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Internal computational models of physical bodies are fundamental to the abil-
ity of robots and animals alike to plan and control their actions. These ‘“self-
models” allow robots to consider outcomes of multiple possible future actions,
without trying them out in physical reality. Recent progress in fully data-
driven self-modeling has enabled machines to learn their own forward Kkine-
matics directly from task-agnostic interaction data. However, forward-kinema-
tics models can only predict limited aspects of the morphology, such as the po-
sition of end effectors or velocity of joints and masses. A key challenge is to
model the entire morphology and kinematics, without prior knowledge of what
aspects of the morphology will be relevant to future tasks. Here, we propose
that instead of directly modeling forward-kinematics, a more useful form of
self-modeling is one that could answer space occupancy queries, conditioned
on the robot’s state. Such query-driven self models are continuous in the spa-
tial domain, memory efficient, fully differentiable and kinematic aware. In
physical experiments, we demonstrate how a visual self-model is accurate to
about one percent of the workspace, enabling the robot to perform various mo-
tion planning and control tasks. Visual self-modeling can also allow the robot
to detect, localize and recover from real-world damage, leading to improved

machine resiliency.


https://robot-morphology.cs.columbia.edu/

Main Text

Building computational self-models of robot bodies, or the ability of a robot to simulate its
physical self, is an essential requirement for robot motion planning and control. Similar to
humans and animals (/, 2), robots can use self-models to anticipate future outcomes of various
motion plans without explicitly trying them out in the physical world. The predictions via
self-models can be utilized in decision criteria of future actions. Importantly, a consistent self-
model, once acquired, can be re-purposed to many different of tasks, and thus can serve for
lifelong learning.

Most available robotic systems rely on dedicated physical simulators (3—8) for task plan-
ning and control. Yet, these simulators require extensive human effort to develop. In contrast,
recent progress in fully data-driven self-modeling has enabled machines to learn their forward
kinematics directly using task-agnostic interaction data.

Data driven forward-kinematics self-models typically need to know in advance what aspects
of the robot need to be modeled, such as the tilt angle of the robot (9), the position of end
effectors (10), the velocity of motor joints (/7), the mirror image of animatronic faces (/2),
or the contact locations as well as joint configurations of robot grippers (/3). The restricted
predictive scope of traditional data-driven self-models limits the general applicability of these
self-models to future, yet unknown, 3D spatial planning tasks. For example, a data-driven
self model focusing only on predicting the position of an end effector, may not be useful for
tasks involving operation in a crowded workspace, where full body collisions must be factored
into the planning. Making sure that the entire robot arm motion will be collision free is a
critical aspect for numerous safe robot operations such as object retrieval, trajectory planning
and human-robot interaction. Modeling the entire robot morphology and kinematics, without
prior knowledge of what aspects of the morphology are relevant to future tasks, has remained a
major challenge.

In this paper, we present a full-body visual self-modeling approach (Fig.1) which captures
the entire robot morphology and kinematics using a single implicit neural representation. This
implicit system is able to answer space occupancy queries, given the current state (pose) or
the possible future states of the robot. For example, the query-driven visual self-model can
answer queries as to whether a spatial position (z,y, z) will be occupied if the joints move to
some specified angles. Since both the spatial and robot state inputs are real values, our visual
self-model allow continuous queries in the domain of both control signals and spatial loca-

tions. Furthermore, the learning process only requires joint angles and sparse multi-view depth
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Fig. 1: Visual self-modeling robots. We equip the robot with the ability to model its entire
morphology and kinematics in 3D space only given joint angles, known as visual self-model.
With the visual self-model, the robot can perform variety of motion planning and control tasks
by simulating the potential interactions between itself and the 3D world. Our visual self-model
is continuous, memory efficient, differentiable and kinematic aware.

images, which enables generalizable and scalable data acquisition without human supervision.

Once learned, the responses from this single visual self-model to a series of queries can then
be used for a variety of 3D motion planning and control tasks, even though the self-model was
only trained with task-agnostic random motor movements. Because of our fully differentiable
parametrization, the robot can directly perform efficient parallel gradient-based optimization
on top of the self-model to search for the best plans in real time. We can also combine the
self-model in a plug-and-play manner with existing motion planners. Moreover, when the robot
sustains physical damage, such as broken motor or changed topology, our self-model can de-
tect, identify and recover from these changes. Since our self-model is inherently visual, it can
provide a real-time human-interpretable visualization of the robot’s internal belief of its current
3D morphology. This ability to sense pose-conditioned space occupancy is similar to our nat-

ural human ability to “see in our minds eye” (/4) whether our body could fit through a narrow



passage, without actually trying it out.

In the following sections, we begin by describing our main methods for constructing the
visual self-model. We follow up with describing ways in which the robot can re-use the learned
self-model in multiple downstream tasks. We then discuss the pipelines of damage detection,

recognition and recovery.

Implicit visual self-model Representation

Robots operate in a 3D world, and therefore being morphologically and kinematically aware in
3D space is essential for them to successfully interact with the physical environments as well as
adapt to potential changes in the field. Traditionally, robot engineers build a physical simulator
and integrate it with CAD models of the robot. However, designing a simulation environment is
not trivial. Accurate CAD models that reflect the real as-built robot geometry may not be easily
available, especially for robots that have been modified due to damage, adaptation, wear and
repair. This challenge will likely become more acute as the variety and complexity of robotic
systems continues to increase in the future, and especially as robots must operate with less
human supervision, maintenance, and oversight.

We therefore aim to learn the self-model of robots directly through task-agnostic data with
minimal human supervision or domain knowledge. Our goal is to learn a visual self-model
which can capture the entire body morphology and kinematics, without prior knowledge of the
body configurations such as joint placements, part geometry, motor axis and joint types. With
the visual self-model, a robot should be able to plan its future actions by rolling out the self-
model before executing any actions in the physical world. We can also visualize its final plan
from different viewing angles, because the model itself is three-dimensional.

There are two major challenges when designing a visual self-modeling process. First, we
need to carefully decide how to represent the 3D geometry of the robot body. Most existing 3D
representations are explicit, such as point cloud, tessellated triangle meshes, or voxelized occu-
pancy grids. However, such approaches come with several limitations. Point clouds, meshes,
and grids often consume large amounts of memory to store even a single geometry, let alone a
kinetic geometry dependent on input DoF. Point clouds also lose structural connectivity, while
voxel representations lose continuous resolutions. These limitations are amplified in kinematic
tasks, since the visual self-models are expected to be dependent on trajectories of multiple de-
grees of freedom of the robot.

The second challenge concerns the computational efficiency of leveraging the learned visual
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Fig. 2: Implicit visual self-model representation. (A) Real-world setup for data collection.
We fused sparse views from five depth cameras to capture the point cloud of the robot body.
As the robot arm randomly moved around, we recorded pairs of the robot joint angles and its
3D point cloud. See S1 Movie for real-time data collection. (B) We show the computational
diagram of our visual self-model. The coordinate network takes in the spatial coordinate and the
kinematic network extracts kinematic features from the input joint angles. We then concatenated
the spatial features and the kinematic features into a few layers of MLPs to output the zero-level
set SDF values. The implicit representation can be queried at arbitrary continuous 3D spatial
coordinates and different sets of joint angles.

self-model for downstream task planning. Once a visual self-model is formed, we hope that the
same model can be used for many tasks. In other words, the model must be task-agnostic. Fur-
thermore, real-time planning and control is critical for many robotic applications. Therefore,
the ideal representation should render the 3D model in a parallel and memory efficient manner
using GPU hardware. The model should also provide fast inference capability to solve common
inverse problems in robotics, such as inverse kinematics. Lastly, not every component of the
robot body weights equally in all tasks, so it should be possible to query different spatial com-
ponents of the visual self-model as needed. For example, the full 3D knowledge of the robot
base and 3D geometry of other arm components are not required when calculating the inverse
kinematic solution of a robot arm trying to reach a 3D object with its end effector.

We overcame the above challenges by proposing a state conditioned implicit visual self-
model that is continuous, memory efficient, differentiable, and kinematics aware. The key
idea is that the model does not simply predict future robot states explicitly; instead, it is able
to answer spatial and kinematic queries about the geometry of the robot under various future
states.

To construct a query-answering self-model, we leverage implicit neural representations to

model the 3D body of the robot as shown in Fig.2. Given a spatial query point coordinate



X < R? normalized based on scene boundary, and a robot joint state vector A € R” specifying
all the N joint angles, the visual self-model can be represented by a neural network to produce
the zero-level set Signed Distance Function (SDF) of the robot body at the given query point

X. Formally, the model can be expressed as:

SDF = {X e R*, A e RV|F(C(X), K(A))},

where C' is the coordinate neural network with several layers of MLPs to encode the spatial
coordinate features, K is the kinematic neural network with several layers of MLPs to encode
the robot kinematic features, and F’ is the last few layers of MLPs to fuse the features from
both the coordinate network C' and kinematic network K after concatenating their outputs to
produce the final SDF values conditioned on the queried spatial coordinates and current joint
angles. We omit the batch size here for simplicity. For nonlinear activation functions, we used
Sine functions to preserve the details on the 3D models (75).

We trained the network by formulating the problem as an Eikonal boundary value problem.
Instead of supervising the network with ground-truth SDF, similar to SIREN network (/5), we
directly used point clouds and surface normals obtained by fusing observations from sparse
RGB-D camera views as labels as indicated in Fig.2. In both simulation and real-world setup,
we used five RGB-D cameras to capture pairs of data for training, namely the joint angles and
the fused point cloud. During testing, the only available robot-related information to our visual
self-model is a set of joint angles. The detailed loss function is discussed in the Methods section.

Overall, our visual self-model is formed by several layers of MLPs that implicitly captures
the entire morphology and kinematics of the robot body. We implemented the network with
differentiable deep learning framework so that it can be easily deployed on GPUs with end-
to-end differentiable capabilities. Notably, though the entire self-model only consumes 1.1
MB memories to store its weights, our visual self-model can represent the 3D morphology of
the robot body with different kinds of joint angles at various continuous spatial locations. By
separating the kinematic feature encoder and coordinate feature encoder into two sub-networks,
each sub-network captures independent semantic meaning. As we will show next, this property

allows the self-model to learn rich kinematic features useful for downstream tasks.

3D Self-Aware Motion Planning

We aim to utilize the learned visual self-model in various motion planning tasks in 3D space. In

this section, we will present algorithm designs to show the use cases for three sample tasks (Fig.
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Fig. 3: 3D self-aware motion planning tasks. We present an overview of three different tasks.
Touch 3D sphere with any part of the robot body (Left) asks the robot to generate a set of target
joint angles such that some part of the robot body needs to be in contact with a randomly placed
target sphere. Touch a 3D sphere with end effector (Middle) requires the robot to generate a set
of target joint angles such that the robot needs to touch a randomly placed target sphere with
its end effector link. Touch a 3D sphere with end effector while avoiding obstacle (Right) tasks
the robot to propose an entire set of collision-free trajectories in the form of intermediate joint
angles to touch a randomly placed target sphere using its end effector. The three tasks gradually
becomes harder with more constraints.

3). However, our model is not limited by only those three tasks. Rather, we use them as repre-
sentative examples for demonstration purposes and we expect that the model can generalize to

other possible tasks.

* Touch a 3D sphere with any part of the robot body The goal of this task is to have the
robot to touch a 4cm diameter sphere using any part of its body. To solve this problem,
the robot needs to calculate inverse kinematics in the 3D space without constraints on

which specific body piece touches the target object.

* Touch a 3D sphere with end effector This task not only requires the robot to touch a
sphere with about diameter of 4cm, but it also asks the robot to touch the target object
with its end effector link. This is a harder task since the robot needs to solve inverse
kinematics in the 3D space with a particular link constraint. The solution space is quickly

reduced.

* Touch a 3D sphere with end effector, while Avoiding an Obstacle In this task, we ask
the robot to go beyond computing a target end state with or without link constraints. In-
stead, in order to succeed at this task, the robot needs to perform precise motion planning

in 3D to touch the final target while avoiding a large obstacle shown as red block in Fig.3.



Overall, the robot is tasked to propose an entire safe trajectory from its initial state to the
target state. During the execution of the proposed trajectory, the robot will fail the task if

any part of the robot body collides with the obstacle.

To solve the these motion planning tasks, one immediate thought is to obtain the entire
robot body meshes and load them into existing robot simulators. This can be done by traversing
all possible spatial points under certain precision and different sets of joint angles through the
implicit neural representation, and rendering the entire 3D mesh of the robot body with post-
processing algorithms (/6). This usage of the visual self-model seems to be a straightforward
solution to bypasses the need to construct robot kinematic and geometric models such as CAD
and URDF files. However, in practice, we found that constantly loading new robot meshes
and destroying old robot meshes in commonly available robot simulators costed a significant
amount of time. This limits the possibility of applying this method for real-time planning and
control.

We propose to frame the first two tasks as constrained optimization problems by leveraging
the differentiability of the visual self-model as well as its capability of answering partial queries
on spatial coordinates. Specifically, for the first task, we initialize thousands sets of joint angles.
We then sample P points uniformly on the surface of the target object. Since the output of the
visual self-model will be zero when the queried spatial point is on the surface, the overall
objective is to find the set of joint angles which can minimize the total sum of output values
across all the sampled points on the target object. By freezing the weights of the learned visual
self-model, we can perform gradient descent from the output surface predictions with respect
to the input joint angles, under the constraint that the motor angles has to be within the range of
[—7, 7).

Formally, the constrained optimization problem can be expressed as:
A* =minE e [SmF(C(T?), K(A%)] st.—7m <A< i=1,23/4

where T € RP*3 is the sampled points on the target object, i is the motor index, and
b =1,2,..., B is the index of each sampled set of joint angles with the maximum value B to
be the batch size on a single GPU. Since the visual self-model runs parallelly on a GPU with
small consumption of memories, the entire optimization process can produce accurate solutions
within a short period of time. With more GPUs, the process can be further sped up.

To solve the second task, we need additional information about where the end effector lo-

cates relative to the entire robot body. Since the current visual self-model was only trained to
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capture the overall body geometries, similar to other works in self modeling, we can supervise
the visual self-model to predict the end effector location at the same time. The good news is
that our visual self-model already has a specialized sub-network that implicitly captures the
robot kinematics. Therefore, we can directly use the pretrained weights of the kinematic sub-
network, and train only two nonlinear layers of MLPs E attached to the end of the sub-network
with little additional efforts. In fact, as we will show in the experiment section, our visual
self-model provides a strong semantic proxy to pre-train the kinematic sub-network, leading to
superior performance than training a specialized network to predict the end effector position
from scratch. Without our decomposition formulation of kinematic sub-network, the acquired
kinematics information may not be easily distilled as an independent feature for future use.
Similar to the first task, we now can formalize the solution of the second task by adding
another objective function to make sure the resulted end effector reaches the target object. The

overall optimization problem can be formalized as follows:

A* =minE 4o [Srodep E(K (A%)) 4+ AsprF (C(TP), K(A”))] st. — 71 < A < w0 = 1,2,3,4

As discussed above, the objective function includes two terms weighted by hyperparameters
Age and Agpg. The first term ensures the end effector touches the target object and the second
term encourages the robot body to touch the target object. We found that adding a small A\gpg
consistently achieves better results.

Regarding the third task, our visual self-model can directly work with existing motion plan-
ning algorithms with minimal changes. There have been great success (/7) on motion planning
algorithms to solve obstacle avoidance problem in high-dimensional state and action spaces.
We thus combine our visual self-model with the existing algorithms in a plug-and-play manner.
Specifically, we use RRT* (/8) as our backbone algorithm due to its popularity, probabilistic
completeness and computational efficiency. Generally speaking, there are two major compo-
nents in RRT* that require physical inference with robot bodies. The first component is to
calculate the goal state, and the second component is to check whether a collision will happen
given a particular state of the robot. With these two components, various planning algorithms
can narrow the search space to the final solution without having to explicitly query robot status
again.

Traditionally, these two components require a dedicated robot simulator and pre-defined

robot bodies. With our visual self-model, we can reach the final solution by simply performing



fast parallel inference on the learned model. Specifically, the goal state can be obtained by
running the same optimization procedure as in the second task. For collision detection, we can
pass uniformly sampled points on the obstacle surface as well as the given set of joint angles
Aguery through our visual self-model as shown below. If the total sum of the output values
over all the sampled points is equal to or below a small threshold 7 , then there is a collision.

Otherwise, the robot will not collide with the obstacle object.

True, Yo F(C(0"), K (Aguery)) < 7

Collision = ;
{False, Yo F(C(O"), K(Agquery)) > T.

Damage Identification and Recovery

One major promise of machines that can model or identify themselves is the capability of rec-
ognizing and inspecting damage or changes, and then quickly adapting to these changes. In this
section, we present our method to identify and recover from damage using the learned visual
self-model.

Our approach involves three steps. The robot first detects a damage or change on its body
compared to its original (intact) geometry. Then the robot can identify which specific type of
damage or change is happening. Finally, the robot will gather new information about itself with
limited data and computational resources to quickly adapt its self-model to the new changes.

Overall, our approach introduces several significant advantages over previous methods.
First, being able to recognize the specific type of damage or change enables the robot to provide
additional feedback information. Previous works have shown that it was possible to detect a
damage. However, they were not able to provide additional information to identify the source
of the change or which specific type of damage has happened. This information is extremely
helpful when the damage requires hardware repair. Instead of relying on a domain expert to per-
form a series of inspections, our method can automatically generate information about specific
damage such as “the second joint motor is broken”.

Another advantage is that our approach performs modeling in the 3D visual world. This
means that we can visualize and render the internal belief of the visual self-model in a straight-
forward and interactive fashion. As we will show in the results, one can immediately tell which
section of the internal belief of the robot body does not match the real-world counterpart. We
can further tell visually if the internal belief has been updated to match the new changes after

learning from new observations.
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In the following sections, we begin by describing the specific algorithms, and then we follow
with real-world results in the next section. In the first step, we measure the current prediction
error and the original prediction error. The current prediction error is computed by comparing
the internal belief expressed by the learned visual self-model with the current observed 3D mesh
of the robot, while the original prediction error is computed by comparing the same internal
belief with the previously observed 3D robot body. Both cases share the same joint conditions.
By comparing these two prediction errors, a large gap can inform us about a significant change
or damage to the robot body.

In the second step, we aim to identify the specific type of damage happening on the robot.
Based on the robot arm platform we are experimenting with, we assume two types of potential
changes: (1) broken motor and (2) changed topology.

To reveal which specific type of the current damage is, our key idea is to solve the inverse
problem with the learned visual self-model. Concretely, based on a single current observation
of the robot body, we infer the best joint angles that the robot should have executed to result to
the current 3D observation. This is a very challenging problem because an ideal joint angle set
needs to give accurate 3D reconstruction of the entire robot body. Relying on previous gradient-
based optimization algorithm is inefficient since the final gradient computation requires the sum
over all the sampled points on the whole robot body. This process takes a large amount of
memory and computation resources to perform a single gradient step due to the large volume
of the robot mesh. Instead, we propose to use random search to locate the best possible joint
angles. The simple random search algorithm works very well in this case. It does not require
the accumulation of any gradient information so that larger batch of queries can fit on a single
forward pass of visual self-model.

With the inferred joint angles, we can quantify the damage by comparing them with the
actual input motor commands. If a specific inferred joint angle is always different from the
actual input and that particular inferred angle always stays as a constant value or some other
random values, then we can tell that the corresponding motor is broken. When all the inferred
joint angles match closely to the actual input commands, the wrong belief of the 3D body then
comes from a topology change and all the motors function well. We leave the research where
both changes happen at the same time or more complex changes as future directions.

Finally, we also evaluate if our visual self-model can quickly recover from the changes by
adapting on several new observations. For this step, the main purpose is to demonstrate the re-

siliency of the model, rather than proposing a new algorithm for continual adaption. Therefore,
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we follow common approaches by collecting a few more 3D observations after the changes to
keep training the network for several epochs. We then check if the new visual self-model can
successfully update its internal belief to match the current robot body both quantitatively and

qualitatively.

Results

In this section, we aim to evaluate the performance of the learned visual self-model, demonstrate
the results of using the visual self-model in various motion planning tasks, and test the resiliency
of the learned model under real-world damages. To this end, in the first two subsections, we
present quantitative and qualitative evaluations as well as baseline comparisons in simulation.
For all three subsections, we also demonstrate the fidelity of directly learning and using the

visual self-model in the real-world setup.

Visual self-model Estimation

We used the WidowX 200 Robot Arm as our experimental platform both in simulation and real-
world. In order to obtain the ground truth point cloud data, we mounted five RealSense D435i1
RGB-D cameras around the robot as shown in Fig.2(A). Four cameras were around each side
of the robot to capture side views. One camera was on the top to capture the top-down view.
All cameras were calibrated. The depth images were first projected to point clouds which were
then fused into a single point cloud based on the camera extrinsic parameters. The final point
cloud was generated by clipping the scene with a pre-defined scene boundary.

During data collection, we randomly moved the robot arms to get pairs of joint values and
its corresponding point cloud. For each pair of data, the simulation needed less than 1 second
and the real-world collection took around 8 seconds. In total, we collected 10,000 data points
in simulation with PyBullet (6) and 7,888 data points in the physical setup. We partitioned the
data into training set (90%), validation set (5%) and testing set (5%).

To evaluate the prediction accuracy, we ran several forward passes on the learned visual
self-model to obtain the whole body mesh of the robot on the testing set. On a single GPU
(NVIDIA RTX 2080Ti), this process took about 2.4 seconds. Following previous works on
implicit neural representations of 3D models (15, 19), we calculated the Chamfer-L.1 distance
between the predicted mesh and the ground truth mesh as our metric. All units in our paper are

1n meter.
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Simulation: Chamfer-L1 Real Robot: Chamfer-L1
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Fig. 4: visual self-model predictions. (A) Quantitative evaluations of our visual self-model
predictions in both simulated and noisy real-world environments. Our visual self-model out-
performs nearest neighbor and random baselines suggesting that the visual self-model learns a
generalizable representation of the robot morphology beyond the training samples. (B) With
simulated training data, our visual self-model can produce high quality 3D body predictions
given a diverse set of novel joint angles. (C) When the training data becomes highly noisy in
the real world due to imprecise depth information, noisy camera calibrations and super sparse
view points, our visual self-model can still accurately match the ground truth to reflect the over-
all robot body morphology and kinematics. See S3 Movie and S4 Movie for more examples.
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In simulation, the point cloud fusion was nearly perfect due to noiseless depth image and
exact camera calibrations. In the real-world experiments, we noticed that the point cloud fusion
was very noisy due to imprecise depth information introduced by internal sensor errors, noisy
camera calibrations, and importantly, very sparse view points. We did not increase the number
of views since the current ground truth scan can already reflect the overall pose of the robot,
so we tested the fidelity of our algorithm directly on the noisy real-world data in exchange of
adding more resources and time cost. The gap of the ground truth data quality between the
simulation and real world suggests that the final results in the real-world setup can be greatly
improved with better future 3D scanning techniques.

Fig.4 (B) visualizes pairs of predicted meshes and the ground truth meshes. In both simu-
lation and real-world cases, our learned visual self-model produced accurate estimations of the
robot morphology and kinematics, given only unseen joint angles as input. We also compared
our algorithm with a random search baseline and a nearest neighbor baseline. For the random
search, we randomly selected a robot mesh from the training set as the prediction. For the
nearest neighbor baseline, we compared the testing joint angles with all the joint angles in the
training set using L2 distance metric, and then used the robot mesh corresponding to the closest
joint angles as the final prediction.

We presented the quantitative results in Fig.4 (A). Our method outperforms both baselines
suggesting that the our visual self-model learns the generalizable correspondence between the
joint angles and the robot morphology as well as kinematics rather than memorizing the training
set distribution.

In addition to the predictions on individual set of joint angles, we also visualize the predic-
tions over joint angle trajectories by linearly interpolating between sets of starting joint angles
and sets of target joint angles. Both the starting and target joint angles are randomly sampled.
As shown in Fig.5, our visual self-model can generate smooth interpolations of robot mor-
phologies between small changes of joint angles. As we will show next, this property allows

our visual self-model to generate accurate trajectories for downstream motion planning tasks.

3D Self-Aware Motion Planning

In this subsection, we aim to evaluate the performance of using our visual self-model and 3D
Self-Aware motion planning algorithms for three representative downstream tasks: teach a 3D
sphere with any part of the robot body, touch a 3D sphere with end effector and touch a 3D

sphere with end effector while avoiding obstacle. Detailed illustrations of the tasks and algo-
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Fig. 5: Interpolation between joint angles. We demonstrate that our learned visual self-
model can smoothly interpolate between different joint angles. (A) shows the results trained
in simulation and (B) shows the results trained on real-world data. See S5 Movie for more

examples.

rithms have been discussed above. For all three tasks, we present qualitative visualizations of
our solutions obtained through the visual self-model in the real-world system in Fig.6. We then
introduce our quantitative evaluation results in the simulation setup.

For the “Touch a 3D sphere with any part of the body” task, our evaluation metric measures
the Euclidean distance of the closest points between the robot surface and the target object
surface. We sampled 100 tasks where the target sphere is placed at different 3D locations
within the reachable space of the robot. If the robot was already in contact with the target

sphere at initialization, we discarded that task and re-sampled another task. Our results are
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Fig. 6: 3D self-aware motion planning results. (A) For each of the three tasks, we show the
real-world demos by executing the proposed plans from our visual self-model. See S6 Movie
for more examples. (B) Our visual self-model outperformed all the baselines by a large margin.
Overall, our visual self-model can produce accurate solutions for both tasks. (C) We found that
our visual self-model enables the kinematic network to gain better generalization performance
on downstream tasks than a plain kinematic self-model trained from scratch.
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shown in Fig.6(B). We compared our visual self-model with several other baselines. To reflect
the task difficulty, we first measured the initial distance between the robot surface body at its
home location and all sampled target sphere surfaces. We also compared with a random trial
baseline where the only input was also the joint angles, similarly to our visual self-model. In this
case, the robot randomly selected a set of joint angles as its final solution. This baseline gave
even worse performance than initial distance indicating that the robot needs to perform careful
inverse kinematics calculation with considerations of its entire morphology and kinematics.
Overall, our method produces much more accurate solutions. Furthermore, our method was
also time efficient during the search stage. Each solution took 2.92 seconds on average on a
single GPU after 500 optimization iterations.

For the “Touch a 3D sphere with end effector task™, our evaluation metric measures the
Euclidean distance between the end effector link and the closest point on the target sphere
surface. We sampled 100 tasks and made sure that the robot was not in contact with the target
sphere at its home configuration. Our results are shown in Fig.6(B). Similar to the first task, we
compared our approach with the initial distance and random trail baselines. Both baselines were
poor at this task with about 36 cm to 37 cm errors. This is even worse than the first task because
the presented task requires more accurate solutions to consider both the 3D body geometry and
the end effector position.

We have hypothesized that our visual self-model encourages strong semantic knowledge of
robot kinematics in the kinematic sub-network. To verify this hypothesize, we re-used the pre-
trained weights of the kinematic sub-network, and appended two nonlinear layers of MLPs to
perform further training only on the newly added layers, in order to regress the end effector link
position. The quantity of the data and the strategy of data splits followed the same definition
with our original visual self-model. The test error was around 0.5cm. We also trained a network
with the exact same architecture without pre-trained weights from our visual self-model to
predict the end effector position. The test error of this model was 1.3cm which was nearly
three times higher. Moreover, when applying these two models separately with our motion
planning pipeline in Fig.6(B), our method reached nearly ten times higher accuracy than the
model trained from scratch denoted as “end-effector prediction” in the table. These results
suggest the importance of considering the kinematic structure of the robot together with its 3D
morphology. In terms of time efficiency, our method took 4.93 seconds on average on a single
GPU after 500 optimization iterations because of the fast parallel inference property.

Furthermore, we found that learning the kinematic structure, together with our visual self-

17



model to learn the entire robot morphology, brought stronger generalization capability to down-
stream tasks. In Fig.6(C), every dot represents a task sample. The y-axis indicates the error
measurements on the task of “touch a 3D sphere with end effector”, and the x-axis denotes
the closest distance between each sampled task and their nearest neighbor in the training set.
Larger values on the x-axis means that the sampled task is farther away from the training data
distribution. Therefore, the errors of the method with strong generalization capability should
not raise with the increased distance from the training data distribution. We thus also plotted
a linear regression model fit in the same figure. By comparing our visual self-model denoted
as red dots and the model trained from scratch indicated as blue dots, we can tell that our vi-
sual self-model obtains a much stronger generalization capability, while the model trained from
scratch will have a much higher error when the data is away from the training set.

Finally, we also provide results of using different values of A ;,x and Agpr in the objective
function. We found that Ap;,x = 0.8 and Aspr = 0.2 gives the best results. Therefore, adding a
small regularization with the original SDF objective can help achieve better performance in this
task.

For the “Touch a 3D sphere with end effector while avoiding obstacle” task, since the tar-
get joint states are generated and evaluated through the above task, we are now interested in
evaluating the capability of generating collision-free trajectory when combing existing motion
planners with our visual self-model as collision prediction function. Again, we sampled 100
tasks with initial states being contact free with the robot body. We placed a block 40cm above
the robot base as the obstacle object. The block has a dimension of 20cm x 20cm x 20cm.
In total, after running the motion planner with our visual self-model, we received 95 out of
100 trajectories which the model believes no collision will happen along each trajectory. We
then executed these trajectories and found that 92 out of the 95 trajectories successfully passed
around the obstacle towards the target object without any collision. This is 96.84% success rate
over all the output trajectories. Our method took 7.43 seconds on average to produce an entire
trajectory which includes the time for both inferring the target state as presented in the second
task and running the motion planners. This fast inference time enables our method to provide

real-time planning and control solutions.

Resiliency Tests

Being able to identify potential damages or changes to the robot body and quickly recover from

these changes is a critical capability of intelligent machines in the real world. We made two type
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of changes to the robot body as depicted by Fig.7(A). In the first change, we broke the second
motor to the end effector link by disconnecting the data transfer cable from the motor, which
results the corresponding joint always stayed at 90°. Motor broken can happen due to various
reasons such as loosing cables, over heating or hardware damage, but the common resulted
observation is that the motor does not respond to any commands. The second change applies to
the topology change of the end effector link. We attached a 3D-printed plastic stick to the end
effector so that the reachable space of the robot arm was extended. This is also a representative
change in practical applications when different tasks demand new attachments of tools to the
robot body or switch different grippers on a robot arm.

With our proposed algorithm and the learned visual self-model, we tested the applicability
of our method directly on these real world changes. Fig.8 presents several example results. The
first step is to detect the change. As shown in the first column, our algorithm detected a clear
gap between the original prediction errors and the current prediction errors. The obvious gaps
suggest that our visual self-model can capture the changes happening on the robot body.

The second step is to identify the specific type of change. In the first two examples, no
matter what the input commands were to the robot, the second last joint was always inferred
to be around 90° by solving the inverse problem with the newly observed morphology. This
consistent mismatch indicates that the second last motor was broken and the angle stayed at
90°. In the last two examples, even though we can detect that there were some changes from the
first step, the inferred joint angles were still well-aligned with the input commands. Following
our discussions earlier, our algorithm identified that there was a topology change on the robot
body. Our results suggest that our visual self-model can be used to effectively solve inverse
problems to help identify what body change or damage might have taken place. Importantly,
our approach only requires a single 3D observation of the current robot to produce the above
results to detect and further identify the damage.

In the final step, our goal is to evaluate whether our visual self-model can quickly recover
from the detected changes with only a few new observations. We first collected a few more
observations of the current robot through random movements. With the new observations, we
used them as the training data to continue the training of our existing visual self-model. Fig.8
plots the intermediate model performances on the test instance at every 10 epochs. We found
that our model required 50 examples to converge. Our visual self-model can quickly recover
with the new training data after 100 epochs which took on average 8.13 minutes in the real

world on a single GPU.
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(A) Motor broken Attached gripper
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%

B
® Original internal belief Updated belief Ground truth mesh
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(©)

Fig. 7: Potential change or damage on the robot and visualizations (A) Two types of poten-
tial changes. The left scenario is motor broken where the joint will always stay at 90°. In the
right scenario, we attached a 3D-printed plastic stick. (B) Motor broken: we can visualize the
robot’s original internal belief, its updated belief after continual learning and the current robot
morphology. (C) Extended robot link visualizations.
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Fig. 8: Resiliency Tests. In the first column, the learned visual self-model can detect the change
or damage through the large error gap. In the middle column, the learn3d visual self-model can
identify the specific type of change through the mismatch between the input joint values and
the inferred joint values. In the last column, we show how the visual self-model can update its
internal belief to match the current robot morphology.
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Another advantage of our visual self-model is its interpretability. In Fig.7(B), we can vi-
sualize the internal belief of the robot before and after the damage adaption. Through these
visualizations, we can inspect what the robot’s internal belief looks like and whether the robot
has successfully updated its belief to match the current robot morphology. These visualizations

can be queried in an online fashion with about 2.4 seconds on a single GPU.

Discussion

We have introduced Neural 3D Visual Self-Model and algorithm designs on how to leverage
it for 3D motion planning and control tasks. We have also constructed a pipeline to demon-
strate the resiliency of the visual self-model from damage detection, identification and recovery.
These innovations have equipped our visual self-model with several special properties that are
particularly useful in real-world robotic applications.

It is important to model the robot morphology in continuous 3D domain. We realized this
with the implicit representations of the 3D shape where the input spatial coordinates and joint
angles are both continuous. Thus, at inference time, one can query the 3D information of the
robot morphology and kinematics at arbitrary spatial location given any joint angles in a highly
memory efficient manner where the only storage cost is the weights of the network which is
1.1M. The queried resolution can also vary depending on the precision required for different
tasks. Since the entire 3D robot morphology is modelled, the task solutions provided by our
visual self-model can always consider relevant body part geometries when different parts of the
robot interact with the environment.

In order to better model the kinematic structure of the robot, learning the kinematic features
of the robot together with its 3D morphology can be very helpful. Due to the decoupling of the
spatial information distillation and kinematic information distillation, we can obtain a kinematic
branch that explicitly learns the robot’s kinematic structure. As we have shown in our ablation
study, the kinematic branch captured precise end effector position given input joint angles. In
fact, the kinematic branch trained together with the final SDF prediction produced more accurate
predictions than a specialized network trained from scratch for end effector predictions. This
suggests the importance of explicitly considering the entire robot morphology.

Furthermore, making the entire visual self-model differentiable can speed up the planning
process. Not only our entire visual self-model is differentiable, the model can also be queried
at body parts instead of the entire body. The differentiability of the model allows us to easily
perform back-propagation with respect to the input joint angles to solve inverse problems. Since
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the model can be queried with only subset of inputs that are of our current interests depending
on the task, we only need to spend computational resources and time on the task-relevant com-
ponents. Both benefits make the model super easy and efficient to work with. Lastly, our model
can be easily distributed on GPUs. With one single GPU, our experiments already achieved
highly efficient planning. With more computing resources, we expect that our model can reach
even faster inference speed.

There are several opportunities to improve our current approach in future works. Though
our visual self-model runs fast for downstream task planning, the training costs about a day
to obtain high quality results on a single GPU. For applications requiring faster convergence,
the training time could potentially be reduced by applying meta-learning (20) techniques to get
better initialization of the neural network weights with a subset of the training data. Another
possible solution is to employ an exploration policy (2/-24) to select informative data samples
over uniform random sampling, which may lower the total number of training data needed to
obtain faster training speed and higher data efficiency.

The second improvement can be noticed from the precision gap between the ground truth
data from the simulation environment and the ground truth data from the real-world scans.
As we have discussed in the Results section, this gap is caused by imprecise depth data, noisy
camera calibrations and super sparse camera views. The current real data quality may not handle
very fine-grained details. It is possible to improve the data quality with more dedicated depth
sensors or more camera views. However, the dedicated 3D scanners often cost ten to hundreds
of times more than our current solution. In our problem formulation, they also suffer from
much slower scanning speed, limited scanning range and human efforts to manually posit the
scanners around the robot. Another potential solution is to use more camera views. Therefore
one may think of using structure from motion and multi-view stereo framework (25, 26) to
reconstruct the 3D model of the robot. While these state-of-the-art techniques can provide
high quality 3D reconstructions, in our trail on a GPU workstation, they required dozens or
even hundreds of camera views and hours of processing time to obtain a single scan, which
makes it difficult to scale these approaches to our problem setup. As a comparison, our current
pipeline takes a few seconds to obtain a complete 3D mesh with only five camera views. The
ideal solution should be both fast and accurate without too much human supervision during the
scanning phase. Future progresses on hardware and software improvements along this direction
can substantially improve the real-world data quality.

Overall, our method opens up a new opportunity to learn a visual self-model of robots that
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is 3D-aware, continuous, memory efficient, differentiable and kinematics-aware for fast motion
planning and control, with potentials to scale to other robotic platforms and applications such

as locomotion and object interaction.

Materials and Methods

Our visual self-model is consisted of three neural network components: a coordinate network,
a kinematic network, and a network to fuse the coordinate features and kinematic features to
produce the final SDF. The coordinate network is a single layer of MLP, and the kinematic net-
work has four layers of MLPs. The output features from these two networks are concatenated
along the feature dimension. The concatenated features are then sent into another four layers of
MLPs to output the final SDF value. We used sine function as non-linear activations through-
out the entire network to obtain high resolution details and initialized the network weights to
preserve the distributions of the activations. We optimized the network for 2,000 epochs with
Adam (27) optimizer, and we implemented the entire network with PyTorch (28) and PyTorch
Lightning (29) framework. Our training used the batch size of 1.536 x 10° and the learning rate
of 5 x 1075 on a single NVIDIA RTX 2080 Ti GPU. All the input data were normalized to have
zero mean and a range of [—1, 1].

We followed previous work to minimize the following loss function when predicting the
SDF value as an Eikonal boundary value problem (/5):

Lsor = [ VD=1l dL+ [ [[H@D)|+0(VHD 0N T+ [ o) dr.
Q Qo Q\Qo

where I = (X, A) is the concatenation of the input coordinates and joint angles, H = F' o
(C,K) and ¥(I) = exp(—a - |[H(I)]). 2 represents the whole spatial domain and 2, denotes
the zero-level set. In total, there are three terms that sums up together to get the final loss. The
first term constraints the norm of the spatial gradients of the on-surface points to be one. The
second and the third term separately encourages the on-surface points and off-surface points to
follow the definition of zero-level SDF. The on-surface points should stay close to zero values
and ground truth normals, while the off-surface points should not have close to zero SDFs.
During training, we sampled the same number of points for both on-surface and off-surface
scenarios for every batch.
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