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ABSTRACT

Development of novel anti-cancer treatments requires not only a comprehensive
knowledge of cancer processes and drug mechanisms of action, but also the ability to
accurately predict the response of various cancer cell lines to therapeutics. Numerous
computational methods have been developed to address this issue, including
algorithms employing supervised machine learning. Nonetheless, high prediction
accuracies reported for many of these techniques may result from a significant
overlap among training, validation, and testing sets, making existing predictors
inapplicable to new data. To address these issues, we developed CancerOmicsNet, a
graph neural network with sophisticated attention propagation mechanisms to predict
the therapeutic effects of kinase inhibitors across various tumors. Emphasizing on the
system-level complexity of cancer, CancerOmicsNet integrates multiple heterogeneous
data, such as biological networks, genomics, inhibitor profiling, and gene-disease
associations, into a unified graph structure. The performance of CancerOmicsNet,
properly cross-validated at the tissue level, is 0.83 in terms of the area under the
receiver operating characteristics, which is notably higher than those measured for
other approaches. CancerOmicsNet generalizes well to unseen data, i.e., it can predict
therapeutic effects across a variety of cancer cell lines and inhibitors. CancerOmicsNet
is freely available to the academic community at https://github.com/pulimeng/
CancerOmicsNet.

INTRODUCTION nucleus [3]. The cell network consists of various molecules
interacting through the linkage of signal transduction

Cancer is perhaps best understood as a complex pathways and the cytoskeleton [4, 5]. Particularly, the
system of interacting molecular-level networks, such modulation of the activity of receptor tyrosine kinases,
as nuclear and cell networks, influenced by local and important components of the cell network, is an effective
distant factors [1]. The nuclear network is composed of strategy against a wide variety of cancers [6]. This
nucleic acid and protein molecules linked by a variety therapeutic effect can be achieved by either blocking
of biochemical and structural pathways allowing for the upstream receptors with antibodies and small molecules
production of proteins based on the information encoded or directly suppressing kinase catalytic activity with
in the DNA [2]. Numerous curative cancer treatments have inhibitors [7]. Another group of therapies targeting the
been developed either by targeting a single component cell network disrupt metabolism by affecting the function
within this network or by combining multiple agents to of proteasome and chaperone molecules [8]. Since many
target different levels of the nuclear network in order cancer-specific data, such as molecular interactions,
to interrupt nucleic acid and protein machineries in the belong to the non-Euclidean space, a network-based
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representation of cancer is generally well suited not only
to predict the response of tumor cells to pharmacotherapy,
but also to help understand drug-cell line interactions.
However, utilizing these information-rich data requires
advanced graph information processing algorithms and
machine learning systems designed specifically to operate
on the graph-structured data.

One of the earliest graph information processing
techniques is a graph neural network (GNN) that employs
a graph structure to learn the representation of the input
data [9]. The major limitation of this method is that it
restricts the information propagation to the first-order
neighbors of every node limiting the information flow
in the model. Recently, a graph convolutional network
(GCN) was proposed to provide a more flexible model
propagating information through many orders of neighbors
[10, 11]. More advanced models were developed following
the fundamental work on GCN, including a graph-based
neural network employing the long-short term memory
(LSTM) to carry out the information propagation that
was demonstrated to have a significantly improved
performance [12]. Another information propagation
scheme aggregates the average embeddings of the
neighboring nodes yielding a high performance especially
for node classification in large graphs [13]. Numerous
other techniques implementing minor improvements are
currently available to operate on the graph-structured data
[14-16].

Compared to other types of biological networks,
gene co-expression networks have certain advantages,
such as a high coverage of human genes, the additional
knowledge obtained from the biomedical literature, and
the possibility to study different cancer subtypes. [17, 18].
One of the most important applications of gene co-
expression networks is to study the sensitivity of cancer
cells to pharmacotherapy. Indeed, networks constructed
by connecting those genes having correlated drug-
induced expression values, contain a sufficient amount of
information to predict drug sensitivity. In a recent study,
two feature selection methods, network- and correlation-
based, were developed to extract representative features
for drug response prediction from gene co-expression
networks [19]. The network-based feature selection
utilizes assignment vectors describing the importance of
individual vertices to predict drug sensitivity, whereas
the correlation-based selection employs the Pearson
correlation coefficient (PCC) between gene expression
and the sensitivity of cell lines to drugs. Benchmarking
calculations against non-small cell lung cancer with
several canonical prediction algorithms, Elastic Net,
Partial Least Squares Regression, Random Forest,
Support Vector Regression, and Deep Neural Networks,
demonstrated that features extracted with the network-
based approach yield the highest performance when
predicting the dose-response curve and the median
effective dose.

Another group of methods utilize dual-layer cell
line-drug networks, constructed by integrating drug
similarity and cell line similarity networks in a weighted
fashion, to predict the drug sensitivity of cancer cells.
These techniques build on the observation that chemically
similar drugs exhibit similar inhibitory effects on different
cell lines and vice versa, similar cell lines tend to respond
comparably to a treatment with the same drug. Dual-
layer models typically require the optimization of various
parameters, such as weights for individual drugs and cell
lines, in order to determine the relative contribution of
each network to the final prediction. As an example, a
dual-layer network was developed to evaluate separately
the response of a known cell line to a new drug and the
effect of a known drug against a new cell line using a
linear weighted model, followed by combining these
two quantities into a sensitivity score for the treatment
of a particular cell line with a drug [20]. Encouragingly,
comprehensive benchmarks against the Cancer Cell Line
Encyclopedia (CCLE) [21] and the Cancer Genome
Project (CGP) [22] datasets showed that the predicted
and observed therapeutic responses are correlated for
most tested drugs with a PCC of 0.6, significantly
outperforming an Elastic Net model. Additionally, this
dual-layer integrated cell line-drug network model
correctly predicted that certain mutant cell lines are more
sensitive to inhibitors than the corresponding wild-type
cell lines even though no mutation-specific information
was provided.

More advanced methods combine genomics with
drug chemical and activity information to predict the
response to drugs in cancer treatment. For instance,
the Cancer Drug Response Profile scan, or CDRscan,
predicts anticancer drug responsiveness based on the drug
screening assay data, the genomic profiles of human cancer
cell lines, and the molecular fingerprints of drugs [23].
The analysis of observed and predicted drug responses
showed an exceptionally high accuracy of CDRscan with
a mean coefficient of determination of 0.84 and the area
under the receiver operating characteristics (ROC) of
0.98. Another technique, DeepDR, predicts drug response
purely based on the mutation and expression profiles of
cancer cells. The reported overall prediction performance
of DeepDR is also exceptionally high with a mean squared
error of only 1.96 in the log-scale IC_ values. Further,
a similarity-regularized matrix factorization method, or
SRMF, predicts anticancer drug responses of cell lines
solely from the chemical structures of drugs and the
baseline gene expression levels in cell lines [24]. Those
two features are used as regularization terms, which are
incorporated into the drug response matrix factorization
model. SRMF yields a drug-averaged mean squared error
of 1.73 between predicted and observed responses of
sensitive and resistant cell lines.

Notwithstanding these encouraging reports, there
are two drawbacks of currently available techniques to
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predict the response of cancer to drug treatment. First,
most of these methods employ hand-crafted features
simply exploiting similarities between instances, i.e.,
they essentially look for similar combinations of cell lines
and drugs with known therapeutic outcomes. In reality,
similar cell line-drug combinations may not necessarily
produce the anticipated effects. Explicit similarity-based
approaches are also unlikely to reveal the underlying
mechanisms of the response of cancer to drug treatment.
Second, the performance of many existing algorithms is
likely grossly overestimated due to randomly splitting
the redundant data into training, validation, and testing
subsets resulting in a significant overlap among these sets.
To address both issues, we developed CancerOmicsNet,
a GNN-based algorithm employing multiple graph
convolutional blocks with the attention-based propagation
and a sophisticated graph readout mechanism to predict the
effect of a drug treatment on the cancer cell growth. This
novel method utilizes compact, cancer-specific networks
constructed from protein-protein interactions, differential
gene expression, disease-gene association, and drug
inhibition data. The generalizability of CancerOmicsNet
is carefully evaluated in a series of cross-validation
benchmarks against different tumor tissues.

RESULTS

Cancer-specific data represented as networks

Input for CancerOmicsNet are cancer-specific
networks assembled from multiple heterogeneous data
including protein-protein interactions (PPIs), differential
gene expression (DGE), disease-gene association (DGA)
scores, kinase inhibitor profiling (KIP), and growth rate
inhibition (GR). The procedure of data integration is
schematically presented in Figure 1 for a combination of
breast adenocarcinoma cell line MDA-MB-468 originated
from a 51 years old female sample [25], and dasatinib, a
dual kinase inhibitor against BCR/ABL and SRC families
of tyrosine kinases [26] primarily used to treat chronic
myelogenous leukemia and acute lymphoblastic leukemia
[27]. In this example subnetwork, nodes (circles) are
proteins and dashed lines represent highly confident PPIs.
Bold purple circles are kinase nodes and thin blue circles
are non-kinase proteins.

After the initial network is constructed (Figure
1A), proteins are annotated with DGE, DGA, and KIP
scores (Figure 1B). EGFR is a transmembrane receptor
tyrosine kinase having a critical impact on the regulation
of apoptosis, cell migration, and cell proliferation. Since
it is hyper-expressed in MDA-MB-468 cell line [28], node
1 in Figure 1B is colored green. On the other hand, node i
is colored red because ubiquitin ligase CBL is deregulated
in breast cancer [29]. In normal cells, CBL mediated
ubiquitination negatively regulates EGFR by lysosomal
degradation [30], however, CBL mutants escape the

degradation of overexpressed EGFR inducing oncogenesis
[29]. Next, DGA data for MDA-MB-468 cell line are
mapped to proteins in the network; kinase nodes 1 and
4 are assigned DGA scores of 5.2 and 3.4, whereas non-
kinase proteins e, f, and g have DGA scores of 2.6, 1.9,
and 2.3, respectively. EGFR has the highest DGA score for
breast adenocarcinoma likely because it is hyper-expressed
in approximately half of the cases of inflammatory breast
cancer and triple-negative breast cancer [31].

Subsequently, the inhibition data against dasatinib
are added to the network. Dasatinib inhibits SRC with an
IC,, value of 0.8 nM in a cell-free assay [32] and different
variants of EGFR with IC,, ranging from 21.7 to 138
nM [33]. Two kinase nodes (1 and 3) are annotated with
pIC,, values for dasatinib (6.8 and 8.8). Finally, the entire
graph is assigned a label describing the effectiveness
of the drug therapy against a given cell line. Since the
growth of MDA-MB-468 cell line is inhibited by 30% 48
hrs after the treatment with dasatinib at 3 um [34] and
the experimental GR_ value [35] is —0.96, the label of
the MDA-MB-468-dasatinib combination is a positive
pharmacotherapeutic effect.

Network reduction driven by biological
knowledge

Cancer-specific  networks are subsequently
subjected to a reduction procedure devised to produce
graphs that are more compact yet richer in the biological
information. This algorithm is presented in Figure 1C
for the MDA-MB-468-dasatinib subnetwork. Briefly, a
group of connected non-kinase proteins having similar
DGE values and being part of the same biological
processes according to Gene Ontology [36] are merged
into a single node. Three such groups are present in the
example subnetwork, a-b, c-e, and d-f-g (yellow shapes in
Figure 1C). The first group comprises transcription factor
P300, a product of EP300 gene, regulating the expression
of NANOG that is responsible for pluripotency and self-
renewal of stem cells [37]. The second group consists of
a transcription activator STAT3 regulating the expression
of IL10 [38]. The last cluster contains HSP90AA1 and
HIF1A that together regulate the oxygen homeostasis
[39] and PXN, a multidomain and multifunctional focal
adhesion adaptor protein playing an essential role in the
oxidative stress in cells [40]. The resulting virtual nodes
in the reduced graph (dashed rounded squares in Figure
1D) representing multiple proteins involved in the same
biological processes have a similar expression in cancer
cells and are annotated with a median value of the DGE
scores of incident nodes.

Information propagation in CancerOmicsNet

CancerOmicsNet implements a GNN model to
predict the response of cancer cell lines to a treatment with
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kinase inhibitors. The GNN employs graph convolutions,
which are functionally equivalent to matrix convolutions
in the convolutional neural network (CNN) working with
images. Similar to the CNN propagating the information
of a pixel to its neighbor pixels, the GNN propagates the
information of a node in the graph to its neighbor nodes.
The architecture of CancerOmicsNet is presented in Figure
2. An instance consisting of the combination of a cell line
and a drug is used to create a cancer-specific network,
which is subsequently subjected to the reduction procedure
(Figure 2A). The reduced graph is then processed through
a cascade of graph convolution blocks (Figure 2B). Each
block contains three components, the attention-based
propagation, the embedding update, and the generation
of new embeddings. Although only the information from
1% order neighbors is passed between nodes in a single
block, using multiple sequential blocks propagates the
information from higher order neighbors.

This procedure is illustrated in Figure 3 for a simple
4-node graph. Initially, each node has its own information
(color coded in Figure 3A), which is used to generate
node embeddings. In our model, nodes are proteins
connected through PPIs and the information comprises
DGE, DGA, and KIP. During the first propagation step,
a node of interest, such as node 1 in Figure 3, receives
information from its 1st order neighbor, node 2 (Figure
3B). At the same time, node 2 receives information from
its Ist order neighbors, nodes 3 and 4. Nodes 1 and 2 now
contain more information to generate new embeddings. In
the second propagation step, the information from nodes

3 and 4 already present in node 2 is also passed to node
1 (Figure 3C). At this point, new embeddings for node
1 are generated using not only its own information, but
also the information propagated from its 1st and 2nd order
neighbors. Three graph convolution blocks are employed
in our model because we found empirically that adding the
fourth block does not improve the performance anymore.
Further, there is no point of using more than four blocks
because the diameter of the cancer-specific graph is 5,
so no new information is propagated beyond 4th order
neighbors.

Graph information extraction

Once all embeddings are generated, the information
on the entire graph can be extracted with a readout
mechanism to predict the final drug response (Figure
2C). Standard readout techniques, such as global pooling,
are unsuitable for our model comprising multiple
graph convolutional blocks and learning from highly
heterogeneous input graphs. In CancerOmicsNet, node
embeddings generated by consecutive graph convolutional
blocks contain distinct information. Therefore, a jumping
knowledge network (JK-Net) is employed to exploit all
information collected from different blocks. JK-Net
was specifically developed to efficiently integrate the
output from different layers into a single representation
[41]. It is based on the concept of an influence radius
corresponding to the radius of neighbors whose output
is to be aggregated. The selection of an optimal radius is
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Figure 1: Example of a cancer-specific subnetwork. The graph shows a portion of protein-protein interaction network for breast
adenocarcinoma cell line MDA-MB-468 and kinase inhibitor dasatinib. Bold purple circles represent kinase nodes (1 — EGFR, 2 — JAK?2,
3 — JAKI, and 4 — SRC), whereas non-kinase nodes are shown as thin blue circles (a — NANOG, b — EP300, ¢ — IL10RA, d — HIF1A,
e — STAT3, f— HSP90AAI, g — PXN, h — CRK, and i — CBL). Edge weights are confidence scores for protein-protein interactions with
a threshold value of >500. (A) Initial subnetwork constructed from interactions obtained from the STRING database. (B) Subnetwork
integrating kinase inhibitor profiling (pIC,, in bold), disease-gene association scores (in italics), and the differential gene expression: up-
(green), down- (red), and normally (gray) regulated. (C) Graph reduction procedure with orange shapes outlining groups of non-kinase
nodes that have similar differential gene expression and belong to the same GOGO cluster. (D) Reduced cancer-specific subnetwork with
merged nodes shown as dashed brown rounded boxes (I — constructed from incident nodes a-b, II — c-e, and III — d-f-g). Node features and
edge weights for merged nodes are calculated as median values of incident nodes.
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crucial because large radii may cause excessive averaging
and small radii may result in an insufficient information
aggregation. JK-Net learns the effective neighborhood size
for each layer in order to generate the best representation
of the entire graph.

Global pooling of the embeddings of all nodes is
appropriate only for homogeneous networks. In contrast,
cancer-specific networks are highly heterogeneous
comprising nodes of varying importance to one another
and to the overall graph. Therefore, we added a mechanism
to emphasize on important nodes rather than treating all
nodes equally. Although such techniques have successfully
been used in the CNN and the RNN [42], unlike images
or text, graphs are orderless, i.e. an image does not remain
the same if pixels are rearranged, while a graph remains
the same if nodes are reordered. To account for the lack
of order in graphs, we added a Set2Set layer converting
a set to another set [43]. This model employs a set of
LSTMs recursively combining the state of the previous
processing step with the current embeddings to generate

attention values. These attention values and embeddings
form new states for the next processing step. By using
Set2Set, we ensure that any permutation performed on
the original vector does not affect the final read vector.
The information summarized by JK-Net and Set2Set for
the entire graph is then passed to a set of fully connected
layers to make the final prediction, which is the effect of
pharmacotherapy on the cancer cell growth.

Performance of CancerOmicsNet compared to
other methods

In order to properly evaluate the generalizability
of CancerOmicsNet, we performed a cross-validation
at the tissue level. The entire dataset was first divided
into nine groups of different tissues, digestive system,
respiratory system, haematopoietic and lymphoid tissue,
breast tissue, female reproductive system, skin, nervous
system, excretory system, and others. Next, we conducted
a 9-fold cross-validation, each time using cancer
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Figure 2: CancerOmicsNet architecture. (A) The input is a reduced graph constructed for the combination of a cell line and a small
molecule inhibitor. (B) The graph is processed through a cascade of three graph convolutional blocks. Within each block, an attention-
based propagation is first utilized to pass the information among nodes, and then a graph isomorphism network is employed to update the
embeddings for each node. (C) Node embeddings generated by all blocks in B are combined using a JK-Net layer and passed to a Set2Set
pooling layer serving as the read-out function to acquire the final graph embeddings. At the end, graph embeddings are sent to a fully

connected layer to predict the drug response.
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cell lines from one tissue as a validation set while the
remaining cancer cell lines were used for model training.
Since cell lines collected from different tissues have
different gene expression patterns, this cross-validation
scheme eliminates the overlap between training and
validation data because the reduced graphs have different
topologies. In addition, there is also a desired variability

A B

S

Figure 3: Schematic of information propagation in a graph

in feature matrices on account of different gene-disease
associations, which depend on the cell line and tissue
type. Essentially, each fold has entirely different training
and validation data. Figure 4 shows a cross-validated
ROC plot for CancerOmicsNet compared to other graph-
based methods. Indeed, CancerOmicsNet not only gives
the highest area under the curve (AUC) of 0.83 £ 0.02,

2
\

. (A) A simple 4-node graph, in which each node contains its own

information. The information is color coded, node 1 — green, node 2 — orange, node 3 — blue, and node 4 — purple. (B) The distribution
of information within the graph after the first propagation step. (C) The distribution of information within the graph after the second
propagation step. Only the information propagation to node 1 is illustrated in order to demonstrate how it receives information from higher

order neighbors.
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Figure 4: Performance of graph-based algorithms to predict the response of cancer cell lines to drugs. The performance
of each method is cross-validated at the tissue level. CancerOmicsNet (solid blue line) is compared to the graph isomorphism network
(GIN, dashed red line) utilizing equal propagation, and WL Tree (dotted green line) employing the Weisfeiler-Lehman graph kernel. TPR is
the true positive rate, FPR is the false positive rate, and the gray area corresponds to the performance of a random predictor.
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but the AUC values do not vary significantly for different
tissues, digestive system (0.85), respiratory system (0.80),
haematopoietic and lymphoid tissue (0.81), breast tissue
(0.82), female reproductive system (0.86), skin (0.85),
nervous system (0.83), excretory system (0.83), and
others (0.81).

Removing the attention mechanism, which detects
important nodes and puts more weight on them (labeled
as GIN in Figure 4), decreases the AUC to 0.75 £0.04
demonstrating that the propagation attention is an
important component of CancerOmicsNet. Further, the
performance of CancerOmicsNet is compared to that
of the Weisfeiler-Lehman (WL) Tree [44]. Not only the
AUC for WL Tree of 0.68 +0.03 is lower than that for
CancerOmicsNet, but since WL Tree processes one
graph at a time, its runtimes are much longer than those
for CancerOmicsNet featuring batch processing. Finally,
Table 1 reports several performance metrics for two deep
learning-based methods, CancerOmicsNet and CDRScan
[23]. The precision quantifies the number of positive
class predictions actually belonging to the positive class,
whereas the recall quantifies the number of positive class
predictions made out of all positive examples in the
dataset. The balanced accuracy is computed as the average
recall over all classes to addresses the imbalanced dataset
problem [45]. The F-measure provides a single score
balancing the concerns of both precision and recall in
one number [46]. Encouragingly, using CancerOmicsNet
yields up to 14% performance improvement over
CDRScan. Overall, these results demonstrate that
CancerOmicsNet outperforms other graph kernel and deep
learning approaches.

DISCUSSION

In this study, we developed CancerOmicsNet, a
graph neural network model to predict the growth rate of
a cancer cell line after drug treatment. CancerOmicsNet
is more advanced than many deep learning techniques
operating in the Euclidean space [47], because it extracts
knowledge directly from biological networks providing
a more adequate representation of complex diseases
such as cancer. Further, we implemented a sophisticated
attention mechanism to propagate information more
efficiently from the most important nodes in the graph
when generating node embeddings. Attention mechanisms
assigning trainable weights to nodes during information
propagation are used to improve not only the classification
performance [48, 49], but also the capability to generalize
to larger, more complex, and noisy graphs [50, 51]. In
our case, this technique allows the GNN model to direct
more attention to kinase nodes since many of them contain
valuable information on differential gene expression and
the level of inhibition by small molecules across different
cancer cell lines. As a result, the GNN achieves a better
performance, especially against highly heterogeneous

networks, such as cancer-specific networks employed in
this study.

In order to evaluate the performance of
CancerOmicsNet, we conducted a cross-validation at the
tissue level by removing from model training all cell lines
originating from a particular tissue and then analyzing the
accuracy for these cell lines. We put a special attention
to design a proper benchmarking protocol since in the
context of predictive models, misunderstanding cross-
validation very often yields an impressive, yet grossly
overestimated predictor performance [52]. Numerous
examples of exaggerated results in biomedical studies due
to a problematic cross-validation include cancer prediction
[53], the prediction of cancer cell line sensitivity and
compound potency [54], the identification of drug-target
interactions [55], the prediction of optimal drug therapies
[56], the estimation of drug-target binding affinities [57],
and virtual screening [58]. Since multiple instances in our
dataset share cell lines originating from the same tissue,
employing cross-validation at the tissue level is critical
because splitting the dataset randomly into folds would
cause training and validation instances to have a significant
overlap with respect to graph topology as well as certain
features such as gene expression and gene-disease
associations. Encouragingly, the cross-validated accuracy
of CancerOmicsNet at the tissue level is significantly
higher than those measured for other approaches on the
same data. Nonetheless, we note that the applicability of
CancerOmicsNet is at present limited to kinase inhibitors,
while alternative methods are applicable to other classes
of therapeutics as well. Overall, CancerOmicsNet offers a
high performance and the desired generalizability in the
prediction of the effect of kinase-targeted therapies on the
cancer cell growth.

MATERIALS AND METHODS

Cancer-specific molecular networks

Input graphs are constructed by mapping multiple
heterogeneous data, DGE, KIP, DGA, and GR, on the
human PPI network. STRING v11 database [59] has been
used to construct the PPI network with an edge confidence
threshold of >500. The resulting network comprises 19,144
proteins and 685,198 interactions. The DGE data were
obtained from the curated Cancer Cell Line Encyclopedia
(CCLE) containing the information on normally, up- and
down-regulated genes for 749,551 associations between
18,022 genes and 1,035 cancer cell lines [21]. The KIP
data on the half maximal inhibitory concentration (IC, )
for 49,348 small molecules and 411 kinases were collected
from Team-SKI [60] and filtered at a minimum threshold
of pIC,, (the negative logarithm of IC,)) of 6.3, which
is equivalent to 500 nM in terms of IC, . The DGA data
were obtained from the DISEASE database [61] of 8,330
diseases and 20,715 genes, and the DisGeNET database
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Table 1: Performance of CancerOmicsNet and CDRScan in predicting the response of cancer cell
lines to drugs

Method Balanced accuracy Precision Recall F-measure
CancerOmicsNet 0.781 0.764 0.770 0.766
CDRScan 0.637 0.711 0.637 0.632

Accuracy, precision, recall, and F-score are calculated based on the cross-validation at the tissue level.

[62] of 24,166 discases and 17,545 genes. The association size networks is their topological diversity created by
scores range from 1 to 10 in DISEASE and from 0.01 to 1 differences in the gene expression profiles of various
in DisGeNET databases. cancer cell lines.

Growth rate inhibition data Information propagation

Recent drug response metrics, GR,; and GR The most widely adopted propagation protocol

max’

quantify the proliferation with the value of growth rate transmit the information equally without considering the
inhibition (GR) based on time course and endpoint importance of a node to its neighbors and to the graph.
assays [35]. GR, is the concentration of a drug at which This protocol can be expressed as

GR is 0.5, whereas GR_ is the maximum measured

GR Val}le. Negative GRmax.\./alues correspond to the X = p V2 yp V2 xH Equation 1
cytotoxic response and positive values correspond to

the cytostatic response. In this study, we employ six where ¢ is the propagation step, D is the degree matrix of

LINCS-Dose-Response datasets, Broad-HMS LINCS
Joint Project, LINCS MCF10A Common Project, HMS
LINCS Seeding Density Project, MEP-HMS LINCS

the adjacency matrix 4, and XV represents embeddings at
the propagation step ¢. Note that the original node features
can be denoted as the 0-th propagation step, X©. It is

Joint Project, Genentech Cell Line Screening Initiative, obvious that not all nodes have the same importance to their
and Cancer Therapeutics Response Portal [35]. The neighbors. For instance, many non-kinases in our dataset
original dataset contains 632 cell lines from different contain no useful information because these proteins are
cancer tissues and 795 small molecules tested against normally expressed, have no association with a disease, and
those cancer cell lines, totaling 83,162 combinations. are not targets for inhibitors. The information propagated
After mapping the GR data to the constructed cancer- from such proteins should be less important compared
specific molecular networks and removing those cases to the information transmitted from kinases and other
having either GR,; values set to infinity or multiple proteins differentially expressed and having high disease
GR,, values for a particular cell line-drug combination, associations. On that account, we added a propagation
the final dataset comprises 359 cell lines, 29 drugs, attention mechanism to increase the importance of these
and 3,549 cell line-drug combinations. The number of nodes. Specifically, we implemented a mechanism to learn a
positive instances (the cytotoxic effects of drugs on cell dynamic and adaptive summary of the local neighborhood,
lines) is 2,124, whereas the number of negative instances which operates only in the feature space [64]. The attention
(cytostatic responses) is 1,425. from node i to node j, s is defined as
Graph reduction of s

Vi) o) Equation 2

A procedure devised to reduce the size of drug- ZkeN(i)u{i}

cell line networks employs the topological information
and the biological knowledge. Two neighboring nodes where N (i) denotes the neighbors of node i and S is a
are merged when the following conditions are met, both trainable parameter. Essentially, the attention is the
nodes are kinase proteins’ share the same gene expression’ softmax of feature cosine similarities between center nodes
and belong to the same GOGO [63] cluster representing and their neighbors. By utthlng the attention mechanism,
proteins involved in similar biological processes. the original propagation matrix calculated from the
Applying the graph reduction procedure produces smaller degree and adjacency matrices shown in Equation 1 can
graphs with the average number of nodes of 1,349 and be replaced with a new propagation matrix I', which
the average number of edges of 12,613. Even though adaptively adjusts propagation weights based on neighbor
the graph sizes are significantly reduced by more than features. This new propagation scheme addressing the
90%, the percentage of kinase nodes carrying most problem of equal weights can be expressed as
of the meaningful information increases from 2% to
30%. Another advantage of reduced graphs over full- X =rXx"" Equation 3
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where each entry of the propagation matrix I" is calculated
using Equation 2.

Node embeddings

After the information is propagated, the embeddings
of each node need to be updated. Many techniques are
available to generate node embeddings, and each has
its advantages and disadvantages. Based on a series of
preliminary experiments, we decided to implement a model
inspired by the graph isomorphism network (GIN) [65]. The
GIN offers an exceptional performance and has a relatively
simple structure, which is important for our model because
even after reduction, the cancer input data are much larger
than typical datasets used in other fields. Briefly, the GIN
transforms the graph isomorphism to the context of deep
learning. Nonetheless, it employs a rather basic propagation
scheme summing up features from all neighbor nodes. In
order to further increase the performance, we replaced
this simple propagation step with the attention-based
propagation scheme shown in Equation 3. Combining the
GIN update protocol with the propagation attention results
in a very efficient graph convolution block expressed as

X :®((F+(1+s)~l)'X) Equation 4
where ® denotes a neural network, I is the propagation
matrix calculated using Equation 2 and ¢ is a trainable
parameter.

Graph readout mechanism

CancerOmicsNet employs JK-Net followed by
a Set2Set model to generate a global representation of
the input graph from the node-wise information. JK-Net
exploits varying influence radii of different layers to learn
the best representation of the entire graph. This model
can integrate outputs from individual graph convolutional
blocks with three strategies, the concatenation, the max-
pooling, and the LSTM attention. Considering the size of
our data, we decided to employ the max-pooling strategy
since it does not introduce any additional hyperparameters.
This particular strategy performs a feature-wise max-
pooling with lower layers favoring the local information
and higher layers mostly containing the global graph
information. With the max-pooling scheme, JK-Net
automatically selects the most informative neighborhood
size for each feature coordinate. Once the information
from different layers is aggregated, we adopted the Set2Set
model [43] as a final attention-based readout mechanism.
A conventional method to simply flatten all embeddings
is unsuitable for orderless graphs, which require a
premutation-invariant readout mechanism instead. Set2Set
comprises three blocks, a reading block, a process block,
and a write block. In CancerOmicsNet, the reading block
generating embeddings for each item in the set is replaced

by JK-Net aggregating information from multiple graph
convolutional blocks. The process block is an LSTM that
reads the embeddings and state generated from the previous
processing step, and outputs a new hidden state. Finally, the
write block is also an LSTM, which takes the hidden state
as a context to generate the attention for each item in the
set. Subsequently, the attention vector is combined with the
embedding matrix using a weighted summation to generate
new, permutation-invariant embeddings.

Other methods to predict cancer drug response

CancerOmicsNet is compared to several other
methods to predict the growth rate of cancer cell lines after
drug treatment against the same dataset and employing the
same cross-validation protocol. The graph isomorphism
network (GIN) incorporates the graph isomorphism test to
generate node embeddings preserving the original graph
structure at each propagation step [65]. As a result, the
propagation process contains not only the propagated
information, but also the node information in the original
graph as an extra term. The Weisfeiler-Lehman (WL)
Tree is a widely adopted graph kernel method for graph
machine learning [44]. This algorithm utilizes kernel
functions and the WL graph isomorphism test to iteratively
generate new labels for nodes and new representations for
graphs. By iteratively propagating the information, the
final information for each node and the entire graph can
be extracted.

Cancer Drug Response Profile scan (CDRscan) is a
deep learning model predicting drug response from cancer
genomic signature [23]. CDRscan employs two input
data, the genetic mutation information and the molecular
profiles of drugs represented by PaDEL-descriptors [66].
In order to apply CDRscan to our dataset, the mutation
information was substituted with the gene expression of
cancer cell lines. Following the original implementation,
the input data are passed through CNNs to extract features,
which are then concatenated to make the final prediction.
In the original paper, five slightly different models were
employed in order to create an ensemble model. However,
since there neither fundamental differences among these
models nor a significant performance improvement of the
ensemble model, we implemented the best performing
single model according to the original benchmarks.

Data availability

CancerOmicsNet is open sourced and freely
available to the academic community at https://github.
com/pulimeng/CancerOmicsNet.
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