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Abstract— We propose a single-stage, category-level 6-DoF
pose estimation algorithm that simultaneously detects and tracks
instances of objects within a known category. Our method takes
as input the previous and current frame from a monocular RGB
video, as well as predictions from the previous frame, to predict
the bounding cuboid and 6-DoF pose (up to scale). Internally,
a deep network predicts distributions over object keypoints
(vertices of the bounding cuboid) in image coordinates, after
which a novel probabilistic filtering process integrates across
estimates before computing the final pose using PnP. Our
framework allows the system to take previous uncertainties
into consideration when predicting the current frame, resulting
in predictions that are more accurate and stable than single
frame methods. Extensive experiments show that our method
outperforms existing approaches on the challenging Objectron
benchmark of annotated object videos. We also demonstrate
the usability of our work in an augmented reality setting.

I. INTRODUCTION

In robotics and augmented reality settings, detecting object
poses in three dimensions is crucial. Once we start interacting
with an environment, objects that have been detected also
need to be tracked. Pose tracking encourages temporally
consistent pose predictions, allowing past observations to
inform current predictions. For robotic manipulation, pose
tracking can bring robustness to semantically meaningful
interaction over time, or aid in keeping virtual worlds in
sync with the robot environment.

The problem of 6-DoF pose tracking is a rich topic in
the computer vision community. Recent object pose tracking
methods [1], [2] have focused on the instance-level problem,
which assumes the 3D model of the target instance is avail-
able. Template matching [3], [4] is among the most popular
methods. It aims to compute the relative pose between two
images by comparing a rendered synthetic image from the
previous pose estimation with the current realistic input. By
harnessing the power of rendering techniques, these methods
can achieve remarkable accuracy and robustness. However,
the assumption of the known 3D model is not always valid
in realistic settings, where high-fidelity 3D models of novel
objects are costly to acquire.

In this work, we seek to extend reliable 6-DoF pose
tracking to categories of objects, while using input from
only a single RGB camera and no 3D instance meshes.
We consider a category to be a class of objects of similar
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Fig. 1. Overview of our CenterPoseTrack framework for category-level
6-DoF object pose tracking from a monocular RGB sequence. Our method
leverages a deep network and a filtering process to estimate and propagate
2D projected keypoints of 3D bounding box vertices, using an off-the-shelf
PnP process to compute the final 6-DoF pose and relative dimensions.
Please note that for simplicity ‘meta’ is used to refer to keypoints, bounding
boxes, sub-pixel offsets, uncertainties, etc.

physical shapes, e.g., cereal boxes, shoes, or mugs. Category-
level pose prediction presents an additional challenge to the
instance-level pose problem: whereas pose prediction for
known instances encompasses translation and rotation, for
categories of objects with varying size and shape we also
need to predict and track the object dimensions (i.e., width,
height, and length).

While the research community has given much attention to
the category-level pose estimation problem [5], [6], [7], [8],
[9], few works have considered category-level tracking. The
most relevant work to ours is 6-PACK [10], which takes as
input a single RGB-D frame (color + depth) from which
anchor points are generated in an unsupervised manner.
Using the anchor points, the algorithm tracks the object over
time by matching the points from the current frame with
the previous one. Another work, CAPTRA [11], uses point
clouds to track object positions over time. In contrast to these
works, we focus exclusively on leveraging the accessibility of
RGB-only inputs, while also integrating uncertainties which
current category-level pose tracking methods have not fully
explored.

The emerging trend of jointly performing detection and
tracking [12], [13], [14] has made progress in overcoming
possible issues with bad predictions coming from either
current or previous frames. Inspired by these successes and
our previous work [15] on category-level pose estimation,
we propose a keypoint-based solution to track objects in
three dimensions. We represent an object as a set of vertex
keypoints from its 3D cuboid projected onto the image plane.
This representation allows us to leverage PnP for computing
the final object pose. Figure 1 presents an overview of our
framework: Our tracker is composed of two parts: a deep
neural network and a filtering algorithm. The deep network
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takes as input the current observation, i.e., the image at
time t, as well as the observation and high-level predictions
from time t − 1. High-level outputs from the network are
then sent to our filtering process. We first compute a fused
distribution over predicted keypoints using Bayesian filtering
on the network outputs, followed by a Kalman filter to prop-
agate these predictions in time. In order to keep the object
size consistent, we leverage Bayesian filtering over all the
previous cuboid size predictions. With that information, the
final object pose is computed via PnP. Using the uncertainty
estimates returned by the Kalman filter, we render heatmap
inputs for the next frame, allowing the network to reason
about the likelihood of keypoint positions.

Our work makes the following contributions:

• We propose a category-level method called CenterPose-
Track for detecting and tracking 6-DoF object poses and
dimensions (up to scale) using monocular RGB video
as input.

• We show the importance of incorporating uncertainty
estimation, which is performed through both a tracklet-
conditioned deep network and a probabilistic filtering
process.

• The evaluation of the proposed method demonstrates
improved generalization and robustness on the Objec-
tron benchmark [16].

II. RELATED WORK

6-DoF object pose estimation. 6-DoF object pose estima-
tion infers the 3D translation and rotation of a target object.
State-of-the-art methods can be generally categorized into
template matching [17], [18] and regression techniques [19],
[20], [21], [22]. While these approaches have achieved
impressive results, they rely on the availability of an instance-
specific 3D CAD model of the object at training, annotation,
and/or inference time. In order to extend this body of
work, recent methods have explored the category-level pose
estimation, finding the 6-DoF pose of a previously unseen
object selected from a known object category, e.g., mugs
or shoes. In this context, prior work has explored learning
a normalized object coordinate space [5], matching pose-
dependent and pose-independent features separately [7], or
modeling deformation from the categorical shape prior [6].
Most of these methods leverage large collections of synthetic
3D CAD models to generate complex annotations of ren-
dered images during training time. An alternative approach
that is similar to our work directly regresses the 2D projec-
tions object keypoints [23], [16], using large-scale real-world
image datasets annotated with 3D object bounding box [16].
Our prior work [15] belongs to this category and lays the
foundation of our proposed tracking framework. Although
our previous detector has achieved state-of-art performance
on the Objectron dataset [16], we show in this work that it
does not keep temporal consistency across frames.

6-DoF object pose tracking. A natural extension to
single frame pose estimation is tracking objects over time.
Current instance-level tracking approaches can be divided

into two groups: probabilistic- and optimization-based meth-
ods. The former methods build frameworks on different
filtering strategies, including particle filtering [24], [25],
[26] or Gaussian filtering [27]. The latter aim to capture
the discrepancy between the current observation and the
previous state, then computes inter-frame change in pose
by minimizing the residual function in a least-squares man-
ner [1], [28], [2], [3], [4]. When extending tracking to
the category-level pose problem, the task becomes more
challenging as features cannot not be extracted from known
CAD models. The pioneering work of 6-PACK [10] proposed
a novel anchor-based keypoint generation neural network that
reliably detects the same keypoints from the point cloud
and uses them to estimate the inter-frame change in pose
through keypoint matching. CAPTRA [11] adopts a per-
part cannibalization module for point clouds, then uses two
separate networks to estimate the change of each part’s
coordinates and rotation between frames. While these depth-
based methods are successful, category-level 6-DoF pose
tracking problem from monocular RGB input has not been
fully explored.

Uncertainty modeling. Prediction uncertainty may be
decomposed into epistemic and aleatoric uncertainty [29],
[30]. Epistemic uncertainty arises in the model parameters
which reflect a limited set of training data, while aleatoric
uncertainty stems from sensor error or label noise. Many
efforts have been put in estimating the uncertainty of 2D or
3D bounding boxes in object detection [31], [32], [33], [34].
Most of them are based on the idea of direct modeling, which
assumes a particular probability distribution over network
outputs, and uses additional layers to estimate the parameters
of the hypothesized distribution. However, its importance has
not been fully realized for the category-level pose tracking
problem, where the intra-class shape variability within a
category remains a key challenge [15]. In this work, we lever-
age recent progress [35] on modeling aleatoric uncertainty
and apply it to predicting inter-frame keypoint displacement
and relative cuboid dimensions. These uncertainty estimates
serve as a crucial component for prediction fusion in the
downstream pipeline.

III. APPROACH

Inspired by CenterPose [15], we developed a similar
architecture that allows tracking of objects. Our approach
to category-level object pose tracking is illustrated in greater
detail in Figure 2. At a high level, the upper section describes
the inputs and outputs of the trained neural network. The
lower section depicts the filtering process that reasons over
network outputs and produces a final pose estimate. This
section presents the components used by CenterPoseTrack.

A. Background

We assume as input an RGB image of the current frame
I(t) ∈ RH×W×3 and the previous frame I(t−1) ∈ RH×W×3,
as well as the predictions for the tracked objects in the previ-
ous frame T (t−1) =

{
p
(t−1)
0 , p

(t−1)
1 , . . .

}
. More specifically,

each tracklet p is described by its object center (pcen ∈ R2),
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Fig. 2. Overview of our CenterPoseTrack method, which consists of two parts. TOP: Tracklet-conditioned network: At time t, the network takes as input
the current image frame It ∈ RH×W×3, along with the previous frame It−1 and rendered heatmaps from the prior tracklet at time t− 1 (dark blue). We
employ the CenterPose method [15] as the network. BOTTOM: Filtering process: Given the network predictions (light blue), we apply filters to update
the 2D keypoint locations as well as the relative cuboid dimensions. The obtained result is further processed by PnP to get the final 6-DoF pose. Finally,
predictions are rendered on new heatmaps as inputs for the next time step.

2D bounding box (s ∈ R2), 8 corner keypoints (pkey ∈
R2) with uncertainties (σkey ∈ R2), relative dimensions
(d ∈ R3) with uncertainties (σdim ∈ R3), and a unique
identity (id ∈ Z+). The goal is to detect and track objects
T (t) =

{
p
(t)
0 , p

(t)
1 , . . .

}
in the current frame I(t), as well

as assigning objects with a consistent id. If there are no
previously found objects, then the method is equivalent to
detection.

B. Tracklet-conditioned detection

A natural way to increasing temporal coherence is to
provide the detector with additional image inputs from past
frames. Considering the additional computation cost brought
by adding more images, we only include a single previous
frame [36]. We also render heatmaps (object center and
keypoints) from detections in the previous frame I(t−1) as
inputs to the neural network. In Figure 2, these inputs are
referred as Filtered center heatmap and Filtered keypoint
heatmaps.

We leverage rendering to include uncertainty from the pre-
vious frame’s prediction. Specifically we use a scaled Gaus-
sian distribution, where the scale k = max

(
1− c

a−σ
a−b , 0

)
,

and σ is the corresponding predicted uncertainty (we use
a = 9, b = 3, and c = 0.15).

The network is also trained to output 2D offset vectors
from the previous keypoint locations to current locations.
This offset prediction, similar to sparse optical flow, is an
efficient way to link points across different frames [36]. In
our experiments, we found that the network can estimate
the change in the scene and potentially recover occluded
keypoints at time t from visual evidence at time t− 1. With

the proposed design, the network is able to implicitly reason
over prior detections with temporal coherency.

C. Training data generation

The main challenge in training such a network comes from
generating realistic heatmap inputs as training examples. At
inference time, the heatmaps can contain an arbitrary number
of missing keypoints, predictions with localization error, or
even false positives. We employ two modes for data genera-
tion: 1) Using predictions from CenterPose [15]; 2) Modeling
the test-time error at training time, inspired by [37], [36]. For
the latter, three types of noise are applied to the ground truth
annotations for the object center and the corner keypoints.
Gaussian noise n ∼ N (0, σ2) is added to the locations. False
positives are added by rendering on the heatmap new points
with probability λfp. False negatives also remove randomly
points with probability λfn. In our final implementation, we
set σ = 1, λfp = 0.1, and λfn = 0.2 for the object center
while σ = 1, λfp = 0.05, and λfn = 0.1 for other keypoints.
The Gaussian noise is rendered based on a scale determined
by the noise level, where the scale k = max

(
1− αn−β , 0

)
,

α = 2 and β = 4.5. During noise simulation, keypoints
are rendered only if their corresponding object center has
already been rendered. We also randomly sample from all
frames I(k) where |k− t| < Mf near the current frame I(t)

to avoid over-fitting to the frame rate.

D. Uncertainty Modeling

Capturing uncertainties (due to perception inaccuracy or
sensor noise) provides valuable information for the tracking
pipeline. When directly predicting uncertainty as a network
output, it is common practice to impose a negative log
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likelihood loss function [29], [38]:

LNLL(y, ŷ, b̂) = log 2b̂+
|y − ŷ|
b̂

, (1)

where y refers to the ground truth label, ŷ is the predicted
output, and b̂ represents the predicted uncertainty. In con-
trast, we introduce a Kullback-Leibler (KL) divergence loss
function inspired by [35] for the displacement and relative
dimension outputs:

LKLD(y, ŷ, b̂, β) = log
b̂

β
+
β exp

(
− |y−ŷ|β

)
+ |y − ŷ|

b̂
− 1,

(2)
with label uncertainty hyperparameter β. The KL divergence
loss has a two-fold advantage over negative log likelihood.
First, the KL divergence is always greater than 0 while
the negative log likelihood goes to negative infinity as the
uncertainty → 0 and error → 0. Using the KL divergence
can prevent this individual loss term from dominating the
overall loss. Second, the shape of the KL divergence can
easily be controlled by the hyperparameter β, which is useful
for preventing the model from overfitting to noisy labels.

For better convergence, we modify Eq. (2) to:

LKLD+(y, ŷ, σ̂
2, β2) =

log
λσ̂2

β2
+
β2 exp

(
− (y−ŷ)2

β2

)
+ (y − ŷ)2

λσ̂2
− 1 +

1

2
λσ̂2,

(3)
where σ̂2 represents the predicted uncertainty and β2 rep-
resents the label uncertainty hyperparameter (set to 0.1 in
our experiments). We predict log λσ̂2 instead of σ̂2 and
adopt a compulsory gradient clipping step for the overall loss
(bound is set to 100) for better stability during the training
process. We also use 1

2λσ̂
2 as an additional regularization

term. Finally, λ is used as a coefficient hyperparameter which
is set to 0.25.

E. Filtering Process

Tracking methods have to answer the fundamental ques-
tion of how much confidence to have in the prior predictions
vs. the current ones. In this work, we have two ways to model
this trade-off. In Section III-B, we have already illustrated
how we incorporate the probabilistic heatmap rendering as
a network input. However, the network only has access to
a local window (2 frames), while information in the longer
horizon may be essential for accurate and stable tracking.

In order to leverage long horizon information (see bottom
of Fig. 2), we first fuse the keypoint heatmap (the heat
center) and the displacement prediction inputs via a Bayesian
filter [39], where input number n = 2 in our case and µ̂i
represents the corresponding 2D location prediction:

σ̂ =

(
n∑
i=1

σ̂−2i

)−1/2
, µ̂ = σ̂2

n∑
i=1

σ̂−2i µ̂i. (4)

Then, the updated keypoints with corresponding uncertain-
ties, and the predicted keypoint offsets, are fed into a Kalman
filter as observable variables. This allows us to represent

locations, uncertainties for the location estimates, and the
object velocities. A simple constant velocity model is used,
and the uncertainties for the velocity estimates are set at
20 in our experiments. As the relative dimension prediction
inputs stay the same for one specific object over time, we
employ another Bayesian filter [39] on the entire history of
their measurements. After the updates, the keypoint estimates
from the Kalman filter along with the estimated relative
dimensions, are fed to a Levenberg-Marquardt version of
PnP [40], producing the final 6-DOF pose output. Using the
projected keypoints with uncertainties, and the likelihood for
the center predictions, we render new heatmaps (Section III-
B) for the next timestep.

F. Loss Function

We adopt the focal loss for center Lpcen and keypoint
heatmaps Lpkey . We adopt the L1 loss for 2D bounding
box size Lbbox, center offset Loff, center tracking offset
Ltrack, keypoint offset Loffkey , and keypoint tracking offset
Ltrackkey . We employ our proposed KLD+ loss for displace-
ment LKLD+dis and relative dimension LKLD+dim . The overall
training objective is the weighted combination of these nine
terms.

G. Implementation Details

Our network was trained with a batch size of 32 on
4 NVIDIA V-100 GPUs for 15 epochs, starting with the
pretrained ImageNet weights. We use the Adam optimizer
with an initial learning rate of 2.5e-4, dropping 10x at both 6
and 10 epochs. On average, around 60 h are required to train
one category (using between 120k to 500k training images
depending on the category). Inference speed is around 8 fps
on an NVIDIA GTX 1080Ti GPU.

IV. EXPERIMENTAL RESULTS

In this section, we aim to demonstrate that our tracking
algorithm achieves state-of-the-art results on the Objectron
dataset [16] and that it alleviates the stability issues seen
with previous detection work [23], [15] when predicting over
multiple frames. We also demonstrate the use of CenterPose-
Track in a real-world augmented reality system.

A. Dataset

We evaluate our method on the Objectron dataset [16]
which contains 9 categories: bikes, books, bottles, cameras,
cereal boxes, chairs, cups, laptops, and shoes. There are
15k video clips with over 4M frames annotated with 3D
object bounding boxes, camera poses, sparse point clouds,
and surface planes. Categories with symmetric objects are
handled following [5], [15].

B. Metrics

Following [15], we report the following metrics: 1) aver-
age precision of 3D intersection over union (IoU) at 50%, 2)
mean pixel error of the 2D projection of cuboid vertices, 3)
average precision of azimuth at 15◦, and 4) average precision
of elevation at 10◦. For the symmetric object categories
(bottle∗ and cup∗), we maximize 3D IoU or minimize 2D
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[3.33/1/2.43] [0.22/1/0.72] [0.35/1/0.72] [3.41/1/2.39]

[1.27/1/0.91] [1.40/1/1.00] [1.5/1/1.11] [1.30/1/0.95]

Ground truth CenterPose [15] w/ filtering Ours

Fig. 3. Qualitative comparison between CenterPose [15], CenterPose
w/ filtering, and our proposed method on book and cup images from
Objectron [16]. The numbers show the relative dimensions of the 3D
bounding box. In this case, simple filtering cannot recover from inaccurate
predictions by the detector (Compare the second and third column).

pixel projection error by rotating the predicted bounding box
along the symmetry axis N times (N = 100 following [16]).

We also introduce a new consistency metric for tracking
of static objects, aiming to measure how much a prediction
changes in translation, rotation, and cuboid dimensions over
time. We propose to compare multi-frame predictions against
each other using 3D IoU in the world coordinate frame.
A perfectly consistent tracking system would have perfect
overlap between pairs of predictions, e.g., 3D IoU of 1.0.
Since n2 comparisons can be computationally intensive,
where n is the number of frames, we report the average
of consistency score computed within a 5-frame sliding
window.

C. Category-Level 6-DoF Pose and Size Tracking

We compare the proposed method against 6 baselines
including variants of our model: 1) MobilePose [23]: a
single-stage light-weight detector with two heads regressing
to the centroid location and the 3D bounding box keypoints.
2) Two-Stage [16]: a two-stage detector for 2D object de-
tection and 3D keypoint regression. 3) CenterPose [15]: our
prior single-stage detector. 4) CenterPose w/ filtering [15]:
our CenterPose detector extended with a simplified filtering
process, where the uncertainty extracted from the heatmap
is also used for the displacement output; and we directly
average the relative dimension outputs across the frames in
the fusion step. 5) Ours w/o filtering: an ablation of our pro-
posed method where the filtering process is removed. 6) Ours
w/o heatmap: an ablation of our proposed method where the
prior heatmap input is empty. 7) Ours: the complete version
of our proposed method. Similar to prior 6-DoF tracking
works [25], [27], [10], in this experiment, we assume the
ground truth pose and object size from the first frame are
given to all the tracking methods. We report the results in
Table I, where the numbers for MobilePose [23] and Two-
stage [16] are from [16].

When compared with frame-by-frame detection meth-

Fig. 4. Frames from a real-world video sequence where CenterPoseTrack
detected two shoes (left of each pair), and we overlay synthetic shoes (right
of each pair) with matching poses.

ods [23], [16], [15], our tracker achieves better results across
all metrics. Our method improves by a large margin over
the version without filtering, especially on the consistency
metric, which suggests that the filtering process serves as
a crucial component to explicitly alleviate the inter-frame
jitter problem. The version without heatmap inputs performs
badly with occlusion (cup and shoe), which illustrates that
our tracklet-conditioned mechanism provides a good prior
region for the network to reason about, easing the difficulty
when part of the object is not visible in the individual frame.

Figure 3 shows a qualitative comparison between Center-
Pose [15], CenterPose w/ filtering, and our method. For a
real-world demonstration of the method, see the supplemen-
tary video which shows an augmented reality application in
which poses and cuboid sizes are used to overlay a 3D model
on a video, as previewed in Figure 4.

D. Pose Error under Different Track Initialization Methods

Since our tracker is conditioned on the pose from the pre-
vious frame, it is important to test its robustness and stability
with different initializations. We compare 4 initialization
settings: 1) Ground truth pose and size: the same setting
as used in Section IV-C. 2) Ground truth pose and size with
noise: following [11], we simulate Gaussian noise (σscale =
20%, σrot = 5◦, and σtrans = 3 cm) to mimic initialization
error. 3) CenterPose [15]: we use the prediction from our
single-shot detector on the very first frame of each test video.
4) None: since our proposed work is a joint detection and
tracking approach, it can work without any external detector
for initialization.

The results in Table II highlight the robustness of our
method to the initial pose, demonstrating that it can work
independently of an external single-frame pose estimator.
Although, as expected, tracking performance decreases when
ground truth is not available to initialize the first frame,
accuracy of our method with no initialization (0.7488) is
essentially the same as that obtained with CenterPose initial-
ization (0.7476), and is only slightly worse than that obtained
when initialized with noisy ground truth (0.7734). Moreover,
it is important to note that even without initialization, Cen-
terPoseTrack (0.7488) significantly outperforms the frame-
by-frame CenterPose detector (0.7218, see Table I).

V. CONCLUSION

We have proposed a joint detection and tracking method
for category-level 6-DoF pose estimation of previously un-
seen object instances. Our framework is designed to incor-
porate uncertainty estimation, both implicitly and explicitly,
via a deep network and a filtering process. The proposed
network works in a tracklet-conditioned manner by taking
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TABLE I
POSE ESTIMATION RESULTS ON THE OBJECTRON TEST SET [16].

NOTE THAT OUR CENTERPOSETRACK OUTPERFORMS COMPETING METHODS ON ALL 3D METRICS.

Method Bike Book Bottle∗ Camera Cereal box Chair Cup∗ Laptop Shoe Mean

Average precision at 0.5 3D IoU (↑)

MobilePose [23] 0.3109 0.1797 0.5433 0.4483 0.5419 0.6847 0.3665 0.5225 0.4171 0.4461
Two-stage [16] 0.6127 0.5218 0.5744 0.8016 0.6272 0.8505 0.5388 0.6735 0.6606 0.6512
CenterPose [15] 0.6419 0.5565 0.8021 0.7188 0.8211 0.8471 0.7704 0.6766 0.6618 0.7218

CenterPose [15] w/ filtering 0.6176 0.5757 0.7967 0.7335 0.8347 0.8500 0.7263 0.6533 0.6827 0.7189
Ours w/o filtering 0.6820 0.6023 0.7544 0.7475 0.8378 0.8604 0.8534 0.7139 0.6278 0.7422
Ours w/o heatmap 0.6846 0.7064 0.6540 0.7648 0.8405 0.8707 0.6900 0.6550 0.5954 0.7179

Ours 0.7389 0.7829 0.8256 0.7835 0.8598 0.8927 0.8991 0.7344 0.7274 0.8049

Mean consistency score on 3D IoU (↑)

CenterPose [15] 0.8760 0.8501 0.8833 0.8888 0.9056 0.9138 0.8906 0.7744 0.8881 0.8745
CenterPose [15] w/ filtering 0.8777 0.8612 0.8923 0.8979 0.9109 0.9119 0.8668 0.7792 0.8978 0.8773

Ours w/o filtering 0.8881 0.8685 0.8798 0.8919 0.9089 0.9221 0.9066 0.7916 0.8908 0.8832
Ours w/o heatmap 0.9172 0.8710 0.8999 0.9098 0.9181 0.9311 0.8641 0.7996 0.8895 0.8889

Ours 0.9150 0.8942 0.8940 0.9088 0.9214 0.9319 0.9160 0.8064 0.9043 0.8991

Mean pixel error of 2D projection of cuboid vertices (↓)

MobilePose [23] 0.1581 0.0840 0.0818 0.0773 0.0454 0.0892 0.2263 0.0736 0.0655 0.1001
Two-stage [16] 0.0828 0.0477 0.0405 0.0449 0.0337 0.0488 0.0541 0.0291 0.0391 0.0467
CenterPose [15] 0.0872 0.0563 0.0400 0.0511 0.0379 0.0594 0.0376 0.0522 0.0463 0.0520

CenterPose [15] w/ filtering 0.0877 0.0560 0.0403 0.0513 0.0378 0.0621 0.0420 0.0594 0.0455 0.0536
Ours w/o filtering 0.0792 0.0514 0.0447 0.0507 0.0334 0.0545 0.0387 0.0482 0.0459 0.0496
Ours w/o heatmap 0.0767 0.0614 0.0432 0.0493 0.0345 0.0506 0.0474 0.0602 0.0486 0.0524

Ours 0.0748 0.0502 0.0413 0.0491 0.0316 0.0509 0.0359 0.0400 0.0427 0.0463

Average precision at 15◦ azimuth error (↑)

MobilePose [23] 0.4376 0.4111 0.4413 0.5293 0.8780 0.6195 0.0893 0.6052 0.3934 0.4894
Two-stage [16] 0.8234 0.7222 0.8003 0.8030 0.9404 0.8840 0.6444 0.8561 0.5860 0.7844
CenterPose [15] 0.8622 0.7323 0.9561 0.8226 0.9361 0.8822 0.8945 0.7966 0.6757 0.8398

CenterPose [15] w/ filtering 0.8516 0.7316 0.9652 0.8335 0.9351 0.8839 0.8947 0.7841 0.6764 0.8396
Ours w/o filtering 0.8814 0.8001 0.9501 0.8333 0.9496 0.8927 0.9680 0.8648 0.6465 0.8652
Ours w/o heatmap 0.8479 0.8041 0.8874 0.8129 0.9352 0.8806 0.8724 0.8146 0.6730 0.8365

Ours 0.8525 0.8182 0.9411 0.8276 0.9497 0.8940 0.9687 0.8659 0.6632 0.8645

Average precision at 10◦ elevation error (↑)

MobilePose [23] 0.7130 0.6289 0.6999 0.5233 0.8030 0.7053 0.6632 0.5413 0.4947 0.6414
Two-stage [16] 0.9390 0.8616 0.8567 0.8437 0.9476 0.9272 0.8365 0.7593 0.7544 0.8584
CenterPose [15] 0.9072 0.8535 0.8881 0.8704 0.9467 0.8999 0.8562 0.6922 0.7900 0.8560

CenterPose [15] w/ filtering 0.8988 0.8412 0.8688 0.8477 0.9458 0.9066 0.8061 0.6765 0.7864 0.8420
Ours w/o filtering 0.9134 0.8978 0.8984 0.8439 0.9516 0.9104 0.9372 0.7554 0.7549 0.8737
Ours w/o heatmap 0.8906 0.8776 0.8461 0.8126 0.9526 0.8915 0.7858 0.7260 0.7355 0.8354

Ours 0.9029 0.8976 0.9014 0.8296 0.9561 0.9111 0.9422 0.7620 0.7376 0.8712

TABLE II
EFFECT OF TRACK INITIALIZATION ON POSE ESTIMATION (AVERAGE PRECISION AT 0.5 3D IOU METRIC (↑)).

NOTE THAT OUR CENTERPOSETRACK DOES NOT NEED INITIALIZATION TO PERFORM WELL.

Initialization Bike Book Bottle∗ Camera Cereal box Chair Cup∗ Laptop Shoe Mean

GT 0.7389 0.7829 0.8256 0.7835 0.8598 0.8927 0.8991 0.7344 0.7274 0.8049
Noisy GT 0.7167 0.6911 0.7913 0.7589 0.7845 0.8916 0.8874 0.7316 0.7078 0.7734

CenterPose [15] 0.6649 0.6506 0.7780 0.7416 0.8361 0.8541 0.8428 0.6969 0.6631 0.7476
None 0.6810 0.6089 0.7734 0.7495 0.8491 0.8633 0.8488 0.7085 0.6566 0.7488

rendered heatmaps as input, and directly modeling prediction
uncertainty in the outputs. To train the network, we also
introduce a data generation process of simulating test-time
errors. Our proposed method achieves state-of-the-art perfor-
mance on the Objectron benchmark. Future work will aim
to incorporate improved data encoding for the network and

directly impose temporal consistency within a local region.
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