. Blue color indicates outbreaks
with no reported data for a given year while light grey and dark grey reflect low (~0%) and high
(~100%) completeness, respectively. Contaminant group types are reported in descending order of
outbreak counts.

3.3. Segemented and Seasonality Trend Analyses

We examined the temporal trend for the three most-reported individual pathogens
across five variable categories using monthly completeness value. We also selected out-
breaks with unknown etiology to understand whether the missing of etiology information
will lower the completion of other variables and outbreaks with multiple etiologies to
determine if multiple pathogen outbreaks will increase the completion of other variables.

For each category, the average monthly completeness for all outbreaks showed a
similar general trend to those of other selected pathogens (Table 2, Figure 3). Category 1
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had ~100% completeness while other categories showed an increasing trend, especially in
Category 4 and 5. Category 5’s average monthly completeness increased most after the
transition to NORS with values increasing from ~0.00% completeness before 2009 to as
high as 60.82% thereafter. We also saw large increases in average monthly completeness in
Category 4, with values increasing from 1.28-35.99% during eFORS to 16.77-72.59% during
NORS. Nonetheless, the completeness in outbreaks with unknown etiology remained low
in Category 4 and 5 even after reporting system transition. In addition to the completeness
trend, we observed a decrease in total outbreaks, Norovirus outbreaks, and outbreaks of
unknown etiology after the transition to NORS. With respect to outbreak trend, outbreak
counts for all pathogens decreased throughout the eFORS study period but remained stable
during NORS (Figure 3 and Supplementary Figure S1). The percent of change in outbreak
counts by periods differed for each pathogen (Table 2).

During eFORS, Norovirus had a 0.048% yearly increase while Clostridium, outbreaks
with unknown etiology, and outbreaks with multiple etiologies decreased by 0.048%,
0.096%, and 0.048% per year, respectively. During NORS, we found a decreased annual
trend for both Norovirus and outbreaks with unknown etiologies whereas outbreaks with
multiple etiologies increased by 0.072% per year. We found no significant trend for either
Salmonella during eFORS or Salmonella and Clostridium during NORS.

Category 1 maintained high completeness despite differing outbreak counts in eFORS
and NORS (Supplementary Figures S2 and S3). The effect of outbreak counts on complete-
ness differed by pathogen. We observed a decreasing trend in completeness as outbreak
counts increased for outbreaks with unknown etiology. Except for Category 1, completeness
was relatively higher in NORS than in eFORS (Supplementary Figure S2). The highest
monthly outbreak counts occurred in eFORS for all pathogens, outbreak with unknown
etiology, outbreak with multiple etiology, Norovirus, and Clostridium.

Table 2. Monthly outbreak counts estimation by pathogen types (related to fitted curves in Supple-
mentary Figure S1). Results include the number of outbreaks at the time of system change, which
is January 2009, and the yearly percentage change in eFORS and NORS study periods (with 95%
confidence interval). LCI is the lower bound of the 95% confidence interval and UCI is the upper
bound of the 95% confidence interval.

Yearly % Change (eFORS) Monthly Outbreaks Jan’09 Yearly % Change (NORS)
Group Estimate LCI ucCI Estimate LCI ucCI Estimate LCI UucCI
All pathogens —0.048 ** —0.060 —0.036 75.25 71.27 79.45 —0.0024 —0.012 0.012
Norovirus 0.048 ** 0.024 0.060 30.01 26.47 34.01 —0.036 ** —0.06 —0.012
Salmonella —0.012 —0.036 0.000 9.96 8.82 11.24 0.012 0.000 0.036
Clostridium —0.048 ** —-0.072 —0.024 3.18 2.76 3.64 —0.0036 —0.024 0.024
Unknown ~0.096™ 0108  —0.084 2192 20.36 2361 —0036*  —0.048  —0.024
Etiology
Multiple
. —0.048 ** —0.072 —0.012 247 2.07 2.95 0.072 ** 0.036 0.096
Etiology t

Estimation with ** represents p-value < 0.001. + Multiple etiology represents outbreaks with two or more confirmed
or suspected etiology. Bacterial and certain viral genes are italicized due to scientific nomenclature.

We found that the monthly completeness of Category 1 and 2 reached over 60% for
all pathogen groups when transitioning from eFORS to NORS (Table 3). We also found
outbreak counts have limited association with completeness, with significant associations
in Category 1 and 2. Outbreak counts were negatively associated with the average com-
pleteness of outbreaks with unknown etiology yet positively associated with outbreaks of
multiple etiology. Furthermore, we found the greatest improvement in variable complete-
ness for Category 2 and 3 during eFORS and Category 4 and 5 during NORS. For example,
the monthly completeness for all outbreaks increased faster in NORS than in eFORS for
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Category 4 (0.197% in eFORS vs. 0.328% in NORS) and Category 5 (0.031% in eFORS vs.
0.396% in NORS), while monthly completeness increased faster in eFORS for Category 2
(0.160% in eFORS vs. 0.036% in NORS) and Category 3 (0.304% in eFORS vs. 0.078% in
NORS).
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Figure 3. Shared-axis, multi-panel, stacked time series plots for monthly counts and average monthly
completeness of foodborne outbreaks for all pathogens and by five contaminant subgroups as
reported by the National Outbreak Reporting System (NORS) in 1998-2019. Each panel provides
monthly counts of outbreaks (grey bars, left vertical axis) with superimposed time-series line plots
reporting average monthly completeness (right vertical axis). We calculated monthly completeness
as the average completeness of all outbreaks per month (as defined by illness onset date) for each
completeness category (represented by colored lines from yellow (least complete variables) to red
(most complete variables)). We report study months from January 1998 (1) through December 2019
(264).



Int. |. Environ. Res. Public Health 2022, 19, 2898 13 of 19

Table 3. Estimated monthly change in completeness effect by outbreak counts and system type for
each pathogen groups and Category (related to Supplementary Figures S2 and S3).

Estimated % Completeness at Estimated Effect Associated Estimated % Completeness Estimated % Completeness
Category the Point of System Changing with Outbreak Counts Change in eFORS Time Change in NORS Time
Estimate Std. Error Estimate Std. Error Estimate Std.Error Estimate Std. Error
All Pathogens

1 97.943 ** 0.161 —0.017 * 0.005 —0.002 0.002 0.001 0.002
2 87.826 ** 0.489 —0.080 ** 0.016 0.160 ** 0.006 0.036 ** 0.006
3 67.491 ** 0.531 —0.228 ** 0.017 0.304 ** 0.007 0.078 ** 0.007
4 26.317 ** 0.781 —0.142 ** 0.026 0.197 ** 0.01 0.328 ** 0.01

5 5.459 ** 0.499 —0.038 0.016 0.031 ** 0.006 0.396 ** 0.006

Norovirus
1 97.913 ** 0.276 0.033 ** 0.007 0.005 0.003 —0.009 ** 0.003
2 87.420 ** 1.13 0.052 0.029 0.155 ** 0.011 0.025 * 0.011
3 67.965 ** 1.098 —0.058 * 0.028 0.339 ** 0.011 0.072 ** 0.011
4 22.537 ** 1.9 0.039 0.049 0.219 ** 0.019 0.273 ** 0.019
5 3.493* 1.114 0.028 0.029 0.034 * 0.011 0.383 ** 0.011
Salmonella
1 97.946 ** 0.388 —0.035 0.027 0.003 0.004 —0.007 0.004
2 80.611 ** 1.229 —0.014 0.084 0.138 ** 0.013 0.045 ** 0.013
3 61.927 ** 1.263 —0.139 0.086 0.254 ** 0.014 0.068 ** 0.014
4 21.740 ** 1.609 —0.188 0.11 0.150 ** 0.017 0.331 ** 0.018
5 9.286 ** 1.253 —0.071 0.086 0.021 0.014 0.432 ** 0.014
Clostridium
1 97.777 ** 0.537 0.231* 0.111 0.002 0.006 0.001 0.006
2 95.423 ** 1.413 —0.245 0.292 0.190 ** 0.017 —0.011 0.016
3 73.487 ** 1.536 0.057 0.317 0.347 ** 0.018 0.066 ** 0.017
4 31.267 ** 2.325 —0.584 0.48 0.212 ** 0.027 0.417 ** 0.026
5 0.335 1.465 0.479 0.303 0.028 0.017 0.445 ** 0.016
Unknown Etiology
1 96.679 ** 0.45 —0.092 ** 0.017 —0.048 ** 0.006 0.029 ** 0.005
2 85.505 ** 0.919 —0.088 * 0.034 0.160 ** 0.013 0.068 ** 0.009
3 55.788 ** 1.119 0.076 0.042 0.368 ** 0.016 0.085 ** 0.011
4 18.537 ** 1.82 0.12 0.068 0.225 ** 0.026 0.249 ** 0.018
5 3.826 ** 0.914 0.044 0.034 0.060 ** 0.013 0.297 ** 0.009
Multiple Etiology

1 97.870 ** 0.501 0.270 * 0.101 0.002 0.007 —0.012 0.006
2 88.028 ** 1.940 1.189 * 0.391 0.138 ** 0.026 —0.041 0.025
3 71.680 ** 1.775 —0.580 0.358 0.335 ** 0.024 0.049 * 0.023
4 22.670 ** 2.225 —0.776 0.448 0.168 ** 0.030 0.380 ** 0.028
5 1.809 1.459 0.222 0.294 0.022 0.020 0.496 ** 0.019

Estimation with ** represents p-value <0.001 and * represents p-value < 0.05. Bacterial and certain viral genes are
italicized due to scientific nomenclature.

The results of harmonic regression models (Supplementary Table S3 and Supplemen-
tary Figure S4) showed no seasonality in completeness across all categories for all outbreaks.
Yet, we detected seasonality for Norovirus in Category 1 and 4 and for outbreaks of un-
known etiology in Category 4 (p < 0.037). These seasonal patterns in completeness were
detected only during the NORS study period.
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4. Discussion

In this study, we described and evaluated variable completeness by pathogens and
pathogen groups over time. Our findings provide essential information on data availability
and suitability imperative for modelers performing time series analyses. Temporal patterns
of this completeness metric illustrate substantial improvements in foodborne outbreak
surveillance reporting over time after integrating surveillance system reporting under
NORS. Furthermore, the annual completeness showed a steady trend in increasing com-
pleteness that exceeded 60% after 2009. We also observed improvements in completeness
across variables, especially for those that contain specific characteristics rarely reported at
the beginning of the reported period.

The examination of average completeness by variable category is useful in assist-
ing researchers with variable extraction and planning data analysis when using national
outbreak surveillance data. Our findings suggest that NORS data are well equipped to
study outbreaks’ general characteristics, such as outbreak location, eaten and preparation
location, symptoms, and hospitalization information, as those variables had >70% average
completeness (Supplementary Table 52). However, investigation and reporting could be
improved for variables related to etiology and food products. Pathogen factors, such as a
long incubation period, latent symptom onset, and delayed diagnosis, could potentially
complicate outbreak investigations and the identification of pathogen etiology and contam-
inated food products. Our findings of low completeness, especially for pathogen etiology
and food product variables likely highlight these challenges. Future research should focus
on studying completeness patterns by food-related variables. Moreover, we noticed there
were outbreaks where the completeness for certain related variables varied substantially
(e.g., when variables should have been collected or missed simultaneously in the same
outbreak report). For example, NORS had high completeness for the incubation period
time unit but relatively low completeness for the incubation time itself (280% vs. < 70%,
respectively; Supplementary Table S2). Similarly, NORS had high completeness for the
total number of cases and total primary cases, but low completeness for total secondary
cases (~100% vs. 20.88%, respectively; Supplementary Table S2). Further improvements
and validations could be performed by triangulating various data sources, say surveillance
and hospitalization records, allowing detection of detailed discrepancies [29].

By examining pathogen completeness over time, data users can identify pathogens
and pathogen groups with less missingness. We found that Vibrio, Scombroid toxin, and
Clostridium had the highest average annual completeness. We also found that as the total
outbreak counts of individual pathogen went down, the fluctuation of the corresponding
annual completeness went up. This fluctuation is caused by the insufficient outbreak size.
Therefore, we used the five most reported outbreak types for trend analysis. Among the
five most reported outbreak types (outbreak of unknown etiology, Norovirus, Salmonella,
Clostridium, and outbreak of multiple etiologies), Clostridium had the highest completeness
followed by multiple etiologies, Norovirus, Salmonella, and unknown etiologies. It is very
likely that data completeness is influenced by disease dynamics and diagnostic modalities
implemented in the investigation protocols. Unfortunately, the metadata for both systems
has very limited information on reporting capacity or testing rigor from the state and local
facilities investigating each outbreak. No variables in eFORS and NORS describe the quality
of reported records. For outbreaks of unknown etiology, the missing of etiological-related
information will lower its average completeness. This could explain why the outbreak
counts for unknown etiology decreased over time as the system improving. Moreover, after
transition to NORS, data cleaning is more rigorous and NORS is more likely to distinguish
the different modes of transmission (e.g., person to person, waterborne, foodborne, etc.) [30].
For example, a portion of Norovirus outbreaks, previously reported as foodborne, now
is classified as non-foodborne outbreak [30]. In addition, we noticed an increasing trend
in outbreak counts for outbreaks with multiple etiologies. Prior studies have indicated
that outbreaks of multiple etiologies were more likely caused by the improper handle
or environmental cross-contamination in cultured farms and dairy beef farms [31,32].
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However, the reason for increased multiple etiology outbreaks in recent years remains
unknown.

In prior research, we found variations in seasonal peak timing across pathogens
using harmonic regression modeling [33-35]. Such fluctuations could occur for a variety
of social and environmental reasons [36-39]. Studies investigating temporal variations
or seasonal patterns of illness depend on sufficient sample size for regression analyses
to ensure proper statistical power [40]. The ability to detect pathogen’s seasonality is
influenced by data aggregation and completeness [35,40]. Thus, the proposed metrics of
completeness could be used as a tool for planning statistical analysis and determining
needed statistical power when investigating foodborne illness or outbreak seasonality with
surveillance data. Furthermore, we detected seasonality in the completeness of records for
Norovirus and outbreaks of unknown etiology during the NORS period. The capability of
identifying completeness seasonality in NORS might be indicative to the maturity of the
surveillance system.

Our study was subject to several limitations and some of the limitations are due to
the constraints of the surveillance reporting system. First, foodborne outbreak reporting
was based on local government reporting standards and regulations, which may contribute
to state-wide differences in categorizing foodborne and waterborne outbreaks [30]. These
differences in reporting may lead to missing information related to outbreak contamination
sources. Incomplete records could potentially occur when optional variables were not
included in local investigation. Local variations in reporting practices could also affect
outbreak grouping. For instance, some states may regard a multi-location outbreak as one
combined outbreak, while other states report as several distinct outbreaks [41]. Some states
report outbreaks using the broad CDC definition (the number of cases >2 per outbreak)
while other states only report notifiable outbreaks [42,43]. When reporting practices depend
on an outbreak size, reporting small outbreaks could better identify the sources of sporadic
illnesses and disease patterns [44]. The inconsistency among outbreak definitions across
states might prevent early outbreak detection and forecasting [45]. Outbreak, as a disease
measurement term, needs to be more clearly and uniformly defined to better capture
disease characteristics and detect disease patterns [45]. Second, as NORS is a dynamic
system, the public health agencies can submit new or revise previous reports after new
information becomes available [46]. Accordingly, the completeness results could vary
depending on the time of data requests.

Besides limitations due to the surveillance system, there are also limitations subjecting
to our study design. For example, eFORS and NORS have a different variable definition
and structure: eFORS contained 6 age groups whereas NORS contained 8 age groups. To
evaluate the completeness between two periods the age-related variable, we had to use
the average completeness across all age groups and thus reduced data granularity. During
our data cleaning process, we excluded variables that were related to contact information,
optional comments, and clarification responses due to its low relevance to study objectives.
We further collapsed variables that were related to multiple-choice questions into single
responses. Due to the vast number of variables and differences in variable structures,
we were unable to examine all variables as their original structure presented in multiple
surveillance reports. Lastly, we studied completeness at the outbreak event level. We did
not investigate completeness for outbreak case information specifically because of reporting
practices for public data. As case-based reporting is time consuming and labor intensive,
public health agencies must balance cost-effectiveness and reporting accuracy.

For decades, the government has collected foodborne disease outbreak information to
investigate the occurrence, prevent the outbreak, and reduce the severity of foodborne ill-
nesses. The United States Public Health Service and Centers for Disease Control (CDC) have
been collecting and publishing periodate reports since the 1990’s [47]. The launch of eFORS
provided valuable outbreak information, which was further enhanced by NORS [42,47].
The CDC has been improving the surveillance system through multiple actions. In October
1999, the CDC simplified its outbreak reporting form [48]. As a result, we observed an
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increase in average annual completeness in 1999-2000. As the laboratory and epidemiology
methods have been improving over time, the completeness and level of details should
improve in outbreak data [47,49]. Yet, unknown etiology and missing information are still
present in the current surveillance system, which can undermine statistical power [50]. A
good surveillance system improves outbreak information, reduces medical costs, better
informs policies, and improves public health accountability [51]. As a passive surveillance
system, the number of outbreaks reported by NORS are likely underreported. While active
surveillance can provide more accurate and timely information, this type of surveillance
system is expensive to maintain. To curtail missingness in outbreak surveillance systems,
health practitioners and data curators could:

1.  Create a Standard Operating Procedure (SOP) to identify must-have variables, vari-
ables that are related to one another, and less-relevant variables. This SOP can assist in
the streamlining of data cleaning procedures to identify true missingness, zero values,
and information that is not applicable for an outbreak. Moreover, SOP can be used as
a guideline to create NORS checkpoints to avoid missing information between related
variables.

2. Consider removing variables with consistently low completeness or conduct thorough
investigation into the obstacles preventing adequate reporting these variables.

3. Publicly report documentation explaining reasons for incomplete data; NORS has a
rigorous data cleaning process that includes 30+ checkpoints for foodborne outbreaks.
Outbreak data are reported as missing until all issues are solved [52]. Although
incomplete outbreak reports cannot provide all information, these checkpoints and
their completion may still be useful for researchers to study.

4. In accordance with the Population Health Surveillance Theory, perform periodic
system audits to evaluate data reporting procedure and data quality at the local
level [53]. In addition, these periodic system audits can be used as an assessment
to evaluate both workforce resource and laboratory testing capacities. For any local
agency with low audit scores, the CDC can provide training materials, or relocate
necessary recourses.

5. Conclusions

Information on secondary mode of illness transmission and specimen testing types
had the lowest completeness in the assessed public surveillance data, yet such information
could be of value to better understand the contribution of food products to outbreak
etiology. Understanding completeness is essential in estimating statistical power and
identifying the effective length of disease surveillance time series to examine disease trends
and characteristics at the population level. Our completeness analysis is the first attempt
to examine the missingness in publicly available national outbreak surveillance systems.
Future work can assess completeness by variables or outbreak types across locations to
better improve the outbreak information at the local level within NORS. The continuous
improvement of surveillance records enables researchers to better utilize surveillance data
and to model diseases with greater reliability.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijerph19052898 /s1, Supplementary Table S1: Variable index in
NORS with data cleaning procedure, Table S2: Crude variable completeness estimates across all
outbreaks and pathogens, Table S3: Summary of seasonality and % completeness change in eFORS
and NORS system by categories and pathogen groups, Supplementary Figure S1: The number of
foodborne outbreaks per month reported in NORS from 1998 to 2019 with fitted negative binomial
regression, Figures 52 and S3: outbreak count per month in relation to average completeness in each
category, Figures 54 and S5: seasonality analysis for overall data and per pathogen group in each
category.
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