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Abstract
We consider Bayesian inference for large-scale inverse problems, where com-
putational challenges arise from the need for repeated evaluations of an expen-
sive forward model. This renders most Markov chain Monte Carlo approaches
infeasible, since they typically requireO(104) model runs, or more. Moreover,
the forward model is often given as a black box or is impractical to differ-
entiate. Therefore derivative-free algorithms are highly desirable. We propose
a framework, which is built on Kalman methodology, to efficiently perform
Bayesian inference in such inverse problems. The basic method is based on an
approximation of the filtering distribution of a novel mean-field dynamical sys-
tem, into which the inverse problem is embedded as an observation operator.
Theoretical properties are established for linear inverse problems, demonstrat-
ing that the desired Bayesian posterior is given by the steady state of the law
of the filtering distribution of the mean-field dynamical system, and proving
exponential convergence to it. This suggests that, for nonlinear problems which
are close to Gaussian, sequentially computing this law provides the basis for
efficient iterative methods to approximate the Bayesian posterior. Ensemble
methods are applied to obtain interacting particle system approximations of the
filtering distribution of the mean-field model; and practical strategies to further
reduce the computational and memory cost of the methodology are presented,
including low-rank approximation and a bi-fidelity approach. The effectiveness
of the framework is demonstrated in several numerical experiments, includ-
ing proof-of-concept linear/nonlinear examples and two large-scale applica-
tions: learning of permeability parameters in subsurface flow; and learning
subgrid-scale parameters in a global climate model. Moreover, the stochastic
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ensemble Kalman filter and various ensemble square-root Kalman filters are all
employed and are compared numerically. The results demonstrate that the pro-
posed method, based on exponential convergence to the filtering distribution of
a mean-field dynamical system, is competitive with pre-existing Kalman-based
methods for inverse problems.

Keywords: inverse problem, uncertainty quantification, Bayesian inference,
derivative-free optimization, mean-field dynamical system, interacting particle
system, ensemble Kalman filter

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Orientation

The focus of this work is on efficient derivative-free Bayesian inference approaches for large
scale inverse problems, in which the goal is to estimate probability densities for uncertain
parameters, given noisy observations derived from the output of a model that depends on the
parameters. Such approaches are highly desirable for numerous models arising in science and
engineering applications, often defined through partial differential equations. These include,
to name a few, global climate model calibration [1, 2], material constitutive relation calibration
[3–5], seismic inversion in geophysics [6–10], and biomechanics inverse problems [11, 12].
Such problems may feature multiple scales, may include chaotic dynamics, or may involve
turbulent phenomena; as a result the forward models are typically very expensive to evaluate.
Moreover, the forward solvers are often given as a black box (e.g., off-the-shelf solvers [13]
or multiphysics systems requiring coupling of different solvers [14, 15]), and may not be dif-
ferentiable due to the numerical methods used (e.g., embedded boundary method [16, 17] and
adaptive mesh refinement [18, 19]) or because of the inherently discontinuous physics (e.g. in
fracture [20] or cloud modeling [21, 22]).

Traditional methods for derivative-free Bayesian inference to estimate the posterior
distribution include specific instances of the Markov chainMonte Carlo methodology [23–26]
(MCMC), such as random walk Metropolis or the preconditioned Crank–Nicolson (pCN)
algorithm [26], and sequential Monte Carlo methods [27, 28] (SMC), which are in any case
often interwoven with MCMC. These methods typically require O(104) iterations, or more,
to reach statistical convergence for the complex forward models which motivate our work.
Given that each forward run can be expensive, conductingO(104) runs is often computation-
ally unfeasible.We present an approach based on the Kalman filter methodology,which aims to
estimate the first two moments of the posterior distribution. We demonstrate that, in numerical
tests across a range of examples, the proposed methodologies converge within O(10) itera-
tions, using O(10) embarrassingly-parallel model evaluations per step, resulting in orders of
magnitude reduction in cost over derivative-free MCMC and SMC methods. We also demon-
strate favorable performance in comparison with existing Kalman-based Bayesian inversion
techniques.

In subsection 1.2, we outline the Bayesian approach to inverse problems, describing vari-
ous approaches to sampling, formulated as dynamical systems on probability measures, and
introducing our novel mean field approach. In subsection 1.3, we discuss pathwise stochastic
dynamical systems which realize such dynamics at the level of measures, and discuss filtering
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algorithms which may be applied to them for the purposes of approximate inversion. Subsec-
tion 1.4 highlights the novel contributions in this paper, building on the context established
in the two preceding subsections. Subsection 1.5 summarizes notational conventions that we
adopt throughout.

1.2. Bayesian formulation of the inverse problem

Inverse problems can be formulated as recovering unknown parameters θ ∈ R
Nθ from noisy

observation y ∈ R
Ny related through

y = G(θ)+ η. (1)

Here G denotes a forward model mapping parameters to output observables, and η denotes
observational noise; for simplicity wewill assume knownGaussian statistics: η ∼ N (0,Ση). In
the Bayesian perspective, θ and y are treated as random variables. Given the prior ρprior(θ) on θ,
the inverse problem can be formulated as finding the posterior ρpost(θ) on θ given y [29–31]:

ρpost(θ) =
1
Z(y)

e−Φ(θ,y)ρprior(θ), Φ(θ, y) =
1
2
‖Σ− 1

2
η (y− G(θ))‖2 (2)

and Z(y) is the normalization constant

Z(y) =
∫

e−Φ(θ,y)ρprior(θ)dθ. (3)

We focus on the case, where the prior ρprior is (or is approximated as) Gaussian with mean and
covariance r0 and Σ0, respectively. Then the posterior ρpost(θ) can be written as

ρpost(θ) =
1
Z(y)

e−ΦR(θ,y), ΦR(θ, y) = Φ(θ, y)+
1
2
‖Σ− 1

2
0 (θ − r0)‖2. (4)

1.2.1. Computational approaches. Bayesian inference requires approximation of, or sam-
ples from, the posterior distribution given by equation (2). There are three major avenues to
approximate the posterior distribution:

• Those based on variational inference [32, 33], where a parameterized approximate den-
sity is constructed and optimized to minimize the distance to the posterior density. They
include Gaussian variational inference [34–36] and normalizing flows [37].

• Those based on sampling and more importantly the invariance of measures and ergodicity.
They includeMCMC [23, 24], Langevin dynamics [38, 39], and more recently interacting
particle approaches [25, 40–42].

At an abstract mathematical level, invariance and ergodicity-based approaches to sam-
pling from the posterior ρpost rely on the transition kernel ψI(θ

′, θ) such that

ρpost(θ) =
∫

ψI(θ′, θ)ρpost(θ′)dθ′, (5)

that is, the posterior distribution ρpost(θ) is invariant with respect to the transition kernel
ψI(θ

′, θ). Furthermore, starting from any initial distribution the associated Markov chain
should approach the invariant measure ρpost(θ) asymptotically.

• Those based on coupling ideas (mostly in the form of coupling the prior with the poste-
rior). While several sequential data assimilation methods, such as importance sampling-
resampling in SMC [43] and the ensemble Kalman filtering [44–46], can be viewed under
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the coupling umbrella, the systematic exploitation/exposition of the coupling perspective
in the context of Bayesian inference is more recent, including the ideas of transport maps
[47–51].

At an abstract mathematical level, the coupling approach is based on a transition kernel
ψC(θ

′, θ) such that

ρpost(θ) =
∫

ψC(θ′, θ)ρprior(θ′)dθ′. (6)

The transition kernel forms a coupling between the prior and the posterior distribution and
is applied only once. The induced transition from θ′ ∼ ρprior to θ ∼ ρpost is of the type of
a McKean–Vlasov mean-field process and can be either deterministic or stochastic [45].
In practice the methodology is implemented via an approximate coupling, using linear
transport maps:

θ = Aθ′ + b, (7)

where the matrix A and the vector b depend on the prior distribution ρprior, the data
likelihood Φ, and the data y, and are chosen such that the induced random variable θ
approximately samples from the posterior distribution ρpost. Many variants of the popular
ensemble Kalman filter can be derived within this framework.

1.2.2. A novel algorithmic approach. The main contribution of this paper is to incorporate all
three approaches from above by designing a particular (artificial) mean-field dynamical system
and applying filtering methods, which employ a Gaussian ansatz, to approximate the filtering
distribution resulting from partial observation of the system; the equilibrium of the filtering
distribution is designed to be close to the desired posterior distribution. At an abstract level,
we introduce a data-independent transition kernel, denoted by ψP(θ

′′, θ′), and another data-
dependent transition kernel, denoted by ψA(θ

′′, θ′), such that the posterior distribution ρpost
remains invariant under the both transition kernels combined, that is,

ρpost(θ) =
∫

ψA(θ′, θ)

(∫
ψP(θ′′, θ′)ρpost(θ′′)dθ′′

)
dθ′. (8)

The first transition kernel, ψP(θ
′′, θ′), corresponds to the prediction step in filtering methods

and is chosen such that

ρ̂n+1(θ) =
∫

ψP(θ′, θ)ρn(θ′)dθ′ and ρ̂n+1(θ) ∝ ρn(θ)1−Δτ , (9)

where 0 < Δτ < 1 is the time-step size, a free parameter, and ρn(θ) denotes the current density.
In other words, this transition kernel corresponds to a simple rescaling of a given density. The
second transition kernel, ψA(θ

′′, θ′), corresponds to the analysis step in filtering methods and
has to satisfy

ρn+1(θ) =
∫

ψA(θ′, θ)ρ̂n+1(θ′)dθ′ and ρn+1(θ) ∝ ρpost(θ)Δτ ρ̂n+1(θ). (10)

This transition kernel depends on the data and the posterior distribution and performs a suitably
modified Bayesian inference step. Combining the two preceding displays yields

ρn+1(θ) ∝ ρpost(θ)
Δτ ρn(θ)

1−Δτ . (11)
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It is immediate that the overall transition ρn �→ ρn+1 is indeed invariant with respect to ρpost;
furthermore, by taking logarithms in the mapping from ρn to ρn+1 it is possible to deduce
exponential convergence to this steady state, for any 0 < Δτ < 1. In our concrete algorithm a
mean field dynamical system is introduced for which equation (10) is satisfied exactly, while
equation (9) is satisfied only in the linear, Gaussian setting; the resulting filtering distribution
is approximated using Kalman methodology applied to filter the resulting partially observed
mean-field dynamical system. We emphasize that the involved transition kernels are all of
McKean–Vlasov type, that is, they depend on the distribution of the parameters θ.

There are several related approaches. We mention in this context in particular the recently
proposed consensus-based methods. These sampling methods were analyzed in the context
of optimization in [52]. Similar ideas were then developed for consensus based sampling
(CBS) [53] based on the same principles employed here: to find a mean-field model which,
in the linear Gaussian setting converges asymptotically to the posterior distribution, and then
to develop implementable algorithms by employing finite particle approximations of the mean-
field. Another related approach has been proposed in [54] where data assimilation algorithms
are combined with stochastic dynamics in order to approximately sample from the posterior
distribution ρpost.

1.3. Filtering methods for inversion

Since filtering methods are at the heart of our proposed methodology, we provide here a
brief summary of a few key concepts. Filtering methods may be deployed to approximate the
posterior distribution given by equation (2). The inverse problem is first paired with a dynam-
ical system for the parameter [55–58], leading to a hidden Markov model, to which filtering
methods may be applied. In its most basic form, the hidden Markov model takes the form

evolution : θn+1 = θn, (12a)

observation : yn+1 = G(θn+1)+ ηn+1; (12b)

here θn is the unknown state vector, yn+1 is the output of the observation model, and ηn+1 ∼
N (0,Ση) is the observation error at the nth iteration. Any filtering method can be applied to
estimate θn given observation data {y†�}�=1. The Kalman filter [59] can be applied to this setting
provided the forward operator G is linear and the initial state θ0 and the observation errors are
Gaussian. The Kalman filter has been extended to nonlinear and non-Gaussian settings in man-
ifold ways, including but not limited to, the extended Kalman filter (EKF, or sometimes ExKF)
[60, 61], the ensemble Kalman filters (EnKF) [62–64], and the unscented Kalman (UKF) filter
[58, 65]. We refer to the extended, ensemble and UKF filters as approximate Kalman filters
to highlight the fact that, outside the linear setting where the Kalman filter [59] is exact, they
are all uncontrolled approximations designed on the principle of matching first and second
moments.

More precisely, the EnKF uses Monte Carlo sampling to estimate desired means and covari-
ances empirically. Its update step is of the form (7) and can be either deterministic or stochastic.
The ensemble adjustment/transform filters are particle approximations of square root filters, a
deterministic approach to matching first and second moment information [66]. The UKF filter
uses quadrature, and is also a deterministic method; it may also be viewed as approximating
a square root filter. The stochastic EnKF on the other hand compares the data y to model gen-
erated data and its update step is intrinsically stochastic, that is, the vector b in (7) itself is
random.
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All of the filtering methods to estimate θn given {y†�}n�=1 that we have described so far may
be employed in the setting where y†� ≡ y; repeated exposure of the parameter to the data helps
the system to learn the parameter from the data. In order to maintain statistical consistency, an
N-fold insertion of the same data y requires an appropriate modification of the data likelihood
function and the resulting Bayesian inference step becomes

ρn(θ)→ ρn+1(θ) ∝ ρn(θ)e
− 1
NΦ(θ,y). (13)

Initializing with ρ0(θ) = ρprior(θ), afterN iterations, ρN(θ) is equal to the posterior density. The

filtering distribution for (12) recovers this exactly if y†� ≡ y and if the variance of η is rescaled
byN; use of ensembleKalmanmethods in this setting leads to approximateBayesian inference,
which is intuitively accurate when the posterior is close to Gaussian. We note that the resulting
methodology can be viewed as a homotopy method, such as SMC [27] and transport variants
[47], which seek to deform the prior into the posterior in one unit time with a finite number
of inner steps N—foundational papers introducing ensemble Kalman methods in this context
are [55, 56, 67]. Adaptive time-stepping strategies in this context are explored in [68–70].
Throughout this paper, we will denote the resultingmethods as iterative extendedKalman filter,
iterative ensemble Kalman filter (IEnKF), iterative unscented Kalman filter (IUKF), iterative
ensemble adjustment Kalman filter (IEAKF) and iterative ensemble transport Kalman filter
(IETKF).

We emphasize that multiple insertions of the same data y without the adjustment (13) of
the data likelihood function, and/or over arbitrary numbers of steps, leads to the class of
optimization-based Kalman inversion methods: EKI [57], Tikhonov-regularized EKI, termed
TEKI [71] and unscented Kalman inversion, UKI [72]; see also [73] for recent adaptive
methodologieswhich are variants on TEKI. These variants of the Kalman filter lead to efficient
derivative-free optimization approaches to approximating the maximum likelihood estimator
or maximum a posteriori estimator in the asymptotic limit as n→∞. The purpose of our
paper is to develop similar ideas, based on iteration to infinity in n, but to tackle the problem
of sampling from the posterior ρpost(θ) rather than the optimization problem. To achieve these
we introduce a novel mean-field stochastic dynamical system, generalizing (12) and apply
ensemble Kalman methods to it. This leads to Bayesian analogues of EKI and the UKI. To
avoid proliferation of nomenclature, we will also refer to these as EKI and UKI relying on
the context to determine whether the optimization or Bayesian approach is being adopted;
in this paper our focus is entirely on the Bayesian context. We will also use ensemble adjust-
ment and transformfilters, denoted as EAKF andETKF, noting that these twomay be applied in
either the optimization (using (12)) or Bayesian (using the novel mean-field stochastic dynam-
ical system introduced here) context, but that here we only study the Bayesian problem. The
main conclusions of our work are two-fold, concerning the application of Kalman methods to
solve the Bayesian inverse problem: that with carefully chosen underlying mean-field dynam-
ical system, such that the prediction and analysis steps approximate equation (9) and replicate
equation (10), iterating to infinity leads tomore efficient and robustmethods than the homotopy
methods which transport prior to posterior in a finite number of steps; and that determin-
istic implementations of ensemble Kalman methods, and variants, are superior to stochastic
methods.

The methods we propose are exact in the setting of linear G and Gaussian prior density
ρprior; but, for nonlinear G, the Kalman-based filters we employ generally do not converge to
the exact posterior distribution, due to theGaussian ansatz usedwhen deriving themethod; neg-
ative theoretical results and numerical evidence are reported in [74, 75]. Nonetheless, practical
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experience demonstrates that the methodology can be effective for problems with distributions
close to Gaussian, a situation which arises in many applications.

Finally, we note that we also include comparisons with the ensemble Kalman sampler
[75–77], which we refer to as the EKS, an ensemble based Bayesian inversion method derived
from discretizing a mean-field stochastic differential equation and which is also based on iter-
ation to infinity, that is, on the invariance principle of the posterior distribution; and we include
comparison with the CBS approach [53] mentioned above, another methodology which also
iterates a mean-field dynamical system to infinity to approximate the posterior.

1.4. Our contributions

The key idea underlying this work is the development of an efficient derivative-free Bayesian
inference approach based on applying Kalman-based filtering methods to a hidden Markov
model arising from a novel mean-field dynamical system. Stemming from this, our main
contributions are as follows4:

(a) In the setting of linear Gaussian inverse problems, we prove that the filtering distribution
of the mean field model converges exponentially fast to the posterior distribution.

(b) We generalize the inversion methods EKI, UKI, EAKI and ETKI from the optimization
to the Bayesian context by applying the relevant variants on Kalman methodologies to the
novel mean-field dynamical system (Bayesian) rather than to (12) (optimization).

(c) We study and compare application of both deterministic and stochastic Kalman methods
to the novel mean-field dynamical system, demonstrating that the deterministic methods
(UKI, EAKI and ETKI) outperform the stochastic method (EKI); this may be attributed
to smooth, noise-free approximations resulting from deterministic approaches.

(d) We demonstrate that the application of Kalmanmethods to the novelmean-field dynamical
system outperforms the application of Kalman filters to transport/coupling models—the
IEnKF, IUKF, IEAKF and IETKF approaches; this may be attributed to the exponential
convergence underlying the filter for the novel mean-field dynamical system.

(e) We also demonstrate that the application of Kalman methods to the novel mean-field
dynamical system outperforms the EKS, when Euler–Maruyama discretization is used,
because the continuous-time formulation requires very small time-steps, and CBS which
suffers from stochasticity, similarly to the EKI.

(f) We propose several strategies, including low-rank approximation and a bi-fidelity
approach, to reduce the computational and memory cost.

(g) We demonstrate, on both linear and nonlinear model problems (including inference for
subsurface geophysical properties in porous medium flow), that application of determin-
istic Kalman methods to approximate the filtering distribution of the novel mean-field
dynamical system delivers mean and covariance which are close to the truth or to those
obtained with the pCNMCMCmethod. The latter usesO(104) model evaluations or more
whilst for our method only O(10) iterations are required with O(10) ensemble members,
leading to onlyO(102) model evaluations, two orders of magnitude savings.

4 In making these statements, we acknowledge that for linear Gaussian problems it is possible to solve the Bayesian
inverse problem exactly in one step, or multiple steps, using the Kalman filter in transport/coupling mode, when
initialized correctly and with a large enough ensemble. However, the transport/coupling methods are not robust to
perturbations from initialization, non-Gaussianity and so forth, whereas the methods we introduce are. Our results
substantiate this claim.
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(h) The method is applied to perform Bayesian parameter inference of subgrid-scale parame-
ters arising in an idealized global climate model, a problem currently far beyond the reach
of state-of-the-art MCMC methods such as pCN and variants.

The remainder of the paper is organized as follows. In section 2, the mean field dynam-
ical system, various algorithms which approximate its filtering distribution, and a complete
analysis in the linear setting, are all presented. These correspond to our contributions (a) and
(b). In section 3, strategies to speed up the algorithm and improve the robustness for real-world
problems are presented. These correspond to our contribution (f). Numerical experiments
are provided in section 4; these serve to empirically confirm the theory and demonstrate the
effectiveness of the framework for Bayesian inference. These correspond to our contributions
(c), (d), (e), (g) and (h). We make concluding remarks in section 5.

The code is accessible online:
https://github.com/Zhengyu-Huang/InverseProblems.jl.

1.5. Notational conventions

A � B and A 
 B denoteA− B positive-definite or positive-semidefinite, for symmetric matri-
ces A,B. ‖ · ‖, 〈·, ·〉 denote Euclidean norm and inner-product. We use Z+ = {0, 1, 2, . . .} to
denote the set of natural numbers;N (·, ·) to denote Gaussian distributions; and �(·) to denote
the spectral radius. As encountered in subsection 1.2 we make use of the similar symbol ρ
for densities; these should be easily distinguished from spectral radius by context and by a
different font.

2. Novel algorithmic methodology

Our novel algorithmic methodology is introduced in this section. We first introduce the under-
lying mean-field dynamical system, which has prediction and analysis steps corresponding to
the aforementioned transition kernels, in subsection 2.1. Then, in subsection 2.2, we introduce
a class of conceptual Gaussian approximation algorithms found by applying Kalman method-
ology to the proposed mean-field dynamical system. Through linear analysis, we prove in
subsection 2.3 that these algorithms converge exponentially to the posterior. For the nonlinear
setting, a variety of nonlinear Kalman inversionmethodologies are discussed in subsection 2.4.

2.1. Mean-field dynamical system

Following the discussion from section 1.2.2, we propose an implementation of (8) to solve
inverse problems by pairing the parameter-to-datamap with a dynamical system for the param-
eter, and then employ techniques from filtering to estimate the parameter given the data.

We introduce the prediction step

θn+1 = θn + ωn+1. (14)

Here θn+1 is the unknown state vector and ωn+1 ∼ N (0,Σω,n+1) is the independent, zero-mean
Gaussian evolution error,whichwill be chosen such that (14)mimics (9) forGaussian densities.
The analysis step (10) follows exactly from the observation model (first introduced in [71])

xn+1 = F (θn+1)+ νn+1; (15)

here we have defined the augmented forward map
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F (θ) =

[
G(θ)
θ

]
, (16)

with νn+1 ∼ N (0,Σν,n+1) the independent, zero-mean Gaussian observation error, and xn+1

the output of the observation model at time n+ 1. We define artificial observation x†n+1 using
the following particular instance of the data, constructed from the one observation y and the
prior mean r0 and assumed to hold for all n � 1:

x†n+1 = x :=

[
y
r0

]
. (17)

We will apply filtering methods to condition θn on Yn := {x†1, x
†
2, . . . , x

†
n}, the observation set

at time n. As we will see later, the choice of {x†�}l=1 leads to the correct posterior.
LetCn denote the covariance of the conditional randomvariable θn|Yn. Then the error covari-

ance matrices {Σω,n+1} and {Σν,n+1} in the extended dynamical system (14) and (15) are
chosen at the nth iteration, as follows:

Σν,n+1 =
1
Δτ

[
Ση 0
0 Σ0

]
and Σω,n+1 =

Δτ

1−Δτ
Cn. (18)

Here 0 < Δτ < 1, and in our numerical studies we chooseΔτ = 1/2, although other choices
are possible. Since the artificial evolution error covariance Σω,n+1 in (14) is updated based on
Cn, the conditional covariance of θn|Yn, it follows that (14) is a mean-field dynamical system:
it depends on its own law, specifically on the law of θn|Yn. Details underpinning the choices
of the error covariance matrices {Σω,n} and {Σν,n} are given in subsections 2.2 and 2.3: the
matrices are chosen so that, for linear Gaussian problems, the prediction and analysis steps
follow equations (9) and (10), and the convergedmean and covariance of the resulting filtering
distribution for θn|Yn under the prediction step (14) and the observation model (15) match the
posterior mean and covariance.

2.2. Gaussian approximation

Denote by ρn, the conditional density of θn|Yn. We first introduce a class of conceptual Kalman
inversion algorithms which approximate ρn by considering only first and second order statis-
tics (mean and covariance), and update ρn sequentially using the standard prediction and
analysis steps [45, 46]: ρn �→ ρ̂n+1, and then ρ̂n+1 �→ ρn+1, where ρ̂n+1 is the distribution of
θn+1|Yn. The second analysis step is performed by invoking a Gaussian hypothesis. In sub-
sequent subsections, we then apply different methods to approximate the resulting maps on
measures, leading to unscented, stochastic ensemble Kalman and adjustment/transform square
root Kalman filters.

In the prediction step, assume that ρn ≈ N (mn,Cn), then under equation (14), ρ̂n+1 =

N (m̂n+1, Ĉn+1) is also Gaussian and satisfies

m̂n+1 = E[θn+1|Yn] = mn Ĉn+1 = Cov[θn+1|Yn] = Cn +Σω,n+1. (19)

In the analysis step, we assume that the joint distribution of {θn+1, xn+1}|Yn can be approxi-
mated by a Gaussian distribution

N
([

m̂n+1

x̂n+1

]
,

[
Ĉn+1 Ĉθx

n+1

Ĉn+1
θx T

Ĉxx
n+1

])
, (20)

where
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x̂n+1 = E[xn+1|Yn] = E[F (θn+1)|Yn],

Ĉθx
n+1 = Cov[θn+1, xn+1|Yn] = Cov[θn+1,F (θn+1)|Yn],

Ĉxx
n+1 = Cov[xn+1|Yn] = Cov[F (θn+1)|Yn]+Σν,n+1.

(21)

These expectations are computed by assuming θn+1|Yn ∼ ρ̂n+1 and noting that the distribution
of (θn+1, xn+1) is then defined by (14) and (15). This corresponds to projecting5 the joint distri-
bution onto the Gaussian which matches its mean and covariance. Conditioning the Gaussian
in equation (20) to find θn+1|{Yn, x†n+1} = θn+1|Yn+1, gives the following expressions for the
mean mn+1 and covariance Cn+1 of the approximation to ρn+1:

mn+1 = m̂n+1 + Ĉθx
n+1(Ĉ

xx
n+1)

−1(x†n+1 − x̂n+1), (22a)

Cn+1 = Ĉn+1 − Ĉθx
n+1(Ĉ

xx
n+1)

−1Ĉθx T
n+1 . (22b)

Equations (19) to (21), (22a) and (22b) establish a class of conceptual algorithms for appli-
cation of Gaussian approximation to solve the inverse problems. To make implementable
algorithms a high level choice needs to be made: whether to work strictly within the class
of Gaussians, that is to impose ρn ≡ N (mn,Cn), or whether to allow non-Gaussian ρn but to
insist that the second order statistics of the resulting measures agree with equations (19) to
(21), (22a) and (22b). In what follows the UKI takes the first perspective; all other methods
take the second perspective. For the UKI the method views equations (19) to (21), (22a) and
(22b) as providing a nonlinear map (mn,Cn) �→ (mn+1,Cn+1); this map is then approximated
using quadrature. For the remaining methods a mean-field dynamical system is used, which
is non-Gaussian but matches the aforementioned Gaussian statistics; this mean-field model is
then approximated by a finite particle system [79]. The dynamical system is of mean-field type
because of the expectations required to calculate equations (20), (21) and (18). The continu-
ous time limit of the evolution for the mean and covariance is presented in appendix A; this is
obtained by lettingΔτ → 0.

Remark 1. Consider the case, where ρn = N (mn,Cn) is Gaussian. With the specific choice
of {Σω,n}, we have ρ̂n+1 = N (mn, 1

1−Δτ
Cn) from the prediction step equation (19), and hence

the Gaussian density functions ρn and ρ̂n+1 fulfill equation (9). With the extended observation
model (15) and the specific choice of {Σν,n}, the analysis step without Gaussian approximation
can be written as

ρ(θn+1|Yn+1) ∝ ρ(θn+1|Yn)ρ(x†n+1|θn+1, Yn)

∝ ρ̂n+1(θn+1)e−ΔτΦR(θn+1,y)

∝ ρ̂n+1(θn+1)ρ(θn+1)Δτ (23)

and hence the density functions ρ̂n+1 and ρn+1 fulfill equation (10). Note, however, that ρn+1

is not, in general, Gaussian, unless G is linear, the case studied in the next section. In the
nonlinear case, we employ Kalman-based methodology which only employs first and second
order statistics, and in effect projects ρn+1 onto a Gaussian.

5We use the term ‘projecting’ as finding the Gaussian p which matches the first and second moments of a given
measure π corresponds to finding the closest Gaussian p to π with respect to variation in the second argument of the
(nonsymmetric) Kullback–Leibler divergence [78, theorem 4.5].
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2.3. Linear analysis

In this subsection, we study the algorithm in the context of linear inverse problems, for which
G(θ) = Gθ for some matrix G. Furthermore we assume that ρprior is Gaussian N (r0,Σ0) and
recall that the observational noise is N (0,Ση). Thanks to the linear Gaussian structure the
posterior is also Gaussian with mean and precisions given by

mpost = r0 +
(
GTΣ−1

η G+Σ−1
0

)−1
GTΣ−1

η (y− Gr0) and

C−1
post = GTΣ−1

η G+Σ−1
0 . (24)

Furthermore, the equation (21) reduce to

x̂n+1 = Fmn, Ĉθx
n+1 = Ĉn+1F

T, and

Ĉxx
n+1 = FĈn+1F

T +Σν,n+1 where F =

[
G
I

]
.

We note that

〈Fv,Fv〉 � ‖v‖2. (25)

The update equations (22a) and (22b) become

mn+1 = mn + Ĉn+1F
T(FĈn+1F

T +Σν,n+1)
−1(x − Fmn), (26a)

Cn+1 = Ĉn+1 − Ĉn+1F
T(FĈn+1F

T +Σν,n+1)−1FĈn+1, (26b)

with Ĉn+1 = Cn +Σω,n+1. We have the following theorem about the convergence of the
algorithm:

Theorem 1. Assume that the error covariance matrices are as defined in equation (18)
with 0 < Δτ < 1 and that the prior covariance matrix Σ0 � 0 and initial covariance matrix
C0 � 0. The iteration for the conditionalmeanmn and precision matrix C−1

n characterizing the
distribution of θn|Yn converges exponentially fast to limit m∞,C−1

∞ . Furthermore the limiting
mean m∞ and precision matrix C−1

∞ = GTΣ−1
η G+Σ−1

0 are the posterior mean and precision
matrix given by (24).

Proof. With the error covariance matrices defined in equation (18), the update equation for
{Cn} in equation (26b) can be rewritten as

C−1
n+1 = FTΣ−1

ν,n+1F + (Cn +Σω,n+1)
−1

= Δτ
(
GTΣ−1

η G+Σ−1
0

)
+ (1−Δτ )C−1

n . (27)

We thus have a closed formula for C−1
n :

C−1
n =

[
1− (1−Δτ )n

](
GTΣ−1

η G+Σ−1
0

)
+ (1−Δτ )nC−1

0 . (28)

Since 0 < Δτ < 1 this leads to the exponential convergence lim
n→∞

C−1
n = GTΣ−1

η G+Σ−1
0 =

C−1
post given by (24).

11
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Since we have made a choice independent of n we write Σν :=Σν,n+1. Thus equations (27)
and (28) lead to

FTΣ−1
ν F � C−1

n+1 � FTΣ−1
ν F +Σ+ where Σ+ =

1−Δτ

Δτ
FTΣ−1

ν F + C−1
0 . (29)

The update equation of mn in equation (26a) can be rewritten as

mn+1 = mn + Cn+1F
TΣ−1

ν (x − Fmn). (30)

Note that B :=FTΣ−1
ν F is symmetric and that, as a consequence of (25) together with the fact

that Σν � 0, it follows that B � 0; thus we have that I− Cn+1B has the same spectrum as
I − B

1
2Cn+1B

1
2 . Using the upper bound on Cn+1 appearing in equation (29), the spectral radius

of the update matrix in equation (30) satisfies

�(I− Cn+1F
TΣ−1

ν F) = �(I− Cn+1B)

= �
(
I− B

1
2Cn+1B

1
2

)
� 1− �

(
B

1
2
(
B+Σ+

)−1
B

1
2

)
= 1− ε0, (31)

where ε0 ∈ (0, 1). Hence, we deduce that {mn} converges exponentially to the stationary point
m∞, which satisfies FTΣ−1

ν (x − Fm∞) = 0. Using the structure of F and Σν the limiting mean
can be written as the posterior mean given in (24):

m∞ = r0 +
(
GTΣ−1

η G+Σ−1
0

)−1
GTΣ−1

η (y− Gr0) = mpost. (32)

�

Remark 2. Although this theorem applies only to the linear Gaussian settingwe note that the
premise of matching only first and second order moments is inherent to all Kalman methods.
We demonstrate numerically in section 4 that application of the filtering methodology based
on the proposed choices of covariances leads to approximatedmean and covarianceswhich are
accurate for nonlinear inverse problems.

Remark 3. We note that the convergence of the means/covariances of the Kalman filter is
a widely studied topic; and variants on some of our results can be obtained from the existing
literature, for example, the use of contraction mapping arguments to study convergence of the
Kalman filter is explored in [80, 81].

2.4. Nonlinear Kalman inversion methodologies

To make practical methods for solving nonlinear inverse problems (1) out of the foregoing,
the expectations (integrals) appearing in the prediction step (19) as well as in the analysis step
via equation (21) need to be approximated appropriately. While equation (19) can be imple-
mented via a simple rescaling of the covariancematrix or ensemble, respectively, (we use both)
the analysis step can be implemented using any nonlinear Kalman filter (we use a variety).
In the present work, we focus on both the unscented and EnKF, which lead to the Bayesian

12
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implementations of unscented Kalman inversion (UKI), stochastic ensemble Kalman inver-
sion (EKI), ensemble adjustment Kalman inversion (EAKI), and ensemble transform Kalman
inversion (ETKI). We now detail these methods6.

2.4.1. UnscentedKalman inversion (UKI). UKI approximates the integrals in equation (21) by
means of deterministic quadrature rules; this is the idea of the unscented transform [58, 65].
We now define this precisely in the versions used in this paper.

Definition 1 (Modified unscented transform [72]). Consider Gaussian random vari-
able θ ∼ N (m,C) ∈ R

Nθ . Define J sigma points {θ j}J−1
j=0 according to the deterministic formu-

lae

θ0 = m θ j = m+ [
√
C]INθ [:, j] (1 � j � J − 1); (33)

here [
√
C] is the Cholesky factor of C and INθ [:, j] is the jth column of the matrix INθ ∈

R
Nθ×(J−1). Consider any two real vector-valued functionsF1(·) andF2(·) acting on RNθ . Using

the sigma points we may define a quadrature rule approximating the mean and covariance of
the random variables F1(θ) and F2(θ) as follows:

E[Fi(θ)] ≈ Fi(θ0)

Cov[F1(θ),F2(θ ] ≈
J−1∑
j=1

a
(
F1(θ j)− EF1(θ)

)(
F2(θ j)− EF2(θ)

)T
. (34)

In the present work, we consider the following two variants,

• UKI-1 (J = Nθ + 2) [12, 82]. INθ is defined recursively as

I1 =

[
− 1√

2a

1√
2a

]
(35)

Id =

⎡⎢⎢⎢⎢⎣
0

Id−1
...
0

1√
ad(d + 1)

. . .
1√

ad(d + 1)
−d√

ad(d + 1)

⎤⎥⎥⎥⎥⎦, 2 � d � Nθ

(36)

and the weight parameter is chosen as a = Nθ
4(Nθ+1) .

6 Recall the discussion in subsection 1.3 about distinction between optimization and Bayesian implementations of all
these methods.
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• UKI-2 (J = 2Nθ + 1) [72]. INθ is defined as

INθ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2a

− 1√
2a

1√
2a

− 1√
2a

. . .
. . .

1√
2a

− 1√
2a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

and the weight parameter is chosen as a = max{ 1
8 ,

1
2Nθ

}.

Consider the Gaussian approximation algorithm defined by equations (19) to (21), (22a)
and (22b). By utilizing the aforementioned quadrature rule, the iteration procedure of the UKI
becomes:

• Prediction step:

m̂n+1 = mn Ĉn+1 =
1

1−Δτ
Cn. (38)

• Generate sigma points:

θ̂0n+1 = m̂n+1, θ̂ jn+1 = m̂n+1 + [
√
Ĉn+1]INθ [:, j] (1 � j � J − 1). (39)

• Analysis step:

x̂ jn+1 = F (θ̂ jn+1) (0 � j � J − 1),

x̂n+1 = x̂0n+1,

Ĉθx
n+1 =

J−1∑
j=1

a(θ̂ jn+1 − m̂n+1)(x̂
j
n+1 − x̂n+1)

T,

Ĉxx
n+1 =

J−1∑
j=1

a(x̂ jn+1 − x̂n+1)(x̂
j
n+1 − x̂n+1)T +Σν,n+1,

mn+1 = m̂n+1 + Ĉθx
n+1(Ĉ

xx
n+1)

−1(x − x̂n+1),

Cn+1 = Ĉn+1 − Ĉθx
n+1(Ĉ

xx
n+1)

−1Ĉθx T
n+1 . (40a)

2.4.2. Ensemble Kalman inversion. Ensemble Kalman inversion represents the distribution at
each iteration by an ensemble of parameter estimates {θ jn}Jj=1 and approximates the integrals
in equation (21) empirically. We describe three variants on this idea.

Stochastic ensemble Kalman inversion (EKI). The perturbed observations form of the
ensemble Kalman filter [83] is applied to the extended mean-field dynamical system (14) and
(15), which leads to the EKI:

14
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• Prediction step:

m̂n+1 = mn, θ̂ jn+1 = m̂n+1 +

√
1

1−Δτ
(θ jn − mn). (41)

• Analysis step:

x̂ jn+1 = F (θ̂ jn+1) x̂n+1 =
1
J

J∑
j=1

x̂ jn+1, (42a)

Ĉθx
n+1 =

1
J − 1

J∑
j=1

(θ̂ jn+1 − m̂n+1)(x̂
j
n+1 − x̂n+1)T, (42b)

Ĉxx
n+1 =

1
J − 1

J∑
j=1

(x̂ jn+1 − x̂n+1)(x̂
j
n+1 − x̂n+1)

T +Σν,n+1, (42c)

θ jn+1 = θ̂ jn+1 + Ĉθx
n+1

(
Ĉxx
n+1

)−1
(x − x̂ jn+1 − ν j

n+1), (42d)

mn+1 =
1
J

J∑
j=1

θ jn+1. (42e)

Here the superscript j = 1, . . . , J is the ensemble particle index, and ν j
n+1 ∼ N (0,Σν,n+1)

are independent and identically distributed random variables. The prediction step ensures
the exactness of the predictive covariance equation (19).

Remark 4. The prediction step (41) is inspired by square root Kalman filters [63, 64,
66, 84] and covariance inflation [85]; these methods are designed to ensure that the mean
and covariance of {θ̂ jn+1} match m̂n+1 and Ĉn+1 exactly. This is different from traditional

stochastic ensemble Kalman inversion implementation, where i.i.d. Gaussian noises ω j
n+1 ∼

N (0,Σω,n+1) are added. In the analysis step (42), we add noise in the {θ jn+1} update (42d)

instead of the {x̂ jn+1} evaluation (42a); this ensures that Ĉxx
n+1 (42c) is symmetric positive

definite.

Remark 5. As a precursor to understanding the adjustment and transform filters which fol-
low this subsection, we show that the EKI does not exactly replicate the covariance update
equation (22b). To this end, denote the matrix square roots Ẑn+1, Zn+1 ∈ R

Nθ×J of Ĉn+1,Cn+1

and Ŷn+1 as follows:

Ẑn+1 =
1√
J − 1

(
θ̂ 1
n+1 − m̂n+1 θ̂ 2

n+1 − m̂n+1 . . . θ̂Jn+1 − m̂n+1

)
,

Zn+1 =
1√
J − 1

(
θ1n+1 − mn+1 θ2n+1 − mn+1 . . . θJn+1 − mn+1

)
,

Ŷn+1 =
1√
J − 1

(
x̂1n+1 − x̂n+1 x̂2n+1 − x̂n+1 . . . x̂Jn+1 − x̂n+1

)
.

(43)

Then the covariance update equation (22b) does not hold exactly:

15



Inverse Problems 38 (2022) 125006 D Z Huang et al

Ĉn+1 − Ĉθx
n+1(Ĉ

xx
n+1)

−1Ĉθx T
n+1 = Ẑn+1Ẑ

T
n+1 − Ẑn+1ŶT

n+1

× (Ŷn+1ŶT
n+1 +Σν,n+1)−1Ŷn+1Ẑ

T
n+1

�= Zn+1Z
T
n+1 = Cn+1. (44)

Ensemble EAKI. Following the ensemble adjustment Kalman filter proposed in [63], the
analysis step updates particles deterministically with a pre-multiplier A,

θ jn+1 − mn+1 = A(θ̂ jn+1 − m̂n+1). (45)

Here A = PD̂
1
2UD

1
2 D̂− 1

2PT with

SVD : Ẑn+1 = PD̂
1
2VT,

SVD : VT
(
I+ ŶT

n+1Σ
−1
ν,n+1Ŷn+1

)−1
V = UDUT,

(46)

where both D̂ and D are non-singular diagonal matrices, with dimensionality rank (Ẑn+1), and
Ẑn+1 and Ŷn+1 are defined in equation (43). The analysis step becomes:

• Analysis step:

mn+1 = m̂n+1 + Ĉθx
n+1

(
Ĉxx
n+1

)−1
(x − x̂n+1), (47a)

θ jn+1 = mn+1 + A(θ̂ jn+1 − m̂n+1). (47b)

Remark 6. It can be verified that the covariance update equation (22b) holds:

Cn+1 = Zn+1Z
T
n+1

= AẐn+1Ẑ
T
n+1A

T

= PD̂
1
2UDUTD̂

1
2P

= Ẑn+1

(
I+ ŶT

n+1Σ
−1
ν,n+1Ŷn+1

)−1
ẐT
n+1

= Ẑn+1

(
I− ŶT

n+1(Ŷn+1ŶT
n+1 +Σν,n+1)−1Ŷn+1

)
ẐT
n+1

= Ĉn+1 − Ĉθx
n+1(Ĉ

xx
n+1)

−1Ĉθx T
n+1 . (48)

ETKI. Following the ensemble transformKalman filter proposed in [64, 66, 84], the analysis
step updates particles deterministically with a post-multiplier T,

Zn+1 = Ẑn+1T. (49)

Here T = P(Γ + I)−
1
2PT, with

SVD: Ŷn+1Σ
−1
ν,n+1Ŷn+1 = PΓPT. (50)

The analysis step becomes:
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• Analysis step:

mn+1 = m̂n+1 + Ĉθx
n+1

(
Ĉxx
n+1

)−1
(x − x̂n+1), (51a)

Zn+1 = Ẑn+1T. (51b)

Remark 7. It can be verified that the covariance update equation (22b) holds:

Cn+1 = Zn+1Z
T
n+1

= Ẑn+1TT
TẐT

n+1

= Ẑn+1
(
I+ PΓPT

)−1
ẐT
n+1

= Ẑn+1

(
I+ ŶT

n+1Σ
−1
ν,n+1Ŷn+1

)−1
ẐT
n+1

= Ẑn+1

(
I− ŶT

n+1(Ŷn+1ŶT
n+1 +Σν,n+1)−1Ŷn+1

)
ẐT
n+1

= Ĉn+1 − Ĉθx
n+1(Ĉ

xx
n+1)

−1Ĉθx T
n+1 . (52)

Particles (ensemble members) updated by the basic form of the EKI algorithm through
iterates are confined to the linear span of the initial ensemble [55, 57]. The same is true for
both EAKI and ETKI:

Lemma 1. For both EAKI and ETKI, all particles lie in the linear space A spanned by m0

and the column vectors of Z0.

Proof. We will prove that mn and column vectors of Zn are in A by induction. We assume

this holds for all n � k. Since m̂k+1 = mk and Ẑk+1 =
√

1
1−Δτ

Zk (see equation (41)), m̂k+1 and

column vectors of Ẑk+1 are in A. Combining the mean update equations (47a) and (51a) and
the fact that Ĉθx

k+1 = Ẑk+1ŶT
k+1, we have mk+1 is inA. For EAKI, since the pre-multiplier A =

PD̂
1
2UD

1
2 D̂− 1

2PT, and P is the left compact singular matrix of Ẑk+1, it follows that the column
vectors of A lie in A; furthermore, the square root matrix update equation (47b), Zk+1 = AẐk,
has implication that the column vectors of Zk+1 lie in A. For the ETKI, the square root matrix
update equation (51b) implies that the column vectors of Zk+1 lie in A. Since mn and column
vectors of Zn are in A, so are the particles {θ jn}Jj=1. �

3. Variants on the basic algorithm

In this section, we introduce three strategies to make the novel mean-field based methodology
more efficient, robust and widely applicable in real large-scale problems. In subsection 3.1
we introduce low-rank approximation, in which the parameter space is restricted to a low-
rank space induced by the prior; subsection 3.2 introduces a bi-fidelity approach in which
multifidelity models are used for different ensemble members; and box constraints to enforce
pointwise bounds on θ are introduced in subsection 3.3.
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3.1. Low-rank approximation

When using ensemble methods for state estimation, the dimension of the ensemble space
needed for successful state estimation may be much smaller than Nθ; a useful rule of thumb is
that the ensemble space needs to be rich enough to learn about the unstable directions in the
system. When using ensemble methods for inversion the situation is not so readily understood.
The EKI algorithm presented here is limited to finding solutions in the linear span of the ini-
tial ensemble [55, 57] and we have highlighted a similar property for the EAKI and ETKI in
lemma 1. While localization is often used to break this property [86] its use for this purpose is
somewhat ad hoc. In this work we do not seek to break the subspace property. Indeed here we
exploit low rank approximation within ensemble inversion techniques, a methodology which
leads to solutions restricted to the linear span of a small number of dominant modes defined
by the prior distribution.

Theorem 1 requires that the initial covariance matrix C0 � 0 be strictly positive definite.
To satisfy the assumption, the UKI requires Nθ + 2 or 2Nθ + 1 forward problem evaluations
and the storage of an Nθ × Nθ covariance matrix, and the EKI, EAKI and ETKI requireO(Nθ)
forward problem evaluations and the storage ofO(Nθ) parameter estimates; some of the impli-
cations of these effects are numerically verified in section 4.4. Therefore, they are unaffordable
for field inversion problems, where Nθ is large, typically from discretization of the Nθ = ∞
limit. However, many physical phenomena or systems exhibit large-scale structure or finite-
dimensional attractors, and in such situations the model error covariancematrices are generally
low-rank; these low-rank spaces are spanned by, for example, the dominant Karhunen–Loève
modes for random fields [87, 88] or the dominant spherical harmonics space on the
sphere [63, 89]. We introduce a reparameterization strategy for this framework in order to
leverage such low-rank structure when present, and thereby to reduce both computational and
storage costs.

Given the prior distributionN (r0,Σ0), we assumeΣ0 is a low-rankmatrix with the truncated
singular value decomposition

Σ0 ≈ UD0U
T.

Here U = {u1, u2, . . . , uNr} is the Nr-dominant singular vector matrix and D0 is the singular
value matrix. The discrepancy θ − r0 is assumed to be well-approximated in the linear space
spanned by column vectors of U. Hence, the unknown parameters can be reparameterized as
follows:

θ = r0 +
Nr∑
i=1

τ(i)ui.

The aforementioned algorithm is then applied to solve for the vector τ = [τ(1), τ(2), . . . , τ(Nr)]
T,

which has prior mean 0 and prior covariance D0. This reduces the computation and memory
cost from O(Nθ) and O(N2

θ ) to O(Nr) and O(NrNθ), where Nr is the rank of the covariance
matrix.

More advanced approaches to extracting the low-rank space exist, including active subspace
methods [90] and likelihood-informed subspace methods [91, 92]; however, they all require
derivatives and so we do not pursue them here.

3.2. Bi-fidelity approach

For large-scale scientific or engineering problems, even with a small parameter number Nθ

(or rank number Nr), the computational cost associated with these O(Nθ) (or O(Nr)) forward
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model evaluations can be intractable; for example the number of parameters may be small, but
the parameter-to-datamap may require evaluation of a large, complexmodel. The bi-fidelity or
multilevel strategy [93–96] is widely used to accelerate sampling-based methods; in particular
it has been introduced in the context of ensemble methods in [97] and see [98] for a recent
overview of developments in this direction.

We employ a particular bi-fidelity approach for the UKI algorithm. In this approach,
low-fidelity models can be used to speed up forward model evaluations as follows. Con-
sider equation (40a); evaluation of the mean G(θ̂0n+1) can be performed using a high-fidelity
model; meanwhile the other J− 1 forward evaluations employed for covariance estimation,
{G(θ̂ jn+1)}J−1

j=1, can use low-fidelity models.

3.3. Box constraints

Adding constraints to the parameters (for example, dissipation is non-negative) significantly
improves the robustness of Kalman inversion [99–101]. In this paper, there are occasionswhere
we impose element-wise box constraints of the form

0 � θ or θmin � θ � θmax.

These are enforced by change of variables writing θ = ϕ(θ̃) where, for example, respectively,

ϕ(θ̃) = exp(θ̃) orϕ(θ̃) = θmin +
θmax − θmin

1+ exp(θ̃)
.

The inverse problem is then reformulated as

y = G(ϕ(θ̃))+ η

and the proposed Kalman inversion methods are employed with G �→ G ◦ ϕ.

4. Numerical experiments

In this section, we present numerical experiments demonstrating application of filtering meth-
ods to the novel mean-field dynamical system (equations (14), (15) and (18)) introduced in this
paper7; the goal is to approximate the posterior distribution of unknown parameters or fields.
The first subsection lists the five test problems, and the subsequent subsections consider them
each in turn. In summary, our findings are as follows8:

• The proposed Kalman inversion methods based on (equations (14), (15) and (18)) are
more efficient than transport/coupling methods based on (12) (i.e., iterative Kalman filter
methods) on all the examples we consider. They remove the sensitivity to the initialization
and, relatedly, they converge exponentially fast.

• The proposedKalman inversion methods with deterministic treatment of stochastic terms,
specifically UKI and EAKI, outperform other methods with stochastic treatments, such
as EKI, EKS (with Euler–Maruyama discretization) and CBS. They do not suffer from
the presence of noisy fluctuations and achieve convergence for both linear and nonlinear
problems.

7We fixΔτ = 1/2 based on the parameter study presented in appendix A and iterate O(10) iterations to demonstrate
convergence. In practice, adaptive time stepping and increment-based stopping criteria can be applied.
8 The footnote from subsection 1.4, appearing before the bulleted list of contributions, applies here too.
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• Themethodology is implementable for large-scale parameter identification problems, such
as those arising in climate models.

4.1. Overview of test problems

The five test problems considered are:

(a) Linear-Gaussian two-parametermodel problem: this problem serves as a proof-of-concept
example, which demonstrates the convergence of the mean and the covariance as analyzed
in subsection 2.3.

(b) Nonlinear two-parameter two-point boundary value problem: this example appears in [74]
an important paper which demonstrates that the mean field limit of ensemble Kalman
inversionmethodsmay be far from the true posterior; it is also used as a test case in several
other papers, such as [75, 102]. We show that by applying Kalman filtering techniques
to the extended mean-field dynamical system (equations (14), (15) and (18)), we obtain
methods which obtain accurate posterior approximation on this problem.

(c) Hilbert matrix problem: this high dimensional linear-Gaussian problem demonstrates the
ability of the proposed Kalman inversion methodology to solve ill-conditioned inverse
problems. In addition to testing the novelmean-field approach introduced in this paper, we
also study the effect of the ensemble size on ensemble Kalman inversion, and in particular,
the ensemble adjustment/transform Kalman inversions are examined in this context.

(d) Darcy flow inverse problem: this is an infinite dimensional field inversion problem
(see [30] and the references therein); in addition to testing the novel mean-field approach
introduced in this paper, we also demonstrate the low-rank approximation strategy in
subsection 3.1.

(e) Idealized global climate model: this 3D Navier–Stokes problem, see [72] for background
and references; in addition to testing the novel mean-field approach introduced in this
paper, we also demonstrate the bi-fidelity approach introduced in subsection 3.2.

For the first and third problems, the Gaussian structure means that they are exactly solv-
able and this provides a benchmark against which we compare various methods. Markov chain
Monte Carlo methods (MCMC), specifically the random walk Metropolis [24] and precondi-
tioned Crank–Nicolson [26] methods, are used as the benchmark for the second and fourth
problems respectively. Problem five is too large for the use of MCMC, and showcases the
potential of the methodology studied here to solve problems otherwise beyond reach.

In the first two tests, we compare the proposed Kalman inversion methods (EKI, UKI,
EAKI, ETKI applied to equations (14), (15) and (18) with other recently proposed Gaussian
approximation algorithms, including the ensemble Kalman sampler (EKS) [75, 77],9 and the
consensus-based sampler (CBS) [52, 53, 103–105].10 We also compare with variants of iter-
ative Kalman filter methods, which seek to deform the prior into the posterior in one time
unit (transport/coupling) using a finite number of intermediate steps (see appendix B) based
on (12). They include iterative unscented Kalman filters (IUKF-1, IUKF-2), IEnKF, iterative
ensemble adjustment Kalman filter (IEAKF), and iterative ensemble transform Kalman filter
(IETKF) [55, 56, 106, 107] [108, algorithm 3]. Having shown the superiority of filtering based
on our novel mean field dynamical system, we consider only this approach in the remaining
examples. In the third test, we study the effect of the ensemble size on the proposed Kalman

9We follow the implementation in [75], which employs adaptive time-stepping.
10We follow the implementation in [53], setting α = 0.0 and adaptively updating β with μ = 0.5.
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inversion methods, in particular for the EAKI/ETKI approaches to filtering, comparing with
the UKI. In the fourth and fifth tests, we demonstrate the effectiveness of the proposed Kalman
inversionmethods for large-scale inverse problems and incorporate the low-rank and bi-fidelity
approaches.

4.2. Linear two-parameter model problem

We consider the two-parameter linear inverse problem [72] of finding θ ∈ R
2 from y given by

y = Gθ + η. (53)

Here the observation error noise is η ∼ N (0, 0.12I). We explore the following two scenarios

• Over-determined system

y =

⎡⎣ 3
7
10

⎤⎦ G =

⎡⎣1 2
3 4
5 6

⎤⎦ρprior ∼ N (0, I); (54)

• Under-determined system

y =
[
3
]

G =
[
1 2

]
ρprior ∼ N (0, I). (55)

We apply various Kalman inversions to our proposed novel mean-field dynamical system,
includingUKI-1 (J = 4), UKI-2 (J = 5), EKI, EAKI, and ETKI; we comparewith pre-existing
coupling/transport based iterative Kalman filters, including IUKF-1 (J = 4), IUKF-2 (J = 5),
IEnKF, IEAKF and IETKF all with J = 10 ensemble members; and we compare with EKS,
and CBS, again all with J = 10. All algorithms are initialized at the prior distribution; note
however that the methods we introduce in this paper, and EKS and CBS, do not require this
and indeed are robust to the use of different initializations. The iterative Kalman filters are
discretized with Δτ = 1

30 , and further correction (see appendix B.2) is applied on the initial
ensemble members for the exactness of the initialization, except for the IEAKF∗. Since the
posterior distribution is Gaussian, we can compute the reference distribution analytically. The
convergence of the posterior mean and posterior covariance are reported in figures 1 and 2.
Because we use the same number of steps for all algorithms, and commensurate numbers of
particles, the evaluation cost of all the methods studied are comparable; the size of the error
discriminates between them.

For both scenarios, UKI-1, UKI-2, EAKI, and ETKI converge exponentially fast. IUKF-1,
IUKF-2, IEAKF, and IETKF reach exact posterior mean and covariancematrix at T = 1. How-
ever, IEAKF∗ does not convergedue to the error introduced in the initialization. EKI and IEnKF
do not converge, and suffer from the presence of random noise introduced in the analysis step.
EKS and CBS do not converge, and suffer from the presence of random noise and the finite
ensemble size.

4.3. Nonlinear two-parameter model problem

Consider the one-dimensional elliptic boundary-value problem

− d
dx

(
exp(θ(1))

d
dx
p(x)

)
= 1, x ∈ [0, 1] (56)

with boundary conditions p(0) = 0 and p(1) = θ(2). The solution for this problem is given by
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Figure 1. Linear two-parameter model problems: convergence of posterior mean (top)
and posterior covariance (bottom) for the over-determined system.

Figure 2. Linear two-parameter model problems: convergence of posterior mean (top)
and posterior covariance (bottom) for the under-determined system (bottom).

p(x) = θ(2)x + exp(−θ(1))

(
− x2

2
+
x
2

)
. (57)
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The Bayesian inverse problem is formulated as finding θ ∈ R
2 from y given by

y = G(θ)+ η, θ =

[
θ(1)
θ(2)

]
and η ∼ N (0, 0.12I). (58)

The observations comprise pointwise measurements of p and we consider well-determined and
under-determined cases:

• Well-determined system

G(θ) =
[
p(0.25, θ)
p(0.75, θ)

]
y =

[
27.5
79.7

]
ρprior ∼ N

([
0

100

]
, I

)
. (59)

• Under-determined system the observations

G(θ) = p(0.25, θ) y = 27.5 ρprior ∼ N
([

0
100

]
, I

)
. (60)

The reference posterior distribution is approximated by the random walk Metropolis
algorithm with a step size 1.0 and 5× 106 samples (with a 106 sample burn-in period). We
compare the UKI-1 (J = 4), UKI-2 (J = 5), EKI, EAKI, and ETKI applied to (equations (14),
(15) and (18)), iterative Kalman filters, including IUKF-1 (J = 4), IUKF-2 (J = 5), IEnKF,
IEAKF, IETKF all with J = 50 ensemble members, applied to (12), and the EKS and CBS
methods, also with J = 50. All algorithms are initialized at the prior distribution. The itera-
tive Kalman filters are discretized with Δτ = 1

30 , and further correction (see appendix B.2) is
applied on the initial ensemble members for the exactness of the initialization.

Posterior distribution approximations obtained by different algorithms, all at the 30th itera-
tion, are depicted in figures 3 and 4. Two common qualitative themes stand out from these
figures: the iterative methods based on coupling/transport have difficulty covering the true
posterior spread, especially in the under-determined case, when compared with the new
methodologies based on our novel mean-field dynamical system; and application of ensemble
transform methods in either coupling/transport or mean-field dynamical system suffers from a
form of collapse. The first point may be seen quantitatively; the second does not show up so
much quantitatively because collapse is in a direction in which there is less posterior spread.
We now turn to quantitative comparisons. Again, because we use the same number of steps for
all algorithms, and commensurate numbers of particles, the evaluation cost of all the methods
studied are comparable; the size of the error discriminates between them.

The convergence of posterior mean and posterior covariance are reported in figures 5 and 6.
For both scenarios, UKI-1, UKI-2, and EAKI converge exponentially fast at the beginning and
then flatten out, since the posterior is not Gaussian [74]. The ETKI suffers from divergence for
the under-determined scenario, and for this test, ETKI is less robust compared with UKI and
EAKI. As in the linear two-parameter model problems (see subsection 4.2), EKI, EKS, CBS,
and IEnKF suffer from random noise and finite ensemble sizes. Moreover, Kalman inversions,
especially UKI and EAKI, outperform iterative Kalman filters, as measured by accuracy for
commensurate cost, for these nonlinear tests.

4.4. Hilbert matrix problem

We define the Hilbert matrix G ∈ R
Nθ×Nθ by its entries

Gi, j =
1

i+ j− 1
, (61)
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Figure 3. Nonlinear two-parameter model problem: posterior distribution approximated
at the 30th iteration for the well-determined system. Blue dots represent the reference
posterior distribution obtained by MCMC. x-axis is for θ(1) and y-axis is for θ(2).

Figure 4. Nonlinear two-parameter model problem: posterior distribution approximated
at the 30th iteration for the under-determined system. Blue dots represent the reference
posterior distribution obtained by MCMC. x-axis is for θ(1) and y-axis is for θ(2).

with Nθ = 100. We consider the inverse problem

y = G𝟙 η ∼ N (0, 0.12I) ρprior ∼ N (0, I). (62)

24



Inverse Problems 38 (2022) 125006 D Z Huang et al

Figure 5. Nonlinear two-parameter model problem: convergence of posterior mean
(top) and posterior covariance (bottom) for the well-determined system.

Figure 6. Nonlinear two-parameter model problem: convergence of posterior mean
(top) and posterior covariance (bottom) for the under-determined system.

We no longer study iterated Kalman methods arising from coupling/transport as the preced-
ing examples show that they are inefficient. Furthermore EKI, EKS, and CBS do not converge
and suffer from random noise and/or finite ensemble sizes; these results are not shown. Instead,
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Figure 7. Hilbert matrix problem: convergence of posterior mean (left) and posterior
covariance (right).

we focus on the effect of the ensemble size on EAKI and ETKI, comparing with UKI. To be
concrete, we apply EAKI and ETKI with J = Nθ, Nθ + 1 and 500, and UKI-1 and UKI-2.
Again, we initialize all algorithms at the prior distribution.

We compute the reference distribution analytically. The convergence of posterior mean and
posterior covariance are reported in figure 7. UKI-1, UKI-2, and EAKI and ETKI with more
than Nθ ensemble particles, converge exponentially fast. The relatively poor performance of
EAKI and ETKI with a smaller number of ensemble particles is related to theorem 1, since
EAKI and ETKI require at least Nθ + 1 particles to ensure that the initial covariance matrixC0

is strictly positive definite.

4.5. Darcy flow problem

The two-dimensionalDarcy flow equation describes the pressure field p(x) in a porousmedium
defined by a parameterized, positive permeability field a(x, θ):

−∇ · (a(x, θ)∇p(x)) = f (x), x ∈ D,

p(x) = 0, x ∈ ∂D.
(63)

Here the computational domain is D = [0, 1]2, Dirichlet boundary conditions are applied on
∂D, and f defines the source of the fluid:

f (x1, x2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1000 0 � x2 �

4
6

2000
4
6
< x2 �

5
6

3000
5
6
< x2 � 1

. (64)

The inverse problem of interest is to determine parameter θ of the field a(·; θ) from observa-
tion yref , which consists of pointwise measurements of the pressure value p(·) at 49 equidistant
points in the domain (see figure 8), corrupted with observation error η ∼ N (0, I). We now
describe how a depends on θ, and specify a standard Gaussian prior on θ.
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Figure 8. The reference pressure field with 49 equidistant pointwise measurements of
the Darcy flow problem.

We write

log a(x, θ) =
∑
l∈K

θ(l)
√
λlψl(x), (65)

where K = Z
+ × Z

+\{0, 0}, and

ψl(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
2 cos(πl1x1) l2 = 0

√
2 cos(πl2x2) l1 = 0

2 cos(πl1x1) cos(πl2x2) otherwise

, λl = (π2|l|2 + τ 2)−d (66)

and θ(l) ∼ N (0, 1) i.i.d. The expansion equation (65) can be rewritten as a sum over Z+ rather
than a lattice:

log a(x, θ) =
∑
k∈Z+

θ(k)
√
λkψk(x), (67)

where the eigenvalues λk are in descending order. We note that these considerations amount to
assuming that log a(x, θ) is a mean zero Gaussian random field with covariance

C = (−Δ+ τ 2)−d, (68)

with −Δ the Laplacian on D subject to homogeneous Neumann boundary conditions on the
space of spatial-mean zero functions; hyperparameter τ denotes the inverse length scale of
the random field and hyperparameter d determines its Sobolev and Hölder regularity, which is
d− 1 in our two dimensional setting [30].

In this work, we take τ = 3 and d = 2. In practice, we truncate the sum (67) to Nθ terms,
based on the largest Nθ eigenvalues, and hence θ ∈ R

Nθ . The forward problem is solved by a
finite differencemethod on a 80× 80 grid. To create the data yref referred to above,we generate
a truth random field log a(x, θref) with Nθ = 128 and θref ∼ N (0, I128).
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Figure 9. Darcy flow problem: the relative error of the permeability field, the opti-

mization error 1
2‖Σ

− 1
2

η (yobs − ŷn)‖2 + 1
2‖Σ

− 1
2

0 (mn − r0)‖2 and the Frobenius norm ‖Cn‖
(from left to right).

Figure 10. The estimated KL expansion parameters θ(i) and the associated 3 − σ confi-
dence intervals obtained by UKI-1 (J = 130), UKI-2 (J = 257), EAKI (J = 130), ETKI
(J = 130) and MCMC for the Darcy flow problem.

The benchmark posterior distribution is approximated by the preconditioned
Crank–Nicolson algorithm with 2× 106 samples (with a 5× 105 sample burn-in period)
with the step size 0.04. Since the preceding examples have shown the benefits of using UKI,
EAKI and ETKI over all other methods considered, we compare only these approaches with
the benchmark. Specifically, we apply UKI-1, UKI-2, and EAKI and ETKI with J = Nθ + 2,
again initialized at the prior distribution.

The convergence of the relative L2 error of the mean of the log a field, the optimization
errors, and the Frobenius norm of the estimated posterior covariance, as the iteration pro-
gresses, are depicted in figure 9. This clearly shows that all four Kalman inversion techniques
converge within 10 iterations.

Figure 10 shows the properties of the converged posterior distribution, after the 10th itera-
tion, comparing them with MCMC and with the truth (referred to as ‘Truth’). The information
is broken down according to recovery of the {θ(i)}, visualizing only the first 64 modes, since the
statistical estimates of other modes obtained by MCMC and by our Kalman inversion method-
ologies are close to the prior N (0, 1)—the data does not inform them. We first note that the
truth values lie in the confidence intervals determined byMCMC, with high probabilities. Sec-
ondly, we note that all four Kalman methods reproduce the posterior mean and confidence
intervals computed by MCMC accurately. The estimated log-permeability fields log a and the
truth are depicted in figure 11. Themean estimations obtained by theMCMC and these Kalman
inversionsmatchwell, and they both capture themain feature of the truth log-permeabilityfield.
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Figure 11. The truth log permeability field log a, and log permeability fields obtained by
MCMC, UKI-1 (J = 130), UKI-2 (J = 257), EAKI (J = 130), ETKI (J = 130) (left to
right).

Figure 12. The estimated KL expansion parameters θ(i) and the associated 3 − σ confi-
dence intervals obtained by UKI-1, UKI-2, EAKI, ETKIwith J = 31 ensemble members
and MCMC for the Darcy flow problem.

Remark 8. In practice, for many inversion problems for fields, the realistic number of
ensemble members is much smaller than the dimension of the state space. To probe this setting,
we repeat the test by using UKI-1, UKI-2, ETKI, and EAKI with J = 31 ensemble members;
for UKI-1 and UKI-2, we invert for the first 29 and 15 coefficients of {θ(k)}, respectively, and
for ETKI and EAKI we invert for all 128 coefficients. The estimated KL expansion parameters
{θ(i)} for the log-permeability field and the associated 3 − σ confidence intervals obtained
by MCMC, and different Kalman inversions at the 10th iteration, are depicted in figure 12.
The mean and standard deviation of the coefficients associated with these dominant modes
obtained by both UKIs match well with those obtained by MCMC. The results indicate that
the ‘truncate then invert’ strategy used by UKIs outperforms the ‘direct inversion’ strategy,
used here by EAKI and ETKI, when only small ensemble numbers are feasible.

4.6. Idealized global climate model

Finally, we consider using low-fidelity model techniques to speed up an idealized global cli-
mate model inverse problem. The model is based on the 3D Navier–Stokes equations, making
the hydrostatic and shallow-atmosphere approximations common in atmospheric modeling.
Specifically, we test on the notable Held–Suarez test case [109], in which a detailed radia-
tive transfer model is replaced by Newtonian relaxation of temperatures toward a prescribed
‘radiative equilibrium’ Teq(φ, p) that varies with latitude φ and pressure p. Specifically, the
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thermodynamic equation for temperature T

DT
∂t

− RTω
Cpp

= Q (69)

(including advective and pressure work terms) contains a diabatic heat source

Q = −kT(φ, p, ps)
(
T − Teq(φ, p)

)
, (70)

with relaxation coefficient (inverse relaxation time)

kT = ka + (ks − ka) max

(
0,

σ − σb
1− σb

)
cos4 φ. (71)

Here, σ = p/ps, pressure p normalized by surface pressure ps, is the vertical coordinate of the
model, and

Teq = max

{
200 K,

[
315 K−ΔTy sin2 φ−Δθz log

(
p
p0

)
cos2 φ

](
p
p0

)κ}
(72)

is the equilibrium temperature profile (p0 = 105 Pa is a reference surface pressure andκ = 2/7
is the adiabatic exponent).

The inverse problem of interest here is to determine the parameters (ka, ks,ΔTy,Δθz) from
statistical averages of the temperature field T. We impose the following constraints:

0 day−1 < ka < 1 day−1, 0 day−1 < ks < 1 day−1,

0 K < ΔTy < 100 K, 0 K < Δθz < 50 K.

The inverse problem is formed as follows [72],

y = G(θ)+ η with G(θ) = T(φ, σ) (73)

with the parameter transformation

θ : (ka, ks,ΔTy,Δθz) =

(
1

1+ exp(θ(1))
,

1
1+ exp(θ(2))

,

× 100
1+ exp(θ(3))

,
50

1+ exp(θ(4))

)
(74)

enforcing the constraints. The observationmappingG is defined bymapping from the unknown
θ to the 200 days zonal mean of the temperature (T) as a function of latitude (φ) and height
(σ), after an initial spin-up of 200 days.

Default parameters used to generate the data in our simulation study are

ka = (40 day)−1, ks = (4 day)−1, ΔTy = 60 K, Δθz = 10 K.

For the numerical simulations, we use the spectral transformmethod in the horizontal, with
T42 spectral resolution (triangular truncation at wavenumber 42, with 64× 128 points on the
latitude-longitude transform grid); we use 20 vertical levels equally spaced in σ. With the
default parameters, the model produces an Earth-like zonal-mean circulation, albeit without
moisture or precipitation. The truth observation is the 1000 days zonal mean of the temperature
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Figure 13. Zonal mean temperature (left) and zonal wind velocity (right) obtained with
the T42 grid (top) and the T21 grid (bottom).

(see figure 13-top-left), after an initial spin-up, also of 200 days, to eliminate the influence of
the initial condition. Because the truth observations come from an average 5 times as long
as the observation window used for parameter learning, the chaotic internal variability of the
model introduces noise in the observations.

To perform the inversion, we set the prior ρprior ∼ N (0, 102I). Within the algorithm, we
assume that the observation error satisfies η ∼ N (0 K, 32I K2). All these Kalman inversions
are initializedwith θ0 ∼ N (0, 0.12I), since initializing at the prior leads to unstable simulations
at the first iteration. The bi-fidelity approach discussed in subsection 3.2 is applied to speed up
both UKI-1 and UKI-2. These J− 1 forward model evaluations are computed on a T21 grid
(triangular truncation at wavenumber 21, with 32× 64 points on the latitude-longitude trans-
form grid) with 10 vertical levels equally spaced in σ (twice coarser in all three directions).
They are abbreviated as UKI-1-BF and UKI-2-BF. The computational cost of the high-fidelity
(T42) and low-fidelity (T21) models are about four-CPU hour and 0.5-CPU hour, and there-
fore the bi-fidelity approach effectively reduces CPU costs. The 1000 days zonal mean of the
temperature and velocity predicted by the low-resolution model with the truth parameters are
shown in figure 13-bottom. It is worth mentioning there are significant discrepancies compar-
ing with results computed on the T42 grid (figure 13-top). Whether these would be tolerable
will depend on the use to which the posterior inference is put.

The estimated parameters and associated 3− σ confidence intervals for each component at
each iteration are depicted in figure 14. Since the prior covariance is large and the problem
is over-determined it is natural to expect that the posterior mean should be close to the true
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Figure 14. Convergence of the idealized global climate model inverse problem. True
parameter values are represented by dashed grey lines. Top: UKI-1 (J = 6) and UKI-
2 (J = 9); middle: EAKI (J = 9) and ETKI (J = 9); bottom: UKI-1-BF (J = 6) and
UKI-2-BF (J = 9).

parameters. Indeed all the different Kalman inversions, except UKI-1-BF (J = 6), do indeed
converge to the true parameters.

5. Conclusion

Kalman-based inversion has been widely used to construct derivative-free optimization and
sampling methods for nonlinear inverse problems. In this paper, we developed new Kalman-
based inversionmethods, for Bayesian inference and uncertainty quantification,which build on
the work in both optimization and sampling. We propose a new method for Bayesian inference
based on filtering a novel mean-field dynamical system subject to partial noisy observations,
and which depends on the law of its own filtering distribution, together with application of
the Kalman methodology. Theoretical guarantees are presented: for linear inverse problems,
the mean and covariance obtained by the method converge exponentially fast to the posterior
mean and covariance. For nonlinear inverse problems, numerical studies indicate the method
delivers an excellent approximation of the posterior distribution for problemswhich are not too
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far from Gaussian. The methods are shown to be superior to existing coupling/transport meth-
ods, under the umbrella of iterative Kalman methods; and deterministic rather than stochastic
implementations of Kalman methodology are found to be favorable. We further propose sev-
eral simple strategies, including low-rank approximation and a bi-fidelity approach, to reduce
the computational and memory cost of the proposed methodology.

There are numerous directions for future study in this area. On the theoretical side, it would
be of value to obtain a theoretical understanding of the fixed point iteration (11) underpinning
the present method, and Gaussian and/or particle approximations of it; and it is important to
obtain theoretical guarantees concerning the accuracy of the present method when applied to
nonlinear inverse problems, which are close to Gaussian. On the methodological side, the pre-
sented method is based on a Gaussian approximation of the fixed point iteration (11). However,
many posterior distributions of interest are far from Gaussian; this can happen, for example,
when the inverse problem (1) has multiple solutions and the prior is uninformative; or when
the inverse problem has a unique solution, but the prior is uninformative and the noise error
is large. To be concrete, consider the nonlinear two-parameter model problem discussed in
section 4.3:

• At the same noise level, when the prior becomes uninformativeρprior ∼ N
([

0
100

]
, 102I

)
,

the posterior is far from Gaussian in the under-determined case;
• For the same prior, when the noise level becomesmoderately11 large,Ση = I, the posterior
is again far from Gaussian for both well-determined and under-determined systems.

The present method then still converges, but finds an approximately Gaussian distribution
which is far from the true posterior. To overcome this it will be of interest to replace the
Gaussian ansatz with other distributions, such as Gaussian mixtures, to create efficient and
derivative-free sampling techniques for non-Gaussian posterior distributions.
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Appendix A. Continuous time limit

To derive a continuous-time limit of the novel mean-field dynamical system (equations (14),
(15) and (18)) we define τ n = nΔτ and define {zn} by xn = Δτ−1(zn+1 − zn). Then θn ≈
θ(τ n) and zn ≈ z(τ n). Let W ∈ R

Nθ and B ∈ R
Ny+Nθ be standard unit Brownian motions.

11When the noise level is very large, the posterior becomes the Gaussian prior.
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LettingΔτ → 0 in (equations (14), (15) and (18)), we then obtain

θ̇ = C
1
2 Ẇ,

ż = F (θ)+

[
Ση 0
0 Σ0

] 1
2

Ḃ.
(A.1)

We are interested in the filtering problem of finding the distribution of θ(τ ) given {z(s)}τs=0 and
then evaluating this distribution in the setting where ż(s) ≡ x defined in (17).

Under a similar limiting process, the Gaussian approximation algorithm defined by (22)
becomes

ṁ = Ĉθx

[
Ση 0
0 Σ0

]−1

(x − x̂),

Ċ = C − Ĉθx

[
Ση 0
0 Σ0

]−1

ĈθxT,

(A.2)

where x̂ = E(F (θ)), Ĉθx = E((θ − m)⊗ (F (θ)− EF (θ))), and expectation E is with respect

to the distribution θ ∼ N (m,C). Define Φ̂R(m,C) = (x − x̂)T
[
Ση 0
0 Σ0

]−1

(x − x̂), and note

that ∂ x̂
∂m = ĈθxTC−1 [72, lemma 2]. It follows that equation (A.2) can be rewritten as

ṁ = −1
2
C
∂Φ̂R

∂m
,

Ċ−1 = −C−1 +

(
∂ x̂
∂m

)T[
Ση 0
0 Σ0

]−1(
∂ x̂
∂m

)
.

(A.3)

The stationary points of equation (A.3) satisfy

∂Φ̂R

∂m
= 0 and C−1 =

(
∂ x̂
∂m

)T[
Ση 0
0 Σ0

]−1(
∂ x̂
∂m

)

 Σ−1

0 . (A.4)

Although theΔτ plays no role in the continuous time limit, the originalΔτ parameter does
have a marked effect on discrete-time algorithms used in practice. To highlight this, we study
the empirical effect of Δτ , in the context of the nonlinear two-parameter model problem dis-
cussed in section 4.3. TheUKI-2 is appliedwithΔτ = 1/5,Δτ = 1/3,Δτ = 1/2,Δτ = 2/3,
andΔτ = 3/4. Empiricallywe observe that all solutions considered converge to approximately
the same equilibrium point; but the convergence properties depend on Δτ . The convergence
of the posterior mean and covariance are reported in figure A1. The best convergence rate is
achieved with Δτ around 1/2 for this test. We note that the case Δτ = 1/2 also appears in
[54] under the notion of ensemble transform Langevin dynamics.

Appendix B. Iterative Kalman filter

B.1. Gaussian approximation

Iterative Kalman filters for inverse problems are obtained by applying filtering methods, over
N = Δτ−1 steps, to the dynamical system equation (12) with scaled observation error ηn+1 ∼
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Figure A1. Nonlinear two-parameter model problem: convergence of posterior mean
(left) and posterior covariance (right) for thewell-determined system (top) and the under-
determined system (bottom) with different Δτ .

N (0,Δτ−1Ση). Following the discussion in subsection 2.2, the conceptual algorithm can be
written as

mn+1 = mn + Ĉθy
n+1(Ĉ

yy
n+1)

−1(y− ŷn+1), (B.1a)

Cn+1 = Cn − Ĉθy
n+1(Ĉ

yy
n+1)

−1Ĉθy T
n+1 , (B.1b)

where

ŷn+1 = E[yn+1|Yn] = E[G(θn+1)|Yn],

Ĉθy
n+1 = C[θn+1, yn+1|Yn] = C[θn+1,G(θn+1)|Yn],

Ĉyy
n+1 = Cov[yn+1|Yn] = Cov[G(θn+1)|Yn]+Δτ−1Ση ,

(B.2)

and Yn := {y†1, y
†
2, . . . , y

†
n}, the observation set at time n. Different Kalman filters (see subsec-

tion 2.4) can be applied, which lead to the IUKF, IEnKF, IEAKF and IETKF, all considered
here. We have the following theorem about the convergence of the conceptual algorithm:
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Theorem 2. Consider the linear case G(θ) = Gθ. Assume that the initial mean and covari-
ance for (B.1) are the prior mean and covariance. Then the output of the iteration (B.1) at
N = Δτ−1 equals the posterior mean and covariance.

Related calculations in continuous time may be found in section 2.2 of [75].

B.2. Gaussian initialization

Theorem 2 can be extended to apply to the ensemble approximations of the mean field dynam-
ics (B.1), provided that the initial ensemble represents the prior mean and covariance exactly.
For iterative ensemble filters, we first sample {θ j}Jj=1 ∼ N (m,C) (J � Nθ + 1), and then cor-
rect them as follows.

Define

Θ′ = [θ1 − m′; θ2 − m′; . . . θJ − m′]T m′ =
1
J

J∑
j=1

θ j, (B.3)

and correctΘ′ with a Nθ × Nθ matrix X to keep zero mean and match the covariance

Θ :=Θ′ X + 1⊗ mT, (B.4)

where

SVD :Θ′ = U1S1V
T
1 ,

SVD : (J − 1)C = U2S2U
T
2 ,

X = V1S
−1
1 S

1
2
2 U2.

(B.5)
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