

Kinetics, Products, and Brown Carbon Formation by Aqueous-Phase Reactions of Glycolaldehyde with Atmospheric Amines and Ammonium Sulfate

Alyssa A. Rodriguez,¹ Michael A. Rafla,¹ Hannah G. Welsh,² Elyse A. Pennington,² Jason R. Casar,² Lelia N. Hawkins,² Natalie G. Jimenez,¹ Alexia de Loera,¹ Devoun R. Stewart,^{1†} Antonio Rojas,¹ Matthew-Khoa Tran,¹ Peng Lin,^{3††} Alexander Laskin,³ Paola Formenti,⁴ Mathieu Cazaunau,⁴ Edouard Pangui,⁴ Jean-François Doussin,⁴ David O. De Haan^{1}*

¹ Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego CA 92110 USA

10 ² Department of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont CA 91711 USA

⁴ Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est Créteil (UPEC) et Université de Paris, Institut Pierre Simon Laplace (IPSL), 94000 Créteil, France

17 †: now at Department of Chemistry, Sacramento City College, 3835 Freeport Blvd.
18 Sacramento, CA 95822 USA

††: now at California Air Resources Board, 4001 Iowa Ave., Riverside, CA, 92507 USA

20 * Corresponding author contact: 011-1-619-260-6882, -011-1-619-260-2211 fax
21 ddehaan@sandiego.edu

22 Keywords: secondary organic aerosol, aldehydes, cloud chemistry, aldol condensation,
23 Maillard reactions, complex index of refraction

26 ABSTRACT: Glycolaldehyde (GAld) is a C₂ water-soluble aldehyde produced during the
27 atmospheric oxidation of isoprene and many other species, and is commonly found in cloud water.
28 Previous work has established that glycolaldehyde evaporates more readily from drying aerosol
29 droplets containing ammonium sulfate (AS) than does glyoxal, methylglyoxal, or hydroxyacetone,
30 which implies that it does not oligomerize as quickly as these other species. Here, we report NMR
31 measurements of glycolaldehyde's aqueous-phase reactions with AS, methylamine and glycine.
32 Reaction rate constants are smaller than those of respective glyoxal and methylglyoxal reactions
33 in the pH range 3 - 6. In follow-up cloud chamber experiments, deliquesced glycine and AS seed
34 particles were found to take up glycolaldehyde and methylamine and form brown carbon. At very
35 high relative humidity, these changes were more than two orders of magnitude faster than predicted
36 by our bulk liquid NMR kinetics measurements, suggesting that reactions involving surface-active
37 species at crowded air-water interfaces may play an important role. High-resolution liquid
38 chromatography-electrospray ionization-mass spectrometric analysis of filter extracts of
39 unprocessed AS+GAld seed particles identified sugar-like C₆ and C₁₂ GAld oligomers, including
40 proposed product 3-deoxyglucosone, with and without modification by reactions with ammonia
41 into diimine and imidazole forms. Chamber exposure to methylamine gas, cloud processing, and
42 simulated sunlight increased the incorporation of both ammonia and methylamine into oligomers.
43 Many C₄ – C₁₆ imidazole derivatives were detected in an extract of chamber-exposed aerosol,
44 along with a predominance of *N*-derivatized C₆ and C₁₂ glycolaldehyde oligomers, suggesting that
45 GAld is capable of forming brown carbon SOA.

46

47 **1. Introduction**

48 Glycolaldehyde (GAld) is a small, highly water-soluble molecule produced by the oxidation of
49 many atmospheric precursors, including isoprene.¹ Its global production rate from isoprene + ·OH

50 oxidation has been estimated at 42 Tg C yr⁻¹.² In the gas phase, GAld reacts with photochemical
51 oxidants to produce glyoxal and smaller species,^{3, 4} with a midday lifetime of several hours.^{1, 5}
52 Like other small aldehydes, GAld is routinely detected in aqueous aerosol and cloudwater,⁶⁻⁹ even
53 in remote areas, due to its ability to react with water to form a hydrate. Aqueous phase
54 photooxidation of GAld is a significant source of aqueous secondary organic aerosol (aqSOA),¹⁰
55 since its reaction with dissolved OH radicals produces glyoxal, glycolic, oxalic, malonic, and
56 succinic acids, larger oligomers,² and organosulfate species.¹¹ Additionally, GAld reacts in
57 Maillard-type aqueous reactions with ammonium sulfate (AS)¹²⁻¹⁴ and amines (especially
58 glycine)¹³ to form visible-light-absorbing products known as brown carbon (BrC) and also N-
59 containing heterocyclic oligomers such as imidazoles and pyrazines.¹⁴ However, in laboratory
60 studies where airborne droplets containing AS or amines were dried for several minutes with and
61 without dissolved GAld, the presence of GAld slowed down the evaporation process, but did not
62 measurably increase the size of the dried residual particles (except for 1:2 glycine:GAld
63 mixtures).^{15, 16} For this reason, it is not yet clear the extent to which Maillard dark reactions
64 involving GAld can contribute to aqSOA or BrC production in atmospheric cloud droplets and
65 aqueous aerosol.

66 In this study, we determine pH-dependent GAld+AS, GAld+glycine, and GAld+methylamine
67 dark reaction kinetics using nuclear magnetic resonance (NMR) measurements of reactant loss
68 rates in D₂O solutions. Additionally, in large chamber experiments we characterize SOA and BrC
69 formation from GAld+glycine and GAld+AS+methylamine reactions as a function of relative
70 humidity (RH). We identify sugar-like and N-containing aqueous-phase products formed after
71 GAld uptake into aqueous aerosol particles containing AS, with and without cloud processing. We
72 find that exposure of GAld+AS aerosol to methylamine gas and dark and sunlit cloud processing
73 increases incorporation of both methylamine and ammonia into C₆ and C₁₂ GAld oligomers.

75 **2. Materials and Methods**

76 2.1. Chemicals and pH.

77 All chemicals were purchased from Sigma-Aldrich unless otherwise stated. Stock solutions
78 were made by overnight hydrolysis of GAld dimer, dilution of 40% aqueous solutions of
79 methylamine (Spectrum), or dissolution of solid glycine or ammonium sulfate (AS), all in D₂O
80 (99.9%-D, Cambridge Isotopes) for NMR experiments or in 18MΩ deionized water for chamber
81 experiments. Amine or AS samples in D₂O were pH-adjusted using acetic acid-*d*6 or sodium
82 phosphate.

83 2.2. NMR data processing and derivation of rate constants

84 For reaction rate constant measurements, stock solutions in D₂O with 1% v/v acetonitrile (an
85 internal standard at 2.061 ppm) were vortex mixed in an NMR tube to reach initial concentrations
86 of 0.5 M for each reactant at *t* = 0. Reaction mixture pH was measured immediately after mixing
87 replicate samples in vials. Proton NMR spectra were recorded continuously (Varian, 400 or 500
88 MHz) over at least 16 h at room temperature. Table 1 lists the chemical shifts and locations of H
89 atoms used for NMR quantitation of reactant compounds. After phasing and baseline correction,
90 integrated ¹H peak areas were normalized by acetonitrile. GAld monomer NMR signals increased
91 by ~10% in the first hour after mixing due to an equilibrium shift from dimer to monomer in
92 response to a factor-of-two dilution caused by the mixing of the reactant solutions. Once GAld
93 monomer-dimer equilibrium is achieved, declines in GAld NMR signals caused by other chemical
94 reactions can be measured. Because GAld dimer hydrolysis has a half-life of ~2 h,¹⁷ initial reaction
95 rates were extracted from each NMR signal listed in Table 1 starting at *t* = 3 h. Normalized initial
96 amine and aldehyde peak areas at *t* = 3 h were set equal to nominal concentrations of each reactant.

97 Very slow reaction rates with rate constants $< 2 \times 10^{-5} \text{ M}^{-1} \text{ s}^{-1}$ could not be detected by NMR
98 measurements of reactant loss.

99

100 **Table 1:** NMR signals used for quantitation of reactants

Reactant molecule	functional group	NMR chemical shift (ppm)
hydrated glycolaldehyde monomer	CH ₂	3.50
hydrated glycolaldehyde monomer	CH	5.05
methylamine	CH ₃	2.58
glycine	CH ₂	3.55

101

102 The reaction order in this work was assumed to be first order in GAld and first order in amine
103 or AS, like other Maillard reactions at low-to-moderate concentrations.¹⁸⁻²³ Rate constants are
104 given for active (aldehyde) forms of GAld, rather than total GAld (aldehyde + hydrate forms). The
105 second-order rate constant is derived from the measured initial reaction rate using the following
106 equation:²⁴

$$107 \quad \text{Rate} = k f_{Ald} [Ald]_{tot} [Am]_{tot} \quad (1)$$

108 where *Rate* represents a measured initial reactant rate, *k* is the second-order rate constant in $\text{M}^{-1} \text{ s}^{-1}$
109 ; $[Ald]_{tot}$ and $[Am]_{tot}$ are the total concentrations in M of hydrated and unhydrated GAld and
110 protonated and unprotonated amine (or ammonium), respectively; and f_{Ald} is the equilibrium
111 fraction of GAld in aldehyde (not hydrate) form, determined to be $f_{Ald} = 0.053$ at room temperature
112 by computational¹⁷ and NMR methods.^{17, 25} We do not calculate pH-independent rate constants
113 based on concentrations of deprotonated ammonia and amines because, as shown below, rates
114 were not directly proportional to concentrations of the deprotonated species.

115 2.3. Chamber experiments and ESI-HRMS analysis

116 Cloud processing experiments took place in the 4.2 m² CESAM chamber.^{26, 27} Experimental start
117 times were defined as the beginning of N₂ and O₂ addition to the evacuated chamber. Seed aerosol
118 particles were generated from 1.8 mM AS, 2.0 mM glycine, or a mixture containing 1.8 mM AS

119 and 50 mM GAld. Mixed AS+GAld aerosol were also collected directly on a filter without
120 chamber exposure as a control. In three experiments in the chamber, seed aerosols were exposed
121 to various combinations of gas-phase GAld, methylamine, 1-2 cloud events of 5-10 min. duration
122 each, and/or 60-75 min. of simulated sunlight. Cloud events (supersaturation) were triggered by a
123 combination of expansion-cooled water vapor injection and a gradual, 10% pressure reduction.
124 The evolution of cloud droplet size distributions was characterized from a chamber flange by
125 optical scattering (Palas Welas Digital 2000, 0.5 to 15 μm range).²⁶ Experimental conditions are
126 summarized in Table 2. Gas-phase species were monitored by PTR-MS (KORE Tech. Series II)
127 and sensors for RH, NOx, NO, NO₂, and ozone. PTR-MS signals for GAld at *m/z* 61 contain a
128 significant contribution from the contaminant molecule acetic acid, which was detected whenever
129 water vapor was added to the chamber. However, GAld and acetic acid contributions to *m/z* 61
130 signals were deconvoluted using *m/z* 43, since the two compounds have very different *m/z* 61 / 43
131 ratios, as shown in Figures S1 and S2.

132 **Table 2:** Summary of chamber experiments involving glycolaldehyde

expt	aerosol seed	[GAld] _g (ppm)	[MeAm] _g (ppm)	sun	clouds (#)	filter collected	figures
1	Glycine	1	0	no	1	no	3, S1, S3
2	AS/GAld	0	1	yes	2	yes	4, S2, S4
3 ^a	AS/GAld	0	0	no	0	yes	
4	AS	0.3	1	yes	2	no	S5

133 a: Control experiment: seed particles were collected directly on filter without any exposure to
134 methylamine gas, simulated sunlight, or cloud events in chamber.

135 Aerosol physical and optical properties were monitored by scanning mobility particle sizing
136 (SMPS, TSI), particle-into-liquid sampling (PILS)-waveguide UV-vis absorbance spectroscopy (1
137 m pathlength), and cavity attenuated phase shift single-scattering albedo (CAPS-ssa, Aerodyne,
138 450 nm) spectroscopy.²⁸ SMPS and CAPS-ssa data, both collected after drying aerosol through a
139 Nafion sampling tube, were used to back-calculate time-dependent complex indices of refraction

140 using an IDL routine over a 2-D range of n (1.33 to 2.00, step 0.01) and k values (0 to 0.050, step
141 0.001). Shape factors (1 to 1.1, step 0.02) were tested, but no evidence of non-sphericity (shape
142 factors > 1.00) was found. All n and k combinations that produced extinction and scattering values
143 that matched observations within the measurement uncertainty were retained, then averaged to
144 produce the reported n and k values. Since aerosol-phase total organic carbon was not quantified,
145 PILS-waveguide data was converted to mass absorption coefficients (MAC) in this study only in
146 experiments where aerosol growth was observed (expt. 2) or where seed particles contained
147 glycine (expt. 1), since in these cases we could estimate total organic carbon in the aerosol. TOC
148 estimates and MAC calculations are described in the Supplemental Information.

149 After chamber processing concluded, aerosol samples were collected at 15 L/min onto Teflon
150 filters over 16 h while the chamber pressure was held constant with a compensating dry N₂ inlet
151 flow. Chamber and control filters were frozen at -20°C until extraction by acetonitrile immediately
152 prior to ESI-HRMS analysis (Surveyor Plus system with HPLC pump, autosampler and PDA
153 detector, IonMAX electrospray ionization (ESI) source, and high resolution LTQ-Orbitrap mass
154 spectrometer, Thermo Electron).²⁹ The details of the ESI-HRMS experimental setup, data
155 acquisition, peak deconvolution, and molecular formula assignment have been described
156 previously.³⁰ We report exact masses of all peaks detected with areas greater than 10⁶ and elevated
157 relative to blank extract runs. No unusual safety hazards were encountered during the course of
158 this work.

159

160 3. Results

161 3.1. Bulk aqueous phase glycolaldehyde reaction kinetics.

162 A summary of second-order rate constants derived from NMR measurements of reactant loss rates
163 in D₂O is shown in Figure 1. These rate constants were calculated using total (protonated +

164 unprotonated) concentrations of ammonia or amines present. Rate constants for all three reactions
165 (glycolaldehyde + methylamine, glycine, or AS) were smaller than those measured for respective
166 glyoxal or methylglyoxal reactions,²⁴ but showed a significant pH dependence, as expected for
167 Maillard-type chemistry. If reaction rates were proportional to concentrations of unprotonated
168 ammonia or amine species, the least squares fits in Figure 1 would have slopes = 1 (shown as a
169 gray dotted line in each panel for comparison). Instead, pH dependence is substantially less than
170 that (*i.e.* a slope of one is outside the $\pm 3\sigma$ range of the least square fits). Furthermore, if reaction
171 rates were solely a function of deprotonated nitrogen atom concentrations, GAld+AS rate constants
172 would be the highest at all pH, because ammonia is a weaker base than either amine species, and
173 so a greater fraction remains unprotonated. For GAld reactions with AS and glycine, rates appear
174 to depend more strongly on pH above pH ~5. Below pH 5, pH dependence appears to flatten, and
175 GAld loss rates converge for all three reaction mixtures. Finally, in GAld+methylamine mixtures
176 (blue symbols) with pH < 7, loss rates of methylamine are substantially less than those of GAld.

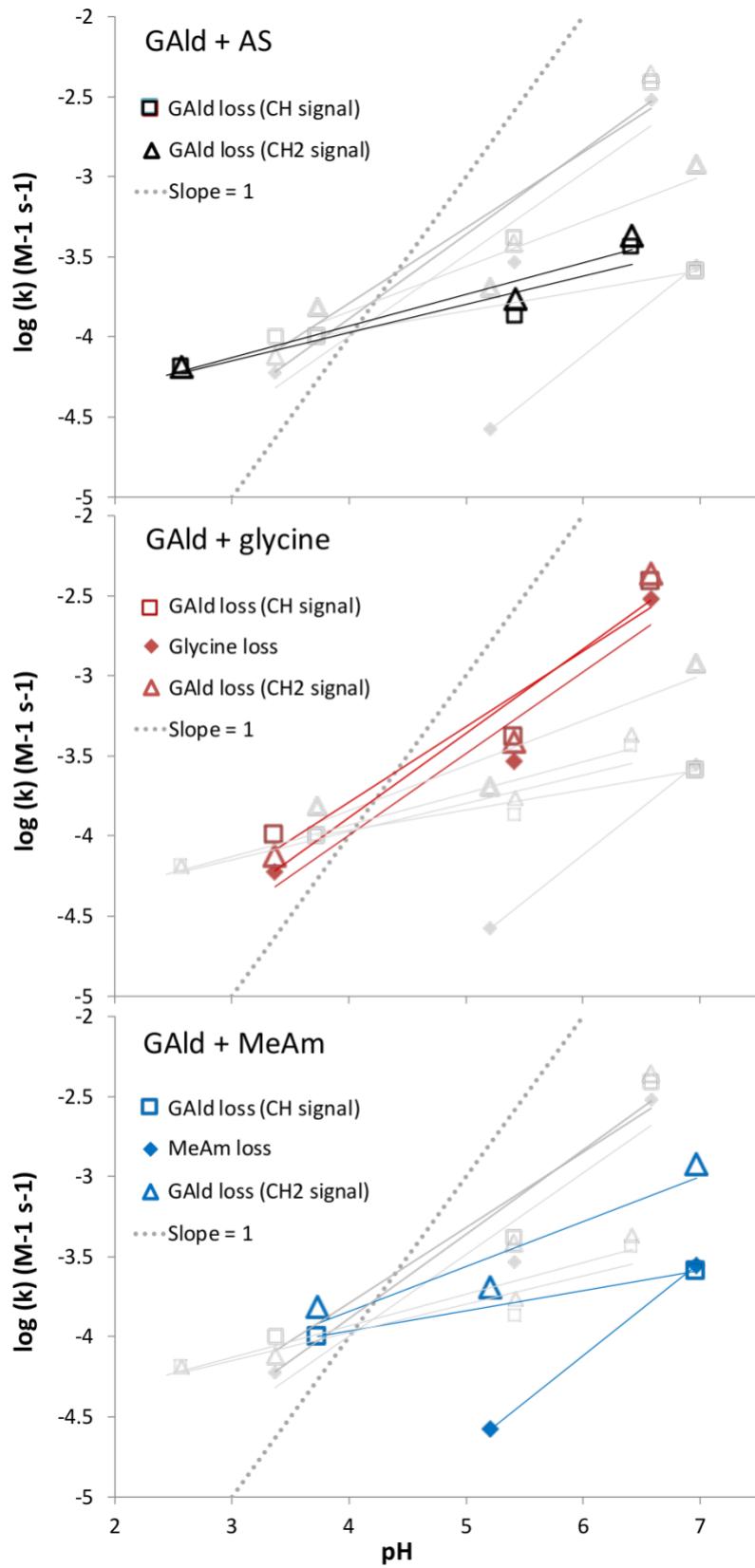
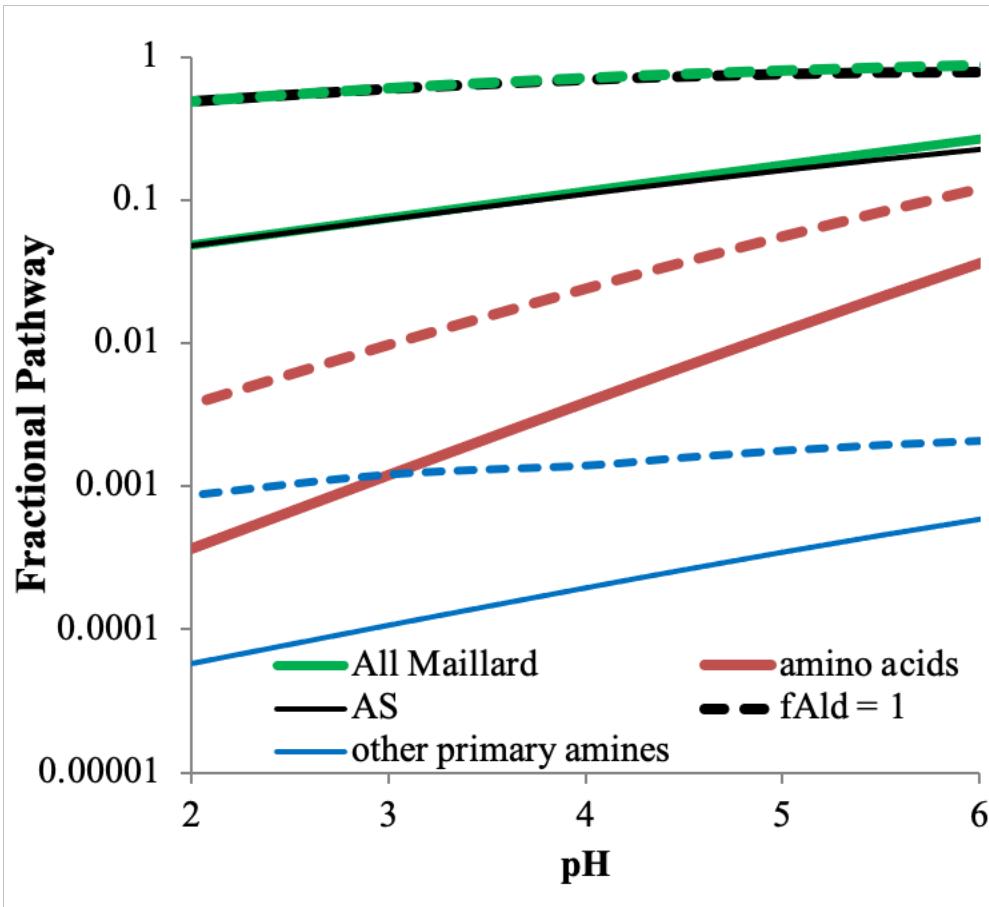


Figure 1: Apparent second-order rate constants (M⁻¹s⁻¹) measured by ¹H-NMR for bulk aqueous phase glycolaldehyde reactions at room temperature. Identical data is shown in each panel, along with a slope = 1 dotted line for comparison. Individual panels highlight reactions with AS (in black, top), glycine (red, middle), and methylamine (blue, bottom); initial concentrations = 0.5 M. Rate constants are calculated from losses of reactant signals: glycolaldehyde losses were followed at the CH₂ signal (3.50 ppm, open triangles) and the CH signal (attached to the hydrated carbonyl, 5.05 ppm, open squares). Amine losses (filled diamonds) were calculated from methylamine CH₃ (2.58 ppm) and glycine CH₂ (3.55 ppm) signals. AS losses could not be measured, and

202 methylamine losses at pH 3.7 were below the method detection limit.

203

204


205 These observations suggest that more than one reaction mechanism is in operation across the pH
206 2 – 7 range. At near-neutral pH, the reaction between reduced nitrogen and the carbonyl functional
207 group appears to be the main sink for both compounds, causing a steeper pH dependence. At lower
208 pH, an acid-catalyzed GAld self-reaction appears to be the dominant sink, consistent with the
209 similar GAld loss rates observed at low pH in all three reaction mixtures. GAld aldol self-reactions
210 are also catalyzed by ammonium and aminium ions,^{20, 23, 31} which may explain why methylamine
211 loss rates are far less than GAld loss rates below pH 7. For the GAld+glycine reaction, the ratio
212 of glycolaldehyde to glycine loss rates stayed constant across the pH range at 1.41 (± 0.07) to 1, in
213 contrast to the GAld+MeAm reaction. This indicates both a non-negligible role of GAld self-
214 reactions even at neutral pH, and some level of glycine reactivity even under acidic conditions.
215 Interestingly, GAld+glycine mixtures have been shown to brown much more efficiently than
216 GAld+MeAm or GAld+AS mixtures at pH 4.¹⁵ This difference must be due to formation of
217 products with higher molar absorptivities in the GAld+glycine system, since the GAld loss rate
218 kinetics are similar for all 3 systems at this pH.

219 By making an initial assumption that these pH-dependent rate constants measured for the loss
220 of GAld CH₂ groups in bulk liquid with glycine and methylamine are applicable to reactions with
221 all amino acids and other primary amines, respectively, in suspended aqueous aerosol and cloud
222 droplets, we can estimate the relative size of various atmospheric sinks for aqueous-phase
223 glycolaldehyde. For this estimation we used typical cloudwater concentrations of radical species
224 ($[\text{OH radical}] = 1 \times 10^{-13} \text{ M}$),³² amine aqueous aerosol concentrations enriched by a factor of 10⁴
225 over measured concentrations in marine rain (resulting in free amino acids = 0.1 M, other primary
226 amines = $4.3 \times 10^{-3} \text{ M}$),³³ and $[\text{NH}_4^+] = 3 \text{ M}$, its equilibrium concentration in AS aerosol at 95%

227 RH.³⁴ (Some lab studies have used $[\text{NH}_4^+] = 6.2 \text{ M}$,^{35,36} its equilibrium concentration at 90% RH.)
228 GAld + OH radical reaction rates were calculated using $k_{\text{OH}} = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1.2}$.³⁷ Results are
229 summarized in Figure 2. If our rate constants measured here in bulk D₂O are applied to aqueous
230 aerosol particles, Maillard-type reactions between glycolaldehyde and reduced nitrogen
231 compounds would be less important than oxidation by dissolved OH radicals: we estimate that
232 ~20% of aqueous GAld would react at pH 5.5 by Maillard pathways during the day. However, if
233 we set $f_{\text{Ald}} = 1.0$ instead of 0.053 to simulate activation of GAld carbonyl groups at the air-water
234 interface, ~84% of aqueous GAld would react at pH 5.5 by Maillard pathways during the day,
235 mostly by reacting with AS. Setting $f_{\text{Ald}} = 1.0$ instead of 0.053 results in a factor of ~20
236 acceleration of reaction rates in aerosol particles relative to bulk liquid, which is quite modest
237 compared to that observed for glyoxal-AS or glyoxal-amine reactions.^{18,38} Furthermore, fast
238 photolytic radical-initiated oligomerization reactions between aldehyde and amine species in
239 suspended aqueous aerosol particles have also been reported,³⁹ but are not included in these
240 estimates. We explore GAld reactions in aqueous aerosol in laboratory measurements described
241 in the next section.

242 3.2. Glycolaldehyde reactions in an aerosol-cloud chamber.
243 To test whether GAld reactions with reduced nitrogen species can occur in suspended aqueous
244 aerosol particles on a timescale of minutes to hours (rather than days), a short series of chamber
245 experiments was performed (Table 2). In experiments 2 and 3, aerosol particles were collected on
246 filters for LCMS analysis.

247
248

249

250 Figure 2: Estimation of fraction of aqueous-phase GAld reacting via various Maillard pathways
 251 in daytime marine aerosol as a function of pH, calculated assuming $f_{Ald} = 0.053$ (solid lines) or f_{Ald}
 252 = 1 (dashed lines, $[NH_4^+] = 3$ M; free amino acids = 0.1 M, all reacting with GAld at the rates
 253 measured here in bulk D₂O for glycine; other primary amines = 4.3×10^{-3} M, all reacting with
 254 GAld at the rates measured in bulk D₂O for methylamine; and $[OH \text{ radical}]_{aq} = 1 \times 10^{-13}$ M.
 255 GAld+AS reaction (black lines), GAld+amino acid reactions (red lines), GAld+amine reactions
 256 (blue lines), and sum of all Maillard pathways (green lines, dominated by the GAld + AS reaction)
 257 are shown.

258
 259 In experiment 1 (Figures 3 and S3), diffusion-dried glycine seed aerosol was exposed to water
 260 vapor, 1 ppm gas-phase GAld, and cloud processing in the dark. Increasing chamber RH from dry

261 to 50% caused a 18% loss of glycine seed dried particle mass, the introduction of a few trace
262 contaminant gases along with the water vapor (such as acetic acid detected by PTR-MS at m/z 43
263 and 61), a large increase in mass-based aerosol scattering efficiency, and a corresponding small
264 increase in the imaginary part of the index of refraction at 450 nm from 0.009 to 0.013. Since 50%
265 RH is well below the deliquescence point for glycine aerosol (~95% RH),⁴⁰ it appears that surface
266 reorganization by adsorbed water is responsible for the observed changes in optical properties,
267 which were measured after drying the aerosol. (The PILS-waveguide UV/vis absorbance baseline
268 was unstable for the first 5.5 h of the experiment.) Addition of 1 ppm of GAld gas (detected by
269 PTR-MS at m/z 61) did not cause significant changes in seed particle size or optical properties,
270 indicating that GAld uptake into adsorbed water layers is insignificant. However, aerosol
271 deliquescence, followed immediately by fifteen minutes of dark cloud processing, resulted in the
272 loss of 67% of GAld from the gas phase. (Much of this GAld may have gone to the walls – we
273 cannot quantify particle growth during cloud processing because at least 30% of aerosol mass was
274 lost due to wet deposition.) Cloud processing also increased absorbance observed by PILS in wet-
275 sampled aerosol at 365 and 450 nm from 0.0042 to 0.0060, but reduced the imaginary part of the
276 index of refraction at 450 nm in dried aerosol by a factor of 2. The loss of gas-phase GAld
277 corresponding to an increased absorbance in wet-sampled aerosol suggest that at least some GAld
278 was taken up into the aerosol / droplet aqueous phase, where it reacted with glycine to reversibly
279 form brown carbon on a 15-minute timescale. However, this BrC was not stable against drying /
280 evaporation. In the hour after the cloud event, 38% of the GAld taken up from the gas phase was
281 slowly released back to the gas phase as the RH declined to 90%. While much of this release
282 likely came from the chamber walls, some of it likely came from aerosol particles: slow but nearly
283 complete release of GAld from fully dried airborne droplets has been observed in an earlier study,
284 and held as evidence of reversible oligomer formation.¹⁵

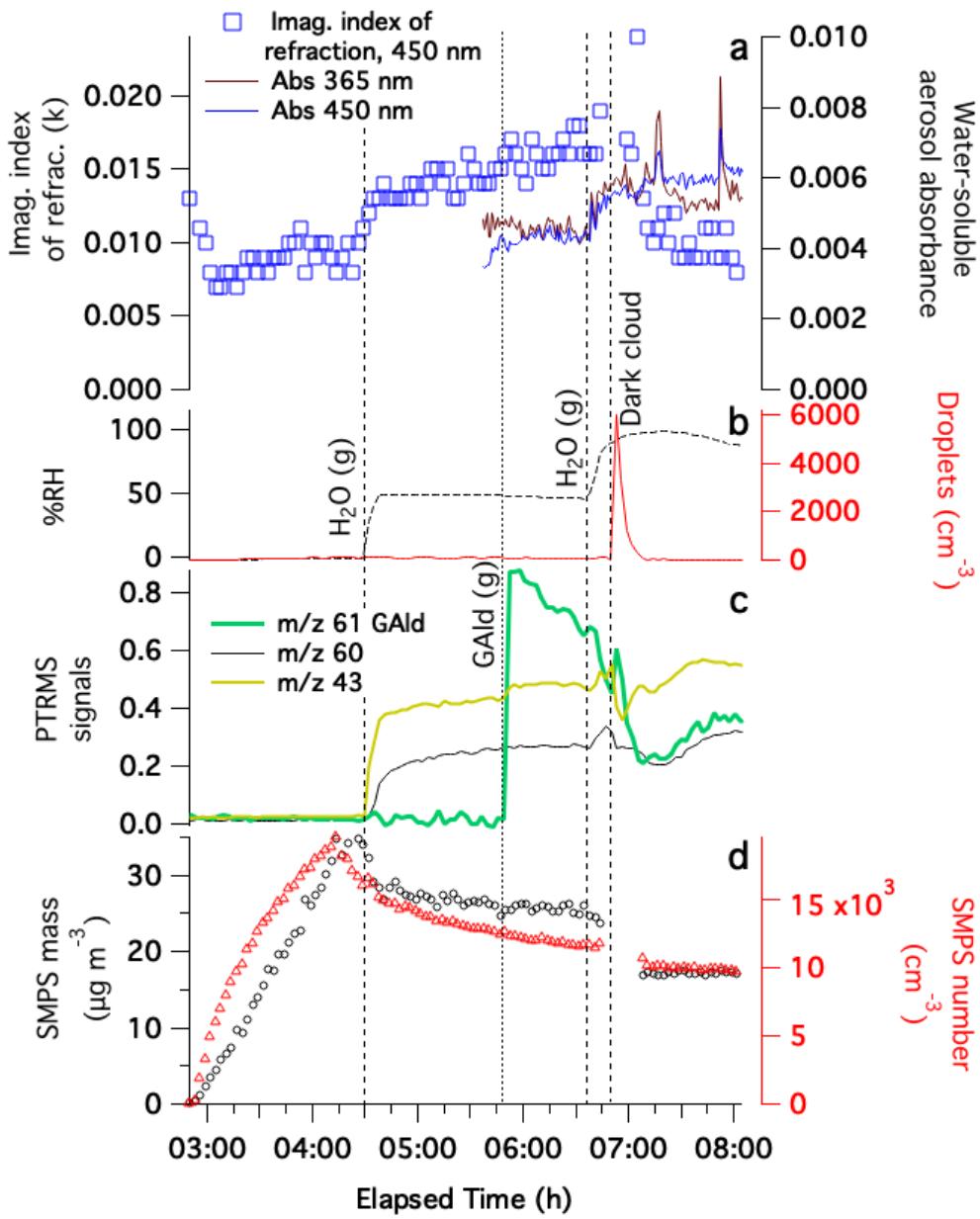


Figure 3: Summary of experiment 1, dried glycine seed particles exposed to GALd gas and cloud processing in the dark. Panel a: time-dependent imaginary part of the index of refraction of dried aerosol extracted from CAPS-ssa data at 450 nm (blue squares), and absorbance of

302 water-soluble aerosol material sampled by PILS at 365 (brown line) and 450 nm (blue line). Panel
 303 b: relative humidity (black dotted line), and cloud droplet counts (red line, right axis). Panel c:
 304 dilution-corrected PTR-MS signals for m/z 43 (acetic acid fragment), 60, and GALd-attributed
 305 portion of m/z 61. Panel d: dilution-corrected SMPS number density (red triangles, right axis) and
 306 mass (black circles). Additions of GALd gas (dots), water vapor addition and cloud events (dashes)
 307 are labelled with vertical lines. For CAPS extinction, scattering, and albedo data, see Figure S3.

308 Experiments 2 and 3 involved mixed AS+GAld seed particles that were either collected without
309 chamber exposure as a control (experiment 3), or exposed to 1 ppm methylamine gas, dark cloud
310 processing, and cloud processing in 60 min. of simulated sunlight before filter collection
311 (experiment 2). Reaction product ions detected in filter extracts by ESI-HRMS in the two
312 experiments are summarized in the next section; optical and physical parameters measured during
313 chamber exposure (experiment 2) are summarized in Figure 4. Seed particles were added without
314 diffusion drying to the chamber at 50-58% RH; under these conditions, aerosol droplets containing
315 AS cannot effloresce but remain aqueous-phase particles. PTR-MS signals at m/z 61 indicate that
316 a substantial amount of GAld evaporated from the seed particles (and likely also from the liquid
317 used in the atomization process), reaching a peak of 8.7 ppm in the chamber at the end of the seed
318 particle addition. Even before any further additions to the chamber, absorbance measured in PILS-
319 sampled aerosol reached 0.0055 at 365 nm and 0.0032 at 450 nm, presumably due to brown carbon
320 formed by GAld + AS reactions in the aqueous aerosol particles.

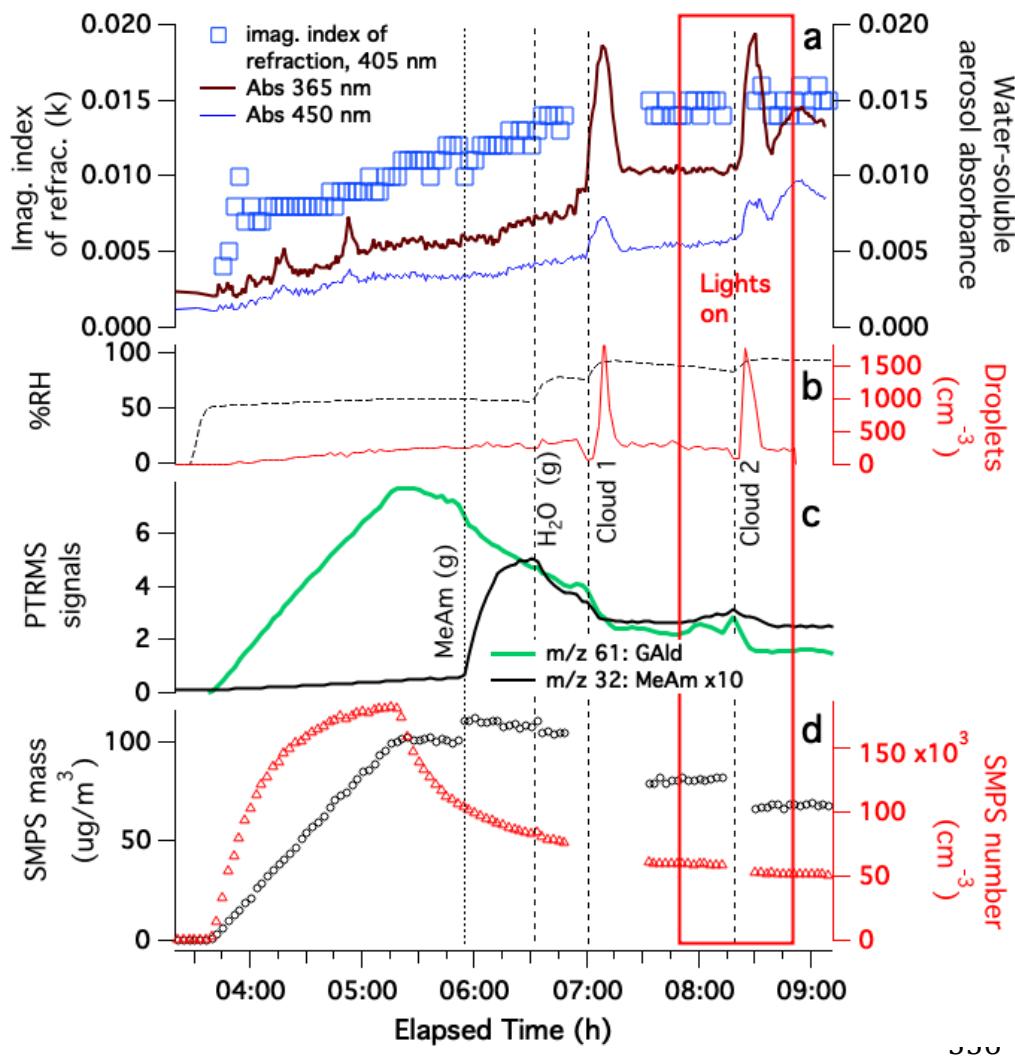


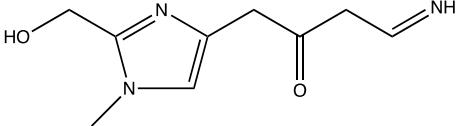
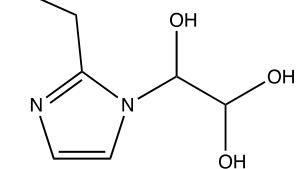
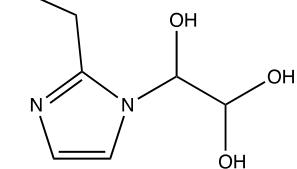
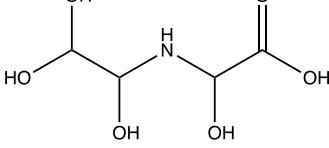
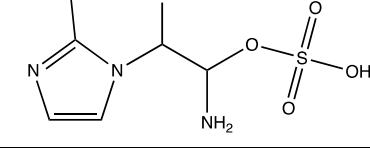
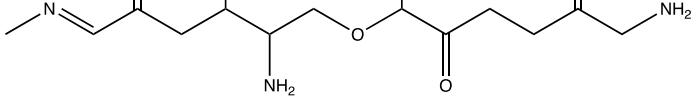
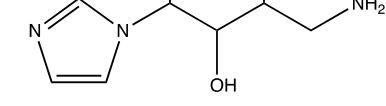
Figure 4: Summary of experiment 2, seed particles generated from 1.8 mM AS / 50 mM GAld solution, added to humidified chamber without drying, and then exposed to methylamine gas, cloud

337 processing, and simulated sunlight. Panel a: Time-dependent imaginary part of the index of
 338 refraction of dried aerosol extracted from CAPS-ssa data at 450 nm (blue squares, left axis) and
 339 absorbance of water-soluble aerosol material sampled by PILS at 365 (brown line) and 450 nm
 340 (blue line). Panel b: relative humidity and cloud droplet counts. Panel c: dilution-corrected PTR-
 341 MS signals for methylamine (black line, m/z 32 signals multiplied by 10) and GAld-attributed m/z
 342 61 signals (green line). Panel d: dilution-corrected SMPS number density and mass. For CAPS
 343 extinction, scattering, and albedo data, see Figure S4.

344 Addition of 1 ppm methylamine gas to the chamber caused an immediate 9% increase in dried
345 aerosol mass, accelerated the loss rate of GAld from the gas phase (some of which may have gone
346 to the chamber walls), and triggered the start of an upward trend in $MAC_{365\text{nm}}$. These observations
347 suggest that reactive uptake of both methylamine and GAld into the deliquesced aerosol particles
348 occurred, followed by measurable BrC formation. Subsequent dark cloud and sunlit cloud events
349 caused PILS-sampled aerosol absorbance to spike, while irreversibly drawing down ~40% of gas-
350 phase GAld in the chamber, suggesting rapid BrC formation involving GAld. Although aerosol
351 absorbance declines as each cloud dissipates, absorbance after each cloud remains 30-40% higher
352 than it was before the cloud. Unlike in experiment 1, cloud processing (even in simulated sunlight)
353 did not reduce the imaginary part of the index of refraction measured in dried aerosol at 450 nm.
354 These observations indicate that BrC produced in multiphase GAld+AS+methylamine reactions is
355 resistant to drying and also to hydrolysis and photobleaching, as was recently observed in a study
356 conducted on bulk liquid water solutions.³⁹

357

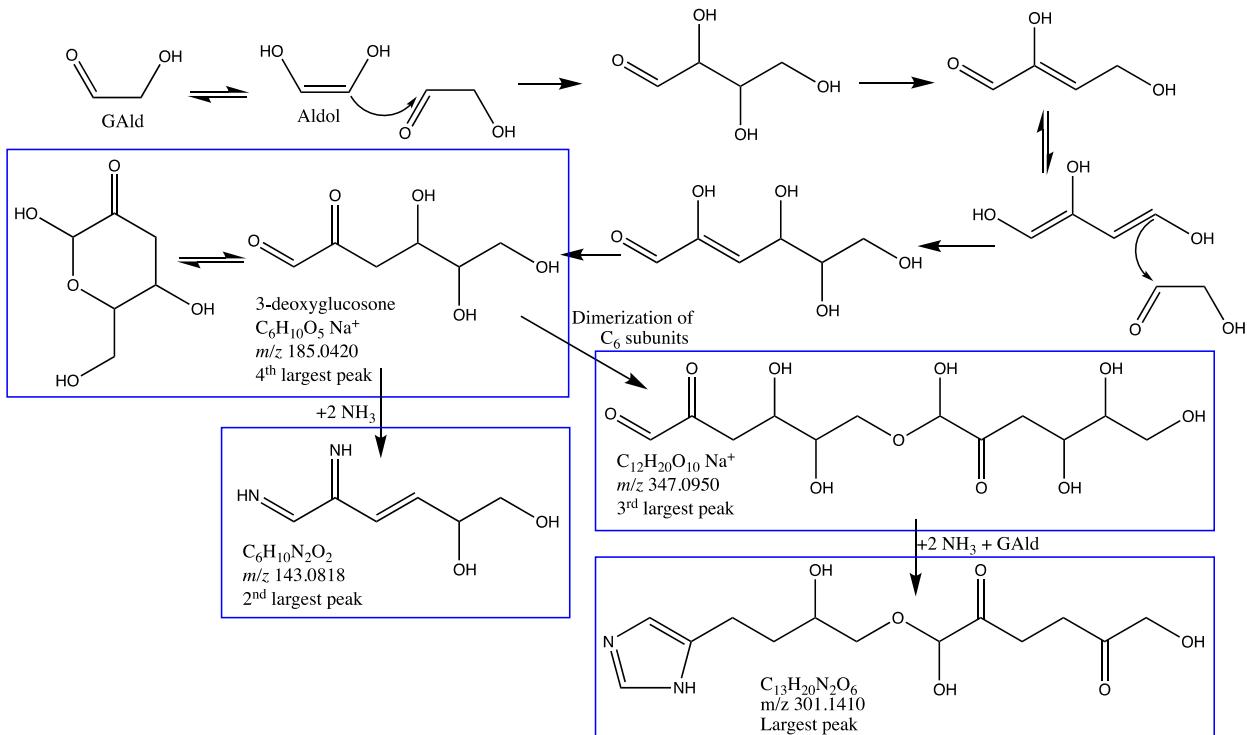
358 3.3. Aerosol-phase reaction products








359 Aerosol-phase products detected by LC-ESI-HRMS in GAld+AS seed aerosol extracts before
360 (experiment 3) and after exposure to methylamine gas and both dark and sunlit cloud processing
361 (experiment 2) are shown in Table 3. The four largest peaks detected in GAld+AS seed aerosol
362 (without chamber exposure) are listed in Table 3. Aerosol-phase GAld oligomers are observed,
363 some of which contain nitrogen, indicating that some fraction of GAld reacted with itself or with
364 AS rather than evaporating to the gas phase. We note that that 99.8% of the peak area in the
365 chromatogram of unprocessed GAld + AS aerosol was attributed to molecules built from GAld
366 trimer units (C₆, C₁₂, and C₂₄). Like methylglyoxal, GAld can oligomerize via aldol condensation
367 or acetal formation, forming products by either pathway with identical formulas but different

368 linkages and structures. While any number of GAld units could oligomerize via acetal formation,
369 we propose that aldol condensation preferentially generates the C₆ intermediate 3-deoxyglucosone
370 (*m/z* 185.0420), which is in equilibrium with a stable cyclic form (Scheme 1), allowing it to
371 accumulate without further aldol additions of GAld monomers. Two 3-deoxyglucosone units can
372 then link via an acetal reaction to form a C₁₂ oligomer, bypassing C₈ and C₁₀ forms, analogous to
373 sugar chemistry. Thus, the observed preference for products built from C₆ and C₁₂ units suggests
374 that GAld, like methylglyoxal,³⁵ forms oligomers primarily by aldol condensation in aqueous
375 aerosol particles.

376

377 **Table 3:** Aerosol-phase reaction products detected in glycolaldehyde+AS seed particles before
 378 and after exposure to methylamine gas, cloud processing, and simulated sunlight


m/z detected ^a $[\text{M}+\text{H}]^+$	Peak area rank:		Ratio .after. before	Assigned formula of neutral molecule ^b	Δ (ppm)	Possible structure
	Before	After				
Ions detected in GAld + AS seed particles before chamber exposure only						
301.1410	1	n/a	0	$\text{C}_{13}\text{H}_{20}\text{N}_2\text{O}_6$	-3.5	
143.0818	2	n/a	0	$\text{C}_6\text{H}_{10}\text{N}_2\text{O}_2$	1.9	
185.0420 $[\text{M}+\text{Na}]^+$	4	n/a	0	$\text{C}_6\text{H}_{10}\text{O}_5$ GAld trimer: 3-deoxy- glucosone	3.0	
Ions detected in GAld + AS seed particles both before <i>and</i> after chamber exposure						
352.2460	11	3	2.3	$\text{C}_{16}\text{H}_{30}\text{N}_7\text{O}_2^+$	0.29	
159.0767	14	11	1.2	$\text{C}_6\text{H}_{10}\text{N}_2\text{O}_3$	1.6	
125.0713	9	6	1.1	$\text{C}_6\text{H}_8\text{N}_2\text{O}$	1.5	
347.0950 $[\text{M}+\text{Na}]^+$	3	9	0.035 ^e	$\text{C}_{12}\text{H}_{20}\text{O}_{10}$	1.1	

Ions detected in GAld + AS seed particles after chamber exposure only						
196.1082	n/a	1	inf	C ₉ H ₁₃ N ₃ O ₂	2.0	
197.0535 [M+Na] ⁺	n/a	2	inf	C ₆ H ₁₀ N ₂ O ₄	-1.6	
175.0717	n/a	7	inf	C ₆ H ₁₀ N ₂ O ₄	1.2	
168.0545	n/a	4	inf	C ₄ H ₉ NO ₆	-6.0	
127.5264 [M+2H] ²⁺	n/a	5	inf	C ₆ H ₁₁ N ₃ SO ₆	-0.91	
316.1983	n/a	8	inf	C ₁₃ H ₂₅ N ₅ O ₄	0.51	
218.1140	n/a	10	inf	C ₈ H ₁₅ N ₃ O ₄	0.42	

379 Major peaks detected in GAld + AS aerosol by positive ion mode ESI-MS before (experiment
 380 3) and after (experiment 2) chamber exposure to methylamine gas, cloud processing, and simulated
 381 sunlight. **a**: [M+H]⁺ ion, unless otherwise stated. **n/a**: peak not detected in given experiment.
 382 **inf**: “After / before” ratio infinitely large (division by zero).

383

384 **Scheme 1:** Proposed dark mechanism for the preferential formation of C₆ and C₁₂ glycolaldehyde
 385 oligomers and their reactions with ammonia in aqueous aerosol particles.

386 Notes: Blue boxes designate the four largest peaks detected in unprocessed G Ald+AS seed aerosol
 387 control (experiment 3)

389 Both 3-deoxyglucosone and its C₁₂ “disaccharide” can then be converted by dark reactions with
 390 ammonia to diimines and imidazoles, resulting in the two largest peaks detected in unprocessed
 391 G Ald+AS seed particles: a proposed C₆H₁₀N₂O₂ diimine species (m/z 143.0818) and a
 392 C₁₃H₂₀N₂O₆ imidazole derivative (m/z 301.1410, 100× larger peak). Imidazole derivatives are
 393 typical thermodynamic endpoints for Maillard dark chemistry.⁴¹ In unprocessed G Ald+AS seed
 394 aerosol (experiment 3), the average number of N atoms / molecule (weighted by peak area)³⁹ was
 395 2.0, which supports the dominance of diimine and especially imidazole products in terms of
 396 concentrations, electrospray ionization efficiencies, or both.

397 After exposure of GAld+AS seed aerosol to methylamine, cloud processing, and simulated
398 sunlight (experiment 2), the average number of N atoms / molecule detected increased from 2.0 to
399 2.9. Detected exact masses, proposed formulas, and possible molecular structures are shown in
400 Table 3. Approximately half of this increase in N atoms was due to methylamine incorporation in
401 detected products. The incorporation of ammonia also increased, likely due to the exchange
402 reaction of methylamine with ammonia in the AS-containing aerosol increasing the concentration
403 of dissolved, unprotonated ammonia. The uptake of methylamine into the aerosol particles, seen
404 as an increase in aerosol mass in Figure 4, could also increase the concentration of unprotonated
405 ammonia by raising the pH of the aqueous aerosol phase.

406 Methylamine exposure, cloud processing, and simulated sunlight reduced the detected
407 abundance of GAld oligomers that do not contain N atoms by 98%, and appear to increase the
408 diversity of product types. N-derivatized C₆ and C₁₂ GAld oligomer products are still dominant
409 (making up 68% of the product molecules, weighted by peak area), but a proposed organosulfate
410 imidazole product (*m/z* 127.5264) was also generated during chamber exposure, and the
411 concentration of a pyrazine product identified by Grace *et al.*¹⁴ (*m/z* 125.0713) increased slightly.
412 Four imidazole derivatives formed by nucleophilic attack of the imidazole :NH group on GAld
413 monomers or dimers (analogous to the formation of hydrated N-glyoxal substituted 1H-imidazole
414 in the glyoxal+AS system)^{21, 22} are also detected in chamber-exposed GAld+AS aerosol. The
415 average number of conjugated double bonds per detected molecule did not increase in the chamber-
416 exposed aerosol compared to the seed particles, indicating that the increased MAC₃₆₅ observed in
417 PILS-sampled aerosol after cloud processing in the chamber is likely due to other factors. These
418 factors include the greater nitrogen incorporation in organic product molecules (2.9 vs. 2.0 N /
419 molecule detected) and the additional derivatization of imidazoles observed in the chamber-
420 processed aerosol.

421
422

4. Discussion & Conclusions

423 Bulk vs. Aerosol reaction rates. Aerosol particles in experiments 2 – 4 were never dried until
424 collection on filters; the pH of deliquesced AS aerosol has been estimated to be 3.2, with gas-phase
425 ammonia levels in the ambient range having little effect on pH.⁴² At this pH, our rate
426 measurements suggest that GAld+AS and GAld+methylamine reactions have similar rate
427 constants ($k \sim 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$). Thermodynamic modeling (E-AIM iii)³⁴ indicates that in aqueous AS
428 aerosol at 58% RH, ammonium and sulfate ions have a combined mole fraction of 0.4, with
429 ammonium concentrations of ~ 25 molality (m). Upon methylamine uptake, some ammonium will
430 be exchanged with methylaminium ions, but the total concentration of ammonium and
431 methylaminium ions is likely to remain very high. If the aerosol pH remains at 3.2 after
432 methylamine uptake, the lifetime of any dissolved GAld with respect to amine or ammonia
433 reactions will be ~ 2 hours. If, however, GAld's dihydrate / aldehyde equilibrium shifts strongly
434 toward the aldehyde at the air-water interface (from $f_{Ald} = 0.053$ to $f_{Ald} = 1$), as has been suggested
435 for other small aldehydes,²⁴ the lifetime of GAld could become as short as ~ 7 minutes. This
436 timescale of minutes is more consistent with our aerosol observations: the retention of some GAld
437 in evaporating GAld+AS aerosol droplets (at 58% RH), the detection of GAld oligomers in these
438 particles, and the accelerated uptake of GAld from the gas phase upon introduction of methylamine
439 gas into the chamber (also at 58% RH), all of which took place in minutes.

440 In contrast, in a more dilute, post-cloud environment at 98% RH, where $[\text{NH}_4^+] = 1.1m$,
441 predicted lifetimes for non-hydrated (aldehyde-form) GAld molecules with respect to AS / amine
442 reactions would lengthen to ~ 2.5 h, and lifetimes in large, activated cloud droplets would be even
443 longer. In these high-RH conditions, bulk phase reaction kinetics, even with a 20-fold acceleration
444 due to surface equilibrium shifts to aldehyde-form GAld (from $f_{Ald} = 0.053$ to $f_{Ald} = 1$), are still an

445 order of magnitude slower than the spikes in absorbance or the irreversible losses of GAld_(g)
446 observed during each 10-minute cloud event. A possible explanation is further surface effects,
447 where GAld preferentially partitions to and reacts at an air-water interface crowded with other
448 surface-active species. Several other aldehyde+AS/amine reaction systems generate surface-
449 active species,^{35, 43, 44} including during photolysis.⁴⁵

450 Atmospheric significance. In the atmosphere at moderate RH, the presence of other substances
451 in aqueous aerosol particles would likely lower effective reactant concentrations,⁴⁶ and organic
452 species could lose access to ammonium and aminium salts by “salting out” or by liquid-liquid
453 phase separation of organic and aqueous phases.⁴⁷ Both factors would slow down reactions
454 between GAld, AS, and amine species in aqueous aerosol at moderate humidity levels. However,
455 at RH near 100%, Henry’s law (rather than other dissolved species) would control GAld
456 concentrations in the droplet, and surface activity could cause surface concentrations of GAld or
457 first-generation GAld+AS/amine products to reach high levels, even though typical atmospheric
458 GAld gas concentrations are significantly lower than the 0.3 – 1 ppm concentrations used in
459 experiments 1 and 4. Additionally, cross reactions between GAld and other aldehydes as they
460 react with AS and amine species, especially those that generate additional surface-active
461 intermediates, may accelerate the incorporation of GAld into BrC oligomers. Cloud processing of
462 GAld in the presence of AS and amine species can therefore be expected to produce brown carbon
463 under atmospheric conditions.

464
465 **Supporting Information Available**

466 Description of PTR-MS signal corrections for changing water vapor levels, figures describing
467 deconvolution of acetic acid and GAld signals at *m/z* 61, figures summarizing chamber
468 experiments 1, 2, and 4 including extinction, scattering, and single-scattering albedo measurements

469 at 450 nm, and a listing of all peaks detected by ESI-HRMS in the aerosol extracts. Raw data from
470 aerosol – cloud chamber experiments is available in a data repository.⁴⁸

471
472 **Acknowledgments**

473 This work was supported by NSF grants AGS-1129002 and AGS-1826593. The CESAM
474 chamber and associated control experiments were part of a project that has received funding from
475 the European Union’s Horizon 2020 research and innovation program under grant agreement No.
476 730997. CNRS-INSU is gratefully acknowledged for supporting CESAM as an open facility
477 through the National Instrument label, as well as the AERIS data center ([https://www.aeris-](https://www.aeris-data.fr/)
478 [data.fr/](https://www.aeris-data.fr/)) for hosting, curating, and distributing CESAM chamber data via EUROCHAMP-2020
479 databases. The LC-ESI-HRMS measurements were performed on project award
480 10.46936/sthm.proj.2015.48884/60005735 at the Environmental Molecular Sciences Laboratory,
481 a DOE Office of Science User Facility sponsored by the Biological and Environmental Research
482 program under Contract No. DE-AC05-76RL01830.

483
484 **References**

485 (1) Spaulding, R. S.; Schade, G. W.; Goldstein, A. H.; Charles, M. J. Characterization of
486 secondary atmospheric photooxidation products: evidence for biogenic and
487 anthropogenic sources. *Journal of Geophysical Research, [Atmospheres]* **2003**, *108* (D8),
488 4247. DOI: 10.1029/2002jd002478.

489 (2) Perri, M. J.; Seitzinger, S.; Turpin, B. J. Secondary organic aerosol production from aqueous
490 photooxidation of glycolaldehyde: Laboratory experiments. *Atmos. Environ.* **2009**, *43*
491 (8), 1487-1497. DOI: 10.1016/j.atmosenv.2008.11.037.

492 (3) Butkovskaya, N. I.; Pouvesle, N.; Kukui, A.; Le Bras, G. Mechanism of the OH-Initiated
493 Oxidation of Glycolaldehyde over the Temperature Range 233–296 K. *The Journal of*
494 *Physical Chemistry A* **2006**, *110* (50), 13492-13499. DOI: 10.1021/jp064993k.

495 (4) Magneron, I.; Mellouki, A.; Le Bras, G.; Moortgat, G. K.; Horowitz, A.; Wirtz, K. Photolysis
496 and OH-Initiated Oxidation of Glycolaldehyde under Atmospheric Conditions. *The Journal*
497 *of Physical Chemistry A* **2005**, *109* (20), 4552-4561. DOI: 10.1021/jp044346y.

498 (5) Bacher, C.; Tyndall, G. S.; Orlando, J. J. The atmospheric chemistry of glycolaldehyde. *J.*
499 *Atmos. Chem.* **2001**, *39*, 171-189. DOI: 10.1023/A:1010689706869.

500 (6) Matsunaga, S.; Mochida, M.; Kawamura, K. Variation on the atmospheric concentrations
501 of biogenic carbonyl compounds and their removal processes in the northern forest at
502 Moshiri, Hokkaido Island in Japan. *J. Geophys. Res.* **2004**, *109*, D04302.

503 (7) van Pinxteren, D.; Plewka, A.; Hofmann, D.; Muller, K.; Kramberger, H.; Svrcina, B.;
504 Bachmann, K.; Jaeschke, W.; Mertes, S.; Collett Jr., J. L.; et al. Schmucke hill cap cloud and
505 valley stations aerosol characterisation during FEBUKO (II): organic compounds. *Atmos.*
506 *Environ.* **2005**, *39*, 4305-4320. DOI: 10.1016/j.atmosenv.2005.02.014.

507 (8) Müller, K.; van Pinxteren, D.; Plewka, A.; Svrcina, B.; Kramberger, H.; Hofmann, D.;
508 Bächmann, K.; Herrmann, H. Aerosol characterisation at the FEBUKO upwind station
509 Goldlauter (II): Detailed organic chemical characterisation. *Atmos. Environ.* **2005**, *39*
510 (23), 4219-4231. DOI: 10.1016/j.atmosenv.2005.02.008.

511 (9) Matsumoto, K.; Kawai, S.; Igawa, M. Dominant factors controlling concentrations of
512 aldehydes in rain, fog, dew water, and in the gas phase. *Atmos. Environ.* **2005**, *39*, 7321-
513 7329.

514 (10) Gkatzelis, G. I.; Papanastasiou, D. K.; Karydis, V. A.; Hohaus, T.; Liu, Y.; Schmitt, S. H.;
515 Schlag, P.; Fuchs, H.; Novelli, A.; Chen, Q.; et al. Uptake of water-soluble gas-phase
516 oxidation products drives organic particulate pollution in Beijing. *Geophys. Res. Lett.*
517 **2021**, *48* (8), e2020GL091351, <https://doi.org/10.1029/2020GL091351>. DOI:
518 10.1029/2020GL091351 (acccesed 2021/04/08).

519 (11) Perri, M. J.; Lim, Y.-B.; Seitzinger, S. P.; Turpin, B. J. Organosulfates from glycolaldehyde
520 in aqueous aerosols and clouds: Laboratory studies. *Atmos. Environ.* **2010**, *44* (21-22),
521 2658-2664, 10.1016/j.atmosenv.2010.03.031. DOI: 10.1016/j.atmosenv.2010.03.031.

522 (12) Nguyen, T. B.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H. Reactive Uptake and Photo-
523 Fenton Oxidation of Glycolaldehyde in Aerosol Liquid Water [Erratum to document cited
524 in CA158:609086]. *Environ. Sci. Technol.* **2013**, *47* (17), 10093, 10.1021/es403622y. DOI:
525 10.1021/es403622y.

526 (13) Powelson, M. H.; Espelien, B. M.; Hawkins, L. N.; Galloway, M. M.; De Haan, D. O. Brown
527 carbon formation by aqueous-phase aldehyde reactions with amines and ammonium
528 sulfate. *Environ Sci Technol* **2014**, *48* (2), 985-993. DOI: 10.1021/es4038325.

529 (14) Grace, D. N.; Sharp, J. R.; Holappa, R. E.; Lugos, E. N.; Sebold, M. B.; Griffith, D. R.;
530 Hendrickson, H. P.; Galloway, M. M. Heterocyclic Product Formation in Aqueous Brown
531 Carbon Systems. *ACS Earth and Space Chemistry* **2019**, *3* (11), 2472-2481. DOI:
532 10.1021/acsearthspacechem.9b00235.

533 (15) Galloway, M. M.; Powelson, M. H.; Sedehi, N.; Wood, S. E.; Millage, K. D.; Kononenko, J. A.;
534 Rynaski, A. D.; De Haan, D. O. Secondary organic aerosol formation during evaporation of
535 droplets containing atmospheric aldehydes, amines, and ammonium sulfate. *Environ Sci*
536 *Technol* **2014**, *48*, 14417-14425. DOI: 10.1021/es5044479.

537 (16) Stangl, C. M.; Johnston, M. A.-O. Aqueous Reaction of Dicarbonyls with Ammonia as a
538 Potential Source of Organic Nitrogen in Airborne Nanoparticles. (1520-5215
539 (Electronic)). From 2017 May 18.

540 (17) Kua, J.; Galloway, M. M.; Millage, K. D.; Avila, J. E.; De Haan, D. O. Glycolaldehyde Monomer
541 and Oligomer Equilibria in Aqueous Solution: Comparing Computational Chemistry and
542 NMR Data. *The Journal of Physical Chemistry A* **2013**, *117* (14), 2997-3008. DOI:
543 10.1021/jp312202j.

544 (18) De Haan, D. O.; Corrigan, A. L.; Smith, K. W.; Stroik, D. R.; Turley, J. T.; Lee, F. E.; Tolbert,
545 M. A.; Jimenez, J. L.; Cordova, K. E.; Ferrell, G. R. Secondary organic aerosol-forming

546 reactions of glyoxal with amino acids. *Environ. Sci. Technol.* **2009**, *43* (8), 2818-2824. DOI:
547 10.1021/es803534f.

548 (19) De Haan, D. O.; Tolbert, M. A.; Jimenez, J. L. Atmospheric condensed-phase reactions of
549 glyoxal with methylamine. *Geophys. Res. Lett.* **2009**, *36*, L11819. DOI:
550 10.1029/2009gl037441.

551 (20) Noziere, B.; Dziedzic, P.; Cordova, A. Products and kinetics of the liquid-phase reaction
552 of glyoxal catalyzed by ammonium ions (NH_4^+). *J. Phys. Chem.* **2009**, *113* (1), 231-237.
553 DOI: 10.1021/jp8078293.

554 (21) Yu, G.; Bayer, A. R.; Galloway, M. M.; Korshavn, K. J.; Fry, C. G.; Keutsch, F. N. Glyoxal in
555 aqueous ammonium sulfate solutions: products, kinetics, and hydration effects. *Environ.*
556 *Sci. Technol.* **2011**, *45*, 6336-6342. DOI: 10.1021/es200989n.

557 (22) Kampf, C. J.; Jakob, R.; Hoffmann, T. Identification and characterization of aging products
558 in the glyoxal/ammonium sulfate system -- implications for light-absorbing material in
559 atmospheric aerosols. *Atmos. Chem. Phys.* **2012**, *12*, 6323-6333. DOI: 10.5194/acp-12-
560 6323-2012.

561 (23) Noziere, B.; Cordova, A. A kinetic and mechanistic study of the amino acid catalyzed
562 aldol condensation of acetaldehyde in aqueous and salt solutions. *J. Phys. Chem.* **2008**,
563 *112* (13), 2827-2837. DOI: 10.1021/jp7096845.

564 (24) Sedehi, N.; Takano, H.; Blasic, V. A.; Sullivan, K. A.; De Haan, D. O. Temperature- and pH-
565 dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with
566 atmospheric amines and ammonium sulfate. *Atmos. Environ.* **2013**, *77*, 656-663. DOI:
567 10.1016/j.atmosenv.2013.05.070.

568 (25) Glushonok, G. K.; Glushonok, T. G.; Shadyro, O. I. Kinetics of equilibrium attainment
569 between molecular glycolaldehyde structures in an aqueous solution. *Kinetics and*
570 *Catalysis* **2000**, *41* (5), 620-624. DOI: 10.1007/BF02754560.

571 (26) Wang, J.; Doussin, J. F.; Perrier, S.; Perraudin, E.; Katrib, Y.; Pangui, E.; Picquet-Varrault,
572 B. Design of a new multi-phase experimental simulation chamber for atmospheric
573 photosmog, aerosol and cloud chemistry research. *Atmos. Meas. Tech.* **2011**, *4*, 2465-
574 2494. DOI: 10.5194/amt-4-2465-2011.

575 (27) De Haan, D. O.; Tapavicza, E.; Riva, M.; Cui, T.; Surratt, J.; Smith, A. C.; Jordan, M.-C.;
576 Nilakantan, S.; Almodovar, M.; Stewart, T. N.; et al. Nitrogen-containing, light-absorbing
577 oligomers produced in aerosol particles exposed to methylglyoxal, photolysis, and cloud
578 cycling. *Environ. Sci. Technol.* **2018**, *52* (7), 4061-4071. DOI: 10.1021/acs.est.7b06105.

579 (28) Onasch, T. B.; Massoli, P.; Kebabian, P. L.; Hills, F. B.; Bacon, F. W.; Freedman, A. Single
580 scattering albedo monitor for airborne particulates. *Aerosol Sci. Technol.* **2015**, *49* (4),
581 267-279. DOI: 10.1080/02786826.2015.1022248.

582 (29) Lin, P.; Fleming, L. T.; Nizkorodov, S. A.; Laskin, J.; Laskin, A. Comprehensive Molecular
583 Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry
584 with Electrospray and Atmospheric Pressure Photoionization. *Anal. Chem.* **2018**, *90* (21),
585 12493-12502. DOI: 10.1021/acs.analchem.8b02177.

586 (30) Lin, P.; Laskin, J.; Nizkorodov, S. A.; Laskin, A. Revealing Brown Carbon Chromophores
587 Produced in Reactions of Methylglyoxal with Ammonium Sulfate. *Environ. Sci. Technol.*
588 **2015**, *49* (24), 14257-14266. DOI: 10.1021/acs.est.5b03608.

589 (31) Noziere, B.; Dziedzic, P.; Cordova, A. Inorganic ammonium salts and carbonate salts are
590 efficient catalysts for aldol condensation in atmospheric aerosols. *Phys. Chem. Chem. Phys.*
591 **2010**, *12* (15), 3864-3872, 10.1039/b924443c. DOI: 10.1039/b924443c.

592 (32) Ervens, B.; George, C.; Williams, J. E.; Buxton, G. V.; Salmon, G. A.; Bydder, M.; Wilkinson,
593 F.; Dentener, F.; Mirabel, P.; Wolke, R.; et al. CAPRAM 2.4 (MODAC mechanism): An
594 extended and condensed tropospheric aqueous phase mechanism and its application.
595 *Journal of Geophysical Research: Atmospheres* **2003**, *108* (D14),
596 <https://doi.org/10.1029/2002JD002202>. DOI: 10.1029/2002JD002202 (accessed
597 2022/01/17).

598 (33) Mopper, K.; Zika, R. G. Free amino acids in marine rains: evidence for oxidation and
599 potential role in nitrogen cycling. *Nature* **1987**, *325*, 246-249. DOI:
600 doi.org/10.1038/325246a0.

601 (34) Clegg, S. L.; Brimblecombe, P.; Wexler, A. S. Thermodynamic Model of the System
602 H+-NH4+-Na+-SO42--NO3--Cl--H2O at 298.15 K. *The Journal of Physical Chemistry A*
603 **1998**, *102* (12), 2155-2171. DOI: 10.1021/jp973043j.

604 (35) Sareen, N.; Schwier, A. N.; Shapiro, E. L.; Mitroo, D.; McNeill, V. F. Secondary organic
605 material formed by methylglyoxal in aqueous aerosol mimics. *Atmos. Chem. Phys.* **2010**,
606 *10*, 997-1016. DOI: 10.5194/acp-10-997-2010.

607 (36) Shapiro, E. L.; Szprengiel, J.; Sareen, N.; Jen, C. N.; Giordano, M. R.; McNeill, V. F. Light-
608 absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics.
609 *Atmos. Chem. Phys.* **2009**, *9*, 2289-2300. DOI: 10.5194/acp-9-2289-2009.

610 (37) Warneck, P. In-cloud chemistry opens pathway to the formation of oxalic acid in the
611 marine atmosphere. *Atmos. Environ.* **2003**, *37* (17), 2423-2427. DOI: 10.1016/S1352-
612 2310(03)00136-5.

613 (38) Lee, A. K. Y.; Zhao, R.; Li, R.; Liggio, J.; Li, S.-M.; Abbatt, J. P. D. Formation of light absorbing
614 organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium
615 sulfate. *Environ Sci Technol* **2013**, *47* (22), 12819-12826. DOI: 10.1021/es402687w.

616 (39) Jimenez, N. G.; Sharp, K. D.; Gramyk, T.; Ugland, D. Z.; Tran, M.-K.; Rojas, A.; Rafla, M. A.;
617 Stewart, D.; Galloway, M. M.; Lin, P.; et al. Radical-Initiated Brown Carbon Formation in
618 Sunlit Carbonyl-Amine-Ammonium Sulfate Mixtures and Aqueous Aerosol Particles. *ACS
619 Earth and Space Chemistry* **2022**. DOI: 10.1021/acsearthspacechem.1c00395.

620 (40) Chan, M. N.; Choi, M. Y.; Ng, N. L.; Chan, C. K. Hygroscopicity of water-soluble organic
621 compounds in atmospheric aerosols: amino acids and biomass derived organic species.
622 *Environ. Sci. Technol.* **2005**, *39* (6), 1555-1562. DOI: 10.1021/es049584l.

623 (41) Kua, J.; Krizner, H. E.; De Haan, D. O. Thermodynamics and kinetics of imidazole
624 formation from glyoxal and methylamine: a computational study. *J. Phys. Chem.* **2011**,
625 *115* (9), 1667-1675. DOI: 10.1021/jp111527x.

626 (42) Guo, H.; Weber, R. J.; Nenes, A. High levels of ammonia do not raise fine particle pH
627 sufficiently to yield nitrogen oxide-dominated sulfate production. *Sci Rep* **2017**, *7* (1),
628 12109-12109. DOI: 10.1038/s41598-017-11704-0 PubMed.

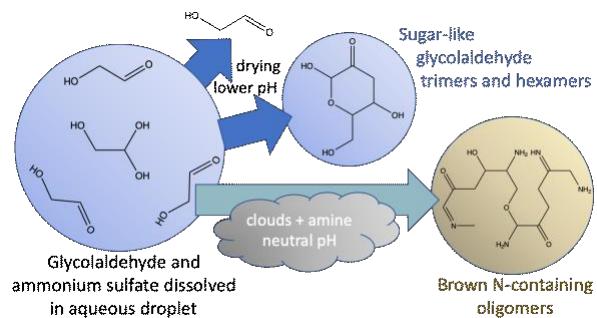
629 (43) Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F. Reactive processing of formaldehyde and
630 acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary
631 organic products. *Atmos. Chem. Phys.* **2011**, *11* (22), 11617-11629. DOI: 10.5194/acp-11-
632 11617-2011.

633 (44) Sareen, N.; Schwier, A. N.; Lathem, T. L.; Nenes, A.; McNeill, V. F. Surfactants from the gas
634 phase may promote cloud droplet formation. *Proc. Natl. Acad. Sci. (USA)* **2013**, *110* (8),
635 2723-2728. DOI: 10.1073/pnas.1204838110.

636 (45) Beier, T.; Cotter, E. R.; Galloway, M. M.; Woo, J. L. In Situ Surface Tension Measurements
637 of Hanging Droplet Methylglyoxal/Ammonium Sulfate Aerosol Mimics under

638 Photooxidative Conditions. *ACS Earth and Space Chemistry* **2019**, *3* (7), 1208-1215. DOI:
639 10.1021/acsearthspacechem.9b00123.

640 (46) Drozd, G. T.; McNeill, V. F. Organic matrix effects on the formation of light-absorbing
641 compounds from [small alpha]-dicarbonyls in aqueous salt solution. *Environmental*
642 *Science: Processes & Impacts* **2014**, *16* (4), 741-747, 10.1039/C3EM00579H. DOI:
643 10.1039/C3EM00579H.


644 (47) Bertram, A. K.; Martin, S. T.; Hanna, S. J.; Smith, M. L.; Bodsworth, A.; Chen, Q.; Kuwata,
645 M.; Liu, A.; You, Y.; Zorn, S. R. Predicting the relative humidities of liquid-liquid phase
646 separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate,
647 organic material, and water using the organic-to-sulfate mass ratio of the particle and the
648 oxygen-to-carbon elemental ratio of the organic component. *Atmos. Chem. Phys.* **2011**, *11*,
649 10995-11006. DOI: 10.5194/acp-11-10995-2011.

650 (48) De Haan, D. O.; Rodriguez, A. A.; Rafla, M. A.; Welsh, H. G.; Pennington, E. A.; Casar, J. R.;
651 Hawkins, L. N.; Jimenez, N. G.; de Loera, A.; Stewart, D.; et al. Kinetics, products, and
652 brown carbon formation by aqueous-phase reactions of glycolaldehyde with
653 atmospheric amines and ammonium sulfate (Raw data). In *Chemistry and Biochemistry: Faculty Scholarship*, University of San Diego: 2022; Vol. 42. DOI: 10.22371/02.2022.009
655

656

657

658 TOC Graphic:

659