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Abstract— This paper investigates human instruction follow-
ing for robotic manipulation via a hybrid, modular system
with symbolic and connectionist elements. Symbolic methods
build modular systems with semantic parsing and task planning
modules for producing sequences of actions from natural
language requests. Modern connectionist methods employ deep
neural networks that learn visual and linguistic features for
mapping inputs to a sequence of low-level actions, in an end-
to-end fashion. The hybrid, modular system blends these two
approaches to create a modular framework: it formulates
instruction following as symbolic goal learning via deep neural
networks followed by task planning via symbolic planners.
Connectionist and symbolic modules are bridged with Planning
Domain Definition Language. The vision-and-language learning
network predicts its goal representation, which is sent to
a planner for producing a task-completing action sequence.
For improving the flexibility of natural language, we further
incorporate implicit human intents with explicit human instruc-
tions. To learn generic features for vision and language, we
propose to separately pretrain vision and language encoders
on scene graph parsing and semantic textual similarity tasks.
Benchmarking evaluates the impacts of different components
of, or options for, the vision-and-language learning model and
shows the effectiveness of pretraining strategies. Manipulation
experiments conducted in the simulator AI2THOR show the
robustness of the framework to novel scenarios. '

I. INTRODUCTION

Ideally robot agents sharing the same working space with
humans and assisting them would be capable of interpreting
human instructions and performing their corresponding tasks.
The main challenge in human instruction following comes
from the diversity of communication and interpretation,
which permits incomplete or ambiguous natural language.
This paper proposes to disambiguate natural language via
visual information within a hybrid, modular framework.

Early symbolic works employ semantic parsing and task
planning to first map natural language into certain represen-
tations and then generate a sequence of actions. Attempts
to address the ambiguity of natural lanugage include in-
corporating knowledge bases [1], [2], dialogue systems [3],
and vision [4]. Dialogue systems shift the burden of disam-
biguation to the user. Alternatively, information from visual
sensors might provide the missing information at the cost
of slower processing via symbolic methods, due to growth
in the candidate instruction space [4]. With sufficient data,
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Fig. 1. Illustration of SGL, a hybrid, modular framework for human
instruction following. SGL consists of four main components: perception,
goal learning, task planning, and execution. Best viewed in color.

connectionist approaches to parsing multi-domain informa-
tion might improve parsing performance without sacrificing
inference speed.

Connectionist approaches avoid processing natural lan-
guage and vision based engineered symbolic representations
by learning visual and linguistic features via deep neural
networks. Sequence-to-sequence models learn to map image
and text input to a sequence of low-level actions [5], [6].
End-to-end designs exhibit exposure bias caused by using
complete target actions as training inputs but not having
access to them for the inference stage [7]. An error in
one step affects future predictions. To enhance performance,
researchers break the network into sub-modules or separately
consider different types of tasks [8]-[11], which requires
richer annotations.

To leverage the strengths of symbolic and connectionist
approaches, we propose a hybrid, modular framework as
depicted in Figure 1. The modules perform perception,
vision-aided goal learning via a deep network, task planning
via a symbolic planner, and task execution. Inspired by pre-
vious methods for manipulation task completion via object
affordance recognition [12], [13], we formulate goal learning
as predicting symbolic goal representations for Planning Do-
main Definition Language (PDDL) specifications, to bridge
connectionist goal learning and symbolic task planning. This
paper’s main contributions are:

(1) A hybrid, modular system for human instruction fol-
lowing. It leverages the semantic feature learning properties
of deep neural networks and symbolic computation of task
planners. Modularity facilitates component-level analysis and
upgrading.

(2) Benchmarking of component-level impacts on vision-
and-language robotic task goal learning. To enhance visuo-
linguistic network performance via pretraining tasks [14]—



[16], two strategies are proposed to separately pretrain the
visual and linguistic encoders: scene graph parsing and
semantic textual similarity. They outperform standard pre-
training methods.

(3) Manipulation experiments conducted in the AI2THOR
simulator [17], with five daily activities and unseen scenarios,
demonstrate the robustness of the proposed framework to
novel objects and environments.

II. RELATED WORK
A. Human Instrution Following

Human instruction following requires robotic agents to
understand human instructions and perform the requested
tasks. Common robotic tasks include navigation and ma-
nipulation. Each has different scene understanding needs.
Navigation requires identifying landmarks to understand
where the agent is and how it should move. The reviews
[18], [19] describe existing work on Vision-and-Language
Navigation. Manipulation requires interpreting interactions
between objects and how to manipulate them. The focus here
is on instruction following for robotic manipulation. Some
work on this front focuses on visually-derived ambiguity
for a primitive action given a specific request [20], [21] as
opposed to commands with differing command specificity
(i.e., lingusitic ambiguity) but unambiguous action sequences
given the scene. This section will first review existing
symbolic and connectionist methods for human instruction
following. Afterwards, it reviews connectionist methods for
joint feature learning in vision-and-language neural networks
and common pretraining tasks for learning generic visual and
linguistic features.

1) Symbolic Method: Human instruction following re-
quires translating human language into robot understandable
language. Based on manually defined symbols, early works
employ semantic parsing to transform natural language into
logical representations which perserves the meaning. With
well-structured input language, there are works parse natural
language into formal semantic expressions such as a list
of templates [22], which is unscalable with the growth of
the complexity of the manipulation task. Instead of pars-
ing natural language into formal representation, researchers
have explored the direction of intermediate representations
such as Spatial Description Clause (SDC) [23] and Linear
Temporal Logic (LTL) [24], [25], which will also be the
direction of symbolic representation in this work. However,
instructions provided by non-expert human users can be
vague or incomplete. Realizing the ambiguity of natural
language, some researchers attempt to incorporate external
information such as knowledge bases [1], [2], dialogue
systems [3], visual scene information [4] or multi-source
information [26]. Among these auxiliary information from
robotic vision, serving as a simple and straightforward but
rich way to disambiguate natural language, will be studied
in this work. Semantic parsing, which relies on syntax
of language to perform symbolic computation, can’t well
capture the semantic meaning of language and has the
difficulty of translating abstract sentences such as human

intents. Meanwhile, symbolic approaches using rule-based
task planning achieve high accuracy for computing action
sequences for manipulation when the symbols are correct.

2) Connectionist Method: With the significant evolution
of connectionist methods in recent years, deep neural net-
works show impressive strengths in learning semantic and
high-dimensional features, which improves robustness to
various types of input data. Packing everything into one net-
work, end-to-end learning models [5], [6] are first proposed
to directly map natural language and vision to a sequence of
low-level actions. The sequence-to-sequence model suffers
from the well-known issue of teacher forcing, which leads
to the poor performance under test scenarios. Observing the
great performance drop from training to testing stages of
end-to-end learning models, researchers start to break the
end-to-end network design and modularize the framework
into several networks. There are different designs of modular
networks focus on different natures of robotic tasks, such as
decomposing the model into perception and action policy
streams [8], [9], modularizing the model into separate sub-
modules for sub-tasks [10], [11], decomposing the problem
into sub-goal planning, scene navigation, and object ma-
nipulation [27] and constructing the model into observation
model, high-level controller and low-level controller [28].
Modular systems with purely connectionist modules should
benefit from symbolic elements. Reason for this assertion
is that the uncorrected error propagation from one module
through subsequent modules when they consist purely of
connectionist modules [7]. The symbolic modules in a hybrid
system can be designed offset the issue by recognizing
inconsistent inputs.

B. Vision-and-Language Feature Learning

Learning symbolic goal representation via vision-and-
language deep networks requires learning generic visual and
linguistic features to assist generalization to unseen scenar-
ios. Here, we review existing methods in visual question
answering for visual and linguistic feature encoding and their
pretraining tasks.

Visual feature learning methods used in V&L models can
be categorized into Object Detector(OD)-based region, CNN-
based grid and Vision Transformer(ViT) patch features. Due
to the computational and time cost of pretraining vision
transformer, this type of methods will not be explored and
benchmarked. Most previous works [15], [16], [29], [30]
employ OD-based region features which are extracted via
pretrained Faster R-CNN [31] based object detectors. Con-
cerns for these types of methods are frozen parameters and
time cost of object detectors during the training and inference
stage, respectively. To address these two issues, works [32],
[33] have explored grid extracted visual features via CNNs
such as ResNet [34], which makes the vision-and-language
model end-to-end trainable. One-stage designs for visual fea-
ture learning also reduce inference time but sacrifice a small
amount of performance. Alternatively, pretraining CNNs
using similar but different tasks enhances feature learning
for downstream tasks [35]. Options are object detection [36],



semantic segmentation [37], and instance segmentation [38].
Though existing pretraining tasks help to capture object
information in imagery, they ignore potential interactions
between objects important to robotic tasks. Better pretraining
tasks should be identified.

For linguistic feature learning, early research [39]-[41]
focused on learning word-level feature embeddings. To
learn high-level semantic embedding for sentences, based
on Recurrent Neural Networks (RNN), LSTM, Bidirectional
LSTM, GRU [42] and other similar designs are proposed.
The main concern of RNN-based methods is forgetting past
information for modeling long sequence data. The rise of
Transformers [43] led to a new family of approaches, such
as GPT [44], BERT [45], RoBERTa [46], etc. Among them,
BERT model and its pretraining strategy of masked language
modeling (MLM) is most widely used due to its simple
network design and superior performance. Modeling natural
language without clustering sentences with similar semantic
meanings, linguistic encoders might have the difficulty of
interpreting similarity between explicit human instruction
and implicit human intent.

The above review of symbolic and connectionist ap-
proaches for human instruction following suggests consid-
ering a hybrid, modular system to leverage the strengths
of both methods and compensate each other’s limitations:
we propose to address human instruction following via
connectionist goal learning and symbolic task planning.
Employing Planning Domain Definition Language (PDDL)
as the symbolic representation, connectionist and symbolic
approaches are bridged with PDDL goal specifications. The
vision-and-language connectionist framework, consisting of
a visual encoder, a linguistic encoder, multi-modal fusion and
a classifier, is to learn symbolic goal states (not actions).
The output goal representation feeds to a symbolic task
planner to generate a sequence of actions. To improve feature
learning in the vision-and-language network, we propose to
separately pretrain the visual and linguistic encoders on scene
graph parsing and semantic textual similarity tasks. Scene
graph parsing forces visual encoders to capture relationships
between objects, while semantic textual similarity helps
linguistic encoders learn similar semantic embeddings be-
tween human instructions and intents. The modular design of
goal learning and instruction following frameworks enables
simpler replacement and upgrading of individual components
and analysis for failures.

ITI. PRELIMINARIES
A. Planning Domain Definition Language

For task planning, we employ the Planning Domain Def-
inition Language (PDDL), a widely used symbolic plan-
ning language. With a list of pre-defined objects and their
corresponding predicates (such as dirty, graspable, etc.),
a domain consists of primitive actions and corresponding
effects. Here, affordances and attributes serve to define avail-
able predicates for subsequently specifying object-action-
object relationships. Planning requires establishing a prob-
lem, which is composed of the initial state and a desired

goal state of the world. The initial state is formed with a list
of objects with corresponding predicates. The goal state is
structured in the form of action, subject and object. From
the domain and problem specification, a PDDL planner
produces a sequence of primitive actions leaving the world
in the goal state when executed.

B. Problem Statement

Given an RGB image and a sentence of natural language,
the objective of this framework is to generate a sequence of
manipulation actions that achieve the task indicated by the
sentence. Processing of RGB image generates an initial state
estimate using an object detector. Completing the problem
specification involves the proposed vision-and-language deep
learning framework, whose function is to convert the paired
image and natural language input into a symbolic goal
representation compatible with PDDL. Once the problem
specification is built, the symbolic PDDL planner solves it
to generate the action sequence. The robot then performs the
ordered actions in the environment.

IV. APPROACH

This section works from the bottom up, first describ-
ing the vision-and-language deep learning architecture pro-
posed for learning symbolic goal representations for PDDL
specification. Section IV-A describes the modular elements
and candidate options. Sections IV-B and IV-C describe
customized pretraining tasks for the visual and linguistic
encoder modules, respectively. The section concludes with
a description of the integrated hybrid, modular framework
for human instruction following, taking vision and language
inputs to then output a sequence of corresponding manipu-
lation actions.

A. Vision-and-Language Task Goal Learning

The proposed symbolic goal learning architecture is de-
picted in Figure 2. It outputs a simple PDDL goal consisting
of action a, subject s and object o from an RGB image
I and a natural language string L. The underlying vision-
and-language deep learning network adopts a modular design
consisting of a visual encoder, a linguistic encoder, a multi-
modal fusion module and a classification module. The visual
and linguistic encoders learn visual and linguistic features,
respectively. As these features are embedded in different
domains, the encoder outputs require fusion into a joint
feature space. These joint features feed to three classifiers
for predicting the action, subject and object of the PDDL
goal representation. Each classifier is a 2-layer Multi-Layer
Perception (MLP) with 256 hidden dimensions. The action
classifier has 5 categories, while the subject and object
classifiers have 35 categories.

Visual Encoder. The visual encoder produces a set of
local features V' = {v1,--- ,vy,}, from a RGB image I €
RHXWX3 There are two principal types of visual features,
grid and region. Grid features arise from block-wise image
processing that leads to a feature map V € DHixWixC
where H; and W7 are the grid height and width and C}
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Fig. 2.

Vision and language symbolic goal learning network architecture. From RGB image and natural lanugage inputs, it outputs a PDDL goal state

(action, subject and object). Blocks with solid line represent components. Blocks with dashed line represent visual, linguistic and joint features.

is the dimension of a grid feature. A linearly indexed grid
feature is v;. The network for grid features will be ResNet
[34]. Region features arise from convolutional networks that
scan the entire image to identify candidate regions containing
targets of interest; The outputs are regional features V &
RNV *C1 extracted from the candidate regions, where N is
the number of regions. Faster R-CNN is one such network
[31]. Both are tested in §V-C.

Linguistic Encoder. Given a natural language sentence
L composed of K words, the linguistic encoder can either
generate the corresponding embedding set Q = {q1, - , gk}
which represents each word or a single embedding vector
g which represents the semantic meaning of the entire
sentence. The encoder commonly involves word embedding
and feature encoding. For word embedding, each word in the
sentence will be mapped to an embedding based on some
pretrained embedding tables, such as GloVe [40]. Feature
encoding options include LSTM and transformers. LSTM is
a common network design for language modeling capable
of connecting past information to the current task. More
recently, attention-based transformers have gained popularity
for improved memorization of long sentences and capture
of semantic meaning in language. Both approaches are
evaluated in §V-C.

Multi-modal Fusion. Visual and linguistic features lie
in different domains and require extra operations to fuse
into a joint representation. The simplest fusion operations
are concatenation, element-wise addition, and multiplication.
While linguistic features represent the entire sentence, the set
of visual features does so implicitly. Additional processing of
the visual features is needed to obtain a single image-wide
feature representation. Pooling operations such as max or
average pooling, or simple addition achieve this outcome.
A potential issue is that not all local features contribute
equally to the final prediction. Some visual features are
related to irrelevant pixels or regions, which should be
ignored or have less influence on the pooled output. Further,
linguistic features extracted from instructions can provide
guidance in identifying latent regions whose information
should be preserved. Attention modules [43] in the form of
self-attention and cross-attention are widely used to correlate
features in the same domain and across different domains,
respectively. Section V-C evaluates and discusses simple and

attention-based fusion methods.

B. Pretraining on Scene Graph Parsing

The vision-and-language task learning framework consid-
ers the different roles of multi-modal information. Vision
captures the information of objects and their interactions,
which reflects potential robotic tasks in the scene. Language
provides context. It helps to narrow down or determine the
target task over the task space inferred from vision. We apply
this insight and propose to pretrain the visual encoder on
scene graph parsing to help learn generic features that encode
attributes and relationships for objects. A scene graph G
consists of:

- a set of bounding boxes B = {by,--- ,by},b; € R*;

- a set of corresponding attributes A = {ay,--- ,ax} where
the tuple a; include object category o;, affordance d; and
general attribute ¢;; and

- a set of relationships R = {rq,---
boxes.

Using the Stacked Motif Network [47], factor the probability

of constructing the graph G given the RGB image I as

P(G|I)=P(B|I)P(A|B,I)P(R|A,B,I) (1)

,7; } between bounding

The bounding box generation model P(B|I) is based on
the Faster R-CNN object detection model [31]. It is pre-
trained as described in SectionV-A.2 and keeps parameters
frozen during the training stage for attribute and relation pre-
diction. The attribute prediction model P(A | B, I) involves
encoding contextual representation for each bounding box
and decoding corresponding attribute information. Predicted
bounding boxes B will be ordered from left to right by the
central x-coordinate in the image and fed into a biLSTM for
learning contextual representation C' = {¢y, - ,cx}:

C = biLSTM([fi; Wils)i=1.... ) 2

where C' contains the hidden states of the final LSTM layer,
W; is the projection matrix to predicted class distribution
l; and f; represents the regional feature. A separate LSTM
decodes object category 0;, affordance d; and attribute #;
based on the encoded context C"

hi = LSTM;([ci; 6i—1]) 3)
0; = argmax(W,h;) )



where 0; represents the prediction of the object category.
Affordance and attribute prediction follows the same design.
The relation prediction model P(R| A, B,I) also involves
encoding and decoding stages. A biLSTM encodes repre-
sentation D for each bounding box from object context C,
category 0;, affordance cfi and attribute 7;. The relation Tij
between the i-th and j-th bounding box is:

ri; = softmax(W,.g;;) ©®)

where g;; = (Whd;) o (Wid;) o fi;, fij is the feature vector
for the union boxes and W,., W},, W, are projection matrices.
See public code for more details’.

C. Pretraining on Semantic Textual Similarity

For ambiguous natural language, previous methods mainly
consider issues of missing partial information, anaphoric
reference, and high-level verb. Such natural language de-
scriptions still contain partial task-related information indi-
cating what objects to be manipulated and what actions to
be performed. In this work, we consider implicit requests
that convey the terminal state but not the actions. As shown
in Fig. 2, we propose to admit explicit human instructions
or two types, and implicit human intents, the last of which
might require incorporating environmental information for
full understanding. Explicit human instructions are divided
into complete and incomplete instructions. The complete
instruction describes ordered sub-steps with full actions and
objects, while the incomplete one has partial information.
There are four main reasons for missing information: miss-
ing object, missing action, high-level verb and anaphoric
reference. Though composed with different low-level words,
explicit instruction and implicit intent have the same high-
dimensional semantic meaning in the robotic task domain.
Semantic textual similarity tackles determining how similar
two texts’ semantic meanings are. We apply this insight and
propose to pretrain the linguistic encoder on semantic textual
similarity between explicit human instructions and implicit
human intents.

The Siamese network is a network consists of twin net-
works which take different inputs but are coupled by a com-
mon objective function. Following the design of Sentence-
BERT [48], we employ BERT followed by a pooling layer as
the language modeling network to learn separate embeddings
for each sentence in the pair. With two embeddings, we
compute cosine similarity between them and use the mean
squared error as the objective function:

:%Z(

i=1

Sex * Sim

max([|sex 5 - [simll2€)

Ests(semv Sim 6) )2 (6)
where s., and s;,, are embeddings for explicit instruction
and implicit intent, n is the number of sentence pairs and €
is set to 1e — 8. The implementation is with the code'.

D. Instruction Following Framework

Figure 3 depicts the flow of the proposed hybrid, modular
instruction following framework whose four components are:
Perception, Goal Learning, Task Planning, and Execution.
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Fig. 3. Human instruction following framework, designed for performing
manipulation tasks by following human instructions. It takes vision and
language as input to decode what sequence of actions to execute.

The hybrid design leverages the strengths of semantic feature
learning from deep neural networks and of symbolic ma-
nipulation from symbolic planners. The Perception module
interprets the visual scene and its contents. The Goal Learn-
ing module uses visuo-linguistic input to output symbolic
goal specifications for the Task Planning module. The Task
Planning module generates a sequence of low-level actions.
The Execution module performs planned actions based on
operational information obtained from the Perception mod-
ule. Modular design benefits include: easy analysis of failure
modes; easy component replacement with better methods;
and easy augmentation with other components, such as life-
long learning; to make the entire framework more complete
and powerful.

This work uses Mask R-CNN [49] as the Perception
module to detect objects and their category segmentation
masks. Categorical information is detected and correspond-
ing affordances and attributes are retrieved from a knowledge
base to build the initial state for PDDL. The Goal Learning
module uses the vision-and-language learning network de-
scribed in §IV-A for goal state prediction. The Task Planner
module is a PDDL planner that outputs a primitive action
sequence from the detected initial and goal states. In addition
to the action plans, robotic Execution requires operational
information, which comes from Perception module detection
masks.

V. VISION-AND-LANGUAGE MODEL BENCHMARK

This section introduces three training datasets with cor-
responding training policies for learning three tasks. The
evaluation metric is then discussed along with benchmarking
to evaluate each component in the vision-and-language goal
learning framework, and the two proposed pretraining tasks.
For model and training details, see the public code '.

A. Datasets

The three datasets are symbolic goal learning, scene graph
parsing, and semantic textual similarity datasets. The dataset,
its generation code and training code is public!.

1) Symbolic Goal Learning Dataset: For learning sym-
bolic goal representation from vision and language, we cre-
ated a dataset containing 32,070 images paired with natural
language, which could be either an explicit instruction or
implicit intent. It covers five daily activities: picking and
placing, object delivery, cutting, cooking, and cleaning. We
employ the simulator AI2THOR to generate image and
sentence pairs, which is automatically annotated with PDDL



TABLE I
BENCHMARKING VISION-AND-LANGUAGE SYMBOLIC GOAL LEARNING

Model RGL Accuracy(%) | Speed (fps)
Grid-LSTM-Concat 77.24 476.19
Grid-LSTM-Add 80.29 476.19
Grid-LSTM-Mul 72.47 476.19
Region-LSTM-Concat 81.35 9.14
Grid-BERT-Concat 89.02 230.95
Grid-BERT-Add 85.69 226.41
Grid-BERT-TDAtt-v1 [29] 92.61 215.98
Grid-BERT-TDA(tt-v2 [29] 93.54 210.71
Grid-BERT-CoAtt [30] 92.30 120.70
Grid-BERT-Concat (SGP) 93.55 230.95
Grid-BERT-Concat (STS) 90.96 230.95
Grid-BERT-Concat (SGP+STS) 94.54 230.95

goal states. Besides imperfect natural lanugage, we also
include imperfect vision where one or both objects involved
in the task are not in the image. With such input, the vision-
and-language symbolic goal learning network is expected to
predict the missing object to be “unknown” in the goal state
output.

2) Scene Graph Parsing Dataset: Based on the Symbolic
Goal Learning Dataset, the Scene Graph Parsing dataset was
created via annotating data with object category, affordance,
attribute and their relationships. It covers 32 categories, 4
affordances, 5 attributes and 4 relationships in total.

3) Semantic Textual Similarity Dataset: The created Se-
mantic Textual Similarity dataset is for learning the similar
semantic meaning between explicit human instructions and
implicit human intents for robotic tasks. The same five daily
activities are in the dataset: picking and placing, object
delivery, cutting, cleaning, and cooking. It contains 90,000
pairs of explicit instruction and implicit intent, generated
from a manually created list of templates. For the purpose
of improving the diversity, sentences are automatically para-
phrased by Parrot [50] during the generation process. Rank-
ing sentence similarity uses 5 for similar sentences (same
action, subject, and object) and O for dissimilar sentences
(different actions). Partial scores for when the actions agree
are: 3.3 when only one of subject or object agree, and 1.7
when neither agree. The scores are automatically generated
from known goal classes.

B. Evaluation Metric

Evaluating the prediction accuracy of the vision-and-
language models should test for symbolic matching to the
PDDL goal state entities, which are action, subject, and ob-
ject. We propose the Robotic Goal Learning (RGL) accuracy
score:

RGL = 6(a,a, §,s,0,0) = 0(a,a) - 6(8,s) - 5(6,0). (7)

where 0(-) is the Kronecker delta function, & and a are
predicted and ground-truth action label, and the same holds
for the subject s and object o labels.

C. Benchmarking Vision-and-Language Goal Learning

The test configurations in Table I permit comparison of
different implementation choices regarding the core compo-
nents, plus the effect of attention models and pre-training.
The baseline visual and and language encoders will employ
Grid features and LSTM, respectively. Baseline pretraining
is image classification and masked language modeling. For
reference, the LSTM-only and BERT-only models perform
at 67.07% and 55.91%, which shows the value of adding
visual information.

Regarding the fusion component for the baseline model,
three simple strategies were tested: concatenation (concat),
addition (add) and multiplication (mul). The best of the three
tested for the baseline LSTM implementation is addition.
Switching from Grid to Region features, with concatenation,
leads to a small boost in performance of 4.11% but a
50x drop in processing rate. Grid feature encoders show
better trade-off between prediction accuracy and inference
speed if real-time is important. Considering a change in the
language encoder to BERT, there is a boost in performance
to 89.02% and 85.69%, for fusion by concatenation and
addition, respectively. The 2x drop in timing is not serious,
thus BERT+concat would be the more sensible option to use.
It provides a 11.78% boost in performance and still operates
beyond frame-rate.

Regarding attention versus pre-training, the attention
model implemented were Top-Down Attention (TDAtt) [29]
and Co-Attention (CoAtt) [30]. There are two top-down
attention variants: directly feeding the fused embedding for
classification, and concatenating the fused embedding with
extracted visual and linguistic features. Pre-training tests
involved Scene Graph Parsing (SGP) and Semantic Textual
Similarity (STS) tasks. Independent SGP+STS pre-training
of the two encoders provided the best boost over the baseline
pretraining methods without affecting processing time. While
attention models did improve the outcomes, they are known
to require customized training policies to operate well [51].

VI. MANIPULATION EXPERIMENTS
A. Experimental Setup

Manipulation experiments in AI2THOR evaluate the ro-
bustness and generalization of the proposed instruction fol-
lowing framework to novel scenarios. Five different daily
activities are conducted, which include Picking and Placing,
Object Delivery, Cutting, Cleaning and Cooking. There are
four different levels of scenarios for each task. Easy scenario
only contains involved objects in the scene. Medium scenario
incorporates irrelevant objects. The first hard scenario further
includes multiple candidates while the second hard scenario
misses partial or all objects required to perform the task. Due
to missing objects in the scene, task planning is not expected
to find valid solutions and execution is also not required for
the second hard case. There are 10 scenarios for each level
and either novel instruction or intent will be paired with the
image. The model, which consists of grid feature encoder,
BERT and concatenation and is pretrained on both tasks, are
employed.



TABLE I
RESULTS OF MANIPULATION EXPERIMENTS IN AI2THOR. (P: PERCEPTION; GL: GOAL LEARNING; TP: TASK PLANNING; E: EXECUTION)

Pick_n_Place Object Delivery Cut Cook Clean Average (%)
(%) P | GL | TP E P GL | TP E P GL | TP E P | GL | TP E P GL | TP E P | GL | TP E
VSR | 96.7 | 80.0 | 80.0 | 80.0 | 96.7 | 86.7 | 83.3 | 83.3 | 100.0 | 86.7 | 86.7 | 86.7 | 96.7 | 73.3 | 70.0 | 70.0 | 96.7 | 90.0 | 90.0 | 83.3 || 97.3 | 83.3 | 82.0 | 80.7
ISR | 90.0 | 70.0 | 100.0 | 100.0 | 100.0 | 60.0 | 100.0 | 100.0 | 100.0 | 80.0 | 100.0 | 100.0 | 90.0 | 50.0 | 100.0 | 100.0 | 100.0 | 90.0 | 100.0 | 100.0 || 96.0 | 70.0 | 100.0 | 100.0
SR |95.0]77.5| 85.0 | 80.0 | 97.5 | 80.0 | 87.5 | 83.3 | 100.0 | 85.0 | 90.0 | 86.7 | 95.0 | 67.5| 77.5 | 70.0 | 97.5 | 90.0 | 92.5 | 83.3 || 97.0 | 80.0 | 86.5 | 85.5
TABLE III

COMPARISON OF MANIPULATION EXPERIMENTS TO EXISTING METHODS

V2A [5] || ALFRED [6] || Mod [10] [[ HiTUT [27] SGL
% | s U s u s [u S [ U |[[SGL]UGL[ UE
SR [44.7 [ 402 [[70.3 | 499 ][ 71.9[63.0 |[87.7 ] 80.6 || 945 | 80.0 | 855

[VSR[238[ 64 [[703] 49.9 [[71.9]63.0[[87.7] 80.6 || 96.7 [ 833 [ 80.7 |
[ ISR [650 [ 799 - | I - || 888 | 70.0 [1000 |

B. Manipulation Metrics

To evaluate each module in the instruction following
framework, each manipulation experiment trial is considered
as successful if it satifies four conditions. For Perception, all
involved objects are required to be correctly detected, which
constructs the initial state for PDDL. For Goal Learning,
PDDL goal state should be correctly predicted. For Task
Planning, generated action sequence is composed of correct
ordered actions. Given that AI2THOR does not support
physical modeling of robot-object interaction, Execution
evaluation requires the Intersection-of-Union (IoU) of de-
tected and ground-truth masks for objects to be over the
0.5 threshold. Based on [5], Valid Success Rate (VSR) and
Invalid Success Rate (ISR) are employed for easy, medium
and the first hard, and the second hard scenarios, respectively.
VSR evaluates tasks with valid solutions while ISR evaluates
ones where there is no valid solution. Success Rate (SR) is
used to take the average over all valid and invalid tasks.

C. Outcomes and Analysis for Manipulation Experiments

Results of manipulation experiments are collected in the
Table II, with a more detailed breakdown in the public
repository!.For the easy, medium and the first hard scenarios
which have valid solutions (VSR row), results show that the
82.0% success rate of task planning is close to the product of
97.3% for perception and 83.3% for goal learning. Closeness
indicates approximate independence of the perception and
goal learning modules. The average success rate (SR row)
includes all four scenarios. The 97.0% success rate for
perception and 1% performance drop from task planning to
execution shows that the existing perception module works
well. The goal learning module is the main performance
bottleneck. Further study into training methods and network
design for symbolic goal learning is needed to improve
the performance of the SGL human instruction following
framework.

For the second hard scenario which has no valid solutions
(ISR row), the 100% ISR of task planning is higher than
the product of perception and goal learning. Though the
goal learning module fails to predict a missing object as
unknown, the Perception module does not detect it (Percep-
tion has a low false positive rate). With an incomplete initial
representation the symbolic task planner correctly outputs no

solution, which shows the value of the symbolic component.
With a symbolic module computing the primitive actions se-
quence, the system can decide whether the task is achievable.
Connectionist approaches instead predict incorrect sequential
actions since illogical outputs are not recognized.

D. Outcomes and Analysis for Comparison

Since the proposed method focuses on manipulation tasks
which do not include navigation, we collect experimental
results of manipulation sub-tasks for existing connectionist
approaches in Table III for performing approximate compara-
tive analysis. Seen and Unseen scenarios are denoted as S and
U. Table III shows that SGL outperforms all methods with
an 85.5% Unseen task success rate (SR), thereby supporting
the hypothesized benefits of the proposed hybrid, modular in-
struction following framework. Since several of the baseline
methods cannot handle invalid requests, consider only the
valid requests (VSR row). SGL Unseen performance matches
that of HiITUT. Both are the top performing methods. HITUT
has self-monitoring and backtracking; the robotic agent may
try again if it observes a failure. As a simple, single-
pass approach, SGL matches a more complex, multi-pass
approach.

Analyzing the Seen performance for valid requests, SGL
has the highest VSR. While this means SGL has a rel-
atively high Seen/Unseen performance gap, it also means
that removing the gap would result in much higher task
understanding and execution performance (by 9% relative
to the next best Seen performer, HiTUT). The higher upper
bound suggests that using joint visuo-linguistic features to
predict goal state predicate labels (action, object, subject)
may be preferred to the output types in the baseline methods.
In short, a language-to-language translation process may be
better than a language-to-action conversion process.

The SGL VSR drop from 96.7% to 83.3% is caused by
two factors. First, the training dataset doesn’t include images
with multiple candidate objects, which causes domain shift.
Grid-based feature encoding may have trouble localizing the
correct regions of interest. Secondly, the main issue is with
the cook tasks (see VSR row for Cook columns). One reason
is the appearance of the microwave and stove burner in
the same image leading to confusion about which device to
cook with. For cooking tasks with the microwave as object,
the network mispredicted to use stoveburner by 44.4%. The
other reason could be the imbalance training data between
unknown and microwave cases such that microwave was
predicted into unknown. The performance drop for the ISR
case is less relevant because the symbolic reasoning pipeline
correctly rejects these cases. A benefit of this property is
that the goal learning module can focus on boosting valid



request reasoning over invalid request reasoning. Comparing
the SGL VSR performance drop (13.4%) to sequential action
predictors V2A (17.4%) and ALFRED (20.4%), indicates
that symbolic goal learning is less sensitive to Unseen
scenarios than seque{}&ifl %:Ct)ll(\)lr(lj ]Plrj%c%g:lgion.

To address human instruction following with diverse natu-
ral language inputs, we propose to compensate for implicit or
missing information via vision and present a hybrid, modular
framework consisting of symbolic goal learning via deep
netural networks and task planning via symbolic planners.
We propose a vision-and-language goal learning framework,
which consists of the visual encoder, linguistic encoder,
multi-modal fusion and classification. Benchmarking com-
pares the impacts of different techniques for the different
components. For learning generic features and boosting the
performance when fine-tuning on specific tasks, we propose
to separately pretrain the visual and linguistic encoder on
scene graph parsing and semantic textual similarity tasks.
We show the effectiveness of the two pretraining tasks
on a model with visual grid features, BERT, and fusion
by concatenation, Evaluation of the instruction following
framework in the AI2THOR simulator shows robustness to
novel scenarios. The hybrid framework combines the strength
of semantic feature learning from deep neural networks and
capability of rejecting invalid tasks from symbolic planners.
The modular design of the framework enables easy analysis
of the cause of failure, simple replacement of each compo-
nent, and incorporation of more modules. For future work,
we will work on incorporating modules such as feedback
mechanism to deal with dynamic environments and domain
adaptation for real world application.
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