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Abstract The North Atlantic experiences basin-wide, multidecadal changes in sea surface temperature
(SST), and this SST variability is linked with regional-toontinental scale impacts. These impacts often
serve as motivation to study the underlying contributors to Atlantic Multidecadal Variability (AMV).
However, these impacts can be more than motivation—they can be tools to study the AMV itself.
Herein, we consider the positive correlation between Florida summertime rainfall and the AMV
(Enfield et al., 2001, https://doi.org/10.1029/ 2000GL012745). First, we show that this relationship is
apparent in updated observational data sets. Next, we demonstrate that large ensembles of climate models
are capable of producing the observed relationship between the AMV and Florida summertime raintall.
Finally, using large ensembles from multiple climate models, we show that historical forcing makes
madels more likely to capture the observed relationship in summer precipitation. Our findings

have implications for our understanding of the AMV and for precipitation projections in at-risk

South Florida.

Plain Language Summary Ocean temperatures in the North Atlantic fluctuate from decade to
decade. When the waters are warmer than average. we show that Florida gets more rain in late summer
—at the same time as the region's highest high tides. Planning for the impacts of climate change on Florida
requires that we understand the relationship between the temperature of the Atlantic Ocean and

Florida precipitation. We show that changes in atmospheric composition (e.g., from greenhouse gases,
pollution from industry, and ash and gases from volcanoes) make this connection more likely. So

long as Atlantic Ocean temperatures continue to rise, we expect wetter late summer months in Florida in
the future.

1. Introduction

Is there a role for climate impacts in causal studies of climate variability? Zhang et al.'s (2019) recent review
of the ocean'’s contribution to Atlantic Multidecadal Variability (AMV) suggests that we consider a more
“holistic” approach to evaluating potential causal mechanisms. Their review argues that decadal changes
in the Atlantic Meridional Overturning Circulation (AMOC) cause basin-wide shifts in North Atlantic sea
surface temperatures (SSTs; Zhanget al., 2019). This is a challenging causal case to make: Observational data
are limited, and climate models may not adequately represent the AMOC and its variability (Buckley &
Marshall, 2016; Danabasoglu et al.. 2014; Kim et al.. 2018). To augment limited direct observations, Zhang
et al. (2019) consider a wide variety of AMOC covariates, such as tropical subsurface temperature, sea sur-
face salinity, and heat fluxes. However. the relative contributions of ocean dynamics and external forcing
to the AMV are still a subject of vigorous debate (e.g., Vecchi et al., 2017). In this paper, we extend Zhang
et al's (2019) holistic approach to include local impacts and come to a parallel conclusion: There is a strong
role for external forcing in the AMV.

Many previous studies argue that multidecadal North Atlantic SST variability is primarily a direct
response to changes in external forcing (Bellomo et al., 2018; Bellucci et al,, 2017, Birkel et al, 2018;
Booth et al.. 2012: Mann et al., 2020: Murphy et al., 2017; Ottera et al., 2010; Undorf et al., 2018;
Watanabe & Tatebe, 2019). Climate models can produce the spatial pattern and timing ot the AMV with-
out the need for an interactive ocean (Clement et al., 2015; Murphy et al., 2017). The inclusion of green-
house gases, anthropogenic aerosols, and volcanic aerosols in model runs all improve the simulated
phasing of the AMV relative to observations (Bellomo ct al., 2018). Periods of higher volcanic activity

KLAVANS ET AL.

Loflo

IR "ol

LI

¢ vy ey poy

g

¥ s v | o |ZZ0CA 1/ LE e g | AR AT 0NN UL G | A Koy

saling b

A

SSERION | M0N0 ) SANEN Y 0 il Dl A OUEAON 30 AL Y I O R B S| S A



~u
AGU

AUVANCEID tARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2020GLO88361

are associated with both the early and middle twentieth century cool phases of the AMV (Birkel
et al., 2018). Anthropogenic aerosols are also implicated in the post-1960 cool phase in observations
and model experiments (Booth et al., 2012; Undort et al., 2018; Watanabe & Tatebe, 2019). Of course, this
line of thinking is not without criticism. For example, many of these studies rely on climate models, some
of which may respond too strongly to external forcing (Kim et al,, 2018; Zhang et al., 2013), The ability of
a model to accurately capture forced variability is also limited by uncertainties in our estimates of histor-
ical forcing (Schmidt et al., 2011).

If the forced signal is a major component of the AMV, it ought to be detectable in local AMV impacts. One
of the first AMV impacts to be documented is the in-phase relationship at decadal time scales between
North Atlantic SSTs and boreal summer Florida precipitation (Entield et al., 2001; Mestas-Niinez &
Enfield. 2003; Obeysekera et al., 2007; Ruprich-Robert et al., 2018). Florida summertime precipitation is
partitioned into an early and late rainy season by an intervening midsummer drought (Martinez et al., 2019).
These subseasonal features are caused by the balance between the movement of regional-scale atmospheric
circulation features and the extent of the Western Hemisphere Warm Pool (WHWP; Martinez et al., 2019;
Mestas-Nanez & Enfield, 2003). The onset of the early rainy season (May-June) is characterized by the
northward migration of the Intertropical Convergence Zone (ITCZ) and the expansion of the western edge
of the North Atlantic Subtropical High (NASH: Martinez et al., 2019). During the midsummer drought
(July-August) the NASH continues expanding westward limiting meisture transport into the region. In
the late rainy season (September-October), as the NASH recedes into the Atlantic and the ITCZ shifts
southward, the WHWP reaches its spatial zenith allowing for enhanced moisture convergence across
Florida and the Caribbean (Martinez et al., 2019: Wang & Enfield, 2001). Because of the waning dynamical
control from NASH and the waxing thermodynamical impacts from WHWP, the late rainy season precipi-
tation is thermodynamically tied to tropical Atlantic SS8Ts and the AMV (Sutton & Hodson, 2005, 2007). In
fact, Li et al. (2010) show that on multidecadal time scales during the late rainy season, observed NASH
intensity and western extent are not statistically significantly correlated with the AMV. These results cor-
roborate that the multidecadal changes in Florida summertime rainfall are predominately a thermody-
namic response to the AMV.

Late rainy season decadal Florida rainfall is a good testbed for the forced signal in the AMV because any
forced changes in SST should be thermodynamically coupled to precipitation without invoking noisier
dynamical responses. More concisely, there should be a high signal-to-noise ratio in Florida rainfall.
Late rainy season precipitation is of particular importance to Floridians. Annual perigean spring tides
or “king tides” generally occur in October and cause the largest “sunny day floods.” Local governments
are already in the process of spending millions of dollars to mitigate the influence of sea level rise, with
many additional billions of dollars expected to be needed (e.g.. Harris, 2019). Projecting changes in pre-
cipitation that will coincide with these floods is vital to planners working to adapt to sea level rise.

We do not expectto find a large externally forced signal in Florida rainfall in climate models either (1) during
the dry season or (2) when the AMV signal is transmitted via underresolved or unresolved processes. During
the dry season the signal from internal variability in the tropical Pacific Ocean, described by El Nifio-
Southern Oscillation (ENSO) indices, is the largest interannual control on Florida rainfall (Enfield
etal., 2001; Kushnir et al., 2010; Trenberth et al., 1998). As this pattern isinternally generated, we expect that
it will average out across many runs of a single climate model. Externally forced signals will also be difficult
to detect if and when the AMV is connected to Florida precipitation via processes reliant on high spatial or
temporal resolution. Known processes observationally linked to the AMV include the number of Atlantic
hurricanes and precipitation extremes (Curtis, 2008; Goldenberg et al.. 2001: Goly & Teegavarapu, 2014;
Teegavarapu et al., 2013).

Using an ensemble of large ensembles, we show that historical forcing makes models more likely to capture
the observed relationship between the AMV and Florida late rainy season precipitation. In section 2, we
describe the utility of the ensemble of large ensembles approach as well as the data and methods employed
in this analysis. In section 3 we extend and describe the observed relationship between Florida summertime
rainfall and evaluate that relationship in an ensemble of climate model ensembles. We conclude by discuss-
ing the role of forcing in the AMV and ponder how forced precipitation variability may affect coastal Florida
during their flooding season.
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2. Methods and Data

2.1. Ensemble of Large Ensembles

Understanding the relative roles of internal variability and external forcing in producing the AMV closely
mirrors so-called “detection and attribution” studies that attempt to isolate the anthropogenic influence
on climate variables (Bindoff et al., 2013). Large ensembles of climate models isolate a forced response by
sampling over the range of internal variability that is produced by a given model, then averaging it out
(Kay et al., 2015). Independent time histories of internal variability are produced via either minute perturba-
tions in initial conditions or with changes to the state of the ocean (Hawkins et al., 2016). Using an ensemble
of large ensembles allows us to sample over structural uncertainty associated with single models (Deser
et al., 2020).

We use output from six different ensembles collected in the Multi-Model Large Ensemble Archive (MMLEA:
Deser et al., 2020; Jeffrey et al., 2013; Kay et al., 2015; Kirchmeier-Young et al., 2017; Maher et al., 2019:
Rodgers et al., 2015; Sun et al., 2018). Supporting information Table Sl lists information about each ensem-
ble considered herein. All ensembles are run at a relatively coarse resolution to study local rainfall. Although
the magnitude of monthly average rainfall is lower in the models compared to observations, a clear seasonal
cycle is still visible (Figure S1). Our analysis considers different starting years for each model simulation
(1850, 1920, or 1950) through Model Year 2020. All models are forced with estimates of historical forcing
through 2005 and with scenario-based estimates of external forcing through 2020 {Meinshausen et al., 2011).
For parsimony, we call these runs “historically forced” as the differences between observed forcing and sce-
nario forcing between 2005 and 2020 are minor (Peters et al., 2013). All models use Representative
Concentration Pathway (RCP) 8.5, except MPI-ESM-LR, which uses a combination of RCP8.3, RCP4.5,
and RCP2.6. All three scenarios have similar emissions trajectories and atmospheric carbon dioxide concen-
trations for the years we consider, 2006-2020 (Meinshausen et al., 201 1). We exclude EC-Earth because pre-
cipitation output was not available in the MMLEA.

For each model that is part of the MMLEA, we also consider a companion long preindustrial (P1) control
run. In these runs, external forcing is held constant. Comparison between Pl control runs and the
MMLEA allows us to experimentally isolate the role of historical forcing. To make direct comparisons
between each model in the MMLEA and their corresponding PI control run, we create a 10,000-member syn-
thetic Pl ensemble, via bootstrap. where the block size is equal to the length of the corresponding ensemble’s
historically forced run (see Table S1).

2.2. Observational Data Sets

We rely on three precipitation products to test the relationship between the AMV and Florida rainfall. Forour
map and Florida state-wide averages we use a 1° X 1° configuration of the Global Precipitation Climatology
Project version 2018 (GPCP) gridded monthly precipitation product covering the years 1901- 2016 (Schneider
etal., 2014). To allow for direct comparison to Enfield et al. (2001), we consider a selection from NOAA's Disk
Resident Database (DRD9:4x or DRD) divisional precipitation data set that covers the vears 1895-2013
(Guttman & Quuayle, 1996). We also consider the updated NOAA nClimDiv divisional precipitation product
for the years 1895-2017 (Vose et al., 2014). For both of the NOAA data sets we consider Florida climate
divisions one through five, which span from the Florida panhandle (division one) through the peninsula
(divisions two to five) but exclude the Florida Keys and the South Florida coastline (see Figure S2). We also
consider data from WMO rmin gauges with 60-year-long records or greater that are part of NOAA's
Climate Anomaly Monitoring System accessed through the IRI/LDEO Data Library: 72202 (Miami),
72203 (Palm Beach). 72205 (Orlando), 72206 (Jacksonville), 72211 (Tampa), 72214 (Tallahassee). and
72222(Pensacola).

For observed SST, we use the Extended Reconstructed Sea Surface Temperature Version 5 (ERSSTvS)
(Huang et al., 2017). ERSSTvS extends from 1854 to the present; however, we use subsections that match
the length of the precipitation records cited above.

For our analysis of Florida landfalling hurricanes, we use the International Best Track Archive for Climate
Stewardship version 4 (IBTrACS; Knapp et al,, 2010). IBTrACS extends from 1851 to 2019. In this paper.
we use the years 1854-2017 to allow for comparison with our precipitation products. We only consider land-
falling Florida hurricanes, which should limit our exposure to some presatellite biases in the data set.
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Figure 1. Relationship between the observed AMV and observed Florida precipitation in June-October. (a) Colors shaw
the correlation with the observed AMV and GPCP. Filled circles show the correlation with individual rain gauges,

(b) Monthly correlations of the AMV with nClimDiv and our GPCP Florida average precipitation index (yellow).

(¢) Correlation of the AMYV index with individual rain gauges. Bar colors represent the NOAA climate division from
Panel (b) the gauges lie in.

However, particularly early in the record, there is still uncertainty over landfall location and the
completeness of the archive.

2.3. Indices

We calculate the AMV index by first finding the area-weighted average SST between 0-60°N and 80°W to
0°E for the given month/season/year. We then linearly detrend this time series and low-pass Rlter with a
Lanczos filter using a 1/10-year half-power frequency. We lincarly detrend to remove the linear S8T
response to greenhouse gas forcing while retaining the influence of time-varying forced signals (e.g.. aerosols
and volcanic eruptions; Murphy et al_, 2017).

Florida average precipitation from GPCP and the MMLEA is calculated as the area-weighted average preci-
pitation over Florida peninsular land (25-28°N, 83-80°W). For model runs, ensemble mean indices are cal-
culated by first averaging the entire field of monthly output trom all ensemble members, then creating the
appropriate index. All fields and indices are low-pass filtered unless otherwise noted.

3. Results

3.1. Observations

In observations, there is a positive and significant correlation between the AMV and decadal Florida rainy
season precipitation (June-October; 1JASO). This was alluded to in Enfield et al. (2001), who qualitatively
note that the annual average pattern of the multidecadal precipitation response to the AMV over the
United States was dominated by the summertime signal. Similarly, other recent work implies a strong sum-
mertime signal via their choice of study season {e.g.. Curtis, 2008; Goly & Teegavarapu, 2014), [n JIASO, for
both DRD and nClimDiv, we find positive and significant correlations for climate divisions two through tive,
regardless of the choice of study period (Table S2). The correlation between the AMV and our GPCP
index (JJASQ) is 0.31 (95% CI: 0.14-0.46). We note that in GPCP there is a larger correlation (r = 0.56,
95% Cl: 0.41-0.67) when we only use data through 1999. Given the difference in correlations between study
periods is only statistically significant in one climate division (division three; Table S2), we speculate that
any differences are likely due to internal variability. Figure la illustrates the pattern of precipitation asso-
ciated with the AMV across Florida in gridded data and in rain gauges. Overall, results are similar to the
regional indices reported above. The negative correlation observed in the Florida panhandle and the
Pensacola station (72202) is consistent with the drying signal in the rest of the southeastern United States
during the warm phase of the AMV (Kushnir et al., 2010; Sutton & Hodson, 2005, 2007; Watanabe &
Tatebe, 2019).
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Within Florida's rainy season, the strongest observed signal appears at the end of the midsummer drought
and the beginning of the late rainy season. Figure Lb shows thatin peninsular Florida (divisions two through
five), there is a strong and positive relationship in July and August. Across these four divisions, the nClimDiv
average correlation for July and August arc 0.36 and 0.40, respectively. Conversely, the average correlation
for the other 10 months is —0.08. Although noisier, we find a similar positive relationship between the penin-
sular rain gauges and the AMV (Figure lc).

In the data seis and time periods we consider, we cannot conclusively identify statistically significant
relationship between annual average Florida rainfall and the AMV. When we evaluate the same precipita-
tion data set as Enfield et al. (2001; DRD) against our SST data set (ERSST), we do not identity a positive
and statistically significant correlation between the AMV and annual average precipitation (divisions one
through five: Table 53). This is true for either the 1895-1999 period (as in Enfield et al.. 2001) or our updated
1895-2013 period. However, in NOAA's newer nClimDiv product we do find a positive and significant cor-
relation between the AMV and annual average precipitation in divisions three through five for the period
1895-1999 (Table S3). The significant correlations in nClimDiv hold in only divisions four and five when
we include data through 2016 (Table S2). In an index of Florida peninsular rainfall constructed from
GPCP, we do not find a statistically meaningful relationship, in the annual average (for data ending in
1999, r = 0.06, 95% CI: —0.13-0.24, and for data ending in 2016, r = —0.08, 95% CI: —0.25-0.10). None of
the rain gauges that we consider show a statistically significant correlation between the AMV and rainfall
in the annual average. When including additional years of observations and additional data sets, we cannot
conclusively confirm the annual average result from Enfield et al. (2001). However, given the strong summer
signal discussed above, much of their interpretation is useful for understanding Florida rainfall.

Although it is not the focus of this study, we note that during the winter dry season the AMV is associated
with a small, negative precipitation anomaly. This is consistent with Goly and Teegavarapu’s (2014) results
examining precipitation extremes. Of course. the Florida dry season precipitation is known to have a
stronger connection to the ENSO (Sutton & Hodson, 2007). To avoid confounding this known mode of inter-
nal variability’s dynamical influence on Florida precipitation and potential influences of forcing on ENSO
{e.g., DiNezio et al., 2009), we exclude the dry season from the model analysis in section 3.2.

On multidecadal time scales, there is not enough evidence to make a statistical link between the AMYV index
and the history of Florida landfalling hurricanes. Between 1854 and 2017, we identity 93 storms that make
landfall in Florida as a hurricane. The limited sample size associated with these extreme events hinders our
ability to draw statistically valid conclusions. There is a small and positive correlation berween the annual
average AMV index and the number of landfalling hurricanes in Florida (r = 0.18, 95% CI: 0.02-0.32).
This is expected given the well-known relationship between 8ST, cyclogenesis ( Emanuel, 2003), and vertical
shear (Goldenberg et al., 2001). Filtering to look for a low-frequency relationship reduces the degrees of free-
dom and does not yield a statistically significant relationship. We cannot confirm or exclude the possibility
that the AMV-Florida rainfall relationship is moderated by changes in the number of landfalling hurricanes.

3.2. Models

Individual ensemble members of historically forced runs and synthetic ensemble members of PI control runs
can produce positive relationships between the AMV and Florida rainfall (Figure 2a). In JJASO, positive cor-
relations are more likely to occur in historically forced ensembles than in the PI synthetic ensembles: 68% of
MMLEA ensemble members produce a positive correlation compared to 50% of Pl synthetic ensemble mem-
bers. However, precipitation is a noisy field. The distribution of correlations from MMLEA is not statistically
significantly distinguishable from 0 for any model in any month. So historical torcing makes a faithful repro-
duction of the observed positive correlation more likely but does not guarantee that an individual ensemble
member will reproduce the relationship.

The forced (or ensemble mean) relationship between the AMV and Florida rainfall in the late rainy season is
almost always positive, as in observations. Across all six MM LEA models for JJASO, 26 out of 30 historically
forced ensemble mean correlations are positive (87%). That is, the relationship between the forced portion of
the AMV and the forced portion of Florida precipitation is nearly always positive over JJASO. Runs without
historical forcing do not consistently produce positive relationships. Only 50% of the “ensemble means” from
the Pl ensemble are positive over JJASO, as would be expected if the two processes were independent
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Figure 2. The relationship between the AMV and Flovida vainfall in the MMLEAC (0) Bux-and-wlisher pluts show the ensemble speead incorcelations fron each
cnsemble in each month (boxes: 25th to ?5th percentile enscmble member). The filled dot shows the ensemble mean. Gray blocks represent the “ensemble™
spread (calculated via bootstrap) from the corresponding PI control run. (b} The probability that the forced response has a higher correlation than any
ensemble member for each ensemble in each month. (¢) The monthly average SST in the WHWP for each model and for observations (ERSSTvS: 1854-2019).
Colored box and whiskers are historically forced runs: vertically aligned gray crosses arc PI control runs,

(not shown). Likewise. the average MMLEA JJASO ensemble mean carrelation is 0.46, while the average
synthetic PI “ensemble mean™ correlation is —0.01. Within the rainy season, the largest positive
correlations in the MMLEA occur in the late rainy season, when Florida rainfall is thermodynamically
tied to SSTs (Figure 2a). The in-phase relationship betwceen the AMV and Florida rainfall in the enscmblc
mean pulls the entire ensemble toward the observed, positive correlation. With historical forcing,
MMLEA models are more likely to taithfully reproduce the observed correlation in JJIASO.

Could these large historically forced correlations be due to chance? Figure 2b charts the probability that the
ensemble mean hasa larger correlation than all of the individual ensemble members. Thatis, where does the
ensemble mean correlation intersect the empirical cumulative distribution tunction calculated from the cor-
relations from individual ensemble members? These values can help us determine how likely it is that inter-
nal variability within a model is capable of producing a forced relationship that large and positive {1 minus
the values in Figure 2b). Asabove, the highest likelihood for the forced signal to be outside of the ensemble
spread is in the late rainy season. By the same metric for the Pl synthetic ensemble, we tind no relationship
between seasonality and the probability of a positive ensemble mean. Overall, we tind that historical forcing
makes reproducing this AMV impact more likely and this is unlikely to be due to chance.

4. Discussion

We show that historical forcing makes models more likely to faithfully reproduce a known AMV impact. We
extend the analysis in Enfield et al. (2001) and show that there is a positive, statistically signiticant relation-
ship between the observed AMV and Florida rainfall in late summertime using rain gauges and precipitation
products. In large ensembles of multiple climate models, the inclusion of historical forcing makes models
more likely to recover the observed in-phase relationship between Florida rainfall and the AMV. Previous
work shows that including estimates of historical forcing allows climate models to better reproduce the
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Figure 3. The multimodel mean September-October forced precipitation response to the forced AMV (colors) overlaid
by the multimodel mean climatological September-October precipitation (contours: mm du_v"}. Pixel-wise
regressions were calculated between the ensemble mean AMV and the ensemble mean precipitation for cach model
individually. Models were averaged with equal weights We only include those regression coefficients that are
statistically significant at the 95% level.

phasing of the observed AMYV index (Bellomo et al., 2018: Booth et al.. 2012; Murphy et al.. 2017; Undorf
et al., 2018; Watanabe & Tatebe, 2019). Here we show that historical forcing also makes models more
likely to reproduce a significant AMV impact in this region.

In the MMLEA, enhanced late summertime precipitation is a thermodynamic response to the externally
forced AMV (Martinez et al., 2019). In all six models, a local spatial precipitation maximum develops over
Florida in September-October. This pattern of precipitation appears to be amplified by the warmer SSTs
associated with the positive phase of the AMV. That is, the forced precipitation response to the AMV coin-
cides with the late summer precipitation mean state near Florida (Figure 3). This proposed explanation is
consistent with Held and Soden’s (2006) thermodynamically driven “wet-get-wetter” mechanism. Further,
it pairs well with more recent studies that show that wet seasons may get wetter with changes in external
forcing (e.g.. Chou et al,, 2013; Konapala et al.. 2020). We hypothesize that the Florida rainfalllAMV
signal is stronger in historically forced models than in Pl control runs because there is no consistent
atmospheric circulation response (as viewed through sea level pressure) to the AMV that can interrupt
the thermodynamic relationship between the AMV and precipitation (compare right-hand sides of
Figures S3 and $4).

Additionally, we find that warmer mean Atlantic 8STs generally improve the model's ability to produce our
relationship of interest. For example, CESM has a known cold bias in the tropical Atlantic, potentially
related to the structure of AMOC, and has a cooler WHWP in JJASO than all other MMLEA models
(Figure 2¢; Wang et al., 2014; Zhang et al., 2019). These cooler mean SSTs may account for the weaker forced
signal in CESM relative to other MMLEA models (Figure 2). This is consistent with the Held and
Saden (2006) mechanism; warmer Atlantic SSTs help amplify the Florida rainfall response to the AMV.
Additionally, CESM may sutter from a potential circulation bias, wherein on average the western edge of
the NASH lingers over Florida later into the year than other models (Figure S5).

In the future, mean Atlantic S8Ts will continue to warm with anthropogenic forcing, which ought to lead to
a stronger signal in the AMV-Florida rainfall relationship. When we exclude the more anthropogenically
forced years 2006-2020 from our analysis, we find a weaker (but still positive) relationship. As noted above,
when we remove historical forcing completely (as in Pl control runs) the AMV and Florida rainfall appear to
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be independent. This implies that including at least some of the forced response in the definition of the AMV
is usetul for understanding AMV impacts.

The results above also demonstrate the utility of the ensemble of large ensembles approach (Deser
et al., 2020). For example, CESM-LENS produces a weaker relationship between the AMV and Florida late
summertime rainfall than other MMLEA models. If we had only studied this ensemble, we may have
reached a spurious conclusion about the nature of the AMV. However, in the context of additional models,
we find that the results from CESM are potentially related to multiple model biases.

Prior studies have shown the warm phase of the AMV increases Florida precipitation in the wet season
through changes in extremnes (Goly & Teegavarapu, 2014; Teegavarapu et al., 2013). In Florida, a statistically
significant portion of extreme precipitation events is linked to hurricanes (Barlow, 2011; Kunkel et al., 2010).
Tropical cyclone precipitation rates are expected to change with external forcing (Knutson et al.. 2020). Here
we do not statistically confirm or exclude landfalling hurricanes asthe mechanism linking the AMV and pre-
cipitation anomalies in observations. However. given the links between the AMV, external forcing, hurri-
canes, and Florida precipitation, we believe that causal studies of these phenomena in climate models will
be a fruitful avenue of future research.

Finally, coastal Florida experiences their king tides during the late rainy season, when models suggest the
largest forced signal in multidecadal Florida precipitation. As seas rise with global mean temperature, the
frequency and duration of coastal floods are expected to increase (Sweet et al., 2017). In the near term. if
the AMV index continues its warming trend, we expect that late summer months in Florida will get wetter
in the future.
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