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A B S T R A C T   

This work reports how to tune the semi-crystallinity of a blended microcrystalline cellulose/silk-fibroin bio
composite using ionic liquids and various coagulation agents. The morphological and thermal properties of a 
blended 1:1 polymeric system are studied as a function of polymer fabrication parameters. Ionic liquids, 1-ethyl- 
3-methylimidazolium acetate verses 1-ethyl-3-methylimidazolium chloride, are used as competing solvent types 
and six hydrogen peroxide solutions (1—25%) plus water are used as varying coagulation agents. Analysis of the 
results demonstrate that solvent anion type, Ac− verses Cl−, affects protein secondary structure formation, and 
that solvent anion type and the concentration of hydrogen peroxide changes morphology and thermal stability of 
the regenerated materials. Polymers dissolved in 1-ethyl-3-methylimidazolium acetate are less thermally stable 
than those dissolved in 1-ethyl-3-methylimidazolium chloride. Furthermore, carbohydrate microcrystal size is 
positively correlated to hydrogen peroxide concentration upon fabrication and is calculated to have either a 
gradual or step transition increase in microcrystal size depending upon the solvent’s anion type.   

1. Introduction 

Cellulose is commonly studied in materials research because of its 
desirable structural properties, renewability, biodegradability, and 
biological inertness. Cellulose is derived from many natural resources, e. 
g., wood and cotton, and therefore is a widely abundant and inexpensive 
biopolymer available for research. However, cellulose has unique 
dissolution properties and there exists a capability of transitioning cel
lulose I (natural cellulose) into polymorphs II and III (regenerated forms 
of cellulose) (French & Cintrón, 2013 Isogai & Atalla, 1998; Stanton 
et al., 2018;). These assorted cellulose polymorphs correspond to 
different hydrogen-bond locations between oxygens within their lattice 
structures. Upon comparing cellulose I to its polymorph counterparts, 
types II and III, natural cellulose (type I) is arranged in a parallel form, is 
more crystalline, and contains a higher elastic modulus (Nishino, 
Takano & Nakamae, 1995 Šturcová, Davies & Eichhorn, 2005;). How
ever, it is hypothesized that the anti-parallel arrangements of types II 
and III are thermally favorable when compared to the parallel 
arrangement of cellulose I (Yue, 2011). Furthermore, regeneration 

processes can cause cellulose I to shift to type II, whereas other treat
ments, e.g., liquid NH3 or diamine treatment, will cause a shift from type 
I to type III. Cellulose III can transition back to types II or I through 
treatment with hot water or by heating (Kovalenko, 2010 Wada, 2001;). 
Cellulose may also be blended with other macromolecules to promote 
even greater changes to the material’s properties. In fact, cellulose’s 
versatility in chemical polymorphism permits it to act as a compelling 
and robust choice for research in polymer blends. Microcrystalline cel
lulose (MCC) is one of the most utilized derivatives of cellulose (A. F. 
Tarchoun, Trache, Klapötke & Khimeche, 2020). It is a commercially 
available nanostructure material and is produced through an acid hy
drolysis process to remove amorphous regions within the cellulose 
structure (A. F. Tarchoun et al., 2020). Classified mainly as refined wood 
pulp, the structure of MCC exists as cellulose I. MCC also contains a large 
amount of active hydroxyl groups along its surface chain backbone, 
thus, making it capable of inserting different functional groups for 
specific mechanical and thermo properties (A. F. Tarchoun et al., 2020). 
However, once MCC is blended with other polymers, some of its crys
talline features are lost from the process of dissolution and regeneration. 
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Therefore, more research is needed in how to enhance or decrease 
specific material properties such as semi-crystallinity by altering the 
chemicals used to regenerate blended polymer systems. 

Like MCC and other cellulose derivatives, silk is a desirable material 
in research because it adds diverse and flexible material properties to a 
blended polymer system. Silk-fibroin (SF) is the major protein in silk, 
and it contains a repetitive hexapeptide sequence of Gly-Ser-Gly-Ala- 
Gly-Ala. The high glycine content of this sequence allows for tight 
packing of stable antiparallel β-sheet crystallites, which effectively 
contributes to this protein’s high tensile strength. SF is useful for many 
applications such as biomedicine, sensor technology, and textile 
manufacturing. There are two main crystal structures within SF, silk I 
and silk II. A third unstable antiparallel β-sheet structure, silk III, may be 
seen at the air to water interface in regenerated SF (Qi et al., 2017). The 
metastable structure of silk I contains a crank or zigzag spatial confor
mation, whereas silk II belongs to the monoclinic system and forms an 
antiparallel β-sheet structure. Alcohol or potassium phosphate treat
ments can easily convert the structures of silk I into silk II (Qi et al., 2017 
Valluzzi, Gido, Muller & Kaplan, 1999;). Furthermore, a change in 
flexibility and tensile strength is seen for polymer composites when 
carbohydrates like cellulose are blended with fibrous SF strands (Yao 
et al., 2015). 

Biocomposites such as cellulose and SF are processed by dissolution 
followed by a regenerative phase known as coagulation. Both steps 
provide a pathway to tune the materials’ physicochemical and 
morphological properties (Bealer et al., 2020 Blessing et al., 2019;, 2020 
Gough, Rivera-Galletti, Cowan, Salas-De La Cruz & Hu, 2020; Hadadi 
et al., 2018; Oldenkamp, Vela Ramirez & Peppas, 2019;). In such 
fabrication methods, solvents and coagulants are essential as they are 
the driving forces behind the solubility and thus the morphology of re
generated macromolecules. A poor solvent will significantly affect the 
miscibility of the polymers and will affect certain physicochemical 
properties of the blend (Isogai & Atalla, 1998 Wang, Chen, Yang & Shao, 
2013;). Imidazolium-based ionic liquids (ILs) are molten salts consisting 
of a large organic cation and a smaller inorganic anion. ILs can be used 
as a viable solvent for organic compounds (DeFrates et al., 2017 Phillips 
et al., 2004; Stanton et al., 2018;) and research on ILs is booming due to 
their chemical and thermal stability, non-flammability, reusability, and 
versatile dissolution capabilities. Furthermore, ILs are diverse in their 
ionic combinations (Benedetto, Ballone & Engineering, 2016 Marsh, 
Boxall & Lichtenthaler, 2004;). The number of possible binary types is 
on the order of at least 106, allowing for many different parameters to 
suit the unique dissolution properties of large organic compounds. This 
is important because many biological macromolecules contain relatively 
strong intermolecular forces that hold their three-dimensional structures 
close together. ILs can not only break these strong intermolecular forces 
but depending upon the macromolecule’s primary structure, the mac
romolecule’s molecular weight may also remain intact. Research 
incorporating ILs as solvents for MCC and SF has broadened the appli
cational scope for regenerated natural materials (Zhu et al., 2006). For 
example, ILs can help incorporate functional additives to MCC and other 
biological materials, e.g., dyes, complexants, and other polymers 
(Miller et al., 2021 Zhu et al., 2006;). In particular, ILs with imidazolium 
bases are more stable than other nitrogen-containing heterocycles such 
as pyridinium, triazolium, tetrazolium, or piperidinium (Achour et al., 
2021). However, the thermal stability of imidazolium-based ILs coupled 
with halides such as Br−and Cl−is lower compared to other ion types due 
to their nucleophilic abilities (Achour et al., 2021 Noorhisham et al., 
2021;). The use of ILs as green solvents will also decrease the de
pendency on non-renewable petroleum-based synthetic solvents typi
cally needed for larger organic macromolecules. Therefore, more studies 
on IL anion type would be particularly useful to 
environmentally-conscious applications. 

Depending upon which chemical agent is used for coagulation, 
different physical and chemical properties of the blended system will be 
induced and can be further fine-tuned by using different concentrations 

of the coagulant (Blessing et al., 2020 Love, Popov, Rybacki, Hu & 
Salas-de la Cruz, 2020;). Within our research, hydrogen peroxide (H2O2) 
solutions are used to diffuse IL salts from the polymer matrix as well as 
regenerate the composites. We have reported in previous work that 
greater H2O2 concentrations are positively correlated to greater cellu
lose II microcrystal sizes within the polymer blends. This means that we 
can tune up or down the microcrystal size, i.e., semi-crystallinity, of 
cellulose II within a cellulose-silk (CELL-SF) blend through the regen
erative process alone. This study is an extension of that work, providing 
further insights into the physicochemical differences between regener
ated blended biopolymers by comparing two different 
imidazolium-based ILs as the polymer solvent. Taking into consideration 
that ILs can successfully disrupt the hydrogen-bonds between 
biopolymer chains, the proposed theory is that different anions (Ac− vs. 
Cl−) in an imidazolium-based IL will produce a different amount of 
“empty” volume between polymer chains upon dissolution. With the 
understanding that nucleophilic capabilities differ between these two 
ion types, this volume change will affect molecular interactions within 
the matrix. After dissolution, molecules of H2O2 and water will disperse 
into the polymer-solvent matrix while simultaneously diffusing out the 
solvent molecules to regenerate a solid film. Therefore, our hypothesis 
states that this combined process of solvent diffusion and polymer 
regeneration during biocomposite fabrication will produce different 
morphologies as functions of solvent anion type, coagulant concentra
tion, or both. Here, we fabricated and compared two sample-sets of 1:1 
CELL-SF blends. One set was produced by the solvent, 1-ethyl-3-methyl 
imidazolium acetate ([EMIM]+[Ac]−) and the other by 1-ethyl-3-methyl 
imidazolium chloride ([EMIM]+[Cl]−); both sets contained multiple 
samples that were regenerated in water and six increasing concentra
tions of H2O2 solution (1%, 2%, 5%, 10%, 15%, and 25% vol. in H2O). 
This generated a total of seven different samples per set. The 
morphology and thermal properties of the blends were analyzed as a 
function of fabrication parameters, i.e., solvent anion type and con
centration of the H2O2 coagulant. Characterization tests used for this 
investigation were Fourier Transform Infrared Spectroscopy (FTIR), 
Thermal Gravimetric Analysis (TGA), and X-ray Scattering (XRS). 

2. Materials and methods 

2.1. Materials 

Avicel microcrystalline cellulose (Techware: Z26578–0) was ac
quired from Analtech. Prior to use, the cellulose powder was placed in a 
vacuum oven at 50 ◦C for 24 h (Liu et al., 2011). Silk cocoons of Bombyx 
mori mulberry silkworms were obtained from Treenway Silks (Lake
wood, CO). To remove the sericin coating on the silk fibers, silkworm 
cocoons were boiled in a 0.02 M NaHCO3 (CAS-No. 497–19–8 
Sigma-Aldrich, USA) solution for 15 min and then rinsed thoroughly 
with deionized water three times for complete removal. The degummed 
silk fibroin was air dried overnight and then placed into a vacuum oven 
to remove any surface moisture. The ionic liquids, 1-ethyl-3-methylimi
dazolium acetate (CAS-No. 143,314–17–4) and 1-ethyl-3-methylimida
zolium chloride (CAS-No. 65,039–09–0), were purchased from 
Sigma-Aldrich and were pretreated before use. IL pretreatment con
sisted of placing the solvent in a vacuum oven set to 30 inHg and 50 ◦C 
for 24 h to ensure that all water molecules were removed (Blessing et al., 
2019 Hadadi et al., 2018;). ACS reagent-grade (Quality Level 200) H2O2 
solution at 30 wt.% in H2O with inhibitor (CAS-No. 7722–84–1) was 
purchased from Sigma-Aldrich. All H2O2 solutions were diluted to the 
desired concentrations prior to use. 

2.2. Fabrication method 

For the fabrication of blended samples, the polymer composition was 
10% of the solution’s total weight, while the IL consisted of the 
remaining 90%. The ratio of polymers was 1:1 Avicel microcrystalline 
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cellulose to mori silk-fibroin. The IL was heated on a hot plate at 85 ◦C, 
and mori silk-fibroin was added first to the solvent. After silk dissolu
tion, microcrystalline Avicel cellulose powder was slowly added and 
then left to agitate on the hotplate for 24 h. The newly blended solution 
was transferred into 3D-printed mold kits of dimensions 12 mm x 12 mm 
x 1 mm. Each mold kit containing the solvent-polymer mixture was then 
placed in 100 mL of the coagulation agent, distilled water or various 
concentrations of H2O2 solution. Immersion in the coagulation solution 
effects the removal of IL from the samples, as well as regeneration of the 
blended polymers. The beakers containing the coagulant and solvent- 
polymer blend were then sealed with Parafilm and left for 48 h at RT. 
After this coagulation phase, the mold kits containing the polymer blend 
were removed from their solutions and placed in a Teflon evaporating 
plate. This entire system was transferred to a vacuum oven set to 30 inHg 
and 50 ◦C for 24 h (Hadadi et al., 2018 Love et al., 2020; Stanton et al., 
2018;). The samples were removed from their mold kits and sealed in a 
desiccator for long term storage. Refer to Schematic 1 for a visualization 
of this three-step fabrication process. 

2.3. Structural characterization method 

The structural study of the samples was conducted using a Bruker’s 
ALPHA-Platinum Attenuated Total Reflectance Fourier Transform 
Infrared (ATR-FTIR) Spectrometer with a platinum-diamond sample 
module. A spectrum between 4000 cm−1–400 cm−1 was performed per 
each scan at a resolution of 4 cm−1. 128 background scans were 
completed along with 32 sample scans at 6 different sample locations. 
The mean result of 6 different locations was chosen for analysis, and a 
min-max normalization was applied to all spectra. IR analyses were 
performed using Opus 7.2 software. Fourier self-deconvolution was 
applied to each spectrum to study the protein’s amide I and II regions 
(1595–1705 cm−1). The purpose of this technique was to calculate 
protein secondary structure content. The Lorentzian line shape, with a 
25.614 cm−1 half-bandwidth and a noise reduction factor of 0.3, was 
used for performing peak deconvolution. All secondary structure regions 
were assigned a specific wavenumber range adapted from Hu et al. and a 
Gaussian function was utilized for each fitted peak under the spectrum. 
Refer to S1 in the supplementary data for a visualization of this tech
nique. Secondary structure percent was calculated from the integrals of 
the fitted peaks (Hu, Kaplan & Cebe, 2006). If we label all integrals In for 
n ∈ N = {1,…m} where m is the total number of integrals, let J contain 
the set of integrals of an individual secondary structure. Then if S is the 
percent of that secondary structure, S is given by: 

S =
∑

j∈J
Ij

/
∑

n∈N
In  

These fitting functions and calculations were repeated 4 x to calculate 
the standard error from the mean. For visualization purposes, the full 
spectra plots were normalized using min-max normalization. 

2.4. Thermal characterization method 

Thermogravimetric analysis (TGA) was performed using TA In
struments Discovery TGA system on 5 mg samples. All samples went 
under a nitrogen gas purge of 25 mL/min at 30 ◦C. The procedure 
consisted of an isothermal period of one minute, followed by a thermal 
rate of 10 ◦C/min up to 600 ◦C. Step transition analyses and derivative 
plots were conducted to determine the temperature onset of decompo
sition (TOnset), the maximum end temperature of degradation (TEnd), 
the weight-loss percentage of the sample, and the value which corre
sponds to the decomposition of the sample at the highest rate of change 
with respect to temperature (TΔMax). 

2.5. Morphological characterization method 

The morphological studies were conducted using a Dual Environ
mental X-ray Scattering System (XRS) at the University of Pennsylvania 
under vacuum. The Xeuss 2.0 by XENOCS has a Cu x-ray source, com
puter controlled focusing and transmission incident sample geometries, 
a 1 M pixel Pilatus detector (2D), and a smaller detector for simulta
neous small-angle scattering (SAXS) and wide-angle scattering (WAXS) 
acquisition. Only WAXS data are reported for this study. A full-flux 
collimation was used with a slit size of 1.2 mm × 1.2 mm. Each 
sample-run was executed for a total of 300 s. The intensity reported is 
not absolute intensity and, thus, is in arbitrary units (a.u.). All samples 
were taped to a sample-holder and placed under vacuum for data 
acquisition. The XRS profiles were evaluated using Foxtrot 3.4.9; the 
isotropic 2D scattering patterns were azimuthally integrated to yield 
intensity versus scattering vector (q). Azimuthal integration was used for 
all XRS plots and graphed at 2θ◦. Three different methods for deter
mining the full width at half-maximum (FWHM) using the software, 
OriginPro 2019, were performed and the mean crystal size was obtained 
for comparison purposes relative to this study. Crystal size calculations 
were conducted using unnormalized raw data via the Scherrer equation: 

τ =
Kλ

βcosθ  

Where τ is the mean size of the crystal; K is the dimensionless shape 
factor (0.94); λ is the wavelength of the incident x-ray beam (0.54 nm); β 
represents the full width at half-maximum (FWHM) of the scattering 
peak in radians, and θ is the Bragg angle. Cellulose surface chains within 
the microcrystal occupy an approximate layer thickness of 0.57 nm, 
adapted from RH Newman, and so the proportion of crystallite interior 
chains was calculated using the equation: 

χ =
(τ − 2h)2

τ2  

Here χ is the proportion of crystallite interior chains; τ is the crystallite 
size calculated from the Scherrer equation, and h is the layer thickness of 
the chain (~0.57 nm). The values of χ were used as estimates of the 
fraction of cellulose chains enclosed in the interior of the crystallites 
(Newman, 1999 Poletto, Zattera, Forte & Santana, 2012;). 

3. Results and discussion 

3.1. Structural analysis 

Fourier Transform Infrared Spectroscopy (FTIR) was used to verify 
proper polymer regeneration Fig. 1. shows prominent IR absorbance 
bands in all spectra for both sets at 3600–3000 cm−1, 3000–2750 cm−1, 
and 1180–930 cm−1 for Cellulose –OH, –CH, and –CO stretching modes, 
respectively. SF’s amide I (1720–1600 cm−1) and amide II (1590–1500 
cm−1) regions are also present, and absorbance bands at all aforemen
tioned regions verify adequate regeneration of CELL-SF within the 
blends. The amide I region of SF was used to calculate its secondary 
structure content, e.g., turns, side chains, β-sheets, and random coils and 
α-helices combined. The fitting parameters used to calculate the protein 
secondary structure content were established by Hu, Xiao et al. (Hu 
et al., 2006) and Fig. 2 shows the amide I region after Fourier decon
volution. Wavenumber ranges for different protein secondary structures 
are shown schematically as different colored regions under the curve. 
Refer to Fig. 3 for all calculated values. 

Shifting of the peaks can be seen when comparing our spectra to an 
FTIR amide I spectrum of pure SF. Refer to S3 in the supplementary data 
for a pure SF spectrogram. Therefore, multiple curve-fitting trials were 
performed and a standard error from the mean was calculated. The re
sults are interpreted such that very subtle percent changes were calcu
lated in SF secondary structure content as they relate to H2O2 
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concentration used during the fabrication process. In other words, no 
true patten exists when evaluating for changes to protein structure by 
coagulant concentration within either set. This finding correlates well to 
previously published work that investigated a different polymer ratio of 
9:1 CELL-SF biocomposites dissolved in an imidazolium-based IL and 
coagulated in similar H2O2 solutions (Love et al., 2020) Fig. 3. shows 
more overall amorphous secondary structures verses crystalline struc
tures were calculated for all samples within both sets. However, upon 
closer analysis of the data, some trends do occur when examining be
tween sets. In other words, there are different percentages calculated for 
samples coagulated in identical H2O2 solutions but dissolved in different 
ILs. In fact, the protein secondary structure content changes as a func
tion of the solvent anion type used during polymer dissolution. β-sheet 

content increases slightly as a function of the IL’s anion, Cl−, and four 
out of the seven samples (samples coagulated in 2%, 5%, 10%, and 15% 
vol. H2O2 in H2O) show statistical significance for this claim. When we 
examine the amorphous structures of the protein, it was calculated that 
the opposite is true for random coils and α-helices. Here, if we continue 
the comparison between sets, more random coil and α-helix conforma
tions were calculated for the samples dissolved in [EMIM][Ac–] and 
coagulated in identical H2O2 concentrations. However, it must be noted 
that only the 2% H2O2-coagulated sample has statistical significance to 
this claim, and that two additional samples (samples coagulated in 10% 
and 25% vol. H2O2 in H2O) show minor statistical significance. Lastly, if 
we compare the percentages of turns calculated within the amide I re
gion between both sets, a greater number of turns were calculated for 

Fig. 1. Normalized FTIR data for regenerated 1:1 CELL-SF composition samples dissolved in IL solvents (a.) [EMIM]+[Ac]− and (b.) [EMIM]+[Cl]−. Samples are 
differentiated based on the coagulation agents used during regeneration, water and different H2O2 solutions (listed on legend). Prominent IR absorbance bands are 
labelled at 3600–3000 cm−1, 3000–2750 cm−1, and 1180–930 cm−1 for CELL –OH, –CH, and –CO stretching modes, respectively. SF’s amide I (1720–1600 cm−1) and 
amide II (1590–1500 cm−1) regions are also labelled in both spectrograms. 

Fig. 2. FTIR SF amide I region data (not normalized) after Fourier deconvolution for regenerated 1:1 CELL-SF composition samples. Plots show samples dissolved in 
one of two different IL solvents, (a.) [EMIM]+[Ac]− and (b.) [EMIM]+[Cl]−. Samples are differentiated based on the coagulation agents used during regeneration, 
water and different H2O2 solutions (listed on legend). 
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the set dissolved in [EMIM]+[Ac]−, showing statistical significance for 
four of the seven samples (samples coagulated in 2%, 5%, 15% and 25% 
vol. H2O2 in H2O). 

As noted above, both sets of samples made from [EMIM]+[Ac]− and 
[EMIM]+[Cl]− produced more overall amorphous protein secondary 
structures than crystalline ones in a blended matrix with cellulose. 
However, there is a discrepancy in sample morphologies when coagu
lated in identical H2O2 solution and dissolved in different IL types. The 
larger and bulkier Ac− ion will, for the most part, induce more amor
phous structures than the Cl− ion when the concentration of the coag
ulant, H2O2 solution, is the same. In other words, the smaller Cl−ion 
holds the potential to generate more crystalline structures such as 
β-sheets. One rationale for this discrepancy is that the solvent anion type 
can effect changes onto protein secondary structure. This is because the 
smaller Cl− ion will create less empty space between fibroin chains when 
interacting with the carbonyl and amide functional groups during 
dissolution. Furthermore, this effect will allow the protein chains to 
move into an anti-parallel configuration, forming more β-sheet packing 
rather than random amorphous structures Schematic 2. depicts an 

illustration of how the fabrication parameters, [EMIM]+[Cl]− and H2O2 
solution, will change protein morphologies in a matrix blended with 
cellulose. Furthermore, protein conformation is also known to be 
dependent upon amino acid sequence, therefore it is interesting to note 
that the dissolution agent used to solvate protein fibers can influence 
specific secondary structure conformations. 

In future studies, it is important to consider the chemical agents used 
in our three-step fabrication process, i.e., polymer ratio, solvent anion 
type, and coagulant type and concentration. For example, water and 
increasing concentrations of H2O2 solution used as a coagulant show 
only subtle changes to protein structure. However, the solvent anion 
type in an imidazolium-based IL used to dissolve the polymers influences 
contrasting protein structure formations within the blended matrix. 
Therefore, solvent anion type will play a non-trivial role in the disso
lution process by affecting the solubility of polymers and thus, altering 
protein morphology. 

Fig. 3. Secondary Structure Percentages calculated from the integrals of the fitted peaks performed after Fourier deconvolution on the amide I region of SF (refer to 
Fig. 2). Regenerated 1:1 CELL-SF composition samples dissolved in IL solvents (a.) [EMIM]+[Ac]− and (b.) [EMIM]+[Cl]−. Samples are differentiated based on the 
coagulation agents used during regeneration, water and different H2O2 solutions (listed on x-axis). Each secondary structures’ standard error from the mean is shown 
on the graph (n = 4). The SF amorphous (light blue) and crystalline (dark blue) regions represent the full range of both morphologies in relation to coagulant 
concentration used upon fabrication. All numerical data is reported and labelled as S2 in the supplementary data. 

Fig. 4. TGA data showing weight loss% as a function of temperature and its inverse derivative (dotted lines). Plots show regenerated 1:1 CELL-SF composition 
samples dissolved in IL solvents (a.) [EMIM]+[Ac]− and (b.) [EMIM]+[Cl]−. Samples are differentiated based on the coagulation agents used during regeneration, 
water and different H2O2 solutions (listed on legend). 
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3.2. Thermogravimetric analysis 

Thermogravimetric analysis (TGA) was performed to measure each 
sample’s decomposition temperature at onset, end, and the derivative of 
percent weight loss with respect to temperature. Total weight loss 
percent was used to compare overall thermal stability. Refer to Fig. 4 for 
thermograms of both sample-sets Fig 4a (samples dissolved in 
[EMIM]+[Ac]−) reveals an interesting trend in the temperature onset of 
decomposition (TOnset) as a function of increasing H2O2 concentra
tions. Water and lower concentrations of H2O2 solution (<5%) show 
TOnset values ranging between 213.92–219.50 ◦C, while the TOnset 
values for samples made with concentrations of H2O2 that are 5% and 
greater show a range between 225.70–265.00 ◦C. In this case, higher 
concentrations of H2O2 solution used to coagulate blended polymers 
dissolved in [EMIM]+[Ac]− will push back the temperature onset of 
degradation. All thermal analysis values are located in Table 1. 

All values for the end temperature of degradation (TEnd) fall within 
the range of 319.24–335.50 ◦C and without any noticeable trend for 
samples dissolved in [EMIM]+[Ac]−. This means that even though the 
TOnset is correlated to the percent concentration of H2O2 used during 
fabrication, all samples stopped degrading at similar temperatures. 
Thermograms of this data further reveal that weight loss percentages are 
between 65.90–69.59%, indicating a similar overall thermal stability 
among samples dissolved in [EMIM]+[Ac]−. Finally, a trimodal peak, 
Fig. 4a, appears for all but one sample derivative, the 10% H2O2-coag
ulated sample. This sample’s plot shows a bimodal derivative with two 
local peak maxima instead of three. Multimodality within the thermo
grams’ derivative may denote an existence of multiple types of in
terfaces between crystalline regions of the blend. Two types of interfaces 
are considered within this work: i. cellulose intercalated with cellulose 
or likewise SF intercalated with SF and ii. cellulose intercalated with SF. 
Therefore, parts of the blend would naturally degrade at different rates 
due to a difference in cohesive energies needed to disrupt intermolecular 
forces holding the polymer chains together. Morphology of the blend 
will also induce thermal changes to the system because crystalline re
gions will degrade slower and at higher temperatures than amorphous 
regions. 

Additionally, another curious trend appears in the thermogram of 
samples dissolved in [EMIM]+[Ac]−. When examining the derivatives, a 
greater rate of change in weight loss with respect to temperature occurs 
at lower temperatures for samples made with water and 1% H2O2. While 
the derivative for the sample coagulated in 2% H2O2 shows three similar 
peak intensities with d(y)1,2,3 values where 1 = 0.50, 2 = 0.52, and 3 
= 0.53. This means that there is a similar rate of change in degradation 
at three different temperatures upon heating. If we increase the co
agulant’s concentration to 5% H2O2 we begin to see an increase in peak 
maxima with respect to temperature. For example, the 5% H2O2-coag
ulated sample has values d(y)1 = 0.52 at 242.27 ◦C, d(y)2 = 0.61 at 
287.60 ◦C, and d(y)3 = 0.60 at 307.77 ◦C. Therefore, d(y)n increases in 
value as temperature rises. This trend becomes even more prominent in 
the graphs of 10%, 15%, and 25% H2O2-coagulated samples, with a 
noticeable change in d(y)1,2,3 values (1 = 0.41, 2 = 0.59, 3 = 0.93) for 

the sample made from 25% H2O2. Therefore, as noted earlier, when we 
increase in H2O2 concentration as the coagulant, we can not only push 
back the TOnset, but also influence degradation rates. This is because 
when the sample approaches a certain temperature upon heating, a 
critical limit is reached where the rate of degradation speeds up. This 
could also pinpoint changes in the composites’ internal morphology 
which is dependent on H2O2 concentration. 

These thermal changes are most likely due to a difference in various 
morphologies induced during the samples’ regenerative process. It is 
reported in previous work (Love et al., 2020) that there exists a steady 
increase in the size of cellulose microcrystals within a blend when using 
increasing concentrations of H2O2 during sample regeneration. Different 
interface types between microcrystals of various sizes will degrade at 
different rates because there is a difference in energy needed to disrupt 
adhesive forces between the chains. Since it is reasonable to expect 
naturally occurring macromolecules like cellulose and pure silk to have 
evolved to maximize this adhesive property, polymer chains that are 
hydrogen-bonded to the same polymer type (cellulose-to-cellulose or 
silk-to-silk) will have a larger cohesive energy when compared to chains 
of differing polymer types intermolecularly held together (cellulose-
to-silk). This means that more cellulose-to-silk interactions within the 
interfaces between crystal blocks would result in less thermal stability. 
In essence, the chains require less energy to separate from one another 
(Hadadi et al., 2018). With all other things being equal, when two chains 
of the same polymer type are interacting together at its interfaces, more 
energy is needed to disrupt the adhesive forces holding the structure 
together. For this reason, multiple peaks arise in a sample thermogram 
for the samples dissolved in [EMIM]+[Ac]−. Thermal degradation rate is 
further related to microcrystalline size (τ), where larger crystals within 
the system will degrade at higher temperatures and more slowly than 
smaller crystals and amorphous regions. For example, calculated TΔMax 
and τ values for samples dissolved in [EMIM]+[Ac]− and coagulated in 
1% H2O2 are d(y1) = 0.60 and τ = 3.14 nm, whereas values for the 
sample coagulated in 25% H2O2 within the same set are d(y1) = 0.31 
and τ = 6.48. Therefore, a faster relative rate of weight loss with respect 
to temperature (0.60) was calculated for smaller microcrystals (3.14 
nm). This trend is not strictly linear throughout both sets, but the 
analysis of the calculations does indicate that overall smaller micro
crystals will degrade at slower rates with respect to temperature upon 
heating. 

When evaluating the thermal data obtained for the other set (samples 
dissolved in [EMIM]+[Cl]−) the TOnset values for samples made with 
water, 1%, and 2% H2O2 are between 248.30–252.78 ◦C, with water 
retaining the highest TOnset value. Then, if we increase the concentra
tion of H2O2 solution during sample fabrication and test thermal 
degradation, a drop in TOnset occurs between a small range of 
246.77–244.41 ◦C. Therefore, thermograms of samples made in higher 
H2O2 concentrations show lower TOnset values than those containing 
the samples coagulated in water and lower concentrations of H2O2 so
lution. This trend differs from the one in the previous set where 
decomposition temperature is pushed back as a function of increasing 
coagulant concentrations. Derivatives also differ between the two sets. 

Table 1 
Thermal analysis data for regenerated 1:1 CELL-SF composition samples dissolved in [EMIM]+[Ac]− and coagulated in water and different H2O2 solutions. Values 
include the samples’ decomposition temperatures at onset (TOnset) and end (TEnd), the percent total weight loss, and the derivative of weight loss with respect to 
temperature (TΔMax).  

[EMIM]+[Ac]− 1:1 CELL-SF Samples TOnset (◦C) TEnd (◦C) Weight loss (%) TΔMax 
Temp (◦C) d(y1) Temp (◦C) d(y2) Temp (◦C) d(y3) 

Water 219.5 325.2 68 241.53 0.57 280.86 0.49 318.37 0.48 
1% H2O2 213.92 319.24 69.59 240.08 0.6 282.83 0.55 312.16 0.45 
2% H2O2 216.8 334.4 68.1 244.87 0.53 280.95 0.52 216.2 0.5 
5% H2O2 225.7 327.5 68.6 242.27 0.52 287.6 0.61 307.77 0.6 
10% H2O2 240.9 333.3 65.9 269.7 0.53 318.38 0.66 – – 
15% H2O2 232.1 335.5 67.5 241.68 0.49 288.84 0.52 320.02 0.6 
25% H2O2 265 330.8 66.7 240.11 0.31 286.85 0.59 315.78 0.93  
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Within each sample for the set, [EMIM]+[Cl]−, we see unimodality with 
only one peak maximum representing a single fastest rate of weight loss 
with respect to temperature. Interpretation of a unimodal derivative is 
that more interfaces of a similar polymer type interaction (cellulose-to- 
cellulose or silk-to-silk) exist within its matrix. Therefore, many similar 
polymer-type interactions exist within samples dissolved in 
[EMIM]+[Cl]−. Refer to Table 2 for all thermal data regarding the 
[EMIM]+[Cl]− set. 

Another important and obvious difference between the two sets is the 
amount of mass lost upon heating (Fig. 4). The samples dissolved in 
[EMIM]+[Cl]− have less total weight loss than the samples within the 
[EMIM]+[Ac]− set. However, when considering samples within their 
respective sets, there exists a weight loss range of just 4 or 5 percent 
difference between the water-coagulated sample and the sample made 
from the highest concentration of H2O2. This range difference was 
calculated for both sets. Therefore, different IL anions (and not coagu
late concentrations) affected the total thermal stability. Overall thermal 
stability is greater for samples made from [EMIM]+[Cl]− when 
compared to samples made from [EMIM]+[Ac]−. Refer to Table 1 and 
Table 2 for all weight loss percentage values. 

3.3. Morphological analysis 

The morphological structure of both sample-sets was analyzed using 
Wide-angle X-ray Scattering (WAXS). Scattering patterns, as seen in 
Fig. 5, were acquired between the angle ranges of 2θ = 15–40◦ and curve 
fitting was performed to identify and analyze individual peaks. The d- 
spacing values between lattices were calculated using the Bragg’s 
equation. The main scattering peaks indicating lattice planes (110) and 
(200) at 2θ ≈ 20.1◦ and 22.0◦, respectively, were used to calculate the 
width sizes of cellulose microcrystals within the blended-polymer sam
ples. Cellulose surface chains within the microcrystal occupy an 
approximate layer thickness of 0.57 nm (Newman, 1999) and so the 
proportion of crystallite interior chains was calculated and reported. 
XRS values may be found in Table 3 for [EMIM]+[Ac]− and in Table 4 for 
[EMIM]+[Cl]−. 

As reported in previously published work (Love et al., 2020) WAXS 
data presented here confirm both a change from crystalline cellulose I to 
a semi-crystallized cellulose II as well as a positive correlation between 
coagulant concentration and microcrystal size. Furthermore, the profiles 
for samples coagulated in water (both sets) show an amorphous halo 
represented by a broad peak at 2θ ≈ 20.1◦ A hidden peak at 2θ ≈ 22.0◦ is 
seen in the halos of samples made from lower concentrations of H2O2. 
(Fig. 5). 

A sharp doublet, indicating semi-crystallinity, is clearly seen in the 
scattering profiles of both sample-sets (Fig. 5). The peak’s FWHM is 
inversely related to crystal size due to the Scherrer equation and thus, 
smaller values of FWHM indicate larger crystal sizes. When considering 
the set with samples dissolved in [EMIM]+[Ac]−, samples regenerated in 

10%, 15%, and 25% H2O2 solution have FWHM values of decreasing 
order where 10% has the largest value and 25% has the smallest value. 
However, for the set of samples dissolved in [EMIM]+[Cl]−, this doublet 
begins in the profile for the sample made from 5% H2O2 solution. Like 
the other sample-set, profiles of these samples show an increase in 
doublet sharpness correlating to increasing concentrations of H2O2 
solution. 

After calculating the Scherrer equation, values for the samples dis
solved in [EMIM]+[Ac]− maintain a gradual increase in average crystal 
size (τ) at lattice plane (110), while the set containing samples dissolved 
in [EMIM]+[Cl]− shows an upwards step-transition of τ between the 
samples made from 2% and 5% H2O2 solution (Fig. 6). For instance, the 
calculations for the former set, [EMIM]+[Ac]−, show an increase in τ 
from 3.13 nm for the 2% H2O2-coagulated sample to 3.78 nm for the 5% 
H2O2-coagulated sample. In contrast, calculations for the latter set, 
[EMIM]+[Cl]−, show a jump of 2.29 to 5.02 nm in size for 2% and 5% 
H2O2-coagulated samples, respectively. This indicates a change in 
crystal size transition as a function of solvent anion. Furthermore, when 
comparing between sets, lower τ values were calculated at lattice plane 
(110) for samples made from [EMIM]+[Ac]− for both the 5% and 10% 
H2O2-coagulated samples. However, once the concentration of H2O2 
reaches ≥15%, τ for both sample-sets were calculated to be between 
5.29–6.48 nm in size. Similar results are seen at lattice plane (200), i.e., 
values calculated for samples dissolved in [EMIM]+[Ac]− show a trend 
with a gradual increase of τ. The other set, [EMIM]+[Cl]−, possess a step- 
transition at lattice plane (200) which is similar to values calculated at 
(110). The difference here is that the samples dissolved in [EMIM]+[Cl]−

at lattice plane (200) show a more pronounced jump between the 2% 
and 5% H2O2-coagulated samples. However, once the standard error is 
considered, the probability of this discrepancy decreases between sam
ples. Refer to Fig. 6 for a bar plot showing all values including their SE. 

The ratio of crystalline interior chains to its exterior layer (χ) was 
calculated for both sets and is mathematically dependent upon crystal
line size (τ). Therefore, as the values for τ increase, so does χ. χ values 
calculated at lattice plane (110) are between 0.21–0.68 and between 
0.28–0.67 for samples made from [EMIM]+[Ac]− and [EMIM]+[Cl]−, 
respectively. Furthermore, lower χ values were calculated for the 
amorphous halos compared to the doublets within the scattering profiles 
of both sets. At lattice plane (200), values for χ = 0.47–0.73 and 
0.29–0.70 for samples dissolved in [EMIM]+[Ac]− and [EMIM]+[Cl]−, 
respectively. An increased value for χ is calculated for samples regen
erated from higher concentrations of H2O2. This trend is gradual for the 
set dissolved in [EMIM]+[Ac]− and thus is similar to the trend seen for τ. 
Samples dissolved in [EMIM]+[Cl]− have a positive step-transition for χ 
values between samples regenerated in 2% and 5% H2O2 solutions. 
These calculations make sense when considering the mathematical 
relationship of the ratio of crystalline interior chains over its exterior 
layer to the Scherrer equation. Furthermore, the fabrication’s solvent 
type will produce smaller χ values at lattice plane (200) than at lattice 
plane (110) when using lower concentrations of H2O2 solution (1% and 
2% vol. in H2O) upon regeneration. 

Analysis of this data is that there exists distinct differences in cellu
lose semi-crystallinity as a function of solvent anion type and the con
centration of coagulation agent upon fabrication. We theorize that when 
the negative charge of the solvent’s anion interacts with the polymer 
chains’ intermolecular forces during dissolution, effectively disrupting 
the hydrogen-bonds, the size of the IL anion will correlate to larger or 
smaller volume spacings between cellulose lattices. Meanwhile, 
increasing H2O2 concentrations during the regenerative phase of the 
fabrication will induce larger cellulose microcrystals. In these two 
sample-sets, larger inter-chain spacings are created by the Ac− ion when 
compared to the spacing volume created by the smaller Cl−ion. This 
larger space permits more H2O2 molecules to flow between the polymer 
chains. Calculated data reveals that the crystal size of cellulose II in
creases as the concentration of H2O2 solution increases during sample 
regeneration. However, once enough H2O2 molecules are introduced 

Table 2 
Thermal analysis data for regenerated 1:1 CELL-SF composition samples dis
solved in [EMIM]+[Cl]− and coagulated in water and different H2O2 solutions. 
Values include the samples’ decomposition temperatures at onset (TOnset) and 
end (TEnd), the percent total weight loss, and the derivative of weight loss with 
respect to temperature (TΔMax).  

[EMIM]+[Cl]− 1:1 
CELL-SF Samples 

TOnset 
(◦C) 

TEnd 
(◦C) 

Weight 
Loss (%) 

TΔMax 
Temp 
(◦C) 

d(y) 

Water 252.78 298.03 51.91 276.83 0.9 
1% H2O2 248.3 291.25 51.86 267.94 0.94 
2% H2O2 249.15 288.08 51.77 268.48 1.03 
5% H2O2 244.98 286.05 51.83 267.16 0.96 
10% H2O2 246.57 290.28 53.41 268.03 0.98 
15% H2O2 244.41 296.59 56.18 267.56 0.9 
25% H2O2 246.77 290.35 53.36 268.03 0.98  
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into the system, say at 5% or 10% H2O2 vol. in H2O, this volume between 
chains will become negligible to the formation of semi-crystallinity, 
producing microcrystal sizes of approximately 4–7 nm at lattice plane 
(110) and 6–8 nm at lattice plane (200) regardless of solvent anion size. 

4. Conclusion 

Samples within this study were made from regenerated CELL-SF at a 
1:1 polymer blend ratio. Two types of imidazolium-based ionic liquids, 
[EMIM]+[Ac]− verses [EMIM]+[Cl]−, were used to dissolve the poly
mers in a comparison-based study. The solvent-polymer substrate was 

divided up and regenerated in water and six increasing concentrations of 
H2O2 solution (1%, 2%, 5%, 10%, 15%, and 25% vol. in H2O); there was 
a total of seven different samples per set. When considering the role of 
fabrication agents on protein secondary structure, solvent anion type 
and not coagulant concentration amount influenced changes onto pro
tein morphology. Relative to samples in the [EMIM]+[Cl]− set, thermal 
analysis showed that samples dissolved in [EMIM]+[Ac]− are less ther
mally stable when higher concentrations of H2O2 solution is used for 
fabrication. This trend differs for the samples dissolved in [EMIM]+[Cl]−

where lower concentrations of H2O2 solution show more thermosta
bility. Thermograms show derivatives of multimodality for 

Fig. 5. Normalized wide-angle scattering x-ray data for regenerated 1:1 CELL-SF composition samples dissolved in IL solvents (a.) [EMIM]+[Ac]− and (b.) 
[EMIM]+[Cl]−. Samples are differentiated based on the coagulation agents and concentrations used during regeneration, water and different H2O2 solutions (listed on 
legend). Peaks representative of lattice planes (110) and (200) are labelled on both plots and were used to measure the mean-width size of cellulose microcrystals at 
both 2θ angles. 

Table 3 
Morphological data for regenerated 1:1 CELL-SF composition samples dissolved in EMIM]+[Ac]− and coagulated in water and different H2O2 solutions. Values include 
the D-spacing (d) at scattering angle (2θ), mean crystallite size (τ) via the Scherrer equation with its standard error from the mean (SE) n = 4, and the proportion of 
crystallite interior chains (χ). All calculated values were obtained using unnormalized raw XRS data.  

[EMIM]+[Ac]− 1:1 CELL-SF Sample lattice plane (110) lattice plane (200) 
D (nm) 2θ (◦) mean τ (nm) ±SE n = 4 χ d (nm) 2θ (◦) mean τ (nm) ±SE n = 4 χ 

Water 0.44 20.27 2.1 < 0.01 0.21 – – – – – 
1% H2O2 0.44 20.05 3.14 0.77 0.41 0.41 21.81 3.61 0.46 0.47 
2% H2O2 0.44 20.11 3.78 0.75 0.49 0.4 21.93 4.28 0.54 0.54 
5% H2O2 0.44 20.05 3.13 0.86 0.4 0.41 21.81 4.22 1.06 0.53 
10% H2O2 0.44 20.12 4.18 0.11 0.53 0.4 22.12 6.55 0.33 0.68 
15% H2O2 0.44 19.99 5.92 0.04 0.65 0.4 22.06 7.32 0.16 0.71 
25% H2O2 0.44 20.12 6.48 0.03 0.68 0.4 22.19 7.69 0.06 0.73  

Table 4 
Morphological data for regenerated 1:1 CELL-SF composition samples dissolved in EMIM]+[Cl]− and coagulated in water and different H2O2 solutions. Values include 
the D-spacing (d) at scattering angle (2θ), mean crystallite size (τ) via the Scherrer equation with its standard error from the mean (SE), and the proportion of crystallite 
interior chains (χ). All calculated values were obtained using unnormalized raw XRS data.  

[EMIM]+[Cl]− 1:1 CELL-SF Sample lattice plane (110) lattice plane (200) 
d (nm) 2θ (◦) mean τ (nm) ±SE n = 4 χ d (nm) 2θ (◦) mean τ (nm) ±SE n = 4 χ 

Water 0.44 20.06 2.41 0.15 0.28 – – – – – 
1% H2O2 0.43 20.47 2.58 0.24 0.31 0.40 22.26 2.48 0.28 0.29 
2% H2O2 0.44 19.99 2.29 0.12 0.25 0.42 21.22 2.97 1.29 0.38 
5% H2O2 0.44 20.10 5.02 0.12 0.60 0.40 22.14 6.09 0.40 0.66 
10% H2O2 0.44 19.93 6.03 0.11 0.66 0.40 21.97 6.97 0.12 0.70 
15% H2O2 0.45 19.92 5.97 0.04 0.65 0.40 21.97 7.06 0.05 0.70 
25% H2O2 0.44 20.15 6.36 0.03 0.67 0.40 22.26 6.90 0.08 0.70  
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[EMIM]+[Ac]− and unimodality for [EMIM]+[Cl]−. Within each 
respective set, similar total weight loss percentages were calculated, but 
over-all thermostability of the [EMIM]+[Cl]− set was greater than the 
[EMIM]+[Ac]− set. During fabrication of the blended samples, micro
crystalline cellulose converted from cellulose I to a semi-crystallization 
state of cellulose II. Intensity of these peaks is positively correlated to 
increasing amounts of H2O2 concentration and begin to appear in the 
profiles of the 10% H2O2-coagulated sample in the [EMIM]+[Ac]− set 

and the 5% H2O2-coagulated sample in the [EMIM]+[Cl]− set. Cellulose 
crystal sizes were positively correlated to H2O2 concentration and were 
calculated to have a gradual increase in size for the [EMIM]+[Ac]− set 
verses a positive step transition for the [EMIM]+[Cl]− set. Lower values 
for the proportion of crystallite interior chains were calculated for 
amorphous halos compared to doublets within the scattering profiles of 
both sets. Overall, analysis of this data is that there exists a means to 
fine-tune specific semi-crystalline properties of both cellulose and SF by 

Fig. 6. For visualization purposes, bar graphs are reported for carbohydrate microcrystal width size values (τ) at lattice planes (110) and (200) for regenerated 1:1 
CELL-SF composition samples dissolved in IL solvents (a.) [EMIM]+[Ac]− and (b.) [EMIM]+[Cl]−. Samples are differentiated based on the coagulation agents used 
during regeneration, water and different H2O2 solutions (listed on x-axis). 

Schematic 1. This image shows a three-step fabrication process to regenerate a 1:1 blended polymer. Step 1 illustrates a polymer composition ratio of 1:1 cellulose 
(green) to silk-fibroin (yellow) with 10% polymer content to 90% solvent content. Step 2 is the polymer dissolution phase with solvents, [EMIM]+[Ac]− or 
[EMIM]+[Cl]− (brown triangles). Step 3 is the polymer coagulation phase where the polymer-solvent material is placed in a PDMS mold and submerged in a closed 
container of 100 mL solution, D.I. water or H2O2 solutions (small blue circles). The product is then removed from its bath and dried in a vacuum oven set to 30 inHg 
at 50 ◦C for 24 h. 

S.A. Love et al.                                                                                                                                                                                                                                  



Carbohydrate Polymer Technologies and Applications 3 (2022) 100193

10

changing the concentration of the coagulant, H2O2 solution, and the 
solvent anion type, respectively. Therefore, when utilizing the three-step 
fabrication process reported in this work, it is important to consider the 
chemical agents used in the production of a blended-polymer system. 
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