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Abstract—The optimization of information transfer through
molecule diffusion and chemical reactions is one of the leading
research directions in Molecular Communication (MC) theory.
The highly nonlinear nature of the processes underlying these
channels poses challenges in adopting analytical approaches
for their information-theoretic modeling and analysis. In this
paper, a novel iterative methodology is proposed to numerically
estimate achievable information rates. Based on the Nelder-Mead
optimization, this methodology does not necessitate analytical for-
mulations of MC components and their stochastic behavior, and,
when applied to well-known scenarios, it demonstrates consistent
results with theoretical bounds and superior performance to prior
literature. A numerical example that abstracts communications
between genetically engineered cells via simulation is presented
and discussed in light of possible future applications to support
the design and engineering of realistic MC systems.

Index Terms—Molecular Communication, Chemical Reaction
Channel, Diffusion Channel, Iterative Algorithm, Mutual Infor-
mation, Achievable Information Rate

I. INTRODUCTION

Molecular Communication (MC) is a field of research
that focuses on the study of information propagation through
molecules and chemical reactions, including natural communi-
cations in biology, from the perspectives of information theory
and communication engineering [1], [2]. Due to their system-
evolution-dependent stochastic nature, most of the chemical
and biological MC channels exhibit highly nonlinear input-
output behavior [3]. Analytical formulas to estimate MC
channel capacity can be found only in very specific cases
or under strong assumptions, and because of the complex
characteristics of such channels, most realistic chemical and
biological MC channels do not yet have even a full statistical
characterization in current literature [1]. For this reason, unlike
quintessential communication channels, defining the capacity
of MC channels is non-trivial.

A number of papers in the literature try to address the
issue of finding ideal conditions to transfer reliable infor-
mation in MC systems. The authors of [4] build an MC
system where the channel is approximated as slotted binary
and evaluate the achievable capacity. In [5], an information-
theoretical approach for estimating the capacity of a molecular
channel between two nanomachines is developed. The impact
of relay/cooperative nanomachines on capacity for a diffusive
mobile MC system is studied in [6]. The authors of [7] derive

a closed-form expression for the capacity of a noisy MC
channel, while in [8] enzymatic reaction cycles are exploited
to improve the upper bound of Mutual Information (MI) for a
diffusion-based communication system. In [9], an optimization
of capacity bounds is performed for stationary and ergodic
discrete-time channels with memory. In [10], the authors
study the performance of the MC system in terms of reliable
information exchange for the Poisson channel with finite-state
memory. Another paper [11] presents the evaluation of the
channel capacity for an MC system model that considers both
the diffusion-based channel and the ligand-based receiver.

In MC the practical transmission of information is realized
by means of different modulation schemes according to the
physical/chemical property of the molecules that is being
changed, i.e., concentration, type, timing, and space [12]. The
most common form is concentration-based modulation, where
the information is encoded in the number of particles released
at the transmitter. For this type of modulation, a constraint
on the maximum number of released particles arises in a
natural way. Under this constraint, from information theory we
know that the capacity-achieving input distribution is discrete,
and can be efficiently obtained by implementing a numerical
approach based on the Blahut-Arimoto (BA) algorithm [13]. In
the context of a biochemical scenario, a variant of the BA has
been proposed in [14] with application to cellular signaling.
The latter is based on an a-priori estimation of the equivocation
probability from the data, where analytical expression of the
probability mass function is obtained using logistic regression.

As in [14], in the present work we develop a methodology
to address the problem of estimating the maximum reliable in-
formation (i.e., the MI) that can be transmitted over a chemical
MC channel with unknown statistical model. This consists of
a numerical approach where a relatively small amount of data
(simulated or experimental) is exploited to build the estimate
of the probability distributions of the transmitted and received
messages, which in turn are utilized to estimate the MI. Our
methodology is validated in this paper for the case of a
discrete-time amplitude-constrained Additive White Gaussian
Noise (AWGN) channel, and compared to known results from
the literature [15]. We then employ the proposed methodology
to maximize the MI in a simulation-based scenario abstracting
an MC channel between two genetically engineered cells [3].
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Our method shows that the same channel could achieve better
performance in terms of information transfer by choosing
a particular input distribution, and quantifies this achievable
performance in terms of exchanged bits of information.

This paper is organized as follows. In Sec. II we detail
the model of an MC channel with chemical reactions and
diffusion, which abstracts information propagation in biology,
and we motivate and detail our proposed methodology based
on the Nelder-Mead iterative algorithm, then validated for the
case of AWGN channel and compared to existing literature.
In Sec. III we present and discuss the results of our algorithm
applied to a particular simulation-based case study of chemical
MC channel. Finally, in Sec. IV we conclude the paper.

II. SYSTEM MODEL AND METHODOLOGY

In this section, we detail the proposed iterative algorithm
to optimize reliable information transfer through chemical
channels in an MC system, with reference to Fig. 1.

A. A Chemical Molecular Communication Channel

In the scope of this paper, we consider a molecular channel
based on chemical reactions and free diffusion in a fluid envi-
ronment, which abstracts the basics of molecular information
propagation through/among biological cells [16]. In particular,
the molecules of reacting chemical species are confined into
multiple volumes (cells), e.g., Ω1 and Ω2 in Fig. 1, and some
of these species can cross the boundaries (cell membrane)
of these volumes and diffuse between them. Inside each of
these volumes, we assume that the molecules are well-stirred,
resulting in no bulk diffusion of any of the chemical species.
Without loss of generality, we assume that the Transmitter
is emitting into the first volume of the channel a number
NTx(t) of information-bearing molecules as a function of
the time t that encodes a Transmitted information Message
X . Once emitted, the molecules are in general involved into
chains of chemical Reactions (cell pathways), each propagat-
ing the information message X from a number of reactant
species to a number of product species, eventually crossing
the volume boundaries and Diffusing into other volumes, or
being detected at the Receiver, which decodes the Received
information Message Y from the number NRx(t) of the
molecules as function of the time t.

In agreement with [17], for a time interval τ sufficiently
small as to consider that chemical reactions are statistically
independent from each other, a chemical Reaction is mathe-
matically expressed in this paper as follows:

Ni(t+ τ) = Ni(t) +
M
∑

j=1

νjiPj (aj(N(t)), τ) , (1)

where Pj (aj(N(t)), τ) is a Poisson random variable with av-
erage value aj(N(t))τ , and νji is the stoichiometric coefficient
equal to the changes in the number of molecules of type i that
the chemical reaction j operates when it occurs. The parameter
aj(N(t)) is called propensity function of the chemical reaction
j, and it corresponds to the probability that the reaction j

!"#$%&'(()" !"#$%&'()*"+#"#$),,%* *)+)',)"!"
#$%%&'$

("
#$%%&'$

!"##$%"&'

()*'%+",,-./
0&1-2$1-%

3-2-"4-./
0&1-2$1-%

!!""#$

!#"#$

!$"#$

!%"#$ !&'(!"#$
3-*2,"&'

!&'(""#$

!&)#"#$

!&)$"#$

!&)%"#$

!*""#$

% &

!
!

!!"#$#%
!&"#$#%

!'"#$#%

'"%( &$

"#$%&#'($)*+,-%'#./)#-)0'12 )*++,!'+,"
'"%( &$

,- - ( - . /

01#

01$

01#( 01$34&%&/$#$%5)-6)
,- - 7'#.'1)&)8.-5$1)
2'5#%'9:#'-1)6&/'+; <$+2$%=>$&2=9&5$2

?@#'/'A&#'-1

?:#@:#)
&#)B&8.)
"#$%&#'-1

2# 2$

Fig. 1: Block scheme of the system model and methodology
proposed in this paper.

occurs in an infinitesimal time interval after time t, given the
values in N(t), i.e., the set of all the numbers of molecules for
each type. The propensity function aj(N(t)) for a chemical
reaction j of the type considered in this paper is computed as
follows [17]:

aj(N(t)) = Ωkj
∏

Ni∈Rj

Ni(t) , (2)

where Rj is the set of reactant species for the chemical
reaction j, kj is the reaction rate, and Ω is the volume that
contains these reactants species, Ω1 or Ω2 in Fig. 1.

The propagation of the molecules between the volumes
through diffusion can be modeled at different precision and
scale [1]. For simplicity, and in agreement with [3], in this
paper the Diffusion is modeled through the probability of
capture by a spherical absorber under the assumptions that the
diffusion distance between the two volumes is relatively short
with respect to the average radius of the destination volume
(according to the direction of propagation of the transmitted
message) [18], and most of the molecules that diffuse in the
destination volume are there involved in chemical reactions.
Under this assumption, the probability that each molecule
emitted by a volume is captured by an adjacent volume is equal
to Pcap = rc/R, where rc is the average radius of the receiver
cell, and R is the average distance between the center of the
destination volume Ω2 and the boundary of the volume Ω1,
and we consider the diffusion process as instantaneous with
respect to the evolution of the diffusing molecule species D.
If we consider a number of molecules ND,Ω1

(t) that can reach
the volume Ω2 via diffusion, each with probability Pcap, the
number ND,Ω2

(t) is distributed according to a Binomial [13]
as

P (ND,Ω2
(t)) = Bin(Pcap, ND,Ω1

(t)) . (3)

B. Iterative and Derivative-free Algorithm for Optimizing In-

formation Transfer

According to information theory [19], our goal of optimiz-
ing the information transfer through this channel translates into

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on October 28,2022 at 15:35:51 UTC from IEEE Xplore.  Restrictions apply. 



the following:

Iopt (X,Y ) = max
PX(x),x∈X

I (X,Y ) , (4)

where I (X,Y ) is the MI between the transmitted message X
and the corresponding received message Y from the system in
Fig. 1, whose maximum is found with respect to a particular
PX (x) , x ∈ X , which is the probability distribution of the
transmitted message X within the set X of all admissible
messages. The MI is computed as follows [19]:

I (X,Y ) = E

[

PX|Y (X | Y )

PX(X)

]

= E

[

PY |X (Y | X)

PY (Y )

]

. (5)

Main Idea. While analytical solutions to the maximization
in (4) are possible only for very special cases [19], the non-
linear and non-smooth nature of the types of channel models
described in Sec.II-A necessitates a numerical solution, i.e.,
with an iterative algorithm. The BA is a class of these types of
algorithms often utilized for this task, which necessitates the
knowledge of the analytical expressions of the probabilities
of the equivocation PX|Y (x | Y ) , x ∈ X , or equivalently,
the expression of the channel law PY |X (y | X) , y ∈ Y . In
particular, BA has already been successfully applied to basic
MC channels [13], with analytical expressions of the afore-
mentioned probabilities. As a consequence of the mathematical
models detailed in Sec. II-A, which in general are composed
of nested Poisson and Binomial processes according to the
chemical reactions and molecule diffusion through which the
transmitted message propagates, there is no straightforward
way to analytically express these probabilities. A solution
called SLEMI is proposed in [14] where in a context of infor-
mation propagation within a single cell, expressions for these
probabilities are found by fitting experimental data through
logistic curve regression. A BA algorithm is then applied to
numerically find a solution to (4). In this paper, we propose

instead a derivative-free iterative methodology based on the

Nelder-Mead [20] optimization, which does not necessitate

analytical expressions of the aforementioned probabilities, but

just numerical values estimated from the data (simulated, in

the case of this paper). Given the similarity of the overall
context and goal, we will compare the performance of our
methodology with SLEMI based on the BA from [14].

The Nelder-Mead algorithm is a method to search for the
minimum value of a nonlinear function of n variables based
on the concept of a simplex [20]. The algorithm evaluates
the output of the function at a set of n + 1 test points and
then performs the simplex in the factor-space, and continually
forms new simplices by reflecting one point in the hyperplane
of the remaining points [20]. It has been shown that this
algorithm does not always converge to a minimum if the
objective function is not strictly convex [21].

In Fig. 1 (upper) we show the first steps of the Nelder-Mead
algorithm. The blue round-shaped curves represent the contour
lines of the function to be maximized (objective function). It
assumes higher values as the blue becomes more intense. If we
assume that the objective function depends on two variables

µ̄1 and µ̄2, by following the methodology of the algorithm,
we need the simplex to be composed of n + 1 points Q0,
Q1, Q2. The red dots represent the initial simplex Q0init

,
Q1init

, Q2init
. The first sample Q0init

is defined by the initial
value of the variables µ̄1init

and µ̄2init
, while Q1init

, Q2init

are created by adding 5% of each component Qiinit
to the

initial guess Q0init
. Then, the first step of the algorithm

investigates which point of the simplex is farthest from the
function’s maximum value. It is reflected and then discarded.
The green dot represents the new point of the simplex during
the first iteration, that is the substitute of Q0init

. The same
procedure is also proposed in the next iterations of the method.
Subsequently, Q2init

is discarded in favor of the yellow point
in Fig. 1, being now the farthest from the maximum.

Our Methodology based on the Nelder-Mead algorithm has
the following characteristics:

• The objective function to be maximized is the MI of the
chemical channel, i.e., Fobj = I (X,Y ), defined in (5),
which is a function of the probability PX (x) , x ∈ X of
the transmitted message X .

• The probability PX (x) is on its turn defined by the values
of a set of parameters µk, k = 1, . . . ,K, which define the
algorithm search space, as in Fig. 1 (upper).

• The numerical values of PX|Y (x | y) , x ∈ X , y ∈ Y are
recomputed at each iteration of the Nelder-Mead algorithm
from the data by pruning the dataset and estimating the
probability via histograms, as explained in the following.

Search Parameters for PX (x). The number of parameters
K depends on the considered family of distributions for
PX (x). The family of distributions we have chosen for this
work is continuous, the so-called Pearson [22]. The reason
behind this choice is that the Pearson distribution family can
easily be modeled via its first four moments, namely the mean
µ, variance σ2, skewness ∫ , and kurtosis κ. This represents a
good trade-off between degrees of freedom in the shape of
the distribution and number of variables to be optimized in
the iterative procedure. Thus, the pruning at the ith iteration
is performed based on these ith four moments as determined
by the Nelder-Mead algorithm.

Histogram Estimation by Data Pruning. To obtain nu-
merical values of PX|Y (x | y) , x ∈ X , y ∈ Y at each
iteration according to the current probability PX (x) (defined
by the current values of µ, σ2, ∫ , and κ), instead of obtaining
additional data, thanks to the low sensitivity of our iterative
methodology to the dataset size, as can be appreciated from
the numerical results, we are able to reuse the same dataset via
pruning. Pruning algorithms are often used to reduce the size
of databases by removing unused information, or to reduce the
size of neural networks [23], [24]. For our case, we utilize the
following formula:

ki =

⌈

M −
M

pmax
pi

⌉

, (6)

where ki is the number of datapoints (repetition of an ex-
periment/simulation) corresponding to the ith input message
to be removed from the dataset, pi is the probability of that

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on October 28,2022 at 15:35:51 UTC from IEEE Xplore.  Restrictions apply. 



Uniform
pmf(X)

Histograms of pmf(X), pmf(Y)

2) Histograms of pmf(X), pmf(Y)
Non-uniform
pmf(X): 
PRUNING 

Initial dataset

1) Remove samples from datasets 
X, Y according to pmf(X)

Fig. 2: Example of pruning and consequent histogram of the
probability. Only the X dataset is shown for simplicity.

same input message, pmax is the highest probability within the
input distribution PX (x), and M is the initial total number
of datapoints of each input. When removing a datapoint, it is
implicit that we remove both the input and its corresponding
outcome from the dataset. Subsequently, from the pruned
dataset, we estimate via histograms [25] the probabilities
PX (X) and PY (Y ). Then, for each PX|Y (x | y), a histogram
is built by setting the height of each bin as the number of all
the x values that correspond to the those y values grouped
into the same bin of the histogram representing PY (Y ).

Figure 2 is a visual example of pruning. On the x-axis we
have the different input symbols (i.e., 4), the y-axis represents
the number of times the experiment (i.e., the transmission
of the input symbol) is repeated (i.e., 10). We assume that
the dataset contains the same number of datapoints per input
symbol. When the ith PX (x) , x ∈ X is non-uniform, then for
each message x a number of datapoints is removed randomly
according to (6). Then, the histograms of PX (X) and PY (Y )
are estimated from the modified dataset.

While we consider the width of the bins of each histogram
as constant over the considered range of data, i.e., X or Y , the
number of bins of the histograms representing the probabilities
is modified at each iteration by following Doane’s rule [26],
which defines a lower bound on the required number of bins
to reach a desired precision. Furthermore, we impose all the
histograms at the same iteration to have the same bin width.
The pseudocode in Algorithm 1 summarizes the main steps of
our proposed methodology.

Validation and Comparison with SLEMI [14]. For the
purpose of validation, we apply our method to an AWGN
channel Y = X+Z, where Z is a normally-distributed noise,
with a constraint on the amplitude A, in line with [15]. Then,
the obtained PY (Y ) is a mixture of a uniform distribution in
the interval |y| ≤ A and a “split and scaled” Gaussian density
in the interval |y| > A, as in [15].

We perform the analysis for different Signal-to-Noise Ratios
(SNRs), by following the same assumptions as in [15], so that
we can compare the results. In particular, we fix the noise

Algorithm 1: Iterative procedure to optimize I (X,Y )

Procedure: Maximization of Fobj = I (X,Y );
1 while FobjNEW

< FobjOLD
do

2 Calculation of P (X) from its parameters.
3 Pruning technique on X , Y datasets to fit the current

P (X).
4 Doane’s rule to define the optimal number of bins for

the P (X), P (Y ), and P (X | y).
5 Histograms for estimating P (X), P (Y ), and P (X | y).
6 FobjOLD

= Fobj.

7 Fobj = E

[

PX|Y (X|Y )

PX (X)

]

8 FobjNEW
= Fobj.

9 Update of the parameters characterizing P (X).

(a) (b)

Fig. 3: AWGN with amplitude constraint. (a) PX (X) corre-
sponding to Iopt (X) with our method and with SLEMI [14].
(b) Corresponding Iopt (X) obtained as function of the algo-
rithm iterations and validation with McKellips’ upper and
lower bound for different SNRs.

power to be equal to 1. Thus, the SNR of the channel coincides
with the power of the signal P = A2. We consider values for
A such that the SNR ranges from -3 to 8 dB, as in [15].

We generate a dataset via simulation with repetitions such
that we obtain a uniform distribution of the input (i.e.,
the transmitted symbols) with uniformly and monotonically
increasing values. The input-output dataset is composed of
50000 input-output pairs, with an input range spanning from
-2.5 to 2.5, 125 unique input values, and 400 repetitions for
each unique input value.

As in [15], we compare our optimized Iopt (X,Y ) value
for each SNR to the channel capacity bounds obtained us-
ing the McKellips’ formulas [27]. Figure 3b shows that the
Iopt (X,Y ) approaches the McKellips’ lower bound on the
channel capacity, supporting the validity of our methodology.
Furthermore, the yellow dashed line represents the channel
capacity value for different SNRs obtained when applying
SLEMI [14]. This value and the value obtained with our
methodology are comparable for low values of SNR (≤ 5 dB),
while for higher values the SLEMI estimation is above the
McKellips’ upper bound. Since the objective function in [14]
consists of a double maximization, for non-optimal parameters
it can be considered a lower bound on the channel capacity
value. For this reason, we can reasonably say that when the
SLEMI optimal value is above the McKellips’ upper bound,
it overestimates the channel capacity.

The solid blue line in Fig. 3a shows the PX (X) that
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corresponds to the Iopt (X,Y ). This figure corresponds to an
amplitude A = 1. The shape of the PX (X) is nearly the same
for all the considered values of SNR, i.e., two mass points
with non-zero probability near A and −A. While we do not
have a proof that this distribution containing only two mass
points is effectively optimal [28], this result is consistent with
the literature [29], [30], thus reinforcing the validity of our
method. Notice that for cases where the SNR is sufficiently
high, we hypothesize that the capacity-achieving distribution
may include more non-zero and equispaced mass points across
the input distribution, as demonstrated in [29]. The yellow
dashed line corresponds to the optimal PX (X) estimated
through the SLEMI [14] for the same A, which has a similar
shape to the one obtained from our methodology.

III. CASE STUDY: AN ENGINEERED CELL-TO-CELL

MOLECULAR COMMUNICATION SYSTEM

A. LuxR-LuxI-Based Channel

As a first case study of the types of channels detailed
in Sec. II, in this paper we apply our developed methodology
to estimate the optimized information transfer through the
engineered cell-to-cell communication system presented in [3].
In particular, this simulated system is based on the LuxR-
LuxI cell communication modules, where synthetic biology
components are derived from the artificial sender and receiver
design included in the experimental work in [16]. The system
is composed of two biological cells (two volumes) located in
an infinite extracellular environment. One of the two cells acts
as a transmitter, where the source message x is a modulated
number NTx(t) of molecules of β-D-1-Thiogalactopyranoside
(IPTG) [3]. Through a chain of well-defined chemical reac-
tions of the type modeled in (1) and (2), involving proteins
and DNA genes, the IPTG is transformed into the transmitted
signaling molecule Acyl-Homoserine Lactone (AHL), which
can cross the cell membranes (volume boundaries) and diffuse
in the extracellular space. A receiver cell captures diffusing
AHL molecules according to the model in (3) and, after a
chain of other chemical reactions, returns a number NRx(t)
of Green Fluorescent Protein (GFP) molecules, from which the
received information message y is decoded (as the maximum
of NRx(t) [3]). Further details on the modeling and simulation
of this system according to the formulation in Sec. II are here
omitted for space constraints, and can be found in [3].

B. Numerical Results

The aforementioned LuxR-LuxI-Based Channel is modeled
and simulated in-silico via MATLAB SimBiology, as de-
tailed in [3]. The input NTx(t) varies from 3.6× 105 IPTG
molecules, to 3.6× 107 molecules with a step size 3.6× 105

molecules (100 different input messages). This range is chosen
by calculating the average µY and the variance σ2

Y of the
output dataset, and by observing their behavior for different
input values, as suggested in [3]. Our results show that for the
output corresponding to input values ranging from 0 to about
1.4× 107 molecules there is a linear increase of the average
and variance, while for higher values there is a saturation of

(a) (b)

Fig. 4: (a) Output obtained from a uniform input with 100
monotonically increasing IPTG molecule counts and 100 sim-
ulation repetitions per input. (b) Corresponding histogram of
the output.

(a) (b)

Fig. 5: LuxR-LuxI-based channel. (a) PX (X) corresponding
to Iopt (X) with our method and with SLEMI [14], compared
to a Gaussian and Triangular distributions. (b) Corresponding
values of obtained Iopt (X) as function of algorithm iterations.

the average value and the associated variance, which remains
almost constant up to 3.6× 107 molecules. We repeat the
simulation for each input value 100 times. Thereby, we obtain
a 100×100 input-output dataset, which unpruned corresponds
to a uniform input distribution. From a communication per-
spective, this is equivalent to a discrete memoryless channel
with Concentration Shift Keying (CSK) [12].

Figure 4a illustrates the unpruned output dataset generated
from the uniform input dataset. The input is propagated
through the reaction and diffusion processes composing the
MC channel. Figure 4b depicts the histogram of the channel
output considered in Fig. 4a.

The blue continuous line in Fig. 5b shows the progressive
optimization of Iopt (X,Y ) operated by our methodology,
as detailed in Sec. II-B. The Iopt (X,Y ) value generally
increases with the number of iterations of the algorithm,
until it converges. The Iopt (X,Y ) value we obtain is 1.60
(bit/ch. use). The corresponding input distribution PX (X)
from the Pearson family is represented in Fig. 5a with the blue
continuous line. As in the AWGN case, the optimal PX (X)
has two peaks at the extreme values of the input dataset. Thus,
the method privileges the two symbols farthest from each other
in this case as well. The four moments corresponding to this
specific distribution of the Pearson family are µ = 1.60×107,
σ2 = 1.15× 107, ∫ = −4.03× 10−17, and κ = 1.46.

The MI value for this channel is evaluated in [3] by
considering a Gaussian and a Triangular input distribution. For
the sake of comparison, we plot our results against the MI
value for these distributions. Fig. 5a represents the optimal
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distribution found by our method, as well as the Gaussian
(red dot dashed line) and Triangular (green dotted line) input
distributions. The MI values obtained from the considered
distributions are plotted in Fig. 5b. The Iopt (X,Y ) obtained
by the proposed method, 1.60 (bits/ch. use), is greater than
the MI values obtained by Gaussian and Triangular input
distributions (i.e., 0.55 and 0.76 (bit/ch. use), respectively).

The yellow dashed lines in Fig. 5a and b represent the
optimal input distribution and corresponding capacity value,
1.80 (bit/ch. use), obtained when applying SLEMI [14] to
the molecular dataset. The channel capacity value obtained by
SLEMI is slightly higher than that obtained by the proposed
method. Although the input distribution found by SLEMI
has more than two peaks, most of them are concentrated
near the extremes of the input ranges, similar to the PX (X)
observed when using the proposed methodology. Additional
investigation into why SLEMI provides a higher bound in
some cases is left to future work.

IV. CONCLUSION

This paper has focused on the problem of optimizing the
information transfer (i.e., the MI) in an MC system where the
combined effects of chemical reactions and molecule diffusion
hinders the application of any information-theoretic analytical
methodology. In addition, the practical and realistic constraint
on a maximum value of transmitted molecules makes the
problem of estimating the MI even more challenging. To
address these issues, a novel iterative methodology based
on the Nelder-Mead algorithm, which does not require any
analytical formulations of MC components and their stochastic
behavior, is proposed to estimate the optimal MI and is
validated against known results from the literature. Numerical
results obtained by applying this methodology to a simulation-
based scenario abstracting an MC channel between genetically
engineered cells reveal the viability of information transfer
optimization via proper design of the distribution of the input
messages. Future application scenarios could make use of our
methodology to not only optimize chemical and biological
experimental design, but also support synthetic biology in the
engineering of communication systems and networks that work
and interact in fully biochemical environments.
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