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Abstract

The present paper studies the BV-type regularity for viscosity solutions of the
Hamilton-Jacobi equation

w(t, ) + H(Dyu(t, z)) =0, (t,z) € (0,00) x RY,

with a coercive and uniformly directionally convex Hamiltonian H. More precisely, we
establish a BV bound on the slope of backward characteristics DH (D u(t, -)) starting
at a positive time t. Relying on the BV bound, we quantify the metric entropy in
wiht (]Rd) for the map S; that associates to every given initial data uy € Lip (Rd),

loc
the corresponding solution S;ug. Finally, a counter example is constructed to show

that both D,u(t, ) and DH (D u(t,-)) fail to be in BV}, for a general strictly convex
and coercive H € C? (R?).
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1 Introduction
Consider a first-order Hamilton-Jacobi equation
u(t,x) + H(Dyu(t,z)) =0,  (t,z) € (0,00) x RY, (1.1)

where u : [0, +00) xR? — RY, Dyu = (ugy, - - ., uy,) and H : RY — R is a Hamiltonian. Due
to the nonlinear dependence of the characteristic speeds on the gradient of the solution, in
general a classical solution v will develop singularities and the gradient D,u will become
discontinuous in finite time. To cope with this difficulty, the concept of viscosity solution
was introduced by Crandall and Lions in [11] to guarantee global existence, uniqueness
and stability of the Cauchy problem, under suitable assumptions on the Hamiltonian H.
In particular, assume that



H(p)

(H1) H et (]Rd) is coercive and strictly convex, i.e., lim —— = 400 and
pl=oo [P

H(tp1 + (1 —t)pg) < t-H(p1)+ (1 —t)H(pz), te(0,1), p1,p2 € RY,

The Hamilton-Jacobi equation generates a Hopf-Lax semigroup of viscosity solutions
{St : Lip (]Rd) — Lip (]Rd) }t>0 such that for every initial data ug € Lip (]Rd), the corre-
sponding unique viscosity solution of equation with «(0,2) = up(x) is computed by
the Hopf-Lax representation formula

7 —

u(t, z) = S¢(up)(r) = min {uo(y) +t-L (y)} (1.2)
yeRd t

where L is the Legendre transform of H. In addition, if H is strongly convex, i.e., there

exists a constant A > 0 such that

D?H(p) > X\-1; for all p e RY,

then wu(t,-) is twice differentiable almost everywhere and D,u(t,-) has locally bounded
total variation. Thanks to Helly’s compactness theorem, the map S; : Lip(R?) — Lip(R%)
is compact in Wlloi (Rd). A natural question arises on how to measure the degree of
compactness of S;. This involves using the e-entropy, introduced by Kolmogorov and
Tikhomirov in [14]:

Definition 1.1 Let (E, p) be a metric space and F be a totally bounded subset of E. For
e > 0, let No(F|E) be the minimal number of sets in a covering of F by subsets of F
having diameter no larger than 2e. Then the e-entropy of F' is defined as

He(FIE) = logy No(F|E).

In other words, it is the minimum number of bits needed to represent a point in a given
set F' in the space E, up to an accuracy € with respect to the metric p. Such an approach
stems from a conjecture of Lax in [I5] for scalar conservation laws with uniformly convex
fluxes. A complete answer to Lax’s conjecture was provided in [5, [6, 12]. This study
was also extended to scalar conservation laws with nonconvex fluxes in [8, [10] and to
hyperbolic systems of conservation laws in [6, [7]. Recently, the first results on the e-
entropy for sets of viscosity solutions of were obtained in [3, [4]. The authors proved
that the minimal number of bits needed to represent a viscosity solution of up to an
accuracy € with respect to the Wh1-distance is of the order e =% under the strongly convex
condition on Hamiltonian H. There the main idea was to provide controllability results for
Hamilton-Jacobi equations and a compactness result for a class of semiconcave functions.
However, such a gain of BV regularity does not hold for with a general strictly convex
Hamiltonian H and the previous approach to finding e-entropy of the solution set cannot
be applied.

In this paper, we first study the fine regularity properties of viscosity solutions to (|1.1])
when H satisfies (H1) and the following assumption of uniformly directional convexity:



(H2) For every constant > 0, it holds that

: DH(p) — DH(q) p—q>
inf , = A > 0. 1.3
p#4€B(0,r) < |DH (p) — DH(q)|" |p — 4| (13)

Notice that strong convexity on H implies (H2) but not vice versa (e.g., H(p) = |p|*).
Moreover, in the scalar case (d = 1), holds for every H € C%(R) with H” > 0, without
requiring strong convexity. Furthermore, we refer to Remark which gives a sufficient
condition for (H2) in R? with d > 2. By the Hopf-Lax representation formula , it is
well known from [9] that the set of slopes of backward optimal rays through (¢, z), denoted

by
{57 e, cummgn (s 12 (552))

yeR

reduces to a singleton b(t,2) = { DH (D u(t,x))} for almost every (¢,z) € [0,00) x R? and
can be viewed as an element in L™ (Rd). Towards the sharp estimate on e-entropy of the
semigroup S, we establish a BV bound on b(t, -).

Theorem 1.2 Assume that H satisfies (H1)-(H2). For every t > 0 and ug € Lip(R?)
with a Lipschitz constant M > 0, b(t,-) has locally bounded total variation and its total
variation |D;b(t,-)| over an open and bounded set Q@ C R of finite perimeter is bounded

by
Vid

o

Dab(L () < (AM+

diam(€2)

t o

) - HEL(0Q) +
for some constants vy, Apr > 0 depending on M and H.

Intuitively, the uniformly directional convexity of H yields a bound on the directional
derivatives of b(t, -) in terms of div ,(b(¢,-)). Indeed, to prove Theorem we provide an
upper bound on the quotient |D,b(t,-)|/|div zb(¢, -)| for a suitable sequence of approximate
solutions, which converges uniformly and monotonically to the given solution. In turn, the
approximations of b will converge (in the sense that their graphs converge with respect
to the Hausdorff distance). As a consequence of Theorem for every t > 0, the map
St : Lip (Rd) — Lip (Rd) is compact in wit (Rd).

loc

In the second part of the paper, we shall use the bound on the total variation of b(t,-) to
quantify the compactness of S; for t > 0. More precisely, given constants m, M, R,T > 0,
consider the set of initial data

Ui, 2= {1 € Lip(E") : [5(0)] < m, Lip[a] < M}.

We establish upper and lower estimates for the e-entropy of the following solution set at
time T

ST,R (U[ij]) = {ULDR v E Sy (U[mJ\/[}) }

with (g = (=R, R)? and v . denoting the restriction of v on L.
R



Theorem 1.3 Assume that H € C*(R?) and satisfies (H1)-(H2). There exist constants
C1,C%, Ry, Ry > 0 such that for every € > 0 sufficiently small,

o (o (1)) = (Sratthmn) W) < (e ()

Here, @7, U are strictly increasing functions which depend on H and will be explicitly
defined in Section 4. In Remark 4.2 we particularly consider H(p) = |p|?* for a > 1, which
satisfies (H1)-(H2) and show that in this case

He (ST,R(Z/{[mJM])‘WL1 (DR)) ~ e (20-1)d

Using Theorem and a result in [13], the e-entropy of the sets of slopes of optimal
rays starting at time 7" in LllOC (Rd) is found to be of the order e~¢. Thus, to achieve the
upper bound in the above theorem, we establish a quantitative relation (depending on
the nonlinearity of H) between the Wll-distance of two solutions and the L!-distance

of slopes of two corresponding optimal rays. Finally, towards the derivation of the lower
bound on H. (ST, R(Ll[m M])‘Wl’l (DR)), we study a controllability result for 1) In
particular, we show that a solution to (1.1)) with a semiconvex initial condition preserves

the semiconvexity on a given time interval, provided the semiconvexity constant of the
initial data is sufficiently small in absolute value.

The remainder of this paper is organized as follows. In Section 2, we collect preliminary
results and definitions related to semiconcave functions, BV functions and Hamilton-Jacobi
equations. In Section 3, we prove the BV-type regularity for viscosity solutions. Relying
on this result, in Section 4 we establish a sharp estimate on the e-entropy of the map Sp.
Finally in Section 5, we construct a counter-example to show that if H € C?(R?) satisfies
(H1) but not (H2) then both D,u(t,-) and b(¢,-) fail to be in BV, in general.

2 Notation and preliminaries

Given a positive integer d and a measurable set Q C R%, throughout the paper we shall
denote by

e |- |, the Euclidean norm in R? and

By(z,R)={y e RY: |z —y| <R}  forall R > 0;

(-,-), the Euclidean inner product in R%;

®, the tensor product;

01, the boundary of €;

[z,y], the segment joining two points z,y € R?;

#5, the number of elements in any finite set .S;

Vol(D), the Lebesgue measure of a measurable set D C R?;



e wgy:= Vol(B,4(0,1)), the Lebesgue measure of the unit ball in RY;

e L1(Q), the Lebesgue space of all (equivalence classes of) summable real-valued func-
tions on (2, equipped with the usual norm || - [[g1(q) (we shall use the same symbol
in case u is vector-valued);

e L°(£2), the space of all essentially bounded real-valued functions on © and [|u||g,e(q)
is the essential supremum of a function u € L>°(£2) (we shall use the same symbol
in case u is vector-valued);

o WhL! (Q), the Sobolev space of functions with summable first order distributional
derivatives and [ - [|w1,1(q) is its norm;

e C(Q), the space of continuously differentiable real valued functions on Q;

o (! (Q,Rd), the space of continuously differentiable functions u : Q@ — R¢ with a
compact support;

e Lip(Q2), the space of all Lipschitz functions f : @ — R and Lip[f] is the Lipschitz
seminorm of f;

e H*(E), the k-dimensional Hausdorff measure of £ C R%;

e For any function f, the function f\_ 0 is the restriction of f on (;

e I, the identity matrix of size d;

la] ;== max{z € Z: z < a}, the integer part a.

2.1 Semiconcave and BV functions in R¢
2.1.1 Semiconcave functions

Let us recall some basic definitions and properties of semiconcave (semiconvex) functions
in R%. We refer to [9] for a general introduction to the respective theories.

Definition 2.1 A continuous function u : @ — R is semiconcave with a semiconcavity
constant K if for all x,h € RY with [x — h,z + h] C Q, it holds that

u(z 4+ h) +u(x — h) — 2u(z) < K - |h)%.
We say that
- u is semiconvex (with constant —K ) if —u is semiconcave (with constant K);

- u 1is locally semiconcave (semiconver) if u is semiconcave (semiconvex) in every
compact set A C €.

We denote the distributional gradient of a semiconcave function w by Du and for every
x € Q with Q C R? open, we define the superdifferential and the subdifferential of v at
respectively by

Dtu(x) = {p € R?: limsup uly) = u|(33) — |<p,y —2) < 0} ,
y—x

Yy—x




D™ u(x) :== {p € R : lim inf uly) —ul@) = (py — @) > O} .

y—a ly — |

It is clear that D¥u(z) is convex and D~ u(z) = —D¥(—u)(z) for all z € Q. From
[9, Proposition 3.3.4, Proposition 3.3.10], the superdifferential of a semiconcave function
enjoys the following properties.

Proposition 2.1 Given a convex and open set @ C R%, let u : Q — R be semiconcave
with a semiconcavity constant K. Then

(i) The superdifferential D u(x) is a compact, convex, nonempty set for all x € .
Moreover, the set-valued map x — DT u(z) is upper semicontinuous;

(11) DY u(x) is a singleton if and only if u is differentiable at x. Furthermore, if D u(x)
is a singleton for all x € ), then u € C1(Q);

(iii) For every xi,x2 € 0, it holds that

(p2—pr,wg —w1) <K -|lzy—ml?,  pi€ DYula),i € {1,2}.
From (ii) if u is both locally semiconcave and locally semiconvex then u is in C1(f2) as
shown in [9, Corollary 3.3.8]. This is crucial to prove further regularity for viscosity

solutions in Proposition which allows us to construct a backward smooth solution of
(1.1). To complete this part, for every constant r, K > 0, let us define the set

SCprk) = {v € Lip(R%) : Lip[v] < 7 and v is semiconcave with constant K} . (2.1

From the proof of [3, Proposition 10], one can easily obtain a lower bound on the e-
entropy for the set {DULDR v € SCp, K}} in L' (CJg) which will be used to establish a

lower estimate on the e-entropy of a set of viscosity solutions in subsection

Corollary 2.2 Given any v, R, K > 0, for every ¢ > 0 sufficiently small, there exists a
subset Q[}fm of SCy k1 such that

1 <Kwde+1 ) d

R Bir,Kye :
#g[r,K] > 2°IRKIE ARk 3d9d*+4d+3 1y 9 (d+1)

and
> 2¢ for allv#wegﬁm.

HDULDR — DwLDR Ll (DR)

2.1.2 Functions of bounded total variation

Let us now introduce the concept of functions of bounded variation. We refer to [2] for a
comprehensive analysis on this topic.



Definition 2.3 The function u € LY(Q) is a function of bounded variation on Q C R?
and said to be in BV (Q,R™), if the distributional derivative of u, denoted by Du, is an
m X d matriz of finite measures D;u® in Q) satisfying

m m d
Z/ udivp® doe = — ZZ/ efdDiu®  for all p € [Cg(Q,Rd)]m.
a=1 Q a=1i=1 Q

We denote by |Du|(€2) the total variation of u over Q, i.e.,

|Du|(Q) = sup {Z/ udive® dx : @ € [Ccl(Q,Rd)}m ylelloo < 1} )
a=1 Q

We recall a Poincaré-type inequality for bounded total variation functions on convex do-
mains that will be used in the paper. This result is based on [I, Theorem 3.2].

Theorem 2.4 (Poincaré inequality) Let @ C R? be an open, bounded, conver set with
Lipschitz boundary. For any u € BV (2, R), it holds that

m(€2)

/‘u(z)—uﬂ dr < diam(})
Q

= 1Dul(®)

where

1
ug = Vol @) /Qu(a:) dx

18 the mean value of u over €.

To complete this subsection, let us recall a result on the metric entropy for a class of
functions with bounded total variation which will be used in subsection For every
R, M,V > 0, we consider a class of uniformly bounded total variation functions on [Ig

Finay) = {1500 >Rl <MIDAGD <V @2

By a slight modification in the proof of [I13, Theorem 1], one can obtain the following
upper bound on the e-entropy of Fg a7,y in L' (Og).

=

6RV 2 RV

Corollary 2.5 For every 0 < € < min {SV+2M’ 2V (W) }, it holds that

d
6dv/dRV
He (f[R,M,v} ) LI(DR)) < 48Vd- <E> : (2.3)
Proof. By the definition of e-entropy, we have
He (Firaw) | BOn) < d-He (Froann | 11Or) (2.4)

with
Py = {700 > Rl ) < MIDSAOR <V

7



Consider a class of real-valued bounded total variation functions

Biravy = {9:10, Rl = [0, M]: [Dg[([0, R]) < V7}.

RV
From [I3, Lemma 2.3], for every 0 < ¢ < —3 one has

17TRV

Ne (B[R,%V,V}‘Ll([OaR])> < 2
and this implies that

N (Bransn[ 10, R) < 578 (B |E 0. ) < 27

2

RV SM
In particular, for every 0 < € < VT such that N < QR?V, it holds that

He (B[R,M,V}‘Ll([O,R])> = log, (/\/6 <B[R’M’V]‘Ll([O’RD)) _ 18RV

3

Using the above estimate, one can follow the same argument as in the proof of [13, Theorem

2 a
3.1] to obtain that for every 0 < ¢ < min { ORV 2V (RV> }, it holds that

o
1 (6v/drv "
e (P | 00) < 35 (22
and then yields (2.3). .

2.2 Semigroup of Hamilton-Jacobi equation
Consider the Hamilton-Jacobi equation (1.1)) under the assumptions (H1)-(H2). Without
loss of generality, we shall assume that the Hamiltonian satisfies further conditions

H0)=0 and DH(0)=0, (2.5)

otherwise the transformations = — x + tDH(0), u(t,-) — u(t,z) +¢- H(0) and H(p) —
H(p) — (DH(0),p) reduce the general case to this one. Before recalling the concept of
viscosity solution to (1.1)), let us give a sufficient condition for the assumption (H2).

Remark 2.6 Let H be in C?(RY). Assume that there exists a constant X > 0 such that

D*H(p) = |D*H(p)|- A(p),  Alp) > X1y (2.6)

with A(p) being a d x d matriz and |D?>H (p)| denoting the matriz norm of D*H (p). Then
H satisfies (H2).



Proof. For any p # q € R?, by mean value theorem, it holds that

1
DH@)=DH(@ = [ D*Htp+(1=00)- (o= )

1
= [/0 A(tp+ (1 —t)q)| D*H(tp + (1 — t)q)|dt| - (p — q)

and
1
IDH(p) — DH(q)| < |p—d|- /O D2H(tp + (1 - t)g)|dt.

Using ([2.6)), we estimate

1
(DH(p) = DH(q).p—q) = /0 (0= )T Altp + (1= D)) (p — )| - [D2H (tp + (1 — t)q)|dt

1
> A lp—qf? /O ID2H (tp + (1 — )g)|dt
> A-|DH(p) — DH(q)| - |p —q|
and this implies ([1.3)). O

As we mentioned in the introduction, classical smooth solutions of in general break
down and Lipschitz continuous functions that satisfy almost everywhere together with
a given initial condition are not unique. To handle this problem, the following concept of
a generalized solution was introduced in [11] to guarantee global existence and uniqueness
results.

Definition 2.7 (Viscosity solution) We say that a continuous function u : [0, T] x R?— R%
is a viscosity solution of (1.1)) if:

(1) u is a viscosity subsolution of (L.1), i.e., for every point (to,z0) € (0,T) x R? and
test function v € C'((0,+00) x R?) such that u—v has a local mazimum at (to, o),
it holds that

ve(to, xo) + H(va(to,aso)) <0,

(2) wis a viscosity supersolution of , i.e., for every point (to, zo) € (0,T) x R? and
test function v € C'((0,400) x R) such that w — v has a local minimum at (to, o),
it holds that

ve(to, xo) + H(va(to,aso)) >0.

By the alternative equivalent definition of viscosity solution expressed in terms of the
subdifferential and superdifferential of the function as in [I1] and because of Proposition
one immediately sees that every C! solution of (1.1)) is also a viscosity solution of .
On the other hand, if u is a viscosity solution of then u satisfies the equation at every
point of differentiability. Let us state a result on further regularity for viscosity solutions
proved in [3, Proposition 3] which says that smoothness in the pair (¢,z) follows from
smoothness in the second variable.



Proposition 2.2 Let u be a viscosity solution of in [0,T] x RE. If u(t,-) is both
locally semiconcave and semiconvex in R? for allt € (0,T) then u is a C* solution of
in (0,7] x R.

The viscosity solution of the Hamilton-Jacobi equation (.1) with initial data u(0,-) =
ug € Lip (Rd) can be represented as the value function of a classical problem in calculus
of variations, which admits the Hopf-Lax representation formula

u(t,x) = min {t-L(x_y) +uo(y)}, t>0,zeRY, (2.7)
yeRd t

where L € C! (Rd) denotes the Legendre transform of H, defined by
L(g) :=max{p-q—H(p)}, qeR" (2.8)
pERI

The main properties of viscosity solutions defined by the Hopf-Lax formula, which are of
interest to this paper are recalled below (cfr. [9, Section 1.1, Section 6.4]).

Proposition 2.3 Let u be the viscosity solution of (L.1]) on [0, 4+00) x R, with continuous
initial data ug, defined by (2.7). Then the following hold true:

(i) Functional identity: For all z € R? and 0 < s < t, it holds that

u(t, ) = min {u(s,y) +(t—s)- L(a;—y)}

yeRd — S

(i1) Differentiability of u and uniqueness: (2.7) admits a unique minimizer vy, if
and only if u(t,-) is differentiable at x. In this case we have

Yo =T — 1 - DH(Dxu(t, :U)), Dyu(t,z) € D™ uo(yy).

(tit) Dynamic programming principle: Let t > s >0, z € R?, assume that y is a
s S
manimizer for (2.7) and define z = 77 + (1 — {) y. Then y is the unique minimizer
over R? of

zZ—w

wb—>s~L<7) + up(w), w € RY.
s

As a consequence, the family of nonlinear operators {St : Lip (Rd) — Lip(Rd)} >0 defined
by the Hopf-Lax representation formula, i.e., Spug = ug and B

o r(*T~Y d
Stuo(x)f;relﬁgr}i{t L( ; )—l—uo(y)}, t>0, zeRY (2.9)

enjoys the following properties:

(i) For every ug € Lip(R?), u(t,z) := Syuo(z) provides the unique viscosity solution of
the Cauchy problem (1.1)) with initial data u(0,-) = uo.

(ii) (Semigroup property)
Stisug = St Ssug, t,s > 0,ug € Lip(Rd).

(iii) (Translation) For every constant ¢ € R we have that

St(ug + ¢) = Syug + ¢, t > 0,up € Lip(R%). (2.10)

10



3 BV bound on b(t,-)

Throughout this section, we shall assume that the Hamiltonian H satisfies (H1)-(H2)
and 1) For a given initial datum ug € Lip (Rd) with Lip[ug] < M, let u be the solution
of (1.1f) with «(0,-) = up and

b(t,z) = {w_y Ly € cm} . Cyu = argmin {uo(y) oL <”’“;y> } . (31)

t yeR4
It is well known from [9] that b(t,z) € DH (D% u(t,z)) and
bt )l ray < Anr := max{[q]| : L(q) < Mlq[}. (3.2)

Indeed, to achieve (3.2) one observes for any y, € C;, that

L(a:—yx> < (@) —uoya) _ 12— el

t t ot

In order to establish a BV bound on b(t, ), we approximate u by a monotone decreasing
sequence of continuous functions u, : [0, +00) x R? — R defined by

up(t,x) == yrrelgl {uo(y) +t-L (x;y) } , Z, =277 (3.3)

Considering the associated set of slopes of backward optimal rays through (¢, x)

bott) = {* T ey, o —aemin fwe) oL (50} @)

yEn

we prove the following lemma.
Lemma 3.1 For every t > 0, it holds that

lim |un(t,-) —u(t,)]|ec =0 and limsup [[by (¢, )L ey < A (3.5)
n—oo

n—oo

Proof. 1. Fix n > 1 and (t,z) € (0,00) x R%. Pick any 3 € C}',, let z be in Z, such that

1z — 7| < V/d27"'. From (3.2) and (3.3)), we estimate

xr—z xr—y
ult.a) = ) < o) o]+ |2 (25) -2 (2]
< | M+ max IDL(q)| | - |z - 9]
| <Anrt 5l

and this yields the first equality in (3.5)).
2. For every y,, € Cf', and 2’ € R?, it holds that

Un(t, ') — up(t,z) < t- [L (zl_tyff”> )y <5U—tyxn>]

< DL <”“’_ty"> (@ — )+ O(|2 — z|).

11



From 1'{} there exists Z € Z,, with |z — Z| < v/d27"F! such that

r— T—Z
UO(ym,n)+t'L<tymL> SUO(.T)—Ft'L( 7 >

Recalling that Lip[ug] < M, we get

+ max L(q).
lal< 5744

an—1l.¢

From ([2.5)), it holds that L(0) = 0 and thus the above estimate yields the second part of
(3-5)- O

Now we restate and prove Theorem which is our first main theorem.

Theorem 3.2 Assume that H satisfies (H1)-(H2) and (2.5). For every t > 0 and
ug € Lip (Rd) with Lip[ug] < M for some M > 0, the function b(t,-) has locally bounded
total variation and its total variation |Dyb(t,-)| over an open and bounded set Q C RY of
finite perimeter is bounded by

Vd

1
t

D) < - (AM+

with vy = inf Ar and A\, being as in (1.5).
r>max|g <a,, [DL(g)]

Proof. The proof is divided into three steps.

diam(€2)

p ) -HEHOQ) +

1] (3.6)

Step 1. Consider the sequence of approximate solutions defined in (3.3]). Fixing n > 1
and t > 0, we write Z,, = {y1,92,..., Yk, .. }. For any i # j, the set

Oij = {x eR?:ug(y;) +t- L <m_tyz) <ug(y;) +t- L (tyf)}
is an open subset of R? with a C'-boundary

Lij= {w eR? :ug(y;) +t- L <‘r—tyl> = up(yj) +t-L (W)}
Set V; := U#m21 0, ;. From and , we have

ba(t,z) = ””_ty zEV;, i>1. (3.7)

In particular, b, (¢, ) is in BVje.(R%) and

1, 1 _
Diba(tia) =Ml D (0= 90) @ n(@HL) oy
i#j 3.8)
) d 4 1 d—1 (
div ;by(t,z) = 7 HT + 2% Z (y; — yi’yi(x»HLavinavj’
i#]



where v;(z) is the inner normal vector to V; and is computed by

7Yy TYi
o) — D) = DL(%)
DL(34) - DL(%5%)

for H* ! a.e. z € OV, ﬂavj.

Given an open and bounded set Q2 C R? of finite perimeter, one gets from (3.8) that

‘own(t, -)—If’ Q) < %-Z\yj—yi\-del(szﬂav,ﬂavj). (3.9)

i#]

For a fixed z € Q" 0V; (N V), setting p; := DL (*5%) and p; := DL (z_tyj>, we have

D — i
vi(w) = ~——,  y;—y; = (DH(p;) - DH(p)))t.
Ip; — pil
Recalling (1.3)), (3.5, and (3.7)), we obtain that
1
lvi —y;l < - YRl (yj — yi, vi(z)) (3.10)

with G, := max |DL(q)| satisfying lim (8, = max |DL(q)|. Thus, (3.8)-(3.9)
|Q|San(t7')”Loo(]Rd) n—0o0 |q|SA]M
yield

\Dxbnu,-)— @ < -

div gbn(t, ) — ‘ (). (3.11)

d
Step 2. Let us now provide a bound on |div,b,(¢,-) — n (©2), which will lead to a
bound on |D, b, (t,-)[(€2). Pick a point o € Q. From (3.7)), (3.8)) and (3.10)), the function
dn(t, ) == '_txo — by (t,-) is in BVjoe(RY) and
. 1 _
div pdp(t,2) = o - ; i = yj (@) HE
i#j

is a positive Radon measure. In particular, this implies that

Idiv d,, (L, )|(Q) = /Qdivxdn(t, ) da.

Let p. € C2°(R?) be a family of mollifiers, i.e., pc(z) = e~ p (g) for p € C°(RY) satisfying

p(z) = 0, p(x) = p(=x), supp(p) C Ba(0,1) and / p(x)dx = 1. For every test function
R4
Pe = XQ * pe, it holds that

/ wediv ,dy(t,-) dox = —/ dy(t,7) - Ve (r)dr < |[dn(t, )| oo (ray / Ve (z)|dz.
R4 R4 R

Thus, taking e — 0+, we get

/ div oy (t,7) de < dn(t, oo gay - HO(O9)
Q

13



and (3.11) yields
1

Dbt @) < 5 (I mie +

n

diam(2)

t
Step 3. Finally, to achieve by taking n — oo in , we first claim that by, (¢, -)
converges to b(t,-) in Ll . Since the sequence by(t,-) is bounded in L*°(R?) and the
set (Un>1 P UEt) has zero Lebesgue measure with Xy = {z € R? : #b(t,z) > 2}, it is
sufficient to show that

) - HITL(00) + ‘f QL (3.12)

lim by(t,z) = b(t,x) forallz e RN [ | J =7 %

n—00
n>1

Given r € R%\ (Un>1 PO U Et> , assume by a contradiction that there exists a subsequence
by, (t,z) converging to some w # b(t,z). From Lemma we have

u(t,z) = lim wuy, (t,x) = lim wo(x —tby, (t,z)) +t- L(by,(t,x))

N —r00 Nk —00

= wuo(z —tw) +t- L(w) = uo(m—tw)+t-L<x_(xt_tw)>.

Thus, b(¢,x) is not a singleton and this yields a contradiction. By [2, Proposition 3.13],
(3.12) and Lemma the function b, (t,-) converges weakly to b(t,-) in BV (2, RY) with

D,b(t,)[(Q) < liminf|Dyby(r,)|(©)

1 diam(2) de1 Vd
— |- (A — - o)+ — -2
lim sup Ag, ( vt t ) R o) + t i
n— o0
and this yields (3.6)). O

As a direct consequence of Theorem the following holds.
Corollary 3.3 The map St : Lip (Rd) — Lip (Rd) 18 compact in Wlloi (Rd) for every
time T > 0.
Proof. Given
Uy = { € Lip(R?) : [a(0)] < m, Lipla] < M |
for any sequence of initial data (tn)n>1 C Upm, ), We set
v (x) = Sp(uy)(z) for all z € R%, n > 1.
From Theorem it holds
|DH(Dvy)||Le < Ay and  DH(Dvy) € BVioe(RY).

and

sup v(z) < m+MR+T- sup L(q) for all R > 0.
|z|<R IpI<An

By Helly’s theorem, there exists a subsequence (v, )g>1 and w € BViy.(R?) such that

14



e vy, (0) converges to some vy € R;
e DH(Dwvy, ) converges to w point-wise and

lim HDH(DUnk) — w||L1(Bd(0 R) = 0 for all R > 0.
k—o0 ’

This implies that Dv,, = DL(DH(Dwvy,, )) converges to DL(w) point-wise and
lim [|Dvn, — DL(w)llL1(y0,8) = 0-

Nnj—>+00

Thus, denote by

_ 1 /

R

Uy, = : vp, (z)dz
F |Ba(0, R)| JB,(0,R) ()

the average of vy, in B,4(0, R), we have

lim (ﬁfk—vnk(O)) = lim / / Duy, (sx)(x)dzds
B4(0,R)

= deds = T
|Bd0 R)| / /BdOR )

and this yields lim,, T}fk = Ty + o". On the other hand, by the Poincaré inequality, it
holds that

_ R -l
(H(Unk Unk) (U”k v"k) Ll(Bd(OvR)))

Therefore, the sequence (vy, ), is a Cauchy sequence in WH(By(0, R)) for every R > 0
and thus converges to v in wht (]Rd) Ul

loc

R- HDUW — Duv,

kllLi(o,R)

4 Metric entropy in W!! for Sy

In this section, we shall quantify the degree of compactness of the map St : Lip (Rd) —
Lip (]Rd) for a given time 1" > 0. More precisely, given constants m, M, R > 0, considering
the set of initial data

Upm21] = {a € Lip(R?) : a(0)] < m, Lip[a] < M}, (4.1)

we establish upper and lower estimates for the e-entropy of the following restricted solution
set at time T in W1 (g)

ST,R (U[m,M]) = {ULDR :vE ST (U[m,M]) } (4.2)

In order to do so, let us introduce continuous real-valued functions Vs, ®5; defined on
[0, M] for M > 0 such that Uy;(0) = ®,,(0) =0 and

|DH(p) — DH(q)|

Upy(s) =s- _ min

Pa€Ba(0.M),lp=q|>s P —dl for all s € (0, M] (4.3)
®r(s) =s-  min max ‘DZ )HOO

peBa(0,M—5) \g€Ba(p,$)

15



Here, | D?H (q)(v)| is the matrix norm of D?H (q)(v) and || D*H (q) HOO = max ‘D2H(q)(v)|.

o]
Notice that both maps s +— Wy/(s) and s — ®ps(s) are strictly increasing. Moreover, the
strict convexity of H implies that

0<Un(s) <Py(s) < M- max |D°H(p)|, forallse (0,M]
pEBd(O,M)

For convenience, we now rewrite Theorem as our second main theorem.

Theorem 4.1 Assume that H € C*(RY) and satisfies (H1)-(H2). Then for every e >0
sufficiently small, it holds that

—d —d
€ 11 €
. — < ) < . — . .
Ch <‘1>M <R1>> < H. (ST,R(u[m,M})‘W (DR)> < O (‘I’M <R2>> (4.4)
for some constants C1,Co, R, Ry > 0 depending only on m, M, R,T > 0.

Before proving Theorem in the next two subsections, we present some cases in which
the estimates in (4.4) are sharp.

Remark 4.2 Given a > 1, the Hamiltonian H(p) = |p|?® is not strongly conver but
satisfies (H1)-(H2). In this case, we compute for all v,p € RY that

2a[p* @ V> < (DH?(p)(v),v)

20l o] + dafa - DIp/X2|(p,v)?
2a(2a — 1)[p2eDju]2.

N

Thus, there exist constants aq,as > 0 such that
152071 < Wyy(s) < Bpy(s) < aps?@! for all s € [0, M],

and yields
He (ST,R(U[WM])‘WM (DR)) ~ c—(2a-1)d

Remark 4.3 If H € C%(RY) is strongly convex then H satisfies (H1)-(H2) and
a1s < Wpar(s) < Ppr(s) < ags  forall s € [0, M],
for some a1, a9 > 0. Thus, yields the same result as in [3] that
He (18U 1) W (Tg)) = e~
for every e > 0 sufficiently small.

In the one-dimensional case, from Theorem we can obtain an estimate similar to that
established in [8, Remark 1.4] for scalar conservation laws with strictly convex fluxes.
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Remark 4.4 For d = 1, every strictly convexr H € C*(R) satisfies . In addition,
assume that H has polynomial degeneracy, i.e., the set Iy = {w € R: H"(w) =0} # & is
finite and for each w € Iy, there exists a natural number p, > 2 such that

HP* (W) # 0 and  HY(w) = 0 forallje{2,...,p}.

The polynomial degeneracy of H is defined by p := Max p,. For every M > argmax,,cr, Pw,
welyg

there exist constants o, ag > 0 such that
ap - sPH < Wp(s) < Pp(s) < ag - sPH for all s € [0, M].
Thus, implies that
He (S8 U 1) [ W (Tg)) ~ 7P
for every e > 0 sufficiently small.

4.1 Upper estimate of H, (ST7R(L{[m7M})‘W1’1(DR))

Towards the upper estimate of H,. (ST7 R(U[W M])‘Wl’1 (DR)) in |D we first provide a
bound on the Ll-distance between elements Du; and Dug in terms of the Ll-distance
between DH(Duy) and DH (Dusg) for every uj,us € ST7R(Z/{[m7M}) by using the function

g
Wy, defined in 1) Observing that the map s +— () is monotone increasing and
s

Ur(lp—q|) < |DH(p) — DH(q)| for all p,q € B4(0, M), (4.5)
we prove the following lemma.

Lemma 4.5 For any ui,uz € S7.r(Upm ), it holds that

IDur = Dusly ) < (28 1) - 0 (o= baly ) (16)

with by := DH(Duy) and by := DH(Dus).

Proof. For simplicity, setting o := ¥}/ <Hb1 - bgHL1 © )>, we claim that
R

b1 () — ba(x)]
by — b2||L1(DR)

|Duq (z) — Dus(z)| < - maxy 1, for a.e. z € Up. (4.7)

Indeed, assume that |Duj(z) — Dug(z)| > «. From (4.5)), it holds that

_ |Du) - Dus(a)

|DH(Dui(z)) — DH(Dus(x))|
|Duy (z) — Dua ()|

= U (|Dur(z) — Dua()])

|Duy (x) — Duz()| - [b1(z) — ba()]

- [b1(z) — ba(x)].
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By the monotone increasing property of the map s — W,/(s)/s, one has

a __bi(z) = bo(a)]

|Duy(z) — Dug(z)| < T |by(z) — ba(x)| = by — bQHLI(DR)

and this implies (4.7). Hence, the L!-distance between Du; and Dus is bounded by
| Duy — Du2||L1(DR) = /[]R |Duy(x) — Dug(x)|dx

ga‘/ 1+ [b1(2) — ba(2)| dz = (2R 4+ 1)a
k b1 — b2||L1(DR)

= (2de + 1) Uy} <Hb1 - bz!Ll(DR)> (4.8)

and this yields (4.6)). O

Proof of the upper estimate of . (ST7R(L{[m7M])‘W1’1 (DR)) in Theorem
1. From Theorem for any v € St r(Ujm, ), one has

|DH(Dv)| (Ogr) < Vr and ||”HL<>°|([]R) <mrp (4.9)

with Vp .=

d2¢RA-1 2V dR d2¢R?
= Ay + v —|—\[ and mp := m+VdMR+T- sup L (q).
o T T lg|<Ans

In particular, the average value o7 of v satisfies

el

-R

vV'= — v(x) de € |[—mp,mr].

G b, v < | |

Given ¢ > 0, we cover the interval [—myp, my] by Ko = {‘I’n}? /)J + 1 small intervals
M 5

with length 2W}; (¢') such that
—mp, mr) U B a;, Uy () ) for some a; € [—mp, m7]
and then decompose the set St r (U[m, M}) into K./ subsets as follows:
St.r (Upm, ) U A, A= {v € Srp Upmnan) : 9% € B (ai, ¥yl ()}
Recalling Definition we have

N (ST,R (Um.an) ‘WLI([]R ) ZN (

DR)> (4.10)
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for all € > 0.

2. For a giveni € {1,2,..., K.}, we are going to provide an upper bound on the covering
number N, (Ai‘Wl’l (DR)> by introducing the set B; := {DH(Dv) : v € A;}. From
and (4.9), one has that B; C Fig . vp) With Fg ;. v, defined as in . By Corollary
if ' > 0 is sufficiently small then it holds that

Moy (BJL Og)) <TT ()% T =48Vd- (12dﬁRVT)d. (4.11)

By the definition of H.//, (B’Z'|L1 (DR)), there exists a set {vl, .. ,Vﬁg,} C A; with G <
2l such that

B
U i(bj,e),  bj := DH(Dv;).

In particular, for any given v € A;, it holds that

|DH(Dv) — bjOHLl(DR) < & for some jy € 1, B

Recalling Lemma we obtain that

IN

(2de + 1) LTy <||DH(DU) - bj0||L1(DR)>

< (2de + 1) U )

|Dv — DVjollLl(gR)

and the Poincaré inequality in Theorem yields
H (v B 5R) - (VJO - V]Ro) HLl (DR) = \/&R || Dv — DVj0||L1 ([]R)
< VdR (zde + 1) ).
On the other hand, since v, v;, € A;, one has
[0 =¥ < [0 —ai] + [V —ai| < 203/ ().
Thus, the Whl-distance between v and v, can be estimated by
lo=Viollwis () < 17 =95l Brl+ 1Dv = Dvill, g,
H (U - T)R) - (Vjo - Vjo)HLl([]R) <R"- \111741(5/)
with Rt := (2?R? + 1) (3 + V/dR). Finally, by choosing &' = W (
Ber

.Ai Q U BW1,1(VZ',€) and
i=1

R+)7 we have that

Ne (AW (OR)) < B = I (v (55)) '
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Therefore, from (4.10]), one gets

—d
N (7.8 Usn )W (Or) ) < QstRW - 1) L (0 (7))

and this yields the second inequality in (4.4)) for € > 0 sufficiently small. UJ

4.2 Lower estimate of H, (STVR(LI[myM])‘WM(DR))

In this subsection, we shall prove the first inequality in (4.4]). In order to do so, for any
given p € R? let ®(-,p) : [0,00) — [0,00) be the strictly increasing continuous function
defined by ®(0,p) = 0 and

P(s,p) =s- < max ‘DQH(p’)HOO> , s> 0.

P'€Ba(p,3)
From the definition of ®; in (4.3)), it holds that

Pp(s)=  min  D(s,p), s € [0, M]. (4.12)
peBa(0,M—%)

Let us recall the constant in the assumption (H2)
_ DH(p) — DH(q) p—q
)\7‘ - HLf )
p#aeB(0,r) \|[DH(p) = DH(q)|" [p = g

The following proposition shows that a solution to (1.1]) with a semiconvex initial condition
preserves the semiconvexity on a given time interval, provided the semiconvexity constant
of the initial data is sufficiently small in absolute value.

> > 0, r > 0. (4.13)

Proposition 4.1 Assume that H € C?(R?) and satisfies (H1)-(H2). Given T, M,r >0
and p € By (O, M — %), let u be a semiconvex function with semiconvexity constant —K
such that

7“)’ <)\M r

D-a(RY) C By (p, r K< 505 (4.14)

2
Then, the map (t,z) — Si(a)(x) is a classical solution for 0 <t <T and

DS,(@)(z) € By (p, g) for all (t,z) € (0,T] x R

Proof. For simplicity, we set
u(t, z) := Se(a)(x) for all (t,z) € [0,00) x R%.

It is well-known from [9, Theorem 5.3.8] that u(t,-) is locally semiconcave for every ¢ > 0.
Thus, by Proposition it is sufficient to show that w(t,-) is semiconvex with some
semiconvexity constant —C' < 0 for all ¢ € [0, 7], i.e., for any fixed (¢,z) € [0,T) x R?, it
holds that

u(t,z + h) + u(t,x — h) — 2u(t,z) > —C - |h|* for all h e RY. (4.15)
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By the Lipschitz continuity of u(¢,-), we can assume that u(t,-) is differentiable at « £ h.

In this case, b(t,z & h) reduce to a single value denoted by b* = DH(p*) with p* =

Dyu(t,z &+ h). Moreover, since z & h — tb* is a minimizer in min {E(y) +t-L (mitﬂ) },
yeR

it holds that

p* € D-a(z £ h — tb*) C By (p, g) C B4(0, M),
(4.16)
u(t,z £ h) = a(x £ h —tbt) +t- L(b*).
Since @ is semiconvex with semiconvexity constant —K, denoting x* := x & h, from (iii)

of Proposition [2.1] one can get that

(pt—p a2t —2 —t(b*—b7)) > —K-|2h—t(b* —b7)|?

and
(" —p bt —b) = e (bt b 2 pt
< 2Kt|bT —b | + 8Kt‘h’2 + Q‘th‘ pt—p|
< 2K7DH(p") - pH(po) + LI A ey

Since p* € By(p, 5), it holds that

o(r, p)

|DH(p™) — DH(p™)| < +

pT—p7|.

Thus, recalling

DH(p) —DH(q) p—gq
|DH (p) — DH(q)|” |p — 4

using (4.14) and (4.16)), we estimate

AM = inf <

n > >0, M >0,
p#q€B(0,M)

_ b(r,p _ _
2K T|DH(p*) ~ DH(p ) < 257 - PP D) - DH(p)| - [p* - p7

A _ A _ _
<% IDH(p") = DH(p )| - [p* —p | = - [b* —b7| [p" —p]|

and

An
2

On the other hand, from (4.13)) we deduce that

8K|h|2 2|k

R
(p"—p,bT—b7) < . .

bt —b~|-|pT —p | + -p | (417)

(p* —p,b"—=b")=(p" —p ,DH(p") -~ DH(p"))
> Ay - |[DH(pY) = DH(p )| [p"—p = - b" =b7 |- |p" —p|
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and (4.17) implies that

A _ _ _
St =) [pt —p7| < 8KIM® +2/h] - [pT —p . (4.18)

Observe that if |[pt — p~| < K|h| then

@(r, p)

_ _ _ Ko(r,p
b+ b7 = [DH(p*) - DH(pT) < TP py < BREEL

Otherwise, (4.18]) implies that )\7M -Jt(b™ —b7)| < 10|h|. Hence, it holds that

(4.19)

|t(b+—b7)| < <KT(I>(T’p)_|_ 20).’}1‘.

r Av
By the Hopf-Lax representation formula, we have

u(t,z £ h) = a(z+h—tb*) +t-L(bY)
bt + b~ bt + b~
u(t,z) < u<x—t';>+t-L<;>.

Using the convexity of L and semiconvexity of @, we estimate

2
bT + b~
2

> K- [2h—t (bt —b7)|* > —8K|h|* — 2K [t(b* — b™)?

KT®(r.p) 20\
4+—<7fn10—+> ]-\hF

u@x+hr+wum—h%—%ﬁﬂﬂZtIL®+%ka1_QL(b++bﬂ

+mx+h—ﬂﬁy+mx—h—ﬂry—%<x—r

> 92K - .
M

and this yields (4.15)). O

Relying on the above Proposition and Corollary we now proceed to prove the first

inequality in .
Proof of the lower estimate of . (ST7R(Z/{[m7M])‘W171(DR)) in Theorem

1. Let us recall that U, = {u € Lip(R?) : |a(0)| < m,Lip[u] < M} and
SCl.k) = {v € Lip(R%) : Lip[v] < r and v is semiconcave with constant K } .

For any given r > 0 and p € R%, we denote by

)\M r
/4 = = <) T = — -
WP . {(p vt (p,) v € SC[QM}, K= 5
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From (4.12

, there exists p, € By(0, M — 5) such that ®(r, p;)

= min  ®(r,p). Now
pGB(O,Mfg)
consider the operator 7 : WI™ — Lip (]Rd) such that for all ¢ € WE| it holds that
T() = o+ 5r(p)(0), () = —p(—) (4.20)
By reversing the equation ([1.1)), we will show that
T (WE) € St (Uo,any) - (4.21)
Indeed, for a given ¢ € WF™ | we define the following function

wo(-) == =T (p)(—) = () = Sr(-)(0).

Since @ # DV(z) C By (pr, 5) for all z € R?, wy is semiconvex with a semiconvexity
constant — K, and

D~ wo(z) = pr + D p(—x) C By ( - f) for all 2 € RY.

Let w(t,z) = Si¢(wo)(x) be the unique viscosity solution of (1.1)) with initial datum

w(0,z) = wp. Recalling Proposition and property (ii) in Proposition we have
that w is a C! classical solution of (1.1)) in (0,7] x R? and

me(Taw) - Ed < T %) - Ed(O, M)

Moreover, from the translation property of S; in (2.10), it holds that

w(T,0) = Sr(wo)(0) = St (¢ — S1(9-)(0)) (0) =0
Thus, the continuous function w : [0, 7] x R? — R, defined by

for all z € R%.

u(t,z) = —w(T —t,—x) for all (t,z) € [0,T] x R,
is also a C! classical solution of (1.1)) in (0,7) x R? with

U(Ta ) = T(SO)() and U(O, ) = _w(Ta _') € Z/{[O,M}-
In particular, u(t, z) is a viscosity solution of (1.1)) in [0, T] x R?, so that by the uniqueness
property of the semigroup map Sy, one has

St(uo)(-) =T(@)(),  wo() =—w(T,—)
and this yields (4.21)).

2. For every ¢ > 0, we select a finite subset A. C [—=m,m] such that

20 Ry 2e
#A, = { . J and |a; —a;| > JaRd

for all a; # aj € A..

(4.22)
Again from the translation property of S; in (2.10f), one has

St(Uman) 2 | Sr(a+Uoan) = A+ Sr(Uon)
acA.
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and (4.21)) implies that

St (U[m7M]) DA +T (WP, (4.23)
By Corollary for every ¢ > 0 sufficiently small, there exists a set G C W¥" such that
d+1 d
#g > 261.67(13 ﬁl = 2 ! ' WdR KT
3d9d?+4d+3 | 2 (d+1)

and

> 2 for all ¢ # ¢ € G.
L' (D)

Since DT (¢)(x) = Dg(x) for all x € R?,

”D@LDR - D¢LDR

> 2 for all ¢ # ¢ € G.

D760, - DT, i

Recalling (4.22]), we have

He (S1.0 U 1) [W (Or) ) = logy (#A. - #0) = log, Q

>92 forall f#ge A+ T (W)

fI_DR o ‘gI_DR Wil (DR)

and thus

d nd
2RmJ)+51.
€

. R4
Finally, by choosing r = % with R™ := ijlw, we compute

. 5:1.8R)‘Md.5d
"TATR @y (=) 0 sm2 8T oy ()

and get

e (St ) W(0) = g (572) " o () o (|22

This particularly yields the first inequality in (4.4]) for every e > 0 sufficiently small. [l

5 A counter-example

In this section, we provide an example to show that if the Hamiltonian H € C?(R?) satisfies
(H1) but not (H2) then Theorem fails in general. Consider a smooth, coercive and
strictly convex Hamiltonian

33
H(p):@'P%JFP%a p = (p1,p2) € R%.

24



The function H does not satisfy (H2) as

3% 03 92
lim < DH (p1,p?) — DH(0,0)  (p1,p7) >: lim (43 pl’zpl) (proed) \ _,
n=0 \ |DH (p1,p}) — DH(0,0)]" |(p1,p7)] /  p1=0 ‘(g 3 2p2)" |(p1, 7))
4 1’ 1
The associated Lagrangian L of H is computed by
4
L(g) = |3 +4¢;  forallg=(q1,¢2) € R*.

For any given ¢ = (g1, ¢2) € R?, one has

L(q) = L(g—q) — a2+ = g —@al? + (2 — @)?
i — @Y% = |Y? @
— — 12
2 2 2

Let v : R — R be such that

=0l s @

— for all s € R.
2q2

Va(s) =
In particular, assume that g, = | |*? with |§| = ¢ for some § > 0, it holds
’Ylj(o) = q27 7@(@1) = 07
and the following curve which connects two points (0, g2) and (g, 0)

{(5,74(5)) : s €[0,8]} < [0,6] x [0,6%3] if 1=0>0
r, =
{(s,74(s)) : s € [-6,0]} C [-0,0] x [0,0%/3] if g =-6<0

has a length > 6%/3. From this observation, we shall construct an initial datum uy €
Lip(RR?) such that both D,u(1,-) and b(1,-) = DH(D,u(1,-)) do not have locally bounded

variation where u is the solution of (|1.1)) with «(0,-) = ug.

Step 1: For given 0 < ¢ < 1, we first construct an initial datum % € Lip(R?) with

Lip[u] < 1 such that

supp(a) C [~26,2¢),  [b(L,)|([~€. %), |Dsu(L, )([-€,4%) > 1 (5.1)

where u is the solution of (I.1)) with «(0,-) = 4. For every 0 < § < ¢, we consider the

periodic lattice
_ 2/3 o o 2.7 !
y, = (116,120 , L€ Zo = {(V],1h) € 2% : v + 15 € 2L}
and the corresponding regions

Q = {zeR*:Lx—y)<Llx—ys) forall #.}
v+ {q e R?: L(q) < L(g+y, —ys) forall/ # L}
yo + [0,0] x [-0%%,6%/7].

N
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with 9Q, = [y, + (Tgr UTg) U [v—1) + Tg+ ] U [We—(o1,1) + Tg-| and ¢& = (£6,6%3).
Let go : R?> = R and g1 : Z2 — R be such that

g(z) =Lz —vy,), x €Q,LE Zy,
go(y) = max{gi(z) - Lz —y)}, yeR.
z€R2
Notice that both gy and g are Lipschitz with Lipschitz constant

Ms = sup IDL(q)| = O(s"?).
q€[—8,6]x[—82/3,52/3]

Thus, for § > 0 sufficiently small, one can construct @ € Lip(R?) with Lip[a] < Ms and

3¢ 3017
swpp(n) © 2620, () = qol) forallye |55
Let u be the solution of (|1.1)) with «(0,-) = 4. At time ¢ = 1, we have

w(l,z) = min{a(y) + Lz —y)} = ulye) + L(z - ya)
yeR

for some y, € B(z,Ap) with Ay, = max{|q| : L(q) < M;s -|q|} = O(6Y/3). Thus, if

14
Ay < 3 then for all x € [£,£]> N, 1 € 23,
wlz) =  min  Aaly)+Lx-y)} = min  {gy) + Lz —y)}
ve[-%.%] ve[-%.%]

= min{go(y) + Lz —y)} = gqi(z) = Lz —u)
yeR

and the slope of backward optimal rays through (1, z) is
b(l,2) = DH(Dyu(l,z)) = x —y,.

For any two vertical adjacent y,,y, with Q,,Q, C [-£,£]? and z € 9Q, N I/, denoting
the inner normal vector to €2, by n(z), we compute

Dyu(l,z) = [DL(x —1y,) — DL(z — y,)] @ n(z)H}

L0Q,N0Q ’

Dxb(l,l’) = (yL _yb’) ®n(x)H1

LBQLOBQL/ :
From the definition of €,, one can show that H! (99, N 9Q,/) > 6%/3 and this implies

|D,b(1,)](Q2, UQy), | Deu(l,)|(QUQ,) > 623 1Y 0Q,NN) > 673

Moreover, since the number of open regions Q, C [, £]? is of the order 5;3, there exists
a constant C' > 0 such that
2 2
D1, 02), D1, ([, 0P) = € 618 = €
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Thus, choosing ¢ > 0 sufficiently small, we obtain (5.1)).

Step 2. Consider a sequence of disjoint squares [, = ¢, + [0,27"] x [0,27"] such that

U O, c [o, 1]2. From the previous step, for any n > 1 one can construct a sequence of
n>1
functions ug, € Lip(R?) with Lip[ug,,] < 1 such that supp(ug,) C [, and the solution

up, of (L.1) with uy,(0,-) = up(-) satisfies

Dl (e 3 Cn =) ) IDH D1 (5 O n)) 2 1

2

and

1
Lz —2) > m%l {uon(y)+ Lz —y)}, z¢€ <cn +t3 a, — cn)> .z e RA\O,.
yelln

Finally, set ug = Z g, € Lip(R?). The solution u of (I.1)) with u(0,-) = ug(-) satisfies

n=1
1
u(lali) = un(l,:c), T € <Cn+2'(Dn_Cn))
and this implies
D0, 1) > S DHDaun(L, )G > 31 = +oo.
n=1 n=1
Similarly, one has that |Dyu(1,-)|([0,1]?) = +o0. O
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