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Abstract— Prior work on 6-DoF object pose estimation has
largely focused on instance-level processing, in which a tex-
tured CAD model is available for each object being detected.
Category-level 6-DoF pose estimation represents an important
step toward developing robotic vision systems that operate in
unstructured, real-world scenarios. In this work, we propose a
single-stage, keypoint-based approach for category-level object
pose estimation that operates on unknown object instances
within a known category using a single RGB image as input.
The proposed network performs 2D object detection, detects
2D keypoints, estimates 6-DoF pose, and regresses relative
bounding cuboid dimensions. These quantities are estimated
in a sequential fashion, leveraging the recent idea of convGRU
for propagating information from easier tasks to those that
are more difficult. We favor simplicity in our design choices:
generic cuboid vertex coordinates, single-stage network, and
monocular RGB input. We conduct extensive experiments on
the challenging Objectron benchmark, outperforming state-of-
the-art methods on the 3D IoU metric (27.6% higher than the
MobilePose single-stage approach and 7.1% higher than the
related two-stage approach).

I. INTRODUCTION

Scene awareness is a fundamental skill for robotic ma-
nipulators to operate in unconstrained environments. This
ability includes locating objects and their poses, also known
as the 6-DoF pose estimation problem (i.e., 6 degrees of
freedom, from 3D position + orientation). Accurate, real-
time pose information of nearby objects in the scene would
allow robots to engage in semantic interaction.

The problem of pose estimation is a rich topic in the
computer vision community, yet most existing methods have
focused on instance-level object pose estimation [1], [2],
[3]. Such methods suffer from lack of scalability: a detector
trained for the ‘cracker box’ in the YCB object dataset [4]
may work reliably on instances of that specific object (similar
size and texture) but may fail to detect an instance with
different textures (e.g., due to seasonal promotional changes)
or sizes. Further, the detector is expected to ignore all
other types of cracker boxes or food-containing cuboids.
As a result, the number of instance-level detectors required
increases rapidly with scene complexity.

To alleviate this challenge, we focus on category-level
pose estimation. As shown in Figure 1, our goal is to detect
and infer the pose and relative size of all objects within a

Work was completed while the first author was an intern at NVIDIA.
This work was supported in part by NSF Award #2026611.

Fig. 1. Given a single RGB image containing previously unseen
instances of known categories (in this case cereal boxes, cups, and shoes),
our proposed method detects objects and estimates 6-DoF poses and 3D
bounding box dimensions up to a scale factor. We use a separate network
for each category.

specific category using a monocular RGB image processed
by a single-stage neural network.

A few recent works have considered category-level ob-
ject pose estimation [5], [6], [7], [8], [9], [10], [11]. By
removing the requirement of exact CAD models of object
instances at inference time, these methods promise to scale
better for real-world applications. To train the network, one
could use a large collection of 3D CAD models (e.g., from
ShapeNet [12]) to render synthetic samples with complex an-
notations, such as pixel-wise segmentation masks or normal-
ized object coordinate spaces (NOCS [6]). Yet the domain
gap between synthetic and real data remains an obstacle [13].
In the meantime, many techniques require depth in addition
to color (RGB) images [6], [8], [9]. While monocular RGB-
based methods [14], [15] have not received much attention,
they have great potential for wide applicability and for
handling certain material properties, such as transparent or
dark surfaces, that are difficult for depth sensors.

In this work, we address the aforementioned challenges
and limitations by proposing a simple and efficient RGB-
based approach (without depth) that only requires oriented
3D bounding box annotations at training time, and thus does
not require CAD models for training. This design decision
allows us to take advantage of large collections of real-
world images, such as the Objectron dataset [15], which are
annotated with category-level 3D bounding boxes.
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Inspired by CenterNet [16], we use a single-stage neural
network to regress object locations in the image, 2D keypoint
projections of 3D bounding box vertices, and relative cuboid
dimensions. The simple design of generic 3D bounding box
keypoint regression allows the same method to be applied
to a wide variety of categories. To better handle intra-class
shape variability, we adopt a two-fold representation of both
displacements and heatmaps for keypoint detection. This
choice achieves a good balance between accuracy and design
complexity, as shown in our experiments. Furthermore, the
single-stage design of our network avoids the complexity
of multi-stage networks [15] and enables end-to-end learn-
ing, and potentially faster training time. To improve the
tractability of regressing so many outputs, the network output
modalities are grouped by increasing difficulty, and we use
a convolutional gated recurrent unit (convGRU) [17], [18] to
compute each output group from an underlying sequentially-
refined hidden state. This way, the difficulty of predicting the
later groups is alleviated by using information stored in the
hidden state from previous groups. Once objects have been
detected in image space, our approach of estimating relative
cuboid dimensions allows us to leverage robust off-the-shelf
PnP algorithms for pose estimation.

Our work makes the following contributions:

• A single-stage keypoint-based network for detecting
previously unseen objects from known categories and
estimating their 6-DoF poses and relative bounding box
dimensions from a monocular RGB input.

• Demonstration of the benefit of directly predicting
relative dimensions of the 3D bounding cuboid for
category-level pose estimation, as well as the benefit of
sequential feature association to improve the accuracy
of estimating scale information for difficult cases.

• Experiments showing that the proposed method
achieves state-of-the-art performance on the large-scale
Objectron dataset [15].

II. RELATED WORK

Instance-level object pose estimation. Assuming that a
3D (possibly textured) CAD model is available for each
object class at both training and inference time, these meth-
ods aim to infer each object’s position and orientation in
3D. Current approaches can be divided into two types:
template matching and regression. Template matching tech-
niques align known 3D CAD models to the observed 3D
point clouds [19], 2D images [20], [21] or local descrip-
tors [22], [23]. State-of-the-art template-based methods have
demonstrated impressive results on public benchmarks like
BOP [24]. Regression-based methods directly regress the
6-DoF pose [1] or predict the image coordinates of 2D
projected keypoints to establish 2D-3D correspondences for
solving the 6-DoF pose using a PnP algorithm [25], [26],
[27], [2], [14]. Other works have explored different ways to
represent objects, including coordinate maps [1], keypoints
[28], and symmetry correspondences [29]. Although our
method is inspired by keypoint regression techniques, we

do not require 3D CAD models. Thus, the dimensions of the
object have to be estimated in addition to pose.

Category-level object pose estimation. Recently, re-
searchers have begun to explore category-level object pose
estimation, which does not require instance-specific 3D ob-
ject models at test time. Wang et al. [6] propose a normalized
object coordinate space (NOCS) to serve as a common
reference frame for 6-DoF pose and size estimation of
unseen objects. Their proposed network is based on two-
stage Mask R-CNN [30], which predicts the NOCS map
for a pose fitting algorithm that accepts the depth map
as input. However, 3D meshes were still required during
training to calculate the NOCS map, requiring a synthetic
training dataset.Subsequent RGBD works mainly focus on
fusing RGB and depth information. Chen et al. [9] propose a
correspondence-free approach by learning a canonical shape
space for input RGBD images. Their approach also eases
network training by matching pose-dependent and pose-
independent features separately. Tian et al. [8] model the
deformation from the categorical shape prior to the object
model by latent embeddings, then recover 6-DoF pose by es-
timating a similarity transformation between observed points
and NOCS map.

To the best of our knowledge, only a few approaches
attempt category-level pose estimation from monocular RGB
images. Manhardt et al. [11] propose to regress shape and
pose parameters and recover depth, while Chen et al. [10]
propose a neural analysis-by-synthesis approach. However,
both of these methods still require synthetic CAD models
(e.g., ShapeNet [12]) at training time. Hou et al. [14]
present a single-stage light-weight model with two heads
regressing to the centroid location and the 3D bounding
box keypoints, respectively, from an RGB image. Similarly,
Ahmadyan et al. [15] introduce a two-stage architecture for
3D bounding box keypoint regression from an RGB image.
Both approaches are trained directly on real images from
Objectron and thus do not require CAD models or synthetic
data.1 These methods do not take the object dimensions into
account when solving for pose. They instead directly lift the
2D predicted keypoints to 3D via a modified EPnP algorithm
[31] by fixing the homogeneous barycentric coordinates. In
contrast, as we show experimentally, our approach achieves
better performance by directly regressing the relative dimen-
sions of the cuboid and using an off-the-shelf PnP algorithm.

III. APPROACH

Our approach to category-level object pose estimation
is illustrated in Figure 2. We follow the lead of prior
correspondence-based methods [25], [26], [27], [2], [14] by
predicting 2D image projections of the corners of the 3D
bounding cuboid, followed by PnP to compute pose. Inspired
by the recent success of works based on the CenterNet
architecture [16], [18], [32], [33], we employ a single-
stage network to make all predictions, including the relative

1Also, both methods report real-time performance on a mobile GPU
(36 fps for [14] and 83 fps for [15]), using heavily optimized networks.
Such optimization is beyond the scope of our work.
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Fig. 2. Overview of our method. For an input image I ∈ RH×W×3, the backbone network extracts a feature map Φ(I) ∈ RH/4×W/4×64. A
convGRU module associates features into three sequential groups, regressing a total of seven outputs. Each output is in RH/4×W/4×c, where the number
in parentheses (c) represents channels. The corresponding modalities are extracted from the feature map via lookup at the detected center. Finally, we use
the decoded 2D keypoints, known camera intrinsics, and the relative cuboid dimensions to obtain a final 6-DoF pose (up to a scale factor) via PnP.

dimensions of the cuboid, which are necessary for PnP. To
alleviate the difficulty of inferring 3D structure information
from a 2D input, we propose to use a convGRU module [18]
to predict outputs grouped in increasing order of difficulty.
Further details are provided below.

A. Architecture Design
The network takes an RGB image of resolution H×W×3,

with source images re-scaled and padded as needed so
that W = H = 512. We adopt DLA-34 [34] combined
with upsampling as the backbone network, where hierarchi-
cal aggregation connections are augmented by deformable
convolutional layers [35]. The backbone network produces
multiple intermediate feature maps of spatial resolutions
ranging from H/4 × W/4 to H/32 × W/32, which are
aggregated in a single H/4×W/4× 64 output.

The network has a total of seven output heads arranged
in three groups. For each output head, a 3× 3 convolutional
layer with 256 channels followed by a 1×1 convolution layer
is used to process the output of the corresponding convGRU
module. Outputs are predicted as dense heatmaps or regres-
sion maps, but are accessed sparsely in correspondence with
detected object centers, as described subsequently.

Object detection branch. The primary output of the entire
network, at least conceptually, is the object center heatmap
whose peaks indicate the centers of the 2D bounding boxes
for detected objects.2 Other output maps are accessed w.r.t.
the object center: If a peak is found in the object center
heatmap at location (cx, cy), the values at (cx, cy) in the
remaining outputs are associated with this object. To recover
the discretization error resulting from the heatmap output
resolution, we regress a local 2D object center sub-pixel
offset map [16]. Since the Objectron dataset [15] does not
provide 2D bounding box annotations, we define it as the
smallest axis-aligned rectangle that encloses the extreme
points of the projected ground truth 3D bounding box.

2We also tried defining the object center as the projection of the 3D
bounding box center, as in [18], [32], but we obtained much better results
using the center of the 2D bounding box.

Keypoint detection branch. Our network uses two meth-
ods to predict the 2D coordinates of 3D bounding box
vertices projected into image space. First, we regress 2D
keypoint displacement vectors from the bounding box center
point. Second, we output a set of 8 keypoint heatmaps
whose peaks indicate the 2D coordinates of the projected
3D vertices. These peaks are not accessed at the coordinates
of the object’s center like other outputs. (Further details
are given in Section III-C.) Training labels for keypoint
heatmaps are generated by a Gaussian kernel centered at the
ground truth keypoint coordinates with variance determined
by the size of the 2D bounding box. As above, to mitigate
discretization error, we also output a local 2D keypoint sub-
pixel offset for each vertex.

Cuboid dimensions branch. Since category-level pose
estimation assumes that we do not have access to the CAD
model of the target object instance, we use a final output
branch to estimate the relative dimensions (width, height,
length) of the 3D bounding cuboid. Relative values are pre-
dicted to avoid the need to implicitly estimate absolute depth
from a monocular RGB image, which is a fundamentally ill-
posed problem. (For example, we do not know whether we
are viewing a full-size actual chair or a toy chair.) Relative
values also allow us to apply our network to images obtained
with different camera intrinsics without having to retrain
the network. Since many target objects in daily life have a
canonical orientation when resting on the ground, we choose
the up (y) axis as the primary axis. Ground truth scale labels
are considered to be (x/y, 1, z/y), with the ratios x/y and
z/y estimated by the network. Unlike 3D vehicle detection
approaches [18], [32] that use an exponential offset between
3D dimensions and the category-specific dimension template,
we directly regress each ratio since the objects we encounter
exhibit much more diversity in aspect ratios than are found
in vehicles.

B. convGRU Feature Association
We expect that some network outputs are more difficult to

learn than the others. Heuristically, we divided them into the
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three groups discussed previously, as shown in Figure 2: 1)
object center heatmap, object center sub-pixel offset, and 2D
bounding box size; 2) x-y displacements to keypoint, keypoint
heatmaps, and keypoint sub-pixel offsets; and 3) relative
cuboid dimensions. The last group is the most difficult to
estimate since 3D structure has to be implicitly deduced
from 2D appearance. We hypothesize that keypoints are more
easily found once the object centroid and 2D bounding box
are estimated, and similarly that bounding box dimensions
are more easily predicted after keypoints have been found.

Inspired by Gao et al. [18], this grouping strategy and
sequential output construction is naturally formulated by
assigning different output groups to different “timesteps” in
a recurrent neural network.3 Given an input image I , the ith

output (i = 1, . . . , 7) is represented as:

yi = Ψi (Gt (Φ(I), ht−1)) , (1)

where Φ(I) denotes the feature map from the backbone
network, Gt(·) represents the GRU at timestep t, ht−1 =
Gt−1 (Φ(I), ht−2) denotes the hidden state produced by the
GRU cell at the previous timestep, h0 = 0, and Ψi is the
fully convolutional network for the ith output. The timesteps
t = 1, 2, 3 correspond to the three groups in our method.

We adopt a single-layer convolutional GRU network where
all the convolution layers in the convGRU are set with stride
= 1, kernel size = 3, and output channels = 64. The output
from a later timestep will have access to the hidden states
flowing from the previous timestep, which implements the
idea of output grouping and sequential feature association.

C. 2D Keypoint Output Decoding

The outputs of the network are decoded and assembled in
the following manner. First, a 3×3 max pooling operation is
applied on the heatmap of the 2D object center, which serves
as an efficient alternative to non-maximum suppression [16].
For each detected center point, displacement-based keypoint
locations are then given by the 2D x-y displacements under
the center point. Next, heatmap-based keypoint locations
are extracted by finding high confidence peaks in the cor-
responding heatmaps that are within a margin of the 2D
object bounding box. Both estimates of keypoint locations
are adjusted according to the sub-pixel offsets, then input,
along with the estimated relative cuboid dimensions, to the
Levenberg-Marquardt version of PnP [36].

D. Loss Function

We employ penalty-reduced focal losses [37] Lpcen and
Lpkey

in a point-wise manner for the center point and
keypoint heatmaps, respectively. The center sub-pixel offset
loss, Loff, is computed using an L1 loss. The keypoint sub-
pixel offset loss, Loffkey, is computed similarly. The 2D
bounding box size, Lbbox, the keypoint displacement loss,
Ldis, and the relative cuboid dimensions loss, Ldim, are also
computed using an L1 loss w.r.t. their label values. The

3Timesteps here simply refer to recurrent iterations; there is no temporal
aspect to the input data.

overall training objective is the weighted combination of the
seven loss terms mentioned above.

E. Implementation Details

The network was trained with a batch size of 32 on 4
NVIDIA V-100 GPUs for 140 epochs, starting with pre-
trained weights from ImageNet. Data augmentation included
random flip, scaling, cropping, and color jittering. We chose
Adam as the optimizer with an initial learning rate of 2.5e-4,
dropping 10x at both 90 and 120 epochs. An average of 36
hours was required to train one category (using between 8k
to 32k training images depending on the category). Inference
speed is around 15 fps on a NVIDIA GTX 1080Ti GPU.

IV. EXPERIMENTAL RESULTS

A. Dataset

The Objectron dataset [15] is a newly proposed benchmark
for monocular RGB category-level 6-DoF object pose esti-
mation. It consists of 15k annotated video clips with over 4M
annotated frames. Objects are from nine categories: bikes,
books, bottles, cameras, cereal boxes, chairs, cups, laptops,
and shoes. Each object is annotated with a 3D bounding
cuboid, which describes the object’s position and orientation
with respect to the camera, as well as the cuboid dimensions.
Additional metadata includes camera poses, sparse point
clouds, and surface planes, with the latter assuming that the
object rests on the ground plane, which yields an absolute
scale factor. The cup category contains both cups and mugs,
where the former do not have handles. Therefore, we man-
ually differentiate these by training a separate network for
each. We also noticed ambiguities in mug instances where the
handle is not consistently oriented. To solve this problem, we
manually checked all videos and rotated some of the ground
truth bounding boxes by 180 degrees to ensure consistent
orientation. The cup/mug split is released along with our
code.

For training, we extract frames by temporally downsam-
pling the original videos at 15 fps. For testing, we evaluate
all the test samples in each category from the official release
of the dataset for straightforward comparison with other
methods. For symmetric objects like cups, we follow the idea
of Wang et al. [6] to generate multiple ground truth labels{
y1, . . . ,y|θ|

}
during the training phase, rotating |θ|=12

times around the symmetry axis. The symmetric loss is
then computed as Lsym = mini=1,...,|θ| L (yi, ŷ) , where ŷ
denotes the prediction, and L is the asymmetric loss.

B. Metrics

Following the Objectron dataset [15], we evaluate 3D
detection and object dimension estimation using the average
precision (AP) of 3D IoU metric proposed by [14] with a
threshold of 50%. The mean pixel error metric computes
the mean normalized distance between the 2D projections
of 3D bounding box keypoints given the estimated and
ground truth pose. For viewpoint estimation, we report the
AP of azimuth and elevation with a threshold of 15◦ and
10◦, respectively. For symmetric object categories (bottle∗
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Fig. 3. Sample results of our method on the Objectron dataset [15], where the number below represents the relative dimensions of the 3D bounding box.
The proposed method handles large intra-class shape variance, diverse viewpoints, noisy backgrounds, and transparent surfaces.

TABLE I
AVERAGE PRECISION AT 0.5 3D IOU (↑) ON THE OBJECTRON TEST SET [15].

Stages Method Bike Book Bottle∗ Camera Cereal box Chair Cup∗ Laptop Shoe Mean

One MobilePose [14] 0.3109 0.1797 0.5433 0.4483 0.5419 0.6847 0.3665 0.5225 0.4171 0.4461
Two Two-stage [15] 0.6127 0.5218 0.5744 0.8016 0.6272 0.8505 0.5388 0.6735 0.6606 0.6512
One Ours 0.6419 0.5565 0.8021 0.7188 0.8211 0.8471 0.7704 0.6766 0.6618 0.7218

TABLE II
POSE ESTIMATION RESULTS ON THE OBJECTRON TEST SET [15],

AVERAGED ACROSS CLASSES.

Method [14] [15] Ours

AP@0.5 3D IoU (↑) 0.4461 0.6512 0.7218
AP@15◦ azimuth error (↑) 0.4894 0.7844 0.8398
AP@10◦ elevation error (↑) 0.6414 0.8584 0.8560

Mean pixel error of vertices (↓) 0.1001 0.0467 0.0520

and cup∗), we rotate the estimated bounding box along
the symmetry axis N times (N = 100 following [15])
and evaluate the prediction w.r.t. each rotated instance. The
reported number is the instance that maximizes 3D IoU or
minimizes pixel projection error, respectively. Although the
cup category includes mug instances which are asymmetric,
we still treat them as symmetric for comparison with [15].
For the comparison on relative dimension prediction, we
use mean relative dimension error, which computes the
relative error of the relative dimension across all predictions
1
n

∑n
i=1

|ŷi−yi|
yi

, where ŷi denotes the prediction and yi
denotes the ground truth.

C. Category-Level 6-DoF Pose and Size Estimation

We compare our proposed method with two state-of-the-
art methods: single-stage MobilePose [14] and a two-stage
network [15]. To the best of our knowledge, these are the
only methods available for the Objectron dataset. Results on
3D IoU for each class are shown in Table I. Results averaged
across classes (to conserve space) are shown in Table II for
pixel projection error, azimuth, and elevation. We present
qualitative results in Figure 3. In addition, our supplementary
video depicts a robot arranging a pair of shoes by placing the

one shoe next to its match using the position and orientation
estimated by our system.

Our method significantly outperforms MobilePose on all
metrics, while the two-stage method [15] achieves better
performance on the metric of mean pixel error of 2D
projection but falls behind on 3D IoU metric. Their two-stage
structure allows the keypoint detector to operate at a higher
image resolution for better keypoint location performance,
but also limits its ability for end-to-end training and fast
scale-up to more categories (since the two networks have
to be trained independently). Moreover, they do not take
the object dimensions into account but rather rely on a
modified EPnP algorithm by fixing homogeneous barycentric
coordinates across all the cases, which leads to an unstable
solution of the 2D–3D correspondence equation [31].

D. Different strategies for 2D Keypoint Output Decoding

Most existing keypoint-based object pose estimation meth-
ods adopt either a heatmap [27], [2] or displacement [39],
[14] representation for 2D keypoint detection. But large intra-
class shape variance poses a key challenge for the keypoint
representation. Thus we designed an experiment to compare
five different ways for post-processing the 2D keypoint
output: 1) Displacement ignores the heatmap. 2) Heatmap
ignores the displacement. 3) Distance implements a heuristic
similar to [16] that tries to select the more reliable point to
use from the displacement or heatmap. 4) Sampling, inspired
by [38], fits a Gaussian mixture model to the heatmap peak
estimate and the displacement prediction for each keypoint
and then samples N points (N = 20) to obtain a distribution
of possible poses. 5) Our proposed method keeps both
displacement and heatmap. As shown in Table III, our pro-
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TABLE III
DIFFERENT STRATEGIES FOR 2D KEYPOINT OUTPUT DECODING (AVERAGE PRECISION AT 0.5 3D IOU METRIC (↑)).

Strategy w/o add. proc. Bike Book Bottle∗ Camera Cereal box Chair Cup∗ Laptop Shoe Mean

Displacement 3 0.6254 0.5263 0.7917 0.7191 0.8115 0.8492 0.7553 0.6737 0.6688 0.7134
Heatmap 3 0.5788 0.5539 0.7970 0.7035 0.8138 0.8260 0.7626 0.6124 0.6079 0.6951

Distance [16] 7 0.6305 0.5436 0.7837 0.7111 0.8044 0.8460 0.7640 0.6692 0.6529 0.7117
Sampling [38] 7 0.6279 0.5516 0.7873 0.7182 0.8134 0.8466 0.7687 0.6751 0.6641 0.7170

Disp. + Heatmap 3 0.6419 0.5565 0.8021 0.7188 0.8211 0.8471 0.7704 0.6766 0.6618 0.7218

TABLE IV
DIFFERENT STRATEGIES FOR COMPUTING CUBOID DIMENSIONS.

Method Mean cuboid dimension error (↓) Average precision at 0.5 3D IoU (↑)

Book Laptop Others Mean Book Laptop Others Mean

Keypoint lifting [14] (no dim. pred.) - - - - 0.3999 0.5159 0.6540 0.6104
Estimated dim. (w/o convGRU) 0.8474 0.9124 0.2434 0.3849 0.5401 0.6378 0.7528 0.7164
Estimated dim. (w/ convGRU) 0.7440 0.6799 0.2475 0.3507 0.5565 0.6766 0.7519 0.7218

Ground truth dim. (oracle) 0 0 0 0 0.6955 0.6942 0.7907 0.7694

posed combined method (Displacement + Heatmap) is better
than either of the single representations (Displacement or
Heatmap), and it also does not require additional processing
(as in Distance [16] or Sampling [38]). Thus, to balance
accuracy and efficiency, we use this combined representation
in all the other experiments.

Book

Fig. 4. Improvement due to the convGRU feature association module,
where green is ground truth, red is our proposed method without feature
association module, and blue is our proposed method with the module.
When viewing a thin object from a certain perspective (azimuth close to
90◦), it is challenging to estimate the thickness of the target.

E. Different Strategies for Cuboid Dimension Prediction

In this section, we present an experiment on different
strategies for cuboid dimension prediction, which further
reveals the importance of accurate scale prediction and
demonstrates the value of the sequential feature association
module (convGRU) for hard cases. We tested the following
variants of our system: 1) Keypoint lifting, where we reimple-
mented the postprocessing part proposed by [14] to retrieve
the final pose using only the 2D projected cuboid keypoints;
2) No convGRU, in which the convGRU layers were removed
from our method (See Figure 2); 3) with convGRU, our
proposed method; 4) Oracle, which has access to the ground
truth 3D aspect ratio (relative dimensions).

Results are shown in Table IV, where we isolated two
specific categories (book and laptop) since they have the
greatest difference. The results indicate a strong relation-
ship between 3D IoU result and the corresponding mean
cuboid dimension error. For many categories (“Others” in

Table IV), the performance does not differ much, as well
as their cuboid dimension prediction. Those instances are
of similar aspect ratios and easier to estimate, e.g., bottles.
On the other hand, the book and laptop categories are more
challenging as the thickness of a book varies greatly while
the laptop exhibits different modes (whether the lid is open
or closed). The proposed convGRU module improves the
prediction of their cuboid dimensions and leads to a better
3D IoU result. Moreover, we found oracle with ground
truth dimension achieved the best result while performance
degraded using the simplified EPnP variant from [14], which
suggests that predicting relative dimensions for category-
level pose estimation from monocular RGB input is crucial
to solving this problem. Figure 4 uses a particular example
to show the ability of convGRU (blue) to retrieve the
object 3D aspect ratio (relative dimensions) when compared
without convGRU (red). Even though both 2D keypoints
look accurate, their scale predictions are different, leading to
3D IoU (↑) improvement (0.5059 with convGRU vs. 0.3204
without convGRU).

V. CONCLUSION

We have presented a single-stage method for category-
level 6-DoF pose prediction of previously unseen object
instances from RGB input. Unlike previous approaches, CAD
models of instances are not needed at training nor test time,
and complex annotations are not required for training. We
also show the importance of accurate cuboid dimension
prediction, and we demonstrate the use of convGRU se-
quential feature association to further improve accuracy for
challenging cases with varied aspect ratios. We demonstrate
state-of-the-art performance on the large-scale real-world
Objectron dataset, along with a robotic experiment indicating
the potential of our proposed method to serve real-world
applications. Future work will aim to improve the results
by incorporating shape geometry embeddings, exploring
lightweight backbone networks, and leveraging iterative post
refinement.
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