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Abstract

In the desire to quantify the success of neural networks in deep learning and other applica-
tions, there is a great interest in understanding which functions are efficiently approximated by
the outputs of neural networks. By now, there exists a variety of results which show that a wide
range of functions can be approximated with sometimes surprising accuracy by these outputs.
For example, it is known that the set of functions that can be approximated with exponential
accuracy (in terms of the number of parameters used) includes, on one hand, very smooth func-
tions such as polynomials and analytic functions and, on the other hand, very rough functions
such as the Weierstrass function, which is nowhere differentiable. In this paper, we add to the
latter class of rough functions by showing that it also includes refinable functions. Namely, we
show that refinable functions are approximated by the outputs of deep ReLU neural networks
with a fixed width and increasing depth with accuracy exponential in terms of their number of
parameters. Our results apply to functions used in the standard construction of wavelets as well
as to functions constructed via subdivision algorithms in Computer Aided Geometric Design.

1 Introduction

Neural Network Approximation (NNA) is concerned with how efficiently a function, or a class of
functions, is approximated by the outputs of neural networks. One overview of NNA is given in
[9] but there are other noteworthy expositions on this subject such as [14, 22]. The main theme
of NNA is to understand for specific functions or classes of functions, how fast the approximation
error tends to zero as the number n of parameters of the neural net grows. In this paper, we prove
bounds on the rate of NNA for univariate refinable functions (see (1.2)) when using deep networks
with Rectified Linear Unit (ReLU) activation.

We follow the notation and use the results in [9] for neural networks. In particular, we denote by
ΥW,L(ReLU; d,N) the set of vector valued functions generated by a fully-connected neural network
with width W , depth L, input dimension d, output dimension N , and ReLU as the activation
function. Since we shall use deep networks for the approximation of univariate functions, we
introduce the notation

ΣCn := ΣCn(C
′) := ΥC′,Cn(ReLU; 1, 1), n ≥ 1, (1.1)

∗This research was supported by the NSF grants DMS 18-17603 (RD-GP), Tripods Grant CCF-1934904 (RD-KL-
JP-GP), ONR Contract N00014-20-1-278 (RD-GP), THEORINET Simons award 814643 (ND).
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where C ′ and C are fixed. We use C,C ′ to denote generic constants the value of which may change
throughout the text black. The set ΣCn is a nonlinear parametrized set depending on at most C̃n
parameters, where C̃ = C̃(C ′, C) depends only on C ′ and C. The elements in ΣCn are known to
be Continuous Piece-wise Linear (CPwL) functions on R.

We consider a univariate function ϕ : R → R which is refinable in the sense that there are
constants cj ∈ R, j = 0, . . . , N , such that

ϕ(x) =

N∑
j=0

cjϕ(2x− j), x ∈ R. (1.2)

The sequence c̄ := (cj)
N
j=0 is called the mask of the refinement equation (1.2). Because of (1.2),

refinable functions ϕ are self-similar. Note that the functions satisfying (1.2) are not unique since,
for example, any multiple of ϕ also satisfies the same equation. However, under very minimal
requirements on the mask c̄, there is a unique solution to (1.2) up to scaling.

There is by now a vast literature on refinable functions (see for example [2]) which derives
various properties of the function ϕ from assumptions on the mask c̄.

Our interest in refinable functions arose from the various settings in which these functions ap-
pear. The B-splines [8] are refinable functions; subdivision schemes for computer-aided design and
computer graphics implicitly use refinable functions for the fast generation of smooth curves and
surfaces [2, 12]. The multiresolution analysis framework [18] for the construction of orthonormal [4]
or biorthogonal [3] wavelet bases are another noteworthy example: the ”scaling functions” (out of
which the basic wavelets are built) are refinable functions. Wavelets and wavelet bases are not only
fundamental tools for various applications in signal analysis; they are also of particular interest
to approximation theory because they provide a natural framework for nonlinear approximation.
Additional examples are various fractal-like objects, such as the continuous, nowhere differentiable
snowflake curve of von Koch [17], or the curves constructed by de Rham [28, 27], or attractors of
hyperbolic iterated function systems on Rn (see [1]). They occur also in the study of nonhomoge-
neous Markov chains [16, 23] and in probabilistic automata [21]. In summary, refinable function
are the pillars of various applications, and thus studying their NNA will shed light on how neural
networks can be utilized in these applications

Our presentation relies heavily on the results and techniques from [6, 7] and to keep it as
transparent as possible, we only consider refinable functions that satisfy the two scale relationship
(1.2). There are various generalizations of (1.2), including the replacement of the dilation factor
2 by k as well as generalizations of the definition of refinablity to the multivariate settings where
the dilation is given by general linear mappings (matrices). Generalizations of the results of the
present paper to these broader settings is left to future work.

We next introduce the Banach space C(Ω) of continuous and bounded functions f : Ω → R,
defined on an interval Ω ⊂ R (which can be all of R), and the uniform norm

∥f∥C(Ω) := sup
x∈Ω

|f(x)|, f ∈ C(Ω). (1.3)

We consider the linear operator V = Vc̄ , V : C(R) → C(R), given by

V g(x) :=

N∑
j=0

cjg(2x− j), g ∈ C(R), (1.4)
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and its composition with itself n times

V ng := V ◦ V ◦ . . . ◦ V︸ ︷︷ ︸
n times

g. (1.5)

The main contribution of our article is described formally in the following theorem.

Theorem 1.1. Let c̄ = (cj)
N
j=0 be any refinement mask, let g be any CPwL function which vanishes

outside of [0, N ], and let V be the linear operator given by (1.4). Then, the function V ng is in
ΣCn(C

′) = ΥC′,Cn(ReLU; 1, 1) with C,C ′ depending only on N and the number m of breakpoints
of g.

As a corollary, under certain standard assumptions on c̄, we show in Section ?? that a refinable
function ϕ can be approximated by the elements of ΥC′,Cn(ReLU; 1, 1) with exponential accuracy.
More precisely, we prove that under certain assumptions on the mask c̄, the normalized solution ϕ
of (1.2) satisfies the inequality

En(ϕ) := dist(ϕ,ΥC′,Cn(ReLU; 1, 1))C(R) ≤ C̃λn, n = 1, 2, . . . , (1.6)

where 0 < λ < 1 and C̃ depend on the mask.
Besides its implications for approximation of refinable functions, Theorem 1.1 can be seen

as an example of a depth separation result. We know that the number of breakpoints of V ng
grows exponentially with n (see Remark 2.1) and (see [19]) that the number of breakpoints of any
univariate function generated by a neural network with width W and depth L is upper bounded
by WL. Thus, it is clear that any ‘shallow network’ (network with constant depth) that would
generate V ng must have width which grows exponentially in n. In contrast, the upper bound does
not rule out the possibility of ‘deep networks’ (networks with constant width and depth which
grows linearly in n) generating V ng. Indeed, Theorem 1.1 shows that V ng can be expressed by
such ‘deep networks’. We stress that our result does not follow from the upper bound: while deep
neural networks can express some functions which have much more breakpoints than the network’s
parameters, they most certainly cannot express all such functions (see a proof in [11]). For more
examples of depth separation results we refer the reader to [15, 24, 25].

Our main vehicle for proving Theorem 1.1 is the cascade algorithm which is used to compute
V ng. We describe this algorithm in Section 2. Note that in [6] the term cascade algorithm was used
more narrowly to indicate that as a consequence of (1.2), the numerical values of f(ℓ2−j) could be
computed easily from a few f(k2−j+1), where 2k is close to ℓ. Now we are using this terminology in
a more general sense, including also what in [6] was given the more cumbersome name of two-scale
difference equation. In essence, while the straightforward algorithm for the computation of V ng
at a point x would require an exponential number of evaluations, the cascade algorithm provides
a method to do it with a linear number of evaluations of a discontinuous function. Due to the
discontinuous nature of this construction, the cascade algorithm cannot be directly implemented
by ReLU NNs. This is the main technical challenge we face in this paper. Our approach for
overcoming this difficulty is described in the proofs of the various lemmas that lead to Theorem 1.1,
as portrayed in Section 3.

We wish to stress here that some of the lemmas we use in our proofs may be applicable to other
settings of NNA. In particular, we draw the reader’s attention to the result of §?? and its utilization,
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which show that in some special cases we can represent the multiplication of two functions from
ΣCn as a function in ΣCn.

In Section ??, we discuss how our main theorem can be combined with the existing theory of
refinable functions and the existing convergence results for the cascade algorithm to prove that
under standard conditions on c̄, the solution ϕ to the refinement equation can be approximated to
exponential accuracy by the elements of ΣCn. Finally, in Section ??, we discuss how our results
put in perspective the approximation properties of deep NN and we present some new results on
approximation by deep neural networks.

2 Preliminaries

In this section, we touch upon some of the necessary tools that describe the cascade algorithm as
outlined in the works of Daubechies-Lagarias [6, 7].

2.1 The operator V

We consider the action of V on any continuous function g supported on [0, N ]. It is hard to do a
direct analysis of V g because the points 2x − j, j = 0, . . . , N , are spread out. However, note two
important facts. The first is that the points appearing in (1.4) are all equal to 2x modulo one. This
means that there is at most one point from each interval [j, j + 1] and all these points differ by an
integer amount. Secondly, since g is supported on [0, N ], only the points 2x− j that land in [0, N ]
appear in (1.4). More precisely, the following statement about V g holds.

Remark 2.1. If g : R → R is a CPwL function supported on [0, N ], then V g is also a CPwL
supported on [0, N ]. Moreover, each breakpoint ξ′ of V g satisfies 2ξ′ = j+ ξ, j = 0, . . . , N , where ξ
is a breakpoint of g. For example, given a CPwL function g0 supported on [0, N ] with breakpoints
at the integers {0, . . . , N}, V ng0 has breakpoints at j/2n, j = 0, 1, . . . , N2n.

Indeed, the fact that V g is supported on [0, N ] follows from the observation that each of the
functions g(2x− j), j = 0, . . . , N , is supported on [j/2, (N + j)/2] ⊂ [0, N ].

It follows from Remark 2.1 that if g0 is a CPwL function supported on [0, N ] and has breakpoints
at the integers {0, . . . , N}, then V ng0 is a CPwL supported on [0, N ] with breakpoints j/2n, j =
0, 1, . . . , N2n, and as such, V ng0 ∈ Υ3,N2n(ReLU; 1, 1) [9]. We shall show that V ng0 is actually an
output of an NN with much smaller depth.

In going forward, we put ourselves in the setting of the works of Daubechies-Lagarias [6, 7],
where a better understanding of V g is facilitated by the introduction of the operator Vec. It assigns
to each g ∈ C(R) a vector valued function G := Vec(g), where G := (g1, . . . , gN )T with

gk(x) := g(x+ k − 1), x ∈ R, k = 1, 2, . . . , N. (2.1)

Even though Vec(g) is defined on all of R, we are mainly concerned with its values on [0, 1]. Note
that the solution ϕ of (1.2) turns out to be supported on [0, N ]. Therefore, knowing the restriction
to [0, 1] of Vec(ϕ) is equivalent to knowing ϕ on its full support. On that interval, gk is the piece
of g with support on [k − 1, k], reparameterized to be supported on [0, 1]. Note that

gk(1) = gk+1(0), k = 1, . . . , N − 1. (2.2)
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(a) Graph of Q. (b) Graph of R.

Figure 2.1: Graphs of Q and R.

Further, we define for x ∈ R and n ≥ 1

Gn(x) := Vec(V ng)(x) := (V ng(x), . . . , V ng(x+N − 1))T , (2.3)

Before describing the cascade algorithm which represents Gn via bit extraction, we recall in the
next subsection how we find the binary bits of a number x ∈ [0, 1].

2.2 Binary bits and quantization

Any x ∈ [0, 1], can be represented as

x =

∞∑
k=1

Bk(x)2
−k,

where the bits Bk(x) ∈ {0, 1}. While such a representation of x is not unique, we shall use one
particular representation where the bits are found using the quantizer function

Q(x) := χ[1/2,1](x), x ∈ [0, 1],

with χI denoting the characteristic function of a set I. The first bit of x and its residual are defined
as

B1(x) = Q(x),
R(x) := R1(x) := 2x−B1(x)

= 2x−Q(x) ∈ [0, 1],
(2.4)

respectively. The graph of R has two linear pieces, one on [0, 1/2) and the other on [1/2, 1] and a
jump discontinuity at x = 1/2. Each linear piece for R has slope 2.

While for the most part we consider R(x) only for x ∈ [0, 1], there are occasions where we
need R to be defined for x outside this interval. For such x, we define R(x) := 0 when x ≤ 0 and
R(x) := 1 when x ≥ 1. Figure 2.1 shows the graphs of Q and R.

We find the later bits and residuals recursively as

Bj(x) = Q(Rj−1(x)),
Rj(x) := 2Rj−1(x)−Bj(x)

= 2Rj−1(x)−Q(Rj−1(x)), j = 2, 3, . . . .
(2.5)
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Figure 2.2: Graph of R3.

Note that on [0, 1]

Rj := R ◦ . . . ◦R︸ ︷︷ ︸
j times

= Rj , Bj+1 = B1 ◦Rj , j = 1, 2, . . . . (2.6)

The Rj ’s are piecewise linear functions with jump discontinuities at the dyadic integers k2−j ,
k = 1, 2, . . . , 2j − 1, see for example, Figure 2.2 for the graph of R3 = R3. Note that, as in the case
of R1, we define Rj(x) := 0 for x ≤ 0 and Rj(x) := 1 for x ≥ 1. Then we will have that Rj = Rj

on the whole real line.

2.3 The cascade algorithm

We now look at the computation of G1 = ((V g)1, . . . , (V g)N )T on [0, 1] for general continuous
functions g supported on [0, N ]. Note that for x ∈ [0, 1], and k = 1, . . . , N we have

(V g)k(x) := (V g)(x+ k − 1)

=
∑N

j=0 cjg(2x+ 2k − 2− j),
(2.7)

and that we can write

g(2x+ 2k − j − 2) = (R(x) +Q(x) + 2k − j − 2)

=


g2k−j−1(R(x)), x ∈ [0, 1/2),

g2k−j(R(x)), x ∈ [1/2, 1].

(2.8)

In this way, we get two different formulas depending on whether x ∈ [0, 1/2) or x ∈ [1/2, 1].
For example, when x ∈ [0, 1/2), using the fact that ck = 0 if k is not in {0, . . . , N} and that
gj(x) := g(x+ j − 1) = 0 for x ∈ [0, 1] when j ≤ 0 or j ≥ N + 1, we have for k = 1, . . . , N ,
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(V g)k(x) =

N∑
j=0

cjg2k−j−1(R(x))

=

2k−1∑
j=2k−N−1

c2k−j−1gj(R(x))

= (T0G(R(x)))k, x ∈ [0, 1/2),

where T0 is the N ×N matrix with (i, j)-th entry equal to c2i−j−1,

T0 = (c2i−j−1)ij , i, j = 1, . . . , N. (2.9)

A similar derivation gives

(V g)k(x) = (T1G(R(x)))k, x ∈ [1/2, 1], k = 1, . . . , N,

where now T1 is the N ×N matrix with (i, j)-th entry equal to c2i−j ,

T1 = (c2i−j)ij , i, j = 1, . . . , N. (2.10)

More succinctly, we have for x ∈ [0, 1]

G1(x) = Vec(V g)(x) = TQ(x)G(R(x)) = TB1(x)G(R(x)). (2.11)

Then, using (2.5) we get

G2(x) = Vec(V (V g))(x)

= TB1(x)Vec(V g)(R(x))

= TB1(x)TB1(R(x))G(R2(x)) (2.12)

= TB1(x)TB2(x)G(R2(x)), x ∈ [0, 1],

and if we iterate this computation we get the cascade algorithm. Since B1(R
j(x)) = Bj+1(x), we

have for x ∈ [0, 1], n = 1, 2, . . .

Gn(x) = TB1(x) · · ·TBn(x)G(Rn(x)). (2.13)

It is useful to keep in mind what TBn(x) looks like as x traverses [0, 1]. It alternately takes the
values T0 and T1 with the switch coming at the dyadic integers j2−n, 1 ≤ j < 2n.

3 Proof of the main theorem

Before we start proving Theorem 1.1, we observe a simple fact regarding how V n behaves with
respect to the translation operator. This fact, which is described in the following lemma, will help
us simplify the proof of Theorem 1.1.
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Lemma 3.1. Let g be a continuous function on R and for any δ, consider the translated function

g̃(·) := g(· − δ).

Then, for each n ≥ 1,
V n(g)(x) = [V n(g̃)](x+ 2−nδ), x ∈ R. (3.1)

Proof: Let us first see the action of V on g. Since g(x) = g̃(x+ δ), we have

V g(x) =

N∑
k=0

ckg(2x− k)

=
N∑
k=0

ckg̃(2x− k + δ) (3.2)

=

N∑
k=0

ckg̃(2(x+ δ/2)− k)

= [V g̃](x+ δ/2).

This proves the case n = 1 in (3.1). We next complete the proof of (3.1) for all n ≥ 1 by induction.
Suppose that we have established the result for a given value of n. Consider the function h := V n(g).
Formula (3.1) says that h := V n(g̃) satisfies

h(x) = h(x− 2−nδ), x ∈ R. (3.3)

So we can apply (3.2) with h in place of g and obtain

V n+1g(x) = V (h)(x)

= V (h)(x+ 2−n−1δ)

= V n+1(g̃)(x+ 2−n−1δ).

This advances the induction and proves (3.1). 2

We turn now to discuss the proof of Theorem 1.1. We first show how to prove the theorem
when g = g0, where g0 is any CPwL function that has support in [0, N ] and has breakpoints at the
integers. We make this assumption on the breakpoints g only for transparency of the proof. We
remark later how the same method of proof gives the theorem for arbitrary CPwL functions g.

We represent g0 as a linear combination of hat functions each of which has a translate with
support in [1/8, 7/8]. The fact that these functions are supported on this sub-interval will be pivotal
in many of the lemmas and theorems below and we will therefore use the following terminology
throughout the paper. We call a univariate function g special if:

• g is a non-negative CPwL function defined on R.

• the support of g ⊂ [1/8, 7/8].

Therefore, the translates of the hat functions in the representation of g are special functions and
all our results below, proven for special functions, can be applied to these translates.
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Figure 3.3: The graph of H := H4.

Let H be the ‘hat function’ with break points at {3/8, 1/2, 5/8} and H(12) = 1, see Figure 3.3.
That is, H is given by the formula

H(x) =


0, x ≤ 3

8 , x ≥ 5
8 ,

8x− 3, 3
8 ≤ x ≤ 1

2 ,

−8x+ 5, 1
2 ≤ x ≤ 5

8 .

(3.4)

Clearly H is a special function with m = 3 break points. Although the function under investigation
g0 is not special, it can be written as a linear combination of shifts of the special function H,

g0(x) =
8N−1∑
j=1

g0(j/8)Hj(x), Hj(·) := H(· − j − 4

8
). (3.5)

Therefore, from (3.5), Lemma 3.1 and the fact that V n is a linear operator it follows that

V ng0(x) =
8N−1∑
j=1

g0(j/8)V
n(H(· − j − 4

8
))(x)

=

8N−1∑
j=1

g0(j/8)V
nH(x− 2−n−3(j − 4)). (3.6)

Accordingly, the discussion in the following subsections concentrate on special functions. We will
come back to finalize the proof of the main theorem in the closing subsection.

3.1 The function g(Rn) is an output of an NN for special functions g

In this section, we shall show that for certain choices of g, the function g(Rn) is in the set
ΥC,n+1(ReLU; 1, 1), where C depends only on the mask c̄ and the function g. If g is a special
function, then the corresponding vector function G, viewed as a function on [0, 1], is

G = Vec(g) = (g, 0, . . . , 0)T .
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Namely, all its coordinates are zero except the first one, which is the nonzero function g supported
on [1/8, 7/8]. Therefore G(Rn(x)) = (g(Rn(x)), 0, . . . , 0)T , when considered as a function on [0, 1],
and is the zero vector when Rn(x) takes a value outside [1/8, 7/8]. Since the formula for Rn is
Rn(x) = 2nx− k on [k2−n, (k + 1)2−n), 0 ≤ k < 2n, Rn(x) = 1, x ≥ 1, this gives

g(Rn(x)) = 0, x ∈ Λ, (3.7)

where
Λ := [0, 1] ∩

⋃
0≤j≤2n

[j2−n − 2−n−3, j2−n + 2−n−3].

In particular, the support of g(Rn(x)) is contained in [2−n−3, 1− 2−n−3].
The first step in our argument to prove that g(Rn) is an output of an NN is to replace the

discontinuous functions Rj by the CPwL function R̂j := R̂j
α,β. We shall give a family of possible

replacements which depend on the choice of two parameters α, β satisfying

7/16 < α < β < 1/2. (3.8)

Definition of R̂α,β: We let R̂ := R̂α,β be the CPwL function defined on R, see Figure ??(a), with
breakpoints at {0, α, β, 1/2, 1} which satisfies:

• R̂(x) = 0, x ≤ 0;

• R̂(x) = R(x), for 0 ≤ x ≤ α and for x ≥ 1/2;

• on [α, β], R̂ is the linear function that interpolates R(α) at α and interpolates 0 at β;

• R̂(x) = 0 on [β, 1/2].

In the next lemma, we summarize the properties of R̂n := R̂ ◦ . . . ◦ R̂︸ ︷︷ ︸
n times

that we will need in going

forward. For its statement, we introduce for δ= δ(n) := 1/2− α < 2−n and the sets

Ej :=
⋃

0<i<2j [i2
−j − δ2−j+1, i2−j ], (3.9)

j = 1, 2, , . . . , n, (3.10)

E =
⋃n

j=1Ej , E′ = [0, 1] \ E. (3.11)

Clearly, the sets Ej are

E1 =
[
1
2 − δ, 12

]
, (3.12)

E2 =
[
1
4 − δ

2 ,
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