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Abstract. We develop a variational framework to understand the properties of functions learned by fitting deep
neural networks with rectified linear unit (ReLU) activations to data. We propose a new function
space, which is related to classical bounded variation-type spaces, that captures the compositional
structure associated with deep neural networks. We derive a representer theorem showing that deep
ReLU networks are solutions to regularized data-fitting problems over functions from this space. The
function space consists of compositions of functions from the Banach space of second-order bounded
variation in the Radon domain. This Banach space has a sparsity-promoting norm, giving insight
into the role of sparsity in deep neural networks. The neural network solutions have skip connections
and rank-bounded weight matrices, providing new theoretical support for these common architectural
choices. The variational problem we study can be recast as a finite-dimensional neural network
training problem with regularization schemes related to the notions of weight decay and path-norm
regularization. Finally, our analysis builds on techniques from variational spline theory, providing
new connections between deep neural networks and splines.
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1. Introduction. A fundamental problem in signal processing, machine learning, and
statistics is estimating an unknown function from possibly noisy measurements. Specifically,
in supervised learning, the goal is to find a mapping f : R? — R that agrees (in some
sense) with a scattered data set {(zn,yn)}Y_; C R x RP ie., y, ~ f(x,), n=1,...,N.
As there are infinitely many functions that can agree with any given data set, this problem
is inherently ill-posed. To circumvent this, some form of reqularization is imposed on the
learning problem. This problem was classically solved via kernel methods, which are solutions
to regularized variational problems over reproducing kernel Hilbert spaces [1, 49]. While these
variational problems are infinite-dimensional, the reproducing kernel Hilbert space representer
theorem [21, 42] says there exists a unique, parametric solution to the problem, allowing the
problem to be recast as a finite-dimensional optimization. Kernel methods (even before the
term “kernel methods” was coined) have had widespread success dating all the way back to
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the 1960s, especially due to the tight connections between kernels, reproducing kernel Hilbert
spaces, and splines [11, 27, 49].

However, the last decade has shown that deep neural networks often outperform kernel
methods in a wide variety of tasks, ranging from speech recognition [17] to image classi-
fication [22] to solving inverse problems in imaging [19]. Thus, there is great interest in
understanding the properties of functions learned from data by neural networks, particularly
with the rectified linear unit (ReLU) activation function, which is widely used in practice [25].

Our prior work in [34, 35] has proven Banach space representer theorems for single-hidden-
layer neural networks with ReLU activations by considering variational problems over certain
Banach spaces. In the univariate case, this space is the classical Banach space of second-order
bounded variation functions, and the neural network solutions are exactly the well-known
locally adaptive linear splines [12, 26, 48]. In the multivariate case, this space is the Banach
space of second-order bounded variation functions in the Radon domain. It is shown in [34, 35]
that these variational problems can be recast as finite-dimensional neural network training
problems. In particular, the solutions to minimizing the sum of losses/errors of a neural
network model plus a regularization term proportional to the sum of squared neural network
weights are solutions to these variational problems. This form of neural network regularization
corresponds to the commonly used technique of weight decay [23] in gradient descent methods
for training neural networks. Due to the similarities of the variational problems studied
in [34, 35] with those studied in variational spline theory, we refer to the neural networks in
the multivariate case as ridge splines of degree one since single-hidden-layer neural networks
are simply superpositions of ridge functions, and the functions are multivariate continuous
piecewise-linear functions.

This paper extends this characterization to deep (multilayer) neural networks with ReLU
activation functions. We also remark that a special property of deep ReLLU networks is that
their input-output relation is continuous piecewise-linear [28]. The reverse is also true in that
any continuous piecewise-linear function can be represented with a sufficiently wide and deep
ReLU network [2]. Thus, one can interpret a deep ReLU network as a multivariate spline of
degree one. This connection between deep neural networks and splines has been observed by a
number of authors [37, 6, 7, 34, 35, 45, 3, 10, 36]. In particular, one can view a deep neural
network as a hierarchical or deep spline [37, 6, 7, 45, 3, 10] to emphasize the compositional
nature of deep neural networks. Due to this special property, we will work exclusively with
ReLU activation functions in this paper, though all of our results are straightforward to extend
to any truncated power activation function.

1.1. Contributions. This paper develops a new variational framework to understand
the properties of functions learned by deep neural networks fit to data. In particular, we
derive a representer theorem for the standard fully connected feedforward deep ReLLU network
architecture. We show that there exist solutions to a certain variational problem that are
realizable by a deep ReLLU network. Moreover, these deep ReLU networks have skip connections
and rank-bounded weight matrices. The number of hidden layers and the rank bounds
of the weight matrices are hyperparameters to the variational problem and are therefore
controllable a priori. We refer to the neural network solutions as deep ridge splines of degree
one due to the similarity of the variational problem studied in this paper with the variational
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problems studied in variational spline theory. This paper contributes the following new
results:

1. We propose a new function space, which is related to classical bounded variation-type
spaces, that captures the compositional structure associated with deep neural networks
by considering functions that are compositions of functions from the Banach space
studied in our previous work [35].

2. We prove a representer theorem that shows that deep ReLU networks with skip
connections and rank-bounded weight matrices are solutions to regularized data-fitting
problems over functions from this compositional function space.

3. The regularizer in the variational problem corresponds to the sum of the Banach norms
of each function in the composition. These are sparsity-promoting norms. Moreover,
these regularizers can be expressed in terms of neural network parameters, suggesting
several new, principled forms of regularization for deep ReLU networks that promote
sparse (in the sense of the number of active neurons) solutions. These regularizers are
related to the notion of weight decay in neural network training as well as path-norm
regularization.

1.2. Connections to empirical studies in deep learning. Our results provide new theoret-
ical support and insight for a number of empirical findings in deep learning. We show that the
common neural network regularization method of “weight decay” [31] corresponds to Radon
domain total variation regularization. This characterizes the functional properties of neural
networks trained with weight decay—the functions they represent are “smooth” in a precise
sense. The optimal solutions to the variational problem require “skip connections” between
layers, which provides a new theoretical explanation for the benefits skip connections provide
in practice [16]. The sparse nature of our solutions sheds new light on the roles of sparsity and
redundancy in deep learning, ranging from “drop-out” [18] to the “lottery ticket hypothesis’
[14]. And finally, low-rank weight matrices are a natural by-product of our variational theory
that has precedent in practical studies of deep neural networks; it has been empirically observed
that low-rank weight matrices can speed up learning [4] and improve accuracy [15], robustness
[40], and computational efficiency [50] of deep neural networks.

)

1.3. Related work. Viewing regularized neural network training problems as variational
problems over certain function spaces has received a lot of interest in the last few years [5, 41, 34,
35, 45, 3, 10], although many of the techniques used in these works are quite classical and rooted
in variational spline theory and the study of continuous-domain inverse problems [52, 12, 26].
A common theme in these works is to leverage the sparsifying nature of total variation
(TV) regularization to learn sparse solutions. Our previous work in [34, 35] proves representer
theorems for both univariate and multivariate single-hidden-layer neural networks by considering
such sparsity-promoting TV regularization. The key analysis tool used in [35] was the Radon
transform due to its tight connections with the analysis of ridge functions. This is because
single-hidden-layer neural networks are superpositions of ridge functions (neurons). While
the connections between ridge functions and the Radon transform are classical, dating back
to early work in the representation of solutions to certain partial differential equations as
superpositions of ridge functions [20], working with single-hidden-layer ReLU networks in the
Radon domain was first studied by [33].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/22 to 128.104.153 .42 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

WHAT KINDS OF FUNCTIONS DO DEEP NEURAL NETWORKS LEARN? 467

Another line of related work is concerned with the “optimal shaping” of the activation
functions in a deep neural network [45, 3, 10]. In particular, [45] proves a representer theorem
regarding the optimal shaping of the activation functions. They consider the standard fully
connected feedforward deep neural network architecture but allow the activation functions to
be learnable. They impose a second-order TV penalty on the activation functions, and so the
optimal shaping of the activation functions corresponds to linear splines with adaptive knot
locations. We remark that we use several techniques developed in [45, 3] to prove our representer
theorem in this paper, particularly in proving existence of solutions to the variational problem
we study. Finally, there is a line of work regarding “deep kernel learning” [9], in which they
derive a representer theorem for compositions of kernel machines. They consider a construction
similar to ours regarding the function space they study, but they consider compositions of
reproducing kernel Hilbert spaces, and so the resulting solutions to their variational problem
do not take the form of a deep neural network.

1.4. Roadmap. In section 2 we introduce the notation and mathematical formulation
used in the remainder of the paper as well as extend the results of [35] in preparation for
proving our deep ReLLU network representer theorem. In section 3 we prove our main result,
the representer theorem for deep ReLLU networks. In section 4 we discuss applications of our
representer theorem to the training and regularization of deep ReLLU networks.

2. Preliminaries. Let .7 (R?) be the Schwartz space of smooth and rapidly decaying test
functions on R¢. Its continuous dual, .7’ (]Rd), is the space of tempered distributions on R,
We are also interested in these spaces on S%! x R, where S~ denotes the surface of the
Euclidean sphere in R?. We say 1 € . (S9! x R) when ¢ is smooth and satisfies the decay
condition

df
sup |(1+ \t‘k)@(D’iﬂ)(%t) < o0
~yesd—1
teR

for all integers k,¢ > 0 and for all differential operators of all orders D in ~ [44, Chapter 6].
Since the Schwartz spaces are nuclear, it follows that the above definition is equivalent to
saying .7 (S%"! x R) = D(S* 1) ®.7(R), where D(S%!) is the space of smooth functions on
S%1 and & is the topological tensor product [51, Chapter III]. We can then define the space of
tempered distributions on S¥! x R as its continuous dual, .#’(S%~! x R).

Let X be a locally compact Hausdorff space. The Riesz—Markov—Kakutani representation
theorem says that M (X)), the Banach space of finite Radon measures on X, is the continuous
dual of Cy(X), the space of continuous functions vanishing at infinity [13, Chapter 7]. Since
Cp(X) is a Banach space when equipped with the uniform norm, we have

(2.1) lull pmxy = sup (u, ).
sﬁeﬁo(xl)
Plloc=

The norm ||-[| pq(x) is exactly the TV norm (in the sense of measures). As .#(X) is dense
in Cp(X), we can associate every measure in M (X) with a tempered distribution and view
M(X) C (X)), providing the description

MX) ={ue LX) : [ullpmex) < o0},
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and so the duality pairing (-, -) in (2.1) can be viewed, formally, as the integral

(w9) = [ plau(a)de,
X
where u is viewed as an element of .”/(X). The space M(X) can be viewed as a “generalization”
of L'(X) in the sense that for any f € L'(X), | fllz1x) = IIfllm(x), but M(X) is a strictly
larger space that also includes the shifted Dirac impulses §(- — x), o € X, with the property
that [|0(- —x0)||sm(x) = 1. We also remark that the M-norm is the continuous-domain analogue
of the ¢!-norm. In this paper, we will mostly work with X = S%! x R.

2.1. Scalar-valued single-hidden-layer ReLU networks and variational problems. Our
work in [35] proved a representer theorem for single-hidden-layer ReLU networks with scalar
outputs by considering variational problems over the space of functions of second-order bounded
variation in the Radon domain. The Radon transform of a function f : R? — R is given by

A= [ f@)dste), (1 es xR,
{z:yTz=t}
where s denotes the Lebesgue measure on the hyperplane {x : v"x = ¢}. The Radon domain
is parameterized by a direction v € S*1 and an offset t € R. When working with the Radon
transform of functions defined on R?, the following ramyp filter arises in the Radon inversion
formula: i
Ad_l = (_a?)%’

where 0; denotes the partial derivative with respect to the offset variable, ¢, of the Radon
domain and fractional powers are defined in terms of Riesz potentials. The space of functions
of second-order bounded variation in the Radon domain is then given by

(2.2) ZBV?(RY) = {f € L' (RY) : ZTV?(f) < oo},

where L"O’I(Rd) is the Banach space! of functions mapping R — R of at most linear growth
and
2.3 RTVA(S) = ca P2 2 |

(2.3) (f) = cad||0; f M(S4-1xR)
denotes the second-order TV of a function in the offset variable of the Radon domain, where
c;' =2(27)%! is a dimension-dependant constant that arises when working with the Radon
transform. Note that all the operators that appear in (2.3) must be understood in the
distributional sense. We refer the reader to [35, section 3] for more details. We now state the
main result of [35].

Proposition 2.1 (special case of [35, Theorem 1]). Consider the problem of interpolating
the scattered data {(xn,yn)}_; C RY x R with N > d + 1. Then, under the hypothesis of
feasibility (i.e., yn = ym whenever x, = x,,), there erists a solution to the variational problem

(2.4) min ~ ZTV3(f) st f(x,) =y, n=1,...,N,
fEZBVZ(RY)

'Tt is a Banach space when equipped with the norm || f||co,1 = esssupgcga|f(2)|(1 + [|z/2) "
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of the form

K
(2.5) s(@) =Y vpplwfz —b) + @ + o,
k=1

where K < N — (d+ 1), p = max{0, -}, vy € R, wp € S !, by € R, c € R?, and ¢y € R.

Remark 2.2. Proposition 2.1 says that there always exists a solution to the variational
problem in (2.4) that can be realized by a single-hidden-layer ReLLU network with a skip
connection [16], which is the affine term in (2.5). In other words, Proposition 2.1 is a
representer theorem for single-hidden-layer RelLU networks.

Remark 2.3. As discussed in [35, Remark 3], the fact that w;, € S¥~! in (2.5) does not
restrict the single-hidden-layer neural network due to the positive homogeneity of the ReLU.
Indeed, given any single-hidden-layer neural network with wy € R%\ {0}, we can use the fact
that ReLU is positively homogeneous of degree 1 to rewrite the network as

K
T — kaHwng pm(WEx — by) + ' + co,
k=1

where @y, = wy/||wi |2 € ST and by, == by /|l wy|2 € R.

Given a single-hidden-layer ReLU network, we can explicitly compute its 2 TV?-seminorm
in terms of network parameters. This is summarized in the following proposition.

Proposition 2.4 (special case of [35, Lemma 25]). Given a single-hidden-layer neural network

K
s(x) = ka plwix —by) +c'x+ co,
k=1

where p = max{0,-}, vy €R, wp € RY, b € R, c € R?, and ¢y € R,
K

(2.6) ATV (s) = |vell|wpla-
k=1

We remark that (2.6) is sometimes referred to as the path-norm of the network [29]. Moreover,
we see that (2.6) is a kind of /!'-norm on the network parameters, giving insight into the
sparsity-promoting aspect of the #Z TV2-seminorm on network weights.

Note that Z BV?(R?) is defined by a seminorm, and the null space of 2 TV?(-) is nontrivial;
it is the space of affine functions on R?. It was proven in [35, Theorem 22] that Z BV?(R%)
can be turned into a bona fide Banach space when equipped with an appropriate norm.

Lemma 2.5. The space %BVZ(Rd) equipped with the norm

d

(2.7) £l 2By = ZTVA(f) + [F0)] + D | f(er) = f(O)],

k=1
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where {ek}%zl denotes the canonical basis of R?, has the following properties:
1. It is a Banach space.
2. For any xo € RY, the Dirac impulse §(- — xq) : f — f(xo) is weak* continuous on
ZBVZ(RY).

The proof of Lemma 2.5 appears in Appendix A. We remark that item 1 is a corollary
of [35, Theorem 22] and item 2 is a new result. In particular, item 2 plays a crucial role in
proving the existence of solutions to the variational problem studied in our deep ReLLU network
representer theorem. The % BV?(R%)-norm is a sparsity-promoting norm since 2 TV?(-) is
defined via an M-norm, the continuous-domain analogue of the #'-norm.

Remark 2.6. Lemma 2.5 implies that the result of Proposition 2.1 also holds for regularized
problems of the form

N

min (Yn, f(xn)) + X ZTV(f),
FEZ BV?(RY) 1

where A > 0 is an adjustable regularization parameter and the loss function (-, -) is convex,
coercive, and lower semicontinuous. Note that these are slightly weaker conditions on the loss
function than in [35, Theorem 1]. This version of the result holds due to the weak® continuity
of the Dirac impulse §(- — xq) : f — f(xo) on ZBV?*(R?) combined with [47, Theorem 3] for
the conditions on the loss function.

While Proposition 2.1 provides a powerful representer theorem result for single-hidden-layer
neural networks, the affine component of any solution is unregularized due to the null space
of Z TV?(-) being the space of affine functions on R%. Therefore, we modify the problem in
(2.4) in order to explicitly regularize the affine component of the functions. This results in the
following new representer theorem for single-hidden-layer ReLLU networks.

Theorem 2.7. Consider the problem of interpolating the scattered data {(xn,yn)}_; C
R? x R with N > 0. Then, under the hypothesis of feasibility (i.e., Yyn = ym whenever
Ty, = Xy, ), there exists a solution to the variational problem

2.8 min p s.t. Tp) =Yn,n=1,...,N,
(23 o ey st S =y
of the form

K
(2.9) s(@) = v plwia —by) + ¢’z + <,
k=1

where K < N, p=max{0, -}, v € R, wy, € S¥!, b € R, c € R?, and ¢y € R.

The proof of Theorem 2.7 appears in Appendix B. The key difference between Theorem 2.7
and Proposition 2.1 is that in Theorem 2.7, we are minimizing the % BV? (R4)-norm rather
than the Z TVZ%-seminorm as in Proposition 2.1. This results in the sparsity of the number of
neurons in the solution being N rather than N — (d 4+ 1). Additionally, Theorem 2.7 explicitly
regularizes the skip connection that appears in (2.9).
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Lemma 2.8. Given a single-hidden-layer neural network

K

x) = ka pwix —by) + ¢z + o,
k=1

where p = max{0, -}, vy €R, wp € RY, b € R, c € R?, and ¢y € R,

K d
(2.10) Isll 2 vy = Y _lorlllwkllz +5(0)] + > _[s(en) — 5(0)].
k=1 n=1
Proof. The result follows from Proposition 2.4 and Lemma 2.5. |

2.2. Vector-valued single-hidden-layer ReLU networks and variational problems. Since
a deep neural network is the composition of vector-valued single-hidden-layer neural networks,
we require a representer theorem for vector-valued single-hidden-layer ReLLU networks as a
precursor to our representer theorem for deep ReLU networks. Extending Theorem 2.7 for
vector-valued functions follows standard techniques. In particular, we follow the technique
of [43] which derives a representer theorem for vector-valued smoothing splines.

Lemma 2.9. Define the vector-valued analogue of%BVz(Rd) by the Cartesian product

ZBVA(RY) x - x ZBVA(RY).

D times

This space can be viewed as the Bochner space ¢1([D]; ZBV?*(RY)), where [D] = {1,...,D},
and can therefore be equipped with the norm

||f”el ([D);% BVZ(Rd)) — Z ||fm||ij2 Rd)»

where f = (f1,..., fp). For brevity, write Z BV*(R%:RP) for (1([D]; Z BV*(RY)). This space
has the following properties:

1. It vs a Banach space.

2. For any xo € R?, the point evaluation operator

(6(- — =), f1) f1(z0)
50 : f — f(w()) = Z =
(6(- — o), fp) fp(=o)

is componentwise weak™® continuous.

Proof. Ttem 1 follows by construction since Z BV?(RY) is itself a Banach space from item
1 in Lemma 2.5. Item 2 follows from item 2 in Lemma 2.5. |

Remark 2.10. We can define different (but equivalent) norms on %Z BV?(R%; RP) via the
(P([D]; % BV?(R%))-norms, where 1 < p < oo. We focus on the case of p = 1 in this paper for
clarity.
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Lemma 2.11. Let f € %BVQ(Rd;RD). Then, f is Lipschitz continuous and satisfies the
Lipschitz bound

1 () = F@)lls < IflzBv2@amr) Iz =yl
The proof of Lemma 2.11 appears in Appendix D.

Theorem 2.12. Consider the problem of interpolating the scattered data {(Zn,yn)}Y_; C
R? x RP with N > 0. Then, under the hypothesis of feasibility (i.e., Yy, = Ym whenever
Ty, = Xy, ), there exists a solution to the variational problem

N L R
of the form

K
(2.12) s(x) = Z vy, plwiz — by) + Cz + ¢,

k=1

where K < ND, p = max{0,-}, vp € RP, w;, € S, b, € R, C € RPX?, and ¢y € RP.
Moreover, there always exists a solution of the form in (2.12) in which vy is 1-sparse.

The proof of Theorem 2.12 appears in Appendix C. We also remark that the tightness of
the bound K < ND is an open question.

Remark 2.13. As discussed in Remark 2.3, the fact that wy € S in (2.12) does not
restrict the single-hidden-layer neural network due to the positive homogeneity of the ReL.U.

Lemma 2.14. Given a vector-valued single-hidden-layer neural network
K
s(x) = Z vy, plwiz — by) + Cz + ¢,
k=1

where p = max{0, -}, vp € RP, w;, € RY, by € R, C € RP*4 and ¢y € RP,

K D d
(2.13) Isll 2 B2 @amey = D llvkllllwellz + D (15m(0)] + Y lsm(€n) = sm(0)]).
k=1 m=1 n=1
Proof. For m=1,...,D, we can write
K
Sm(x) = Z Uk p(wgw — b)) + c;ac + com,
k=1

where s, is the mth component of s, ¢,, is the mth row of C, and cg ,, is the mth component
of ¢y. The result follows from Lemma 2.8 and the definition of the Z BV?(R%;R”)-norm. W
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3. A representer theorem for deep ReLU networks. In this section, we will prove our
representer theorem for deep ReLU networks. We consider functions that are compositions of
functions from the Banach spaces defined in Lemma 2.9. Let

%BVgeep(RdO; N ;RdL)
={f=fPo..of®D. s c ZBVXRu1;R¥) ¢=1,...,L}

denote the space of all such functions.

For brevity, we will write Z BVgeep(L) for # BVgeep(RdO; -+ ;R9L). This definition reflects
two standard architectural specifications for deep neural networks: the number of hidden layers
L and the functional “widths,” dy, of each layer. That is, each function in the composition will
ultimately correspond to a layer in a deep neural network in our representer theorem.

Lemma 3.1. Let f=fFo...0 f) ¢ %ngeep(L). Then, f is Lipschitz continuous and
satisfies the Lipschitz bound

L
— < O H —ally.
(@) = F@)lh < (E\\f —— L
Proof. The result follows by repeatedly applying Lemma 2.11. u

We now state our representer theorem for deep ReLLU networks.

Theorem 3.2. Let L be a positive integer corresponding to the depth of a deep ReL U network,
and let dy, . ..,dr be positive integers corresponding to the intermediate dimensions of a deep
neural network. Consider the problem of approzimating the scattered data {(@y, yn)}fyzl -
R% x R with N > 0 denoting the number of data. Let {(-,-) be an arbitrary nonnegative
lower semicontinuous loss function, and let X > 0 be a reqularization parameter. Then, there
exists a solution to the variational problem

N L
(3.1) f“>e%§3§§§d;uwm ;e(yn, f(@n) + A ;Hﬂ@ (- I
PR Ie
of the form
(3.2) s(x) =z,
where L) is computed recursively via

20 iz,
(3.3) O — VO (WO L1 _ b0y 1 Op=1) 4 O
) =V p(Wg - b))+ CYg +c¢y’, ¢=1,...,L,

where p applies p = max{0, -} componentwise and, for ¢ =1,...,L, v e RdﬁXK(Z), wO ¢

REOxdier 0 ¢ REY €O € RAU*e-1 | and ¢ € R%, where K < Ndj.
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Figure 1. This figure shows the architecture of the deep neural network in (3.3) in the case of L = 3 hidden
layers. The black nodes denote input nodes, the blue nodes denote ReLU nodes, and the gray nodes denote linear
nodes. Skip connection nodes are omitted for clarity.

Remark 3.3. Note that the search space in (3.1) is over the Cartesian product
(3.4) ZBVARD;RM) x ... x ZBV?(R¥-1;R%)

rather than Z# BVgeep(L). This is because given a function f € #Z BVgeep(L), there could be
many decompositions such that f = f&) o-.. o f(). Therefore, in order for the regularization
term in (3.1) to be well defined, we formulate the problem over (3.4).

Remark 3.4. Theorem 3.2 also holds for the problem of interpolating scattered data.

The neural network architecture that appears in (3.3) can be seen in Figure 1. Moreover,
this exact architecture was recently studied in the empirical work in [15] and is referred to
as a deep ReLU network with linear bottlenecks. Since the variational problem in (3.1) is
reminiscent of the variational problems studied in variational spline theory, and since the
resulting deep ReLLU network solution in (3.2) is a continuous piecewise-linear function, in a
similar vein to [45, 3, 10], we refer to such functions as deep ridge splines of degree one.

Remark 3.5. Since the regularizer in (3.1) directly controls the 2 BV?(R%-1; R%)-norm
of each layer, we see from Lemma 2.11 that the variational problem is essentially regularizing
a bound on the Lipschitz constant of the function.

Remark 3.6. The regularizer that appears in (3.1) can be replaced by

L
Yo ; e (Hf(g) H%BVQ(Rdfl;Rdz))
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where ¢y : [0,00) = R, £ = 0,..., L, is a strictly increasing and convex function, and still
admit a solution that takes the form of a deep neural network as in (3.2). Thus, there are
many choices of regularization that result in a representer theorem for deep ReLLU networks.

Remark 3.7. Notice that (3.2) is precisely the standard L-hidden layer deep ReLU network
architecture with rank-bounded weight matrices and skip connections. Indeed, the weight
matrix of the ¢th layer is A®) := WEFDVO  More specifically, by dropping biases and skip
connections for clarity, we see that s(x) in (3.2) can be computed recursively as

0 =g,

(3.5) W = p(ADgED) p =1 ... L,
s(x) = AL gL,

where
A0 = WO,
AW =wHDVWO  p—=9 L1,
AL —v()

From the dimensions of V) and W) in Theorem 3.2, we see that for £ = 0, ..., L, rank(A®)) <
min{Ndy1,d,}, and rank(A")) < d;. In a typical scenario, where the {d;}L_, are of the
same order, this says that rank(A©)) < d,.

Remark 3.8. The architecture of the network in (3.3) is not restrictive of what functions
can be represented by such a network. In particular, the architecture in (3.3) is as expressive
as the standard deep ReLLU network architecture with hidden layer widths of dy,...,dr.

Proof of Theorem 3.2. Given f = f(F) o ... 0 f() such that f) € ZBVZ(R%-1;R%),
£=1,...,L, write

N L
— (1) (L)Y .— H (Z)H
T(f) =T, ) ;Ayn,f(mn)) + Ag L]
for the objective value of f. Next, consider an arbitrary g = g% o --- 0 ¢() such that
g e ZBV?(R%-1;R%), ¢ = 1,..., L, with objective value C' := J(g). We may transform
the unconstrained problem in (3.1) into the equivalent constrained problem

<C/\ 0=1,...,L.

. )
(3.6) e J(f) st Hf ABV2(RU-1Rde)

fOecxn BVQ(Rde—l R92)

=1,..L
F=f Dot f(D)

This transformation is valid since any function that does not satisfy the constraints in (3.6)
has a strictly larger objective value than g and is therefore not in the solution set.
For fo = f{F oo fV, 19 c #BV2(RU-1;Re), ¢ =1, ..., L, we will show that the map

ée) — J(fo), for a fixed £ € {1,...,L}, is weak* lower semicontinuous on % BV?(R%-1; R%).

First notice that the map fée) — fo(xo), for any xg € R?, is componentwise weak* continuous
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on %BVQ(RdZ—l;RdZ ). Indeed, since each f(ge) ,£=1,..., L, is componentwise continuous by
Lemma 2.11, and since the point evaluation is componentwise weak™ continuous by Lemma 2.9,
the map fé@ — féL) 0---0 fél)(azo) is made up of compositions of componentwise continuous

and componentwise weak® continuous functions and is therefore itself componentwise weak*
. d~ - . . . . .
continuous on Z BV?(R%-1;R%). Next, since the loss function is lower semicontinuous and

every norm is weak™ continuous on its corresponding Banach space, we have that fée) — J(fo)
is weak* lower semicontinuous on # BV?(R%-1;R%). Therefore, ( él), ey féL)) = J(f) is
weak™® lower semicontinuous over the Cartesian product in (3.4). Finally, by the Banach—
Alaoglu theorem [39, Chapter 3], the feasible set in (3.6) is weak* compact. Thus, there exists
a solution to (3.6) (and subsequently (3.1)) by the Weierstrass extreme value theorem on
general topological spaces [24, Chapter 5].

Let § =35 0...035W be a (not necessarily unique) solution to (3.1). By applying 3 to each
data point x,, n =1,..., N, we can recursively compute the intermediate vectors z, ¢ € R
as follows:

e Initialize z, o = x).
e For each £ =1,..., L, recursively update 2, ¢ = E(Z)(znj_l).
The solution § must satisfy

RONC arg min st. f(zZne—1) =2ne, n=1,...,N,

feZBV2(R%-1;R? )||f||%BV2(RdZ_I;RdZ)
€EZ BV~ (R"—1;R%

for £=1,..., L. To see this, note that if the above display did not hold, it would contradict
the optimality of 5. By Theorem 2.12, there always exists a solution to the above display that
enforces the form of the solution in (3.2). [ ]

4. Applications to deep network training and regularization. In this section we will
discuss applications of the representer theorem in Theorem 3.2 to the training and regularization
of deep ReLLU networks. Since Theorem 3.2 guarantees existence of a solution to the variational
problem in (3.1) that is realizable by a deep ReLLU network as in (3.2), one can find a solution
to (3.1) by finding a solution to a finite-dimensional deep network training problem.

Lemma 4.1. Given a deep neural network s = s'¥) o --- 0 s as in (3.2),

L
i
=1

7% BVZ(R%—1;Rde)
L (K¢
=

S Bt & (o]« St - 0ol )
m=1 1

1\ k=1 n=

where 'U,E:Z) is the kth column of VO and 'w,(f) is the kth row of W,
Proof. The proof follows by invoking Lemma 2.14 on each s, ¢ =1,..., L. |
Lemma 4.1 implies the following corollary to Theorem 3.2.

Corollary 4.2. Let 0 denote the parameters of a deep neural network as in (3.2), and let
© = RM denote the space of these parameters, where M is the total number of scalar parameters
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in the network. Write fg to denote a deep neural network parameterized by 6. Then, the
solutions to the finite-dimensional neural network training problem

N

g mny n
gggn 1 (Yn, fo(zn))

D
S (S o], 35 (0] e - 20 )

where {(xn, yn)}Y_; C R% x R s a scattered data set, {(-,-) is an arbitrary nonnegative
lower semicontinuous loss function, and A > 0 is an adjustable reqularization parameter, are
solutions to (3.1) so long as K > Nd,.

(4.1)

We can also consider a different regularizer than the one in Corollary 4.2 that results in a
finite-dimensional neural network training problem equivalent to (4.1).

Corollary 4.3. The solutions to

N
min 2 U(Yn, fo(zn))
(4.2) . o b .
v + Wt
x| ”12 ” ”F+z<\fg€3n<o>)+z\fé?n<en>— é%(o)\)
/=1 m=1 n=1

are also solutions to (4.1), where

K©
vel,, = S,

is the mized ('02-norm of VO and ||-||f is the usual Frobenius norm of a matriz. Moreover,
the solutions to (4.2) satisfy the property that H'U/E;Z)”l = ||w,(f)||2, ¢=1,...,L,k=1,...,K®,
Proof. The kth neuron in the ¢th layer of a deep neural network as in (3.2) takes the form

T — Ul(f) p(w,(f) — bg)) Due to the positive homogeneity of the ReLLU, v,g ) and w(z) can be
rescaled so that ||’U,(f)||1 = ||’wk |l2 without altering the function of the network. Therefore,
minimizing H'v,(f) 2+ Hw,(f) |2 is achieved when H'v,(f) Ih = Hw,g) ||2. The result then follows from
the fact that when H'Ul(f)H = Hwk)Hg we have

P e g e,

Remark 4.4. While the problems in (4.1) and (4.2) take the form of neural network
training problems with new, principled forms of regularization, it’s important to note that the
problems are nonconvex, and our results say nothing about algorithms for actually solving the
optimization problems.
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Remark 4.5. Due to the sparsity-promoting nature of the 2 BV?(R%-1;R%)-norms, the
regularizers that appear in (4.1) and (4.2) promote sparse (in the sense of the number of active
neurons) deep ReLU network solutions.

Remark 4.6. The term

> (\fé?nw)} + fj\féfin<en> - é%(m\)
=1 n=1

that appears in (4.1) and (4.2) simply imposes an £!-norm on the coefficients of the affine part
(i.e., the skip connection in the neural network realization) on each layer (see Appendix A).
Therefore, one may also consider the regularizers

K@

(43 > (3 [ ], + o]+ 7],

/=1 \ k=1

in place of (4.1) or

L
(4.4) >

(=1

2
\V“)Hm + WOl

#fel, e,

in place of (4.2), where
D d
I =D lemal
m=1 k=1
denotes the mixed ¢'¢'-norm of C.

Remark 4.7. Tt is common in many deep learning papers to consider deep neural networks
without biases and skip connections (see, e.g., [29, 30, 32, 8]). Since the term

(4.5) (‘ 759 ‘ ‘ | (?ﬂ(o)’)

that appears in (4.1) and (4.2) simply imposes an £!-norm on the coefficients of the affine part
(i.e., the skip connection in the neural network realization) on each layer (see Appendix A),
the following two regularizers naturally arise from our variational framework in the case of a
deep neural network with no biases or skip connections:

(4.6) S ZH Ol

(=1 k=1
or
4.7 BN v ? w® ?
(17) 3 22|V + [

where (4.6) and (4.7) are in fact equivalent by the same argument as in the proof of Corollary 4.3.
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4.1. Connections to existing deep network regularization schemes. The regularizers
that appear in (4.1)—(4.4), (4.6), and (4.7) are principled regularizers for training deep
ReLU networks. Moreover, we will show in this section that the discussed regularizers are
related to the well-known weight decay [23] and path-norm [29] regularizers for deep ReLU
networks.

Training a neural network with weight decay is one of the most common regularization
schemes for deep ReLU networks. This corresponds to an ¢?-norm regularization on all the
network weights. The regularizer that appears in (4.7) almost takes the form of an £2-norm
of the network weights except that the regularization on the V) is not the Frobenius norm.
By considering a slightly different architecture than in (3.3), where it is imposed that the
columns of V) are 1-sparse, the regularizer in (4.7) exactly corresponds to weight decay (since
||V(€)||%2 = [[V)||2 when the columns of V() are 1-sparse). Training this architecture with
this regularizer still corresponds to finding a solution to the variational problem in (3.1) since
it simply imposes that the outputs of each layer of the deep network are completely decoupled
(see Remark C.1). The utility of not considering such an architecture is to promote neuron
sharing between the outputs of each layer.

Another common regularization scheme for deep ReLU networks is the path-norm reg-
ularizer. In particular, several works [29, 30, 32, 8] consider deep ReLU networks with no
biases or skip connections mapping RY — R of the form s(x) = L), where (&) is computed
via

m?
(4.8) ) = p(ADgy p =1, L,

where p denotes applying p componentwise, A©) ¢ RK(I)Xd, AWO ¢ RK(HI)XK(D, L =

1,...,L —1, and a) ¢ RE™ | Note that (4.8) is almost the same as the architecture
in our framework if we drop biases and skip connections (see (3.5) in Remark 3.7). These
works then consider path-norm regularization of the form

K@) g(L-1) KO g

(4.9) Z Z Z Z | ey [ @ oo | - ‘a’k/’L—lyk?LHakLL

kr=1kr_1=1 k1=1ko=1

where ay,, denotes the (kg, kpi1)th entry in A and ay, denotes the kpth entry in
a'l),

Consider regularizing a deep ReLU network (with no biases or skip connections) from our
framework with the following regularizer,” which arises with a particular choice of {1}, in

Remark 3.6,

ket

K®©)

(4.10) ﬁ H”'(f)Hle’(f)Hz'
l=1 k=1

2Where we drop the term in (4.5) as discussed in Remark 4.7.
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We have that (4.10) is an upper bound on something that looks very similar to the path-norm
n (4.9). Indeed, first notice that if we write the deep ReLU network from our framework in
the form in (3.5), we have

(0T, 4D

(4.11) }aké,kZJrl‘ = |V k

ok k™, = ] o™

where ag, , , denotes the (K¢, key1)th entry in AW® as defined in Remark 3.7. Therefore,

L K® K@) K
(€) O _ 1) (1) (2) (2) (L) (L)

H Hvk H1Hwk H2 N Z ZHwkl QHUI“ 1Hwk2 2Hvk? 1'”Hka 2HU’€L 1
=1 k=1 kr= ki=1
K@) K@

1 L
= Z T Z le(gl) 9 |y oo | -+ |y k| ‘UIE;L) %

kr=1 k1=1

where the last line holds from (4.11). We see that the last line in the above display is the same
as the path-norm in (4.9), apart from how it treats weights in the first and last layers. We
also remark that the work in [8] shows that the path-norm in (4.9) controls the Rademacher
and Gaussian complexity of deep ReLLU networks.

5. Conclusion. In this paper we have proven a representer theorem for deep ReLU
networks.> We have shown that deep ReLU networks with L-hidden layers, skip connections,
and rank-bounded weight matrices are solutions to a variational problem over compositions of
functions in Z BV2-spaces. This variational problem can be recast as a finite-dimensional neural
network training problem with various choices of regularization. We have therefore derived
several new, principled regularizers for deep ReLLU networks. Moreover, these regularizers
promote sparse solutions. We have shown that these new regularizers are related to the
well-known weight decay and path-norm regularization schemes commonly used in the training
of deep ReLU networks. The main follow-up question revolves around more understanding of
the compositional space Z BV%eep (L). This entails first having further understanding of the
Z BV?2-spaces. The function spaces studied in this paper are new and not classical, and future
work will be directed at understanding how these new spaces are related to classical function
spaces studied in functional analysis.

Appendix A. Topological properties of #Z BVZ(R?). In this section we will prove
Lemma 2.5. We will rely on many results developed in [35]. While the definition of 2 BV?(R%)
given in (2.2) is convenient from an intuitive perspective, it does not lend itself to analysis
due to Z TV?(-) being a seminorm with null space P;(R%), the space of polynomials of degree
at most one, i.e., affine functions in R%. Thus, we use the result of [35, Theorem 22] to
characterize ZBV?(R?) as a Banach space. In particular, [35, Theorem 22] considers an
arbitrary biorthogonal system of Pi(R?) in order to equip Z BV?(R?) with a bona fide norm.

Definition A.1. Let N be a finite-dimensional space with Ny := dim N . The pair (¢, p) =
{(¢n,pn) 10051 is called a biorthogonal system for N if p = {p,})°5" is a basis of N and

n=0

3As stated in the introduction, all our results are straightforward to generalize to any truncated power
activation function.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/22 to 128.104.153 .42 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

WHAT KINDS OF FUNCTIONS DO DEEP NEURAL NETWORKS LEARN? 481

the “boundary” functionals ¢ = {pn}N05" with ¢, € N (the continuous dual of N') satisfy the
biorthogonality condition (¢, pn) = 6[k —nl], k,n=0,..., Ng — 1, where 0[] is the Kronecker
impulse.

Proposition A.2 (see [35, Theorem 22, item 3]). Let (¢, p) be a biorthogonal system for
P1(RY). Then, ZBV?*(RY) equipped with the norm

1l vy = ZTVA() + ()1,

where ¢(f) = ((¢0, f), ..., (¢q, f)) € R, is a Banach space.

Proof of Lemma 2.5, item 1. By Proposition A.2 it suffices to find a biorthogonal system
(¢, p) of P1(R?) so that for every f € ZBV?(R?) we have

d
(A1) [N =1£(0)] + > _If(ex) = f(0)].
k=1
Put po(z) := 1 and py(z) =z, k = 1,...,d. Clearly p is a basis for P;(R%). Put ¢g = &
and ¢y, == 0(- —ey) — 0, k =1,...,d, where § denotes the Dirac impulse on R? and e;, denotes
the kth canonical basis vector of R%. Then, (¢, p) is a biorthogonal system for P;(R%). Indeed,
we have (¢o,po) = 1 and (¢, pr) = pr(er) —pr(0) =1—-0=1,k=1,...,d. We also have

<¢0,pk> :pk(O) =0, k=1,...,d,
(Ok,po) =po(ex) —po(0) =1—-1=0, k=1,...,d,
(G, D) = pn(ex) —pn(0)=04+0=0, kn=1,....d, k#n.

A computation shows that (A.1) holds with this choice of biorthogonal system. [ |

In order to prove item 2 of Lemma 2.5, we must show that the Dirac impulse, §(- — xg),
xy € R, is weak* continuous on ZBV?(R%). The following proposition characterizes the
weak* continuous linear functionals on a Banach space.

Proposition A.3 (see [38, Theorem V.20, page 114]). Let X be a Banach space. The only
weak® continuous linear functionals on X' (the continuous dual of X ) are elements of X.

Therefore, we must show that the Dirac impulse is contained in the predual of Z BV?(R?).
Before we can prove this, we require an important result from [35]. Recall from (2.3) that

RTVA(f) = ol 9227 2 | .

V2(f) = cal| 0 i
Put R := ¢y 07\ %. As discussed in [35], for every f € ZBV*(RY), u =R f € M(S*! x R)
is always even, i.e., u(7y,t) = u(—=, —t). This means we have

ZTVA(f) = R fllpmepay

where P4 denotes the manifold of hyperplanes on R%. In particular, we can view M (P?) as the
subspace of M(S%~! x R) with only even finite Radon measures. Indeed, this is due to the fact
that every hyperplane takes the form h(, ;) = {z € R?: yTx =t} for some (v,t) € S~ x R

and Ay, = fi—y,—t)-
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Proposition A.4 (see [35, Lemma 21 and Theorem 22]). Let (¢, p) be a biorthogonal system
for P1(RY). Then, every f € ZBV*(RY) has the unique direct-sum decomposition

f =Ry {u} +4q,
where u =R f € M(PY), ¢ = ZZ:0<¢I¢: Fypr € P1(R?), and

(A.2) R;l DU 9 (-, z)u(z) d(o x \)(2),
Sd-IxR

where o is the surface measure on S and X is the Lebesque measure on R and

(A.3) go(x,2) =r2(@) = Y pr(@)ai(2),

where 15 = Ty p) = p(wT(:) = b) and qu(z) = (¢, 72), where z = (w,b) € ST xR and p
denotes any Green function of D?, the second derivative operator, e.g., p = max{0, -} (the

ReLU) or p=|-]/2.

The operator R;l defined in (A.2) has several useful properties (see [35, Theorem 22,
items 1 and 2]). In particular, it is a stable (i.e., bounded) right-inverse of R, and when
restricted to

ZBVL(RY) = {f € ZBV*(R?) : ¢(f) =0},

it is the bona fide inverse of R. The space %’BV;(Rd) is also a concrete transcription of
the abstract quotient ZBV?(R?)/P;(R%). We have that R : %BV?,(]Rd) — M(P?) is an
isometric isomorphism with the inverse given by R;l. Additionally we have from Propo-
sition A.4 that ZBV?(R?) = %BV;(Rd) @ P1(RY), where %BV;(Rd) is a Banach space
when equipped with the norm f + [|R f|| y4(pay and P1(RY) is a Banach space when equipped
with the norm f — |¢(f)|l1. These properties will be important in proving item 2 of
Lemma 2.5.

Proof of Lemma 2.5, item 2. Let (¢, p) be the biorthogonal system constructed in the
proof of Lemma 2.5, item 1. Since Z BV?(R%) = %BV;(Rd) @® P1(RY), showing that §(- — xo),
xo € R?, is weak* continuous on Z BV?(R?) is equivalent to showing that it is weak* continuous
on both %BV%(RCI) and P (R9).

Clearly 6(- — ), o € R?, is continuous on P;(R%) (since every element of P;(R?) is
a continuous function). Then, since P;(R?) is finite-dimensional, the spaces of continuous
linear functionals and weak* continuous linear functionals are the same. Thus, §(- — xg),
xo € R? is weak* continuous on P;(R?). It remains to show that §(- — xg), g € RY, is weak*
continuous on Z BV (R?). Let X be the predual of ZBV5(R?), i.e., X' = ZBV(R?). We
must show that §(- — zg) € X, xo € R%. The Riesz-Markov-Kakutani representation theorem
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says that the predual of M(P?) is Co(PP%). The following diagram shows how these spaces are
related.

R
ABVH(RY) " M(PY)

-1 PN
; Rg i
dual | idual
|
L R}, i
X . Co(PY)
—1x% 4
Ry

The above diagram shows that 6(- — xg) € X if and only if R;l*{é(- —xg)} € Co(P?).

From Proposition A.4 we see that R;l*{5(~ —x0)} = gp(xo, -) defined in (A.3). By choosing
p=1-|/21in (A.3) we have

9o(xo, (w, b)) = ‘w :co—b‘ Zpk - <¢k7| T() - b‘>

d
|—b] |wy, —b] ||
2 +D_ o 2 2

() ‘meo — b‘ B

2
k=1
lwTxo —b| || d d |wy, — b
(A.4) =5  ~ 3 1—;$0,k —kzlxo,kZ,

where (k) follows by substituting in the biorthogonal system (¢, p) constructed in the proof
of Lemma 2.5, item 1. Clearly gg (o, -) is continuous, and g (o, (w,b)) = g¢(xo, (—w, b)),
S0 gg(xo, +) is an even function on S~! x R and therefore a continuous function on P?4. It
remains to check that gg(x,-) is vanishing at infinity. Certainly this is true. Indeed, for
sufficiently large b we have

_wa +b b d d —wr + b
g¢(m0,(’w,b)) = +— 5 1-2(1)07]c _Z:EO’I‘:]CT =0,
k=1

k=1

and for sufficiently small b we have

w'xy—b —b d d wg — b
9p(@o, (w, b)) = 9 T 9 (1 - Z%,k) - Zmo,k 5 = 0.
k=1 k=1

Therefore, gg(xo, -) is compactly supported on P, and so gg(xo, -) € Co(P?). Thus, the Dirac
impulse §(- — xg), o € R?, is weak* continuous on Z BV?(R?). [ ]

Appendix B. Proof of Theorem 2.7. In order to prove Theorem 2.7, we require that
solutions to the variational problem in Theorem 2.7 exist. We will use the following recent
result regarding existence of solutions to variational problems over Banach spaces.
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Proposition B.1 (special case of [46, Theorem 2]). Let (X,X") be a dual pair of Banach
spaces and {Vn}flvzl C X be a collection of linearly independent measurement functionals. Then,
the solution set to

argmin ||f|lx st. (Un, f) =yn,n=1,...,N,
fex’

is nonempty, convex, and weak® compact, where (-,-) denotes the pairing of X' and its
continuous dual, X".*

Remark B.2. The result of [46, Theorem 2] is more general than what is stated in Proposi-
tion B.1, but we are only interested in the existence result in this paper.

Proof of Theorem 2.7. By Lemma 2.5, we have that Z BV?(R%) is a Banach space and
that the functionals v, = (- — z,), n = 1,..., N, are weak® continuous on Z BV?(R%) (and
are therefore contained in the predual of Z BV?(R%)). Moreover, this choice of {v,}_; is
clearly linearly independent.” Therefore, the problem in (2.8) satisfies the hypotheses of
Proposition B.1, and so a solution to (2.8) exists. Let s be a (not necessarily unique) solution

0 (2.8). This solution must be a minimizer of

. 2 ~
fe%I]rBl\l/%(Rd)%TV (f) st. ¢ f(0)=35(0),

By Proposition 2.1, there exists a solution to the above display that takes the form in (2.9)
with K < N neurons, so we can always find a solution to the original problem in (2.8) of the
form in (2.9). [ ]

Appendix C. Proof of Theorem 2.12.

Proof. By Lemma 2.9, we have that 2 BV?(R% RP) is a Banach space and that the point
evaluation operator is componentwise weak™ continuous on % BVQ(Rd; Rd). Therefore, the

functionals
(Unms f) = fm(n), n=1,...,N,m=1,...,D,

where f = (f1,...,fp) € ZBV*(R% RP) and (-, -) denotes the pairing of % BV?(R%; RP)
and its continuous dual, are contained in the predual of %BVQ(Rd;]RD ). Moreover, these
functionals are linearly independent.® Therefore, the problem in (2.11) satisfies the hypotheses
of Proposition B.1, and so a solution to (2.11) exists. Next, note that we can rewrite the
problem in (2.11) as

D n=1 N
L S lblames 56 o) = {174
fme%é\/’?(Rd) m=1 T

m=1,...,D

“Note that v, € X implies v, € X" by the canonical embedding of a Banach space in its bidual.
5 Assuming that @, # xj for n # k.
6Assuming that @, # xx for n # k.
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where Y, = (Yn.1,---,Yn.p) € RP. Let = (31,...,3p) be a (not necessarily unique) solution
to (2.11). From the above display we see that this solution must satisfy

(C.1) Sm € argmin || f
fEZBV2(RY)

#Bvi®y) St f(®n) =ynm, n=1,...,N,

form=1,...,D. To see this, note that if the above display did not hold, it would contradict
the optimality of s. By Theorem 2.7, there exists a solution to the above display that takes the
form in (2.9) with K, < N neurons. By combining these solutions into a single vector-valued
function with potential combining of neurons’ we see that there exists a solution to the original
problem in (2.11) that takes the form in (2.12) with K < Kj +---+ Kp < ND neurons. If no
neurons combine, each v is 1-sparse. |

Remark C.1. One could also write a solution of (2.11) such that each output is completely
independent of any other output; i.e., the outputs are completely decoupled. This corresponds
to fitting the data with D separate single-hidden-layer ReLLU networks. This follows from the
fact that s,, is a minimizer to the problem in (C.1). This corresponds to the representation in
(2.12) having each vy be 1-sparse.

Appendix D. Proof of Lemma 2.11. Before proving Lemma 2.11, we will first bound
the Lipschitz constant of functions in 2 BV?(R?). To do this, we will rely on Proposition A.4
with the biorthogonal system constructed in the proof of Lemma 2.5 given in Appendix A. In
particular, Proposition A.4 provides the direct-sum decomposition of f € ZBVZ(R?) by

(D.1) flx) = /Sdlx]R 9o (x, (w, b)) u(w,b) do(w) db + "z + co,

with gg as in (A.4). It can easily be checked that this decomposition has the property that

(D.2) £l Bv2 ey = el pmqsa-1xm) + llell + ol

and we refer the reader to [35, Theorem 22, item 3] for more details.
Lemma D.1. Let f € %BVQ(Rd). Then, f is Lipschitz continuous and satisfies the Lip-
schitz bound
[f (@) = F(W)| < 1fll2Bv2ma 12—yl

Proof. We will first bound the Lipschitz constant of g4(-,2) defined in (A.4), where
z = (w,b) € S¥! x R. For any z,y € R?,

wTz—b  |wy— b
’gqj(CU,Z) - gqﬁ(yaz)‘ = -
2 2
1 d d d jwy, — b]
B E) - ()| et

"This would happen in the event that 3, and 3y, m # ¢, shared a common neuron.
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T — b~ fwTy — ]

- 2
d d
b wk—b
+ 1D (@k —wr) ‘ | Z(xk—yk)w
P =1
d
|JwTa — b — |w'y — b ||b] — |wy — 0] |
< 5 +Z\$k—yk!—2
k=1
|’w z—w'y| \ K
2 +Z’w 2

©) [|wllooll@ — yllL + HwHoon —ylu
= 2

1)
< llz =yl

where (x) holds from the reverse triangle inequality, (§) holds from Holder’s inequality, and (})
holds from the fact that ||-||cc < ||||2 in finite-dimensional spaces combined with [|wl|s = 1.
Next, from (D.1) we have, for any x,y € RY,

@)~ @)l < [ ot (w,0) - gy, (b))l fulw,b) do(w) db + | (@ - )

Sd-1xR
S/ |z — yllilu(w,b)| do(w) db + [lcflc |l — yl|1
Sd-1xR

< lull msa-1xm) 1z =yl + llellillz = ylh

< IfllzBv2gay 2 =yl

where the third line follows from the fact that ||-||c < |[|-||1 in finite-dimensional spaces and
the fourth line follows from (D.2). [ ]

Proof of Lemma 2.11. Write f = (f1,..., fp). For any =,y € R?,
1f (@) = f(y)lh = Z|fm = fm(y)]

< <Z Hfm”%BV2(Rd)> lz =yl
m=1

= [IfllzBv R4RD |z —yll,
( )

where the second line follows from Lemma D.1 and the third line follows from the definition of
H'HQBVZ(Rd;RD) in Lemma 2.9. -

Remark D.2. The Lipschitz bounds in Lemmas 2.11 and D.1 are by no means the tightest
Lipschitz bounds.
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