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ARTICLE INFO ABSTRACT

Keywords: One of the most effective and promising strategies to develop novel biomaterials with unique, tunable structure

Silk and physicochemical properties is by creating composite materials that combine synthetic polymers with natural

Poly(p,t-lactic acid) proteins using ionic liquids. In this study, biodegradable poly(p,i-lactic acid) (PDLLA) was blended with silk

Tonic 1“1““1 . fibroin (SF) to create biocompatible films using an ionic liquid-based binary solvent system (1-butyl-3-methyl-

Composite materials o - . . . . o . .

Biomedical applications imidazolium chloride/N,N-dimethylformamide), which can maintain the molecular weights of the proteins/
polymers and encourage intermolecular interactions between the molecules. The effects of varying the ratio of
PLA to SF were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy
(FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA),
water contact angle testing, and cytotoxicity analysis as well as enzymatic degradation. Results showed that the
composite films were homogeneously blended on the macroscopic scale and exhibited typical fully miscible
polymer blend characteristics. By increasing the SF content in the composites, the amounts of f-sheets in the
films were significantly increased, allowing for SF to act as a physical crosslinker to maintain the stability of the
protein-polymer network. Additionally, SF significantly improved the hydrophilicity and biocompatibility of the
material and promoted the self-assembly of micelle structures in the biocomposites. Different topologies in the
films also provided beneficial surface morphology for cell adhesion, growth, and proliferation. Overall, this study
demonstrated an effective fabrication method for a fine-tuned polymer blends combining synthetic polymer and
protein for a wide variety of biomedical and green material applications.

1. Introduction utilize the strengths of the individual components of the composite to

overcome the shortcomings of the other components and obtain an ideal

There is increasing interest in the need for biocompatible materials
and green chemistry, leading to the widespread attention on innovative
biodegradable natural polymers [1-14]. One natural polymer that at-
tracts much attention is silk fibroin (SF) fibers spun from arthropods. SF
fibers are low cost, non-toxic, and biodegradable. They also show
promising biocompatibility in several biomedical applications [15-23]
due to minimal inflammation in vivo [11-14]. As a biopolymer, how-
ever, SF has limitations in its physicochemical properties which limit its
applications [14-15]. To overcome this, a common practice is to blend
SF with synthetic polymers to improve its material properties
[8,11,14,24-25]. When blended effectively, composite materials can

material for unique applications [26-28].

Fabrication of materials using SF is also met with another issue: due
to strong intermolecular hydrogen bonding and crystallinity provided
by the f-sheet structure of SF, is can be difficult to dissolve SF into so-
lution for biomaterial fabrication [29-30]. Typically, dissolution of SF
requires strong acids (sulfuric acid, phosphoric acid) [31], high-
concentration salt solutions (LiSCN aqueous solution, LiBr-HyO solu-
tion, CaCl,-CoHsOH-H,0 solution) [32-34,35], fluorinated solutions
(hexafluoroisopropanol aqueous solution, trifluoroacetic acid) [31,36]
or salt-acid systems (CaCly-FA solution) [20] to effectively dissolve SF
on the molecular level. None of these solvent systems are ideal for
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biomaterials or green manufacturing, as they are toxic, volatile, difficult
to recycle, and result in destruction of the protein structure and mo-
lecular weight which impacts the material properties of the biomaterial
[31-36]. The choice of solvent is therefore a critical element of success
for the fabrication of SF biomaterials [35].

A new class of solvents that present an environmentally friendly
alternative while solving many of the toxicity and degradation issues of
conventional solvents is ionic liquids [37-39]. Ionic liquids contain both
organic and inorganic components and are able to dissolve proteins by
denaturing their secondary structure while maintaining their molecular
weight and encouraging intermolecular interactions through electro-
static forces [40-42]. In addition, ionic liquids are thermally stable,
electrically conductive, less toxic, and can be easily recycled [43-47].
Many current studies have already shown the potential of ionic liquids in
the fabrication of composite biomaterials. For example, Park et al. [11]
utilized 1-ethyl-3-methylimidazole acetate (EMIMAC) to treat cellulose
and other biopolymers (bacterial cellulose, f-cyclodextrin, dextran,
starch, agarose, agar, gum arabic, j-carrageenan, chitosan, xanthan gum,
xylan, lignin, gelatin, collagen, silk) to co-dissolve both biopolymers into
cellulose-based composite films. By tailoring the choice and ratio of
polymers, a range of films with different material properties were pro-
duced. Tian et al. [1] used 1-butyl-3-methylimidazolium chloride salt
(BMIMCI) to fabricate cellulose/SF composite films at a mass ratio of
3:1. Through their characterization, they were able to show specific
molecular interactions between cellulose and SF through intermolecular
bonding between the —NH group of SF and the —OH groups of Cz and C3
on cellulose. Simultaneously, the use of ionic liquid enhanced the
p-sheet content introduced by SF while reducing the less ordered f-turn
structures within the composite films. Through this mechanism, ionic
liquid was able to improve the mechanical strength of the composite
films by enhancing molecular interactions. In another feat to the envi-
ronmental benefits of BMIMCI, Guiza et al. [9] dissolved chicken feather
and cardboard in BMIMCI and regenerated the samples by freeze-drying
to produce keratin/cellulose films with strong thermal and mechanical
properties. The composite films were found to have strong adsorption
capacity for oils and organic liquids coupled with good recyclability and
reusability, making them promising materials for the cleanup of oil
spills. While these and several other [11,48-50] studies have shown the
effectiveness of ionic liquid for preparing natural polymer-based com-
posites, there is very little work being done between proteins and
aliphatic synthetic polymers using ionic liquid-based solvent systems
[6-9,24-25].

In this study, we used the ionic liquid 1-butyl-3-methylimidazole
(BMIMCL) and N,N-dimethylformamide (DMF) as a binary solvent sys-
tem for the first time to obtain different ratios of silk fibroin-poly(p,L-
lactic acid) (SF/PDLLA) blend films. The composites were then studied
using scanning electron microscopy (SEM), Fourier transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning
calorimetry (DSC), thermogravimetric analysis (TGA), water contact
angle measurements, and cytotoxicity testing to analyze their
morphology, structure, and thermal properties, and to evaluate their
biological performance. The results in this study revealed a novel
microscopic interaction mechanism between SF and PDLLA [31,51], and
provide a new strategy for the comprehensive understanding of the
mechanism and function in the preparation of SF-based composites by
ionic liquid which expand the applications of ionic liquid in the prepa-
ration of other natural-synthetic polymer composites.

2. Experimental section
2.1. Materials

Chinese Bombyx mori silk cocoons were purchased from Dandong
July Trading Co., Ltd. (China). Prior to use, they were degummed,

washed with water, and dried to obtain regenerated silk fibroin (SF)
fibers. The poly (p,1-lactic acid) (PDLLA, Mn = 10,000) was derived from
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Shenzhen Yisheng New Material Co., Ltd. (China). The ionic liquid used
in this study, 1-butyl-3-methylimidazolium chloride (BMIMCI), was
provided by Shanghai Chengjie Chemical Co., Ltd. (China), and N,N-
dimethylformamide (DMF) of analytical grade with a purity greater than
99% was obtained from Sinopharmaceutical Chemical Reagents Co.,
Ltd. (China).

2.2. Preparation of SF/PDLLA composite films

The degummed SF fibers were cut into small pieces and added to the
ionic liquid BMIMCI in portions. To facilitate dissolution, the fiber-
BMIMCI solution was heated in 100 °C water bath for 48 h to obtain
an 8 wt% clear amber SF solution. PDLLA was dissolved into N—N
dimethylformamide (DMF) using a mechanical shaker to create 5 wt%
PLA solutions. Following preparation of both solutions separately, the
SF/BMIMCI and PDLLA/DMF solutions were mixed in various ratios
(0:5, 1:5, 2:5, 3:5, 5:5, 5:3, 5:2, 5:1, 5:0) at 95 °C under reflux conditions
for 7 h to obtain uniform mixed solutions of SF/PDLLA. SF/PDLLA so-
lutions were then slowly poured into a petri dish, then vacuum freeze-
dried for 2 days to form gels. To solidify the gel-like composites into
films, the composites were immersed in ethanol until solidified. Finally,
excess ionic liquid on the surface of the films was removed using a
continuous deionized water rinse followed by vacuum freeze-drying.
Fig. 1(I-II) shows a schematic diagram of the fabrication of the SF/
PDLLA blend films based on the ionic liquid binary solvent system.

2.3. Scanning electron microscopy (SEM)

Scanning electron microscopy (SEM, JSM-7600F, Japan JEOL com-
pany) was used to observe the morphology of SF/PDLLA composite
films. Images were taken at an accelerating voltage of 10 kV and
working distance of 15 mm. Prior to imaging, films were sputter-coated
in gold 3-4 times each, for 30s each time, at a current of 20 mA, to
improve their conductivity.

2.4. Fourier transform infrared spectroscopy (FTIR)

The molecular conformation of SF-PDLLA composite films were
studied by Fourier transform infrared spectrometry (NEXUE, Nicolet,
USA) with the KBr compression method. Spectrograms were obtained
between 4000 and 400 cm ™! at a resolution of 4 cm ™! with 64 scans per
sample.

2.5. X-ray diffractometer (XRD)

The crystallinity of the composite films was studied using X-ray
diffraction. CuKa radiation, 40 kV tube pressure, and 50 mA tube cur-
rent were used to obtain readings from 5° to 50° at a scanning rate of
with 10°/min.

2.6. Differential scanning calorimetry (DSC)

RV differential scanning calorimeter (RVDSC, DSC7000X, Japan
JEOL company) was used to study different ratios of SF/PDLLA com-
posite films in standard DSC (DSC) mode and temperature modulated
DSC (TMDSC) mode. Standard mode DSC measurements were taken
from —20 °C to 400 °C at a heating rate of 10 °C/min. In temperature-
modulated DSC (TMDSC) mode, the rate of heating was 2 °C/min
from —20 °C to 220 °C with a modulation temperature amplitude of 3 °C
and frequency of 0.02 Hz. Testing was performed on dry SF/PDLLA
composite films encapsulated in aluminum plates under nitrogen purge
gas with a flow rate of 30 mL/min.

2.7. Thermogravimetric analysis (TGA)

Pyris 1 TGA (Perkin-Elmer, USA) was used for thermogravimetric
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Fig. 1. (I) Schematic fabrication of SF/PDLLA blend material film based on ionic liquids. And SEM images of SF/PDLLA composite films (II) with different mass
ratios: SF/PDLLA = 5/0 (a), 5/1 (b), 5/2 (c), 5/3 (d) 5/5 (e), 3/5 (f), 2/5 (g), 1/5 (h), 0/5 (i).

(TG) analysis. Samples were heated from 20 °C to 550 °C at 10 °C/min
while under nitrogen purge gas with a flow rate of 50 mL/min. The
change in sample mass was recorded while heating.

2.8. Water contact angle test

The hydrophilicity of SF/PDLLA composite films with different SF:
PDLLA ratios was tested by using the sessile drop method. Ultrapure
water was dripped onto the films using a needle, followed by photo-
graphing with an optical contact angle measuring instrument after 5 s of
contact between the water and the film. The photographs were used to
calculate the static contact angle. For each film, measurements were
taken at least 3 times and the average value was reported.

2.9. Cytotoxicity and biocompatibility

L1929 (mouse fibroblasts) cells were used to study the biocompati-
bility of composite materials in vitro. The biological performance of the
SF/PDLLA composite films was evaluated based on the contact between
cells and the films. Prior to seeding cells on the films, all films were
sterilized by exposing them to UV light for 2 h and then immersing in
70% ethanol. Films were then rinsed with phosphate-buffered saline
solution (PBS) three times and cell culture medium once to remove
ethanol and prepare the films for the cells. The cell culture medium
contained 10% fetal bovine serum at a concentration of 5 mg/mL. After
24 h of soaking, the supernatant was taken as the extraction of the
composite films. The incubated L929 cells were suspended in new Dul-
becco modified Eagle medium (DMEM) at a concentration of 104 cells/
em® with 10% (v/v) fetal bovine serum added. 200 pL of the above
culture solution was plated into 96-well plates and incubated at 37 °C in
a 5% CO; cell incubator for 24 h. The cell culture medium was then
replaced with the supernatant-fetal bovine serum solution from the
composite films incubated for an additional 6, 24, and 48 h. At set time
points, the solution was removed and replaced with 200 pL of 0.5 mg/
mL MTT (3-[4,5-dimethylthiazole-2]-2,5-diphenyltetrazolium bromide)
solution to quantify cell viability. After incubating for 4 h, the

supernatant was removed and 200 pL of DMSO was added. The solution
was shaken for 10 min at room temperature to completely dissolve the
formazan, and then the ultraviolet absorbance at 490 nm was measured
on a BioTek immunoassay analyzer (EL-x800). Three parallel experi-
ments were taken for each sample and the average absorbance was
recorded and compared to a control group with only cells and no ma-
terial from the films. The following equation was used to quantify cell
viability:

D
Viability = D—S % 100%

where Dy is the absorbance of the cell culture solution exposed to the
films, D. is the absorbance of the control solution.

2.10. Enzyme degradation

About 10 mg of SF/PDLLA composite films (SP5-0, SP5-2, SP5-5 and
SP3-5) were weighed and immersed into a 10 mL PBS solution (pH 7.4)
containing 3.1 U/mL of chymotrypsin (McLean, China) at 37 °C for 24 h.
After enzymatic degradation, the remaining films were taken out, rinsed
gently with distilled water for three times to completely remove the
residues of enzyme and PBS, and then dried in a vacuum oven for 2 days.
Finally, SEM was used to observe the surface morphology of the enzyme
treated films. In order to confirm the reliability of the experiment, each
type of sample was tested at least three times.

3. Results and discussion
3.1. Morphology analysis

The surface morphologies of SF/PDLLA composite films with varying
ratios of SF to PDLLA were observed using scanning electron microscopy
(Fig. 1). Fig. S1(A-I) corresponds to SEM images of SF/PDLLA composite
films with different SF/PDLLA ratios at a small magnification (5 pm bar),
while Fig. 1(a-i) correspond to their respective film at large magnifica-
tion (100 nm bar). For the SEM images with small magnification
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(Fig. S1, A-I), all the composite films showed uniformity and compati-
bility on the macroscopic scale. Specifically, the surface of the pure SF
film (SP5-0) has a dense porous structure (Fig. 1A), while pure PDLLA
(SP0-5) shows a uniform and smooth surface morphology (Fig. S1I).
Once SF and PDLLA are mixed (SP5-1-SP1-5), the even surface
morphology becomes rougher. Because of the differences in the two
materials, there is local unevenness in heat transfer and diffusion during
volatilization of the solvent [52-55], leading to local difference in sur-
face roughness. More details about the surface morphology of the
composite films are revealed by the large magnification images (Fig. 1,
a-i). Specifically, the pure SF film (Fig. 1a) presents a dense nanosphere-
aggregation morphology [56]. In contrast, the pure PDLLA sample
(Fig. 1i) shows a compact nanoparticle agglomerate structure. With the
addition of PDLLA, samples SP5-1 and SP5-2 presented a uniform strip
topology (Fig. 1, b-c); with further addition of PDLLA (SP5-3, SP5-5), the
surface of the composite films showed the strip-like morphology of
nanoparticle bulges (Fig. 1, d-e). When PDLLA becomes the dominant
polymer in the composite (SP3-5), a uniform nano-spherical aggregation
structure forms (Fig. 1f). At higher ratios of PDLLA (SP2-5 and SP1-5),
there is a more uniform size and a denser distribution of nano-
spherical particles.

3.2. FTIR analysis

FTIR can be used to provide insight to the secondary protein struc-
tures related to material properties in protein-based materials. Fig. 2a
shows the FTIR normalization curves of all SF/PDLLA blended films
used to determine the different functional groups in the samples by
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comparing peak widths and peak intensities. For SF, in general, the
infrared spectral region between 1700 and 1600 cm™! is the most
commonly used region for quantitative analysis of protein secondary
structure [57-59]. The pure SF film (Fig. 2a, SP5-0) has three main
characteristic peaks, which are located around 1643 cm~! (amide I;
mainly from the C=O0 stretching vibrations), 1527 cm ! (amide II; the
C—N stretching and the N—H in-plane bending vibrations), and 1236
cm ™! (amide III; associated with the N—H bending vibrations), respec-
tively. In addition, there is a characteristic peak of SF in the range of
3400-3250 cm !, which was related to the amine peak (N—H plane
bending vibration). The peak at 2950 cm ™ is located in the 3000-2850
em ! alkane region, which is related to the ionic liquid BMIMCI [60].
Stanton et al. [60] studied the effects of different types of imidazole-
based ionic liquids on SF/cellulose composite films and pointed out
the characteristic peak in the range of 3000-2850 cm ™! in the alkane
region originating from the ionic liquid. The position and intensity of the
peak changes with the type of ionic liquid due to the different cationic
functional groups in different imidazole-based ionic liquids. In addition,
the characteristic peaks of BMIMCL also include 1560 cm ™! and 1158
em ™!, which correspond to the C=C and C—N stretching vibrations in
the imidazole ring of the ionic liquid, respectively. However, in Fig. 2a,
these two peaks were not observed in the composite films. The lack of
these peaks in the IR data confirms that the ionic liquid was removed
after the use of the coagulant ethanol. For pure PDLLA (Fig. 2a, SP0-5),
strong infrared absorption bands were shown at 3496 cm ™, 2943 cm ™2,
1762 cm ™!, 1456 cm ™!, 1380 cm ™!, and 1087 cm™!. These peaks are
related to —OH stretching vibration, C—H stretching vibration, C=0
stretching vibration, C—H bending vibration and C—O symmetric

30

Fig. 2. (a) FTIR spectra of SF/PDLLA composite films with different ratios at 4000- 400 cm ™t SF/ = 5/0 (SP5-0), 5/1 (SP5-1), 5/2 (SP5-2), 5/3 (SP5-3), 5/5 (SP5-5),
3/5 (SP3-5), 2/5 (SP2-5), 1/5 (SP1-5), 0/5 (SP0-5). (b) A curve fitting example for the sample SP1-5 in the amide I region (1590- 1710 cm™Y); The secondary
structure of the sample includes f-sheets (B), random coils (R), a-helices (A), turns (T), and side chains (S). (c) XRD spectra of all composite films with different ratios.
(d) A XRD curve fitting example from sample SP1-5 in the diffraction range of 7°-32°.
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stretching vibration, respectively [61-63].

By comparing the FTIR curve of composite films (Fig. 2a), it was
shown that with the increase of PDLLA content, the intensity of the
absorption peaks 1643 cm™!, 1527 cm™! attributed to SF gradually
decreased, while the intensity of the absorption peaks 3496 cm ™}, 2943
em™}, 1762 em ™! related to PDLLA gradually increased. In addition,
when the two-phase components were blended, many absorption peaks
from individual component were shifted or changed. Specifically, the
peak width of the absorption peak at 3288 em s significantly smaller,
and the absorption peak at 1236 cm ™ shifts to 1201 cm ™. The change
of peak value and intensity indicates the change of material composi-
tion, further confirming interactions can occur between SF and PDLLA
molecules during the solution mixing process. Similar interactions have
been confirmed in previous studies [26], including in a SF/water
insoluble-polyurethane composite system [64]. SF has also shown to
interact with other biomolecules in composite systems. Wang et al. [65]
found that because SF molecules contains active groups such as amino,
hydroxyl and amide groups, interactions are possible with sodium
alginate (SA) molecules that contain hydroxyl, carboxyl and other polar
groups, making it easy to form different kinds of hydrogen bonds in SF/
SA composites. Additionally, different mass ratios of composites will
lead to different hydrogen bond strengths, which will ultimately affect
the crystallinity, thermal stability, and mechanical properties of the
materials. Freddi et al. [66] believed that the addition of polyacrylamide
would destroy part of the hydrogen bonds involving amide groups in SF
to form new intermolecular hydrogen bonds, and thus affect the struc-
ture and mechanical properties of the composite films. It has also been
found [67] that when graphene interacts with SF, strong hydrophobic-
hydrophobic interactions, polar-polar interactions and cross-linking
will occur at the two-phase interface, resulting in a compact nano-
layer polymer composite. This is essential for mechanical reinforce-
ment. In this current work, PDLLA has electron-withdrawing carbonyl
(C=0) and hydrophobic hydrocarbon (—R) groups. On the one hand,
the amide group (R—NH) of SF and the carbonyl group (C—=0) of PDLLA
will produce hydrogen bonding; on the other hand, the side chain
carboxyl group (—COOH) of the residues of negatively charged amino
acids (glutamic acid and aspartic acid) in SF may have electrostatic
interaction with the negatively charged carbonyl group (C=O0). In
addition, the hydrophobic-hydrophobic interaction between the hy-
drophobic amino acids (such as tryptophan) of SF and the hydrophobic
chains may also exist in the composite films.

During the formation of the secondary structure of SF, the interaction
of polypeptide chains is mainly based on the H-bonds formed between
amino groups (NH) and carbonyl groups (CO) [68]. The amide I region
provides information about the stretching vibration of the C=0 bond in
the protein backbone. Therefore, this region was used for the study of
the intermolecular and intramolecular interactions occurring in the
protein chain backbone [69]. The peak fitting calculations were carried
out for the amide I region from 1590 cm™! to 1710 cm™}, and the
content of secondary protein structures obtained is shown in Table 1.
Fig. 2b shows an example of curve fitting sample using SP1-5 spectrum
in the amide I region (1590-1710 cm’l). The secondary structure of the
sample includes p-sheets (B), random coils (R), a-helices (A), turns (T),
and side chains (S). From Table 1, it can be seen side chain content had
little difference between blended films. f-turns had a slightly higher
difference of 6.33%, and $-sheets even higher with 15.55% difference in
content between the film SP1-5 with the least $-sheets and the film SP5-
0 (pure silk) with the most g-sheets. Random coil and alpha helix content
both increased slightly with an increase of PDLLA content. Specifically,
the p-sheet content of sample SP5-0 (pure silk) was 43.76% and the
content sum of random coils and a-helices was 33.16%. With the in-
crease of PDLLA content in the composite materials, the content sum of
random coils and a-helices increased from 33.16% to 46.86%, while the
content of pg-sheets decreased from 43.76% to 28.21% (SP1-5).
Regardless, the composite films still maintained a certain amount of
p-sheet content in the film [70]. Dubey et al. [71] found that the $-sheet
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Table 1
Infrared fitting results of SF/PDLLA composite films in the amide I region.
Sample  p-sheet a-Helix Side Turn Silk Amorphous
(B)/% + chain (T)/% amorphous in sample/%
random S)/ in sample/
coils(A % %
+R)/%
SP5-0 43.76'/  33.16' 5.87' 17.21'  56.24' 56.24
42.23%
SP5-1 39.25'/  34.10 311" 2354'  50.63' 60.75
40.19%
SP5-2 37.62"/  35.64' 3.83' 2291 4456 62.38
36.98 X
SP5-3 35.58"/  36.87 4.87"  22.68" 4026 64.42
35.59 X
SP5-5 32,95/ 40711 473" 21.61" 3353 67.05
32.18%
SP3-5 30.39"/  43.73 5.05'  20.83' 26.10' 69.61
29.86 X
SP2-5 28.27'/  46.38 476" 20.59"  20.49' 71.73
27.53%
SP1-5 28.21"/  46.86 556"  19.370  11.97! 71.79
27.36 X
SPO-5 N/A N/A N/A N/A N/A 100

The superscripts I and X represent the fitting results of FTIR and XRD, respec-
tively. All numbers have an error bar within +2%.

structure plays a decisive role in the thermal stability and high me-
chanical strength of the material. Therefore, stable -sheet structure is of
great significance for maintaining the mechanical integrity of the
protein-synthetic polymer network [72]. Some studies [26-27,70] sug-
gested that the amide group (R—NH) on SF would interact with the
carbonyl group (C=O0) on the molecular chain of PDLLA to form new
intermolecular hydrogen bonds, resulting in the breaking of intra-
molecular hydrogen bonds in SF, decreasing the content of S-sheets in
the material. Taddei et al. [73] believed that protonated aspartic acid
(Asp) and glutamic acid (Glu) residues could act as hydrogen bond do-
nors, and hydrogen bonds rearrangement occurs between poly (1-lactic
acid) (PLLA) and SF, but this does not exclude the possibility of partic-
ipation of other SF side chain groups. The formation of PLA-SF hydrogen
bonds has also been reported in other previous studies [26,74-77]. In
addition, with the increase of PDLLA content, the non-crystalline con-
tent of the SF component in the entire composite film decreased from
56.24% (SP5-0) to 11.97% (SP1-5), but the total amorphous content
(from both SF and PDLLA) increased from 56.24% (SP5-0) to 71.79%
(SP1-5).

3.3. XRD analysis

The crystal structure of SF macromolecules was analyzed by XRD
data. SF is a macromolecular chain with partial repeating sequence of
crystalline regions and disordered non-crystalline regions. This structure
pattern leads to low crystal diffraction peaks, accompanied by broad
peaks attributed to disordered regions [78]. Fig. 2c shows the XRD
patterns of SF/PDLLA blended films with different proportions. It is
generally believed that silkworm SF has two crystalline structures,
namely silk I and silk II structures. The main conformation of Silk I
structure is ordered o-helix and coils, whose corresponding diffraction
angles 26 is around 12.2°, 19.7°, 24.7° and 28.2°. The main diffraction
peaks of the Silk II structure (the main conformation is f-sheets) are
around 18.9°, 20.7° and 24.0° [79-80]. It can be seen from Fig. 2c that
the XRD spectrum of pure PDLLA (SP0-5) shows a wide peak composi-
tion in a disordered region, indicating that the PDLLA film is almost
entirely amorphous material. Except for pure PDLLA (SP0-5), all sam-
ples contain two characteristic structures from Silk I and Silk II with a
wide and large diffraction peak in the diffraction range of 10.0°-25.0°.
In this range, the diffraction peaks of samples SP5-0, SP5-1, and SP5-2
are located at 20.7°, corresponding to the Silk II structure. With the
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increase of PDLLA content, the diffraction peak positions of SP1-5, SP2-
5, SP3-5, SP5-5, and SP5-3 were significantly shifted compared with
samples SP5-0, SP5-1, and SP5-2 and the diffraction peak at 20.7°
gradually disappeared. That is, as the proportion of PDLLA content in
the composite material increases, the p-sheet content in SF also de-
creases. In addition, relevant XRD curves of the composite film samples
were selected for peak fitting according to the diffraction angles corre-
sponding to Silk I and Silk II structures. Fig. 2d shows an example of
curve fitting for sample SP1-5 at a diffraction angle of 7°-32°. The
p-sheet content in each composite film was calculated and found to be
comparable with the FTIR results (Table 1). The XRD results once again
confirmed that the increase of PDLLA content would reduce the p-sheet
content of SF molecules in the composite material, but still retain a
certain content. For example, the p-sheet content of SP5-0 decreased
from 42.23% to 27.36% (SP1-5), but the amorphous/non-crystalline
content of the composite film gradually increased.

3.4. DSC analysis

DSC is one of the most important techniques to obtain evidence of
miscibility of polymer-protein composites by studying the glass transi-
tion temperature (Tg) region of the composites [81]. As shown in Fig. 3a,
the thermal performance of the composites was first studied by standard
DSC. Meanwhile, the reversible thermal properties of the SF/PDLLA
sample were measured with TMDSC. TMDSC can eliminate irreversible
thermal phenomena of the samples such as water evaporation or
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physical aging/degradation (Fig. 3b). It can be seen from Fig. 3a that
during the heating process, the SF/PDLLA composite films of differing
SF/PDLLA ratios undergo three main processes: glass transition, solvent
evaporation, and thermal decomposition. Specifically, all composite
films underwent glass transition in the range of 30-70 °C, which was
related to the composition of PDLLA in the composites. Pure SF film
(SP5-0) and all composite films showed an endothermic solvent evap-
oration peak between 70 °C and 180 °C [82-83]. This is mainly because
SF is hydrophilic and easily absorbs water; during heating, SF will
experience the evaporation of free and bound water. As a result, an
endothermic peak which scales in intensity with SF content appears in
the DSC thermograms. The endothermic peak of pure SF SP5-0 at
290.41 °C is mainly attributed to the decomposition of SF, while the
small upward exothermic peak in this same region is caused by
carbonization during decomposition [84]. The degradation peak of pure
PDLLA (SP0-5) was around 315.08 °C. These thermal behaviors in the
pure silk (SP5-0) and pure PDLLA (SP0-5) films were also exhibited in all
the composite films. After 250 °C, there was an endothermic peak
accompanied by a small exothermic peak, and the degradation peak
temperature changed with the content of PDLLA in the composite ma-
terials, which may be related to the difference in the apparent
morphology and fS-sheet content of the composite materials. Standard
differential scanning calorimetry (DSC) results show that SF and PDLLA
were well blended without macroscopic phase separation.

Fig. 3b shows the reversible heat capacity curves of the samples
between and 20 °C and 220 °C. It can be observed that the glass
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Fig. 3. (a) DSC curves of SF/PDLLA composite films heated from —20 °C to 400 °C at a heating rate of 10 °C/min; (b) Reversing heat capacity curves of SF/PDLLA
composite films were measured at heating rate of 2 °C/min using TMDSC mode, in which SF/PDLLA = 5/0(SP5-0), 5/1 (SP5-1), 5/2 (SP5-2), 5/3 (SP5-3), 5/5 (SP5-
5), 3/5 (SP3-5), 2/5 (SP2-5), 1/5 (SP1-5), 0/5 (SP0-5). And (c) TG curves of all SF/PDLLA composite films heated from room temperature to 550 °C at a heating rate

of 10 °C/min, respectively; (d) the first derivative of the mass percentage curve.
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transition temperature of pure SF (SP5-0) appears at 186.3 °C, which is
higher than that of SF films prepared from traditional aqueous solutions
(about 178 °C). Some studies [85] showed that in samples treated with
methanol, there was crystallization of f-sheets, which reduces the
reversing heat capacity step (AC},) and moves Ty to higher temperatures;
similar results are seen in this study. Pure PDLLA (SP0-5) has an obvious
glass transition (Ty;) at about 50.4 °C. For composite materials (SP5-
1-SP1-5), the glass transition temperatures all appear in the temperature
range of 40-50 °C and 100-200 °C for Ty and Tgo, respectively. As the
proportion of PDLLA in the composites increases, The Tg; temperature
attributable to PDLLA in the range of 40-50 °C shifts slightly, moving
from 45.3 °C (SP5-1) to 50.4 °C (SP0-5). Ho et al. [86] found that the T
peak of silk fiber/PLA composites also shifted slightly to a lower tem-
perature compared to pure PLA. Tao et al. [87] explained that this
phenomenon is due to the ionic or hydrogen bond interactions between
the soft and the hard segments of the polymer blend, which enhances the
microphase separation, leading to a decrease in the T; of the soft
segment of the composite film. Meanwhile, the glass transition
contributed by the SF component greatly shifted to lower temperatures,
from 186.3 °C (SP5-0) to 140.2 °C (SP1-5). It can be seen from the above
DSC results that SF strongly interacts with PDLLA. In particular, adding a
small amount of silk proteins into the PDLLA matrix (e.g., SP1-5) can
greatly improve the miscibility of the blend, making the individual Tgs of
silk and PDLLA much closer to each other. However, the two charac-
teristic glass transitions on the TMDSC curves also indicate a potential
microphase separation of the two components, although the large shift
of the two Tgs indicates that the macrophases of the two separate
components have been well fused during the blending process (this is
also supported by the SEM images in Fig. 1 and Fig. S1) [88-93]. Liu
et al. [94] pointed out that morphology and structure are important
factors affecting the glass transition temperature when studying styrene-
isoprene star block copolymers. Different chemical and physical cross-
linking interactions between the two polymers in different proportions
would lead to different branched chain lengths and branched degrees,
and ultimately lead to different phase separation degrees. At the same
time, some literature [95] suggested when using DSC to study block
copolymers that if the flexible chain of one polymer component is mixed
in another polymer, its glass transition temperature would be reduced.
Therefore, in this study, compared with the pure SF and pure PDLLA
samples, the glass transition temperatures related to SF and PDLLA in
the composite films were both lower. In addition, it can be seen from
Table 2 that the specific heat capacity ACp; at the glass transition
temperature related to PDLLA increased from 0.142 J ~g_1-°C_l (SP5-1)
to 0.602 J-g~1-°C~! (SP0-5). And the specific heat capacity AC,; at the
glass transition temperature related to SF decreased from 0.095
J-g71.°c™! (SP5-0) to 0.013 J-g~1-°C~! (SP1-5), which again confirmed
the results of FTIR and XRD. FTIR and XRD results showed that with the
continuous addition of PDLLA, the SF-related amorphous content

Table 2

The glass transition temperature and the corresponding change in heat capacity
during the glass transition of SF/PDLLA composite films with different
proportions.

Sample Tg1/°C ACp/J-g teC! Tgo/°C ACpy/J-g tec?
SP5-0 N/A N/A 186.3 0.095

SP5-1 45.3 0.142 168.9 0.083

SP5-2 45.4 0.222 158.6 0.063

SP5-3 45.6 0.262 157.2 0.052

SP5-5 46.0 0.286 156.7 0.043

SP3-5 46.3 0.328 154.3 0.028

SP2-5 46.7 0.376 143.5 0.020

SP1-5 46.8 0.476 140.2 0.013

SPO-5 50.4 0.602 N/A N/A

Tg and AC,, are the glass transition temperature and the corresponding change in
heat capacity during the glass transition, respectively. All numbers have an error
bar within +5%.
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(related to ACp2) in the composite samples decreased from 56.24% to
11.97%, but the total amorphous content (related to sum of ACp; and
AC,») increased from 56.24% (SP5-0) to 100% (SP0-5) (Table 1). All
these phenomena imply interactions and thermodynamic compatibility
between SF and PDLLA.

3.5. TG analysis

Thermogravimetric analysis (TG) technology plays an important role
in studying the thermal stability and thermal decomposition of materials
(Fig. 3). It can be used to evaluate the thermal stability of the material,
including the initial decomposition temperature (Topset), the tempera-
ture corresponding to the maximum decomposition rate (Tp), the total
weight loss rate and other characteristics. The thermogravimetric curves
of different composite films obtained by thermogravimetric analysis
(TGA) are shown in Fig. 3c. Fig. 3d shows the first derivative plot of the
mass percentage curve, which helps better determine the critical ther-
mal stability temperatures shown in the composite material. It can be
seen from Fig. 3c that during the initial heating process between room
temperature and 200 °C, the weight loss of all samples was within 10%.
The maximum loss of pure SF (SP5-0) during this initial heating process
is 5.88% because SF has good hydrophilicity and hygroscopicity, making
it more susceptible to the dehydration process. During this process,
bound and free water are released from the sample [96], corresponding
to the solvent evaporation peak appearing in the first derivative of mass
loss thermogram. In this temperature range, there is almost no mass loss
of pure PDLLA, with only 0.37% mass loss. The thermal weight loss
process of all SE/PDLLA composites mainly occurs between 200 °C and
400 °C, and there was only one obvious weight loss step, which showed
that the decomposition process of SF/PDLLA composites was completed
in one step, indicating that the two components of SF and PDLLA had
good thermodynamic compatibility. In this stage, the mass loss of all
composite samples was rapid, which is mainly related to the fracture of
the molecular backbone and the decomposition of molecular domains in
the composite polymer [97]. Interestingly, for the sample SP1-5, the
mass loss (about 0.81% at 200 °C) was less than that of sample SP2-5 and
SP3-5 (about 2.23% and 3.08%). Once the initial decomposition tem-
perature was reached, the mass of sample SP1-5 decreased significantly,
and its decomposition rate was faster, reaching about 19.57%/min.
Therefore, the composition of the composites will significantly affect the
initial decomposition temperature and thermal degradation rate of the
sample (Fig. 3c, d).

The Tonser, Tp and total weight loss percentage of the samples at
550 °C are listed in Table 3 (Fig. S2). When the initial decomposition
temperature Topser and the maximum decomposition rate of pure SF and
pure PDLLA films are observed, the thermal stability of SF films is
significantly better than that of pure PDLLA films. The Topget of all SF/

Table 3
TG thermal decomposition data of SF/PDLLA composite films with different
mass ratios at a heating rate of 10 °C/min, and the water contact angle of
samples.

Sample Tonset/ T,/°C Weight Loss at 550 °C/ Water contact angle/
o % °

SP5-0 292.64 315.79  62.61 66.73°
SP5-1 287.23 305.75  64.32 68.52°
SP5-2 288.51 306.48  68.77 70.94
SP5-3 288.68 316.79  72.45 72.76
SP5-5 306.48 338.78 77.90 73.48
SP3-5 303.84 336.02 8291 74.32
SP2-5 318.80 350.59  88.56 76.51
SP1-5 335.21 364.45 92.43 83.68
SP0-5 282.52 314.01  99.89 87.97

Tonser Tepresents the initial decomposition temperature of the sample; T, rep-
resents the temperature corresponding to the maximum decomposition rate of
the sample; wt. Loss represents the percentage of mass remaining when the
sample is heated to 550 °C.
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PDLLA composite films are also higher than that of pure PDLLA films,
indicating that the SF component can improve the thermal stability of
the composites. Interestingly, with the continuous addition of PDLLA,
the initial decomposition temperature Tonser generally shifts to higher
temperatures for the composite samples, increasing from 287.23 °C
(SP5-1) to 335.21 °C (SP1-5), indicating that the thermal stability of the
composites could be improved by adding a certain amount of PDLLA
compared with pure SF film. This is mainly because there is a close
molecular interaction between SF and PDLLA, and there could be a
strong intermolecular hydrogen bonding interaction between the —NH
of SF and the C=0 group on the PDLLA chain, thus improving the
thermal stability of the composite films. On the contrary, with the in-
crease of SF content, the content of f-sheets in the composites increases,
and this change of the material structure will affect its physical prop-
erties. Therefore, the glass transition temperature of the composites also
increases [85]. However, due to the high-water content of SF and its easy
decomposition, the thermal stability of composites was not improved by
the increase of SF content [70]. In the main degradation stage, the mass
loss of all samples was rapid and the maximum decomposition rate
gradually increased with the increase of PDLLA content. This was
observed as an increase in T}, from 305.75 °C (SP5-1) to 364.45 °C (SP1-
5), indicating that the SF component could slow down the decomposi-
tion rate of the composites at higher temperature. As the content of
PDLLA increases, the residual amount at 550 °C also decreases. For
example, the residual mass in sample SP5-0 is about 37.39%, while the
sample SPO-5 has only about 0.11% residual mass at 550 °C. It has been
reported [98] that above 450 °C, the residues in the composites are
mainly carbon generated by the carbonization of SF under nitrogen at-
mosphere, and the residual amount increases with the increase of the SF
content, which is consistent with the experimental results. At the same
time, these results also illustrate the good miscibility of the two
materials.

3.6. Hydrophilicity analysis

The static water contact angle of the material surface is an important
indicators for evaluating the hydrophilicity/hydrophobicity of the ma-
terial [99-100]. The surface properties of the material (i.e., chemical
composition, hydrophilicity and hydrophobicity, roughness, porosity)
determine its performance and applications. In this study, the water
contact angles of SF-PDLLA composite films with mass ratios of 5:0, 5:2,
5:5, 2:5, and 0:5 were 66.73°, 70.94°, 73.48°, 76.51°, and 87.97°,
respectively (Fig. 4a, Table 3, Fig. S3). Among them, the pure SF film
(SP5-0) has the lowest static water contact angle, indicating that SF has
good hydrophilicity. However, the pure PDLLA (SP0-5) has the highest
static water contact angle and high hydrophobicity, which is due to the
rich hydrophobic ester bonds in its molecular backbone and the lack of
hydrophilic groups [101-102]. When the PDLLA component increases,
the water contact angle of the composite film also increases, which
means the hydrophilic/hydrophobic properties of the material can be
adjusted by changing the content of PDLLA. On the contrary, with the
increase of SF content, the water contact angle of the composite film
gradually decreases, which shows that the increase of SF content is
beneficial to improving the hydrophilicity of the composite film. For
ideal tissue engineering material, in addition to having certain me-
chanical properties, good plasticity, and biodegradability, the most
important point is that it must have good biocompatibility. To accom-
plish this, a good material-cell interface is necessary. High hydrophi-
licity is more conducive to cell adhesion, growth, and proliferation [12],
but the hydrophobic surface is more conducive to protein absorption
[73] which may be necessary for certain growth factors and extracellular
proteins.

3.7. Biocompatibility analysis

Mouse fibroblasts (L929) were then used for in vitro cytotoxicity
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experiments to evaluate the biocompatibility and cell viability of SF/
PDLLA composite films. Fig. 4b shows the survival rate of mouse fi-
broblasts cultured on SF/PDLLA composite films with different mass
ratios (SP5-0, SP5-1, SP5-2, SP5-3, SP5-5, SP3-5, SP2-5, SP1-5, and SPO-
5) at 6, 24 and 48 h of culture time. With the increase of culture time, the
cell activity of all the composite films showed an increasing trend.
Specifically, the cell viability of sample SP3-5 cultured for 6, 24, and 48
h was 101.9%, 104.7%, and 107.1%, respectively. After 24 h of culture,
the composite film containing SF has higher cell activity than pure
PDLLA film, indicating that the cell viability of the sample was related to
the SF content. The cell viability of the samples with high SF content
(SP5/1, SP5/2) was significantly better than that of the samples with
low SF content (SP1/5, SP2/5, SP3/5, SP5/5, SP5/3). For example,
when the mass ratio of SF to PDLLA was 5:2 and 5:1, the cell viability
was relatively high at 111.7% and 114.4%, respectively, which was
close to that of the pure SF film (118.9%). In addition, after 48 h of cell
proliferation, it showed the same pattern as the result of 24 h of culture.
In summary, the presence of SF in the SF/PDLLA composite film con-
tributes to the ability of cell adhesion and growth. It has been reported
[73] that a more favorable microenvironment was found on the surface
of SF/PLA composite nanofibers than pure PLA. The improved prolif-
eration on the surface of SF/PLA composite nanofibers may be attributed
to the interaction between SF and cells. SF is a protein polymer with
repeating hydrophobic-hydrophilic amino acid units [23,30-31,35,52],
which can provide a mild and indolent place for cell adhesion and dif-
ferentiation [26,73]. Meinel et al. [103] found that in vitro cell prolif-
eration on silk films can be enhanced compared to collagen and tissue
culture plates. Wray et al. [104] believed that the difference in cell
viability may be related to the way proteins were adsorbed to the surface
of the silk film and the difference in the distribution of surface charge
during the fabrication of the silk film. Other biocompatibility experi-
ments in vivo and in vitro have also proved similar cell characteristics
[36,73,103,105]. In this blend, the hydrophilicity of SF gives it the
ability to interact with the negatively charged surface of the cell. While
PDLLA has poor hydrophilicity and lacks biological activity and cell
affinity. Therefore, in SF/PDLLA composite films, the hydrophilicity is
significantly improved compared to pure PDLLA.

3.8. Enzymatic degradation

To verify the crystalline and amorphous structure in the SF/PDLLA
composite films, SEM was used to observe the structural change of blend
samples treated in a chymotrypsin/PBS buffer solution for 24 h (Fig. 4c).
Chymotrypsin is a proteolytic enzyme secreted by the pancreas, which
can only degrade the amorphous region of silk and PDLLA polymer
materials to obtain a highly crystalline material structure [106-109].
For pure SF (SP5-0), a relatively flat shape with a few cracks was
observed, indicating that the SF film is dominated by p-sheet crystals
through ethanol and heat treatments during the fabrication process. The
poly(p,i-lactic acid) material used in this study is a completely amor-
phous polymer. Therefore, for SP5-2, SP5-5 and SP3-5 samples, micro-
pores appeared after enzymolysis for 24 h. The quantity and size of the
micropores gradually increased with the increase of PDLLA content. This
indicates that the PDLLA domain and amorphous domain of SF have
been combined to form micelle structures, and the -sheet crystals of SF
have formed a cross-linked network in the SF/PDLLA films. After being
digested by chymotrypsin, the amorphous micelle structures in the films
became holes, and the crystal domain formed a scaffold-like structure.

This structure also provided us with a clearer picture of the micro-
phase separation behavior discussed in the DSC study: when the silk
content is small, protein molecules are not able to form a cross-linked
network, therefore, the temperature difference between Tg; and Ty
(Table 2) is small, indicating that the blends are almost completely fused
at the molecular level without obvious microphase separation; once the
silk content increases, the formation of a scaffold-like crystal network
promotes the microphase separation, resulting in a greater temperature
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Fig. 4. (a)Water contact angle of SF/PDLLA composite films with different
mass ratios, where SF/ PDLLA = 5/0 (SP5-0), 5/2 (SP5-2), 5/5 (SP5-5), 2/5
(SP2-5), 0/5 (SP0-5). And (b) MTT assay method was used to determine the
survival rate of mouse fibroblasts cultured on different mass ratios of SF/PDLLA
composite films for 6 h, 24 h, and 48 h. The number of equivalent cells on the
well plate (1 x 10*/well) was used as the control value (*p < 0.1, **p < 0.01,
***p < 0.001, n > 3). (c) Typical SEM morphology of SF/PDLLA composite
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films (SP5-0, SP5-2, SP5-5 and SP3-5) after chymotrypsin enzymatic degrada-
tion for 24 h.

difference between the two Tgs in the DSC curve.

3.9. Self-assembly mechanism in the binary solvent system

The final properties of the blends generally depend on the compat-
ibility between the individual polymers [93,110-111]. Therefore, the
acquisition of a compatible system of proteins (SF) and synthetic poly-
mers (PDLLA) is an important goal in this polymer blend system. Ac-
cording to the classical thermodynamics and kinetics of polymer
blending theory, it can be found that there are three main types of
miscibility based on polymer blends. One is a completely miscible
mixture (one phase). The second is semi-miscible at microscale, in which
one polymer can be partially dissolved into another at the molecular
level, and small polymer chains are evenly distributed across the main
polymer network. The third is immiscible blends, in which the two
polymers are completely immiscible with phase separation. Compatible
blends refer to blends that exhibit good properties regardless of whether
it is miscible (one-phase), semi-miscible, or immiscible (macrophase
separation) blends. Miscible and partially miscible mixtures in thermo-
dynamic miscibility can produce homogeneous properties on a macro-
scopic scale, while immiscible blends may process heterogeneous
properties due to the uneven properties of different parts of the material
[112-113].

Silk fibroin is mainly composed of H-chain (391 kDa), r-chain (28
kDa) and glycoprotein chain P25 (25 kDa) to form regular crystalline
regions (about 2/3) and amorphous area (about 1/3) [114-115]. The
crystalline region, mainly consisting of glycine (Gly), alanine (Ala) and
serine (Ser), is evenly distributed in the continuous amorphous region,
mainly containing phenylalanine (Phe), tyrosine (Tyr) and tryptophan
(Try) [29,116-117]. Generally, the dissolution of SF in ionic liquid is
believed to be a process that the anions such as halogen, carboxylic acid,
and acetic acid in ionic liquid interact with the hydroxyl groups in SF to
destroy its intermolecular and intramolecular hydrogen bonds
[118-119]. Simultaneously, the synergistic effect of nucleophilicity,
electrophilicity and charge polarity of anions and cations will also
accelerate the destruction of hydrogen bonds between fp-sheet crystal-
line structures, and finally achieve dissolution, in which SF presents
mainly random coils and a-helix structures [96,120]. After being treated
with organic solvents [121] or high temperatures [122], or by physical
shearing [123], recrystallization of silk fibroin can occur [100]. When
SF is blended with amorphous PDLLA with electron-withdrawing
carbonyl group (C=O0) and hydrophobic hydrocarbon group (—R),
hydrophobic-hydrophobic interactions can be induced between the
molecular chains [65-67] besides their hydrogen bonding interactions.
These interactions can promote self-assembly of molecular chains in SF/
PDLLA blends to form micelle structures [124-125]. Hydrogen bonding
and static electrostatic interaction were mainly driven by enthalpy,
while hydrophobic-hydrophobic interaction was driven by entropy
[126-128]. Although the microphase separation properties (for
example, two glass transitions in DSC) were shown thermodynamically,
the strong interaction between polymer chains will overcome the effect
of microphase separation to maintain a thermodynamically miscible
system at the macroscale level. In this case, samples can still show a
homogeneous morphology on the macroscale and provide satisfactory
homogeneous properties for the material. Our observations indicate that
SF/PDLLA blends have established strong interactions with improved
physical and biological properties compared to the pure polymers.

Therefore, based on the above results, a self-assembly model for this
protein-synthetic polymer material is proposed (Fig. 5). SF is first dis-
solved into ionic liquid, forming a non-crystalline structure (Fig. 5a),
with both uncrystallizable blocks and crystallizable blocks. Subse-
quently, it is mixed with amorphous PDLLA (Fig. 5b) to obtain a
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Fig. 5. Schematic diagram of the dissolution and regeneration process of SF/PDLLA films. (a) SF is dissolved in ionic liquid to form a non-crystalline structure; (b)
PDLLA dissolved in DMF to form an amorphous structure; (c) through blending, the molecular chains of SF and PDLLA undergo hydrogen bonding, hydrophobic-
hydrophobic interactions, and electrostatic interactions; (d) during heating and refluxing, the composites self-assemble into micellar structures, due to the micro-
phase separation between the non-crystallizable and crystallizable domains; (e) through ethanol washing and drying, f-sheet crystals are induced, and form a
crosslinked network that wraps the micelle structures. (f) After enzymatic biodegradation, the amorphous micelles are biodegraded and appear as micropores on the

SF/PDLLA films.

macroscopically homogeneous blend solution (Fig. 5c). After being
heated to 95 °C with reflux, more micelle-like precursor structures are
formed, mainly due to the hydrogen bonding and hydrophobic-
hydrophobic interactions. After heating and drying, microphase sepa-
ration occurs between crystallizable and uncrystallizable domains
(Fig. 5d). Through ethanol treatment and deionized water washing, the
anions in the composite films are removed and f-sheet crystals are
formed [83,126-127], located in the crystallizable domain (Fig. 5Se).
These physical crosslinks can help promote the formation of micelle
structures within the crystal network [128-129]. After 24 h enzymatic
biodegradation, the amorphous micelles are biodegraded and appear as
micropores on the SF/PDLLA films (Fig. 5f). The morphology of micelles
can be further controlled by changing the mixing ratio of SF and PDLLA,
as shown in the SEM images of Fig. 1 and Fig. 4c [130].

4. Conclusion

In this study, different mass ratios of SF/PDLLA composite materials
were prepared by using an ionic liquid 1-butyl-3-methylimidazolium
chloride (BMIMCI) and N,N-dimethylformamide (DMF) binary solvent
system. The morphology, structure, thermal properties, and biological
properties of composites were systematically studied. The results show
that SF and PDLLA are miscible in this solvent system. By simply
changing the mass ratio of SF and PDLLA and physical blending
methods, the morphology, structure, physical, and biological properties
of SF/PDLLA composite materials can be tuned. The self-assembly
mechanism of the SF/PDLLA composite film are discussed, which is of
great significance for revealing the self-assembly principle of the SF/
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PDLLA composite films. On this basis, the structure-property relation-
ship of protein-synthetic polymer composites can be well established,
which can provide guidance for the fabrication of high-performance
biopolymer-based materials. For example, one potential application of
these materials is to embed drugs into the hydrophobic chain segments
of the structure through hydrophobic-hydrophilic, electrostatic, or non-
covalent metal ion interactions. This allows for a controlled release of
the drugs at the site of action. In addition, with the help of the hydro-
philic segment, the interaction between the bioactive molecules and the
composite materials can be enhanced, promoting the process of tissue
regeneration. Therefore, this protein-synthetic polymer system can play
an important role in drug delivery and regenerative medicine in the
future.
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