
Human-in-the-Loop Robot Planning with
Non-Contextual Bandit Feedback

Yijie Zhou, Yan Zhang, Xusheng Luo, and Michael M. Zavlanos

Abstract— In this paper, we consider robot navigation prob-
lems in environments populated by humans. The goal is to deter-
mine safe trajectories that also maximize human satisfaction. In
practice, human satisfaction is subjective and hard to describe
mathematically. As a result, the planning problem we consider
in this paper may lack important contextual information. To
address this challenge, we propose a semi-supervised Bayesian
Optimization (BO) method to design globally optimal robot
trajectories using bandit human feedback, in the form of
complaints or satisfaction ratings, that expresses how desirable
a trajectory is. We demonstrate the efficiency of our proposed
trajectory planning method in a simulated scenario where
humans have diversified and unknown demands.

I. INTRODUCTION
A growing number of current and future robotics ap-

plications, such as unmanned delivery [1, 2] and robotic
nurse assistance [3, 4], require robots to operate in close
proximity to humans. In these applications, besides meeting
safety requirements, trajectory planning also needs to ensure
that robots are available to assist humans as needed without
causing discomfort. This may involve adapting to specific
ways that specific humans perform their tasks or avoiding
actions that cause discomfort. In practice, such requirements
are subjective and hard to model mathematically. As a result,
new planning methods are needed to design robot trajectories
that maximize human satisfaction, using exclusively bandit
human feedback that lacks contextual information typically
captured by mathematical models.

Robot planning using bandit human feedback has been
studied in [5]–[7]. Specifically, in [5], a robot simultaneously
learns a policy and a reward model by actively querying a
human expert for ratings. Similarly, [6] adopts a data-driven
approach to design robot trajectories using human ratings on
different roll outs. Nevertheless, these methods often require
prohibitively many queries for human feedback under high
dimensional settings. In [7] we proposed a new zeroth-order
method that uses bandit human feedback to design robot
trajectories that increase human satisfaction. However, since
this problem is highly non-linear, zeroth-order methods can
get trapped at local minima, reducing the quality of the
resulting paths. Moreover, [7] only considers a single type of
human feedback that may not be practical in the real world.

To plan globally optimal robot trajectories that maximize
human satisfaction, we propose a Bayesian Optimization

The authors are with the Department of Mechanical Engineering
and Material Science, Duke University, Durham, NC 27708, USA
{e-mail: yijie.zhou,yan.zhang2,xusheng.luo,
michael.zavlanos}@duke.edu. This work is supported in part
by AFOSR under award #FA9550-19-1-0169 and by NSF under award
CNS-1932011.

(BO) method that uses bandit human feedback in the form
of complaints or satisfaction ratings to capture the quality
of robot plans. However, since the BO search space can be
high-dimensional, e.g., when each trajectory is parameterized
by multiple waypoints, prohibitively many queries for human
feedback may be needed to find a satisfactory solution [8].
To reduce the dimension of the state space, the methods in
[9] assume that the objective function can be decomposed
into the summation of several lower dimensional functions.
However, this method assumes knowledge of the objective
function, which is not available in our case. The approaches
in [10, 11] project the original solution space into a low
dimensional space using PCA or VAE. Since these meth-
ods do not utilize objective function information, the low
dimensional space may not contain the optimal solution and,
therefore, it can introduce bias. The authors in [12] combine
BO with manifold Gaussian Processes (mGP) to find the
optimal low dimensional space with objective function values
obtained online. Nevertheless, this approach still requires
prohibitively many queries for human feedback.

In this paper, we propose a semi-supervised method
to improve the data efficiency of BO for human-in-the-
loop trajectory planning. Specifically, we first utilize an
autoencoder to compress the space of robot trajectories to a
latent space. Since training the autoencoder does not require
human feedback, this embedding can be learnt offline in an
unsupervised way. Next, we employ BO on this latent space,
which we combine with human feedback collected online,
to iteratively optimize both the latent space and the robot
trajectories. Moreover, to improve the exploration efficiency
of BO, we bias the search for new trajectories towards
dynamically feasible and collision-free trajectories. Our nu-
merical experiments demonstrate that the semi-supervised
BO framework, combined with biased exploration, can han-
dle diversified human preferences and achieve better data
efficiency compared to existing methods.

II. PROBLEM DEFINITION AND PRELIMINARIES

A. Problem Definition

Consider an environment W ⊂ Rp, where p = 2 or 3,
that contains m obstacles O = {o1, ..., om}. In addition,
consider a robot with state q ∈ Q, where Q denotes the
feasible state space. Assume also that the robot satisfies the
following discrete-time dynamics

qt+1 = f(qt, ut), (1)

where ut ∈ U denotes the control input at time t and U is
the set of feasible control inputs. Moreover, let xt = Π(qt)

denotes the projection of the robot state qt to its position xt
in the environment. Traditionally, the robot planning problem
consists of designing a robot trajectory x = {x0, ..., xT } ∈
C ∩ D to drive the robot from a starting location x0 to a
goal position xT , where C =W\O is the space of collision-
free trajectories, and D is the space of dynamically feasible
trajectories that satisfy the dynamics in (1).

In this paper, we consider a robot planning problem
to design robot trajectories that are not only dynamically
feasible and collision-free, but also maximize human satis-
faction. Specifically, we assume that the environment W\O
is populated by a group of humans in the set H that
require different levels of assistance from the robot, which
may involve adapting to specific ways that specific humans
perform their tasks or avoiding actions that cause discomfort.
While such requirements are subjective and hard to model
mathematically in practice, the resulting levels of human
satisfaction can be measured using bandit human feedback,
in the form of complaints or satisfaction ratings, that ex-
presses how desirable a robot trajectory is, without revealing
the reason. To this end, we divide the humans in the set H
into two subgroups, depending on the type of feedback they
can provide. Particularly, we assume that H = Hc ∪ Hf ,
where humans i ∈ Hc provide feedback measured by the
function f ci : x→ {0, 1} that captures complaints related to
discomfort so that a value of 0 indicates no discomfort, while
humans i ∈ Hf provide feedback measured by the function
ffi : x → {0, 1, ..., k} that captures satisfaction ratings on
the level of assistance provided by the robot so that lower
values indicate higher levels of satisfaction. Moreover, we let
the function F(x) :=

∑|Hc|
i=1 f

c
i (x)+λ

∑|Hf |
i=1 ffi (x) capture

the total feedback on the trajectory x, where λ is a weight
used to ensure fairness between the two groups. Then, the
problem we address in this paper is to design a collision-
free and dynamically feasible trajectory x∗ that maximizes
human satisfaction, i.e.,

x∗ = arg min
x∈C∩D

F(x). (2)

Note that the form of the objective function F(x) is unknown
to the agent. Only evaluations of F(x) are provided. Here
the objective function is defined by the summation of two
discrete functions, but it could also be any real valued
function in other scenarios. In what follows, we employ BO
to solve this planning problem. But first, we provide a brief
overview of BO.

B. Bayesian Optimization

Given a dataset DN = {[xi,F(xi)], i ∈ {1, ..., n}}
consisting of N sampled trajectories and corresponding
bandit feedback, BO can be used to estimate the
shape of the unknown objective function F using a
non-parametric model, e.g., Gaussian Process (GP).
Specifically, using GPs assumes that the function value
of an unobserved trajectory x is subject to a Normal
distribution F(x)|DN ,x ∼ Normal(µN (x),ΣN (x)),
where µN (x) = Σ0(x,x1:N)Σ0(x1:N ,x1:N)−1F(x1:N)

is the mean, ΣN (x) = Σ0(x,x) −
Σ0(x,x1:N)Σ0(x1:N ,x1:N)−1Σ0(x1:N ,x) is the
variance, F(x1:N) = [F(x1), ...,F(xN)] is the
collection of function evaluations, and Σ0(x1:j ,x1:k) =
[Σ0(x1,x1), ...,Σ0(x1,xj); ...; Σ0(xk,x1), ...,Σ0(xk,xj)],
where j, k ∈ {1, 2, . . . , N} is the kernel matrix. Note that,
the kernel, Σ0, is a covariance function that evaluates the
similarity of two points. In this paper, we use a Gaussian
kernel Σ0(x,x′) = σ2

f exp(− ||x−x
′||2

2l2), where σf , l are
parameters that can be tuned. Given the estimated shape
of the unknown function F(x), BO then selects the next
trajectory xe to evaluate so that xe optimizes the acquisition
function, that is, xe = arg minµN (x) − κ

√
ΣN (x), where

κ is the trade-off coefficient and µN (x) − κ
√

ΣN (x)
represents the lower confidential bound of the objective
function value at x. Essentially, BO explores the trajectory
xe which minimizes the objective function composed of
the estimated mean value µN (x) and the uncertainty of the
estimation given by the variance ΣN (x) over x.

Note that problem (2) is a constrained optimization prob-
lem, where the constraint set C ∩ D cannot be represented
explicitly. Therefore, it is difficult to guide the trajectory
exploration procedure within the set C∩D using the methods
proposed for constrained BO in [13, 14]. Furthermore, since
when the number of waypoints T in the trajectory x is large,
the dimension of the solution space D = Tp is also large.
Consequently, BO requires a lot of exploration and human
feedback in order to find an optimal solution. In the next
section, we discuss ways to address these challenges.du

III. ALGORITHM DESIGN

In this section, we develop a semi-supervised BO method
for human-in-the-loop robot planning. Specifically, we refor-
mulate problem (2) so that trajectory exploration is restricted
to the set of dynamically feasible and collision-free trajec-
tories C ∩ D. Then, we modify the objective function in (2)
with additional terms that bias the search for new trajectories
towards short-length, dynamically feasible, and collision-free
trajectories. This way, we improve the exploration efficiency
of BO. Finally, we use an autoencoder to reduce the high-
dimensional problem space into a low dimensional latent
space, which we update using human feedback.

A. Constraint Satisfaction using Off-the-Shelf Motion Plan-
ners

As discussed in Section II.B, restricting the exploration of
new trajectories in problem (2) to the safe set C∩D is difficult
using existing BO techniques. To this end, we reformulate
problem (2) as

min
x∈X

F(m(x)), (3)

where m(x) : X → X represents the output of an off-the-
shelf motion planner, e.g., Model Predictive Control (MPC)
[15] or RRT [16], and X ∈ RD is the space of all possible
robot trajectories. Using off-the-shelf motion planners, we
can map any reference trajectory x ∈ X that is sampled
using existing BO methods to a trajectory m(x) ∈ C∩D that

Fig. 1: A schematic of the proposed framework. The dashed red
quadrilateral represents the obstacle in 2-d space. Given a reference
trajectory x, an off-the-shelf motion planner, e.g. MPC, can be
used to generate a collision-free and dynamically feasible trajectory
m(x). Then, the trajectory m(x) is encoded into a latent space to
obtain a point z, which is used along with human feedback to
conduct GP regression and obtain the next latent point z′ to be
evaluated. Finally, the latent variable z′ is decoded to generate the
next reference trajectory.

is dynamically feasible and collision-free. The operation of
the motion planner m(x) on a reference trajectory x ∈ X is
shown in the left part of Fig. 1. The reference trajectory x
(red line) collides with the obstacle, whereas the trajectory
m(x) returned by the motion planner is collision-free. In
what follows, we use MPC to obtain safe robot trajectories
given reference samples x, although other motion planners
can also be used. Specifically, we solve the following MPC
problem

{x̃t,k, u∗t,k} = argmin J({x̃t,k, ut,k})
s.t. qt,k+1 = f(qt,k, ut,k), ut,k ∈ U , (4)

Π(qt,0) = x′t, Π(qt,k) ∈ C, for k = 1, . . . ,K − 1,

where t, k represent the index for time step and planning
step respectively, K is the control horizon, x̃t,k = Π(qt,k),
is the projection of the current state of the robot to the
space of robot positions, J({x̃t,k, ut,k}) :=

∑K
k=0(x̃t,k −

xt,k)TQk(x̃t,k − xt,k) +
∑K−1
k=0 uTt,kRkut,k represents the

accumulated tracking error of the reference trajectory x and
control energy cost over the future K steps, and x′t denotes
the true position of the robot at time step t. Note that since
the dynamic feasibility and obstacle avoidance constraints are
explicitly encoded in (4), the output of the motion planner
m(x) is guaranteed to belong to the set C ∩D. Other safety
requirements can also be similarly encoded into problem (4).

B. Exploration Bias in Bayesian Optimization

Notice that the use of motion planners to map unsafe
samples x ∈ X to safe trajectories m(x) may reduce the
sampling efficiency of BO, since it is possible that multiple
unsafe samples x and x′ from the set X are mapped to the
same safe trajectories, i.e., m(x) = m(x′). To improve the
sample efficiency of BO to solve problem (3), in this section,
we propose a way to bias the exploration of new trajectories
x ∈ X towards dynamically feasible and collision-free
trajectories that are also feasible solutions of typical motion
planners. This way, we can avoid sampling redundant unsafe
trajectories x ∈ X that are mapped to the same safe
trajectory m(x).

To bias trajectory exploration in problem (3), we introduce
the term ‖x−m(x)‖ in the objective function which allows
BO to learn the subspace in X that contains trajectories
that can be tracked by the motion planner (4). Effectively,
by selecting reference trajectories x that minimize the term
‖x −m(x)‖, we obtain that, different reference trajectories
x and x′ in this subspace will be mapped to different
trajectories m(x) and m(x′) since both x and x′ are feasible
solutions of the motion planner. We note that the term
‖x − m(x)‖ does not affect the solution of the original
problem (3). To see this, note that the global optimizer
x∗ = argminx∈X F(m(x)) also minimizes the modified
problem minx∈X F(m(x)) + ρ‖x − m(x)‖, where ρ is a
penalty parameter. This is because, if the planning problem
is feasible, then there exists a minimizer x∗ ∈ X that can be
perfectly tracked by the motion planner.

In practice, it may also be useful to add additional terms
to the objective function in problem (3) that specify soft con-
straints on the robot’s trajectories. For example, we can mod-
ify the objective function in (3) by adding the term l(m(x))
denoting the total length of the trajectory m(x). This modi-
fication will bias BO exploration towards trajectories with
shorter length. However, unlike the tracking error ‖x −
m(x)‖, the inclusion of the term l(m(x)) in the objective of
the problem (3) affects the final solution, because the global
optimizer x∗ = argminx∈X F(m(x)) does not necessar-
ily minimize the modified problem minx∈X F(m(x)) +
τ l(m(x)), where τ is a penalty parameter. Therefore, the
parameter τ needs to be carefully chosen that human sat-
isfaction is not significantly affected. In what follows, we
reformulate problem (6) to the problem

x∗ = arg min
x
Obj(x), (5)

where Obj(x) = F(m(x))+ρ||x−m(x)||+τ l(m(x)) so that
exploration in BO can be accelerated towards dynamically
feasible, collision-free, and short-length trajectories.

C. Semi-Supervised Dimension Reduction and Trajectory
Optimization

Problem (5) improves the exploration efficiency of BO
within the constraint set C ∩D. However, the safe set C ∩D
is of the same high dimension as the original space X . In this
section, we first discuss how to reduce the dimension of the
original space X by embedding it into a lower dimensional
latent space Z , which contains regular trajectories that are of
certain degree of smoothness. This embedding is trained us-
ing trajectory data not labeled by human feedback. Therefore,
this step can be completed offline and in an unsupervised
way. Then, we run BO on the low dimensional latent space.
Specifically, we sample new trajectories in an online way,
query humans for feedback on each new trajectory, and
use these data to update both the latent space and the GP
model in an online way. Since this process uses human
feedback, it is supervised in nature. The complete semi-
supervised trajectory optimization framework is presented in
Algorithm 1. Next, we explain each step in details.

Algorithm 1 Online Semi-supervised Bayesian Optimization

Input:
Objective function f : RD → R, unlabeled data set
Dun ∈ RNu×D, embedding dimension d, maximum
query number NQuery and size of mini-batch Nm.

1: Randomly initialize θE , θD, θG;
2: Train autoencoder with Dun and update θE , θD;
3: Randomly generate an initial reference trajectory x0

4: Use motion planner to get m(x0) and evaluate human
feedback to get Dl = {{m(x0), y0}}

5: for 1 ≤ i ≤ NQuery do
6: Encode Dl to Del
7: Conduct GP regression with θG on Del to get acqui-

sition function q : Rd → R
8: zi = argmax

z∈Rd

q(z)

9: Let xi = D(zi)
10: Generate m(xi) and evaluate yi = Obj(m(xi))
11: Dl = Dl ∪ {{m(xi)), yi}}
12: if i%Nm = 0 then
13: Update θE , θD and θG according to Algorithm 2;
14: end if
15: end for
16: Output xNQuery

.

Given a pair of starting and goal robot positions, we can
use off-the-shelf motion planners, e.g., RRT, to generate a
dataset Dun containing a large number of random trajectories
that respect the robot dynamics (1)1. Then, we use the
autoencoder developed in [17] to embed these randomly
generated trajectories to a low dimensional latent space.
Specifically, consider an encoder function EθE := X → Z ,
where θE is the parameter of the encoder function and Z ∈
Rd is the latent variable space of dimension d, where d� D.
In addition, consider a decoder function DθD := Z → X ,
where θD is the decoder parameter. Then, we can train the
encoder and decoder models by solving the problem

min
θD,θE

Lre(θD, θE ;Dun), (6)

where Lre(θD, θE ;Dun) :=
∑

x∈Dun
||x−DθD (EθE (x))||22

measures the reconstruction loss between the original trajec-
tory x and the output of the autoencoder DθD (EθE (x)) (line
2 in Algorithm 1). Since training the autoencoder does not
require human feedback on the trajectories in the set Dun,
this process is unsupervised.

Next, we run BO on the learnt latent space Z . Specifically,
instead of directly constructing a GP model of the unknown
objective function Obj in (5) that depends on the trajectory
x, we construct a GP model that depends on the latent
variable z. As shown in Fig. 1, given a newly sampled
reference trajectory x (lines 3 and 9 in Algorithm 1), we first

1We note that the generated latent space can be used for any pair of
starting and goal positions. If we also know the position of obstacles when
training the autoencoder, we can use a motion planner to construct a dataset
Dun that contains trajectories which are both dynamically feasible and
collision free.

Algorithm 2 Parameter Update

Input:
Initial parameter value θE , θD, θG, labeled data set
Dl = {∪Ni=1{xi, yi}}, number of epoch Ne, and step
size αE , αD and αG;

1: for 1 ≤ k ≤ Ne do
2: θE = θE − αE∇θE (Lre + Lnmll)
3: θD = θD − αD∇θDLre
4: θG = θG − αG∇θGLnmll
5: end for
6: Output θE , θD and θG.

use the motion planner (4) to generate a safe robot trajectory
m(x) and collect the human feedback F(m(x)) (lines 4 and
10 in Algorithm 1). Then we encode the trajectory m(x)
into a point z in the latent space (line 6 in Algorithm 1).
With the latent point z and the human feedback, we conduct
GP regression to get the next latent point z′ to be evaluated
(lines 7 and 8 in Algorithm 1). Subsequently, we decode z′

into the original trajectory space X to get a new reference
trajectory (line 9 in Algorithm 1) and the process repeats.

Since the initial latent space Z is learnt offline in an
unsupervised way without human feedback, it does not
necessarily contain the true optimal solution to problem (5).
Therefore, as Nm new data samples have been collected
using BO, they are used to update the parameters of the
autoencoder, θE and θD, and the GP kernel parameter θG,
i.e., [σf , l] in Section II.B. Specifically, θG is updated by
minimizing the negative marginal log-likelihood function

Lnmll = −log p(Y |X, θG, θE) (7)

= Y TΣ−10 (x1:Nm
,x1:Nm

)Y +
1

2
log |Σ0(x1:Nm

,x1:Nm
)|,

where Y = [Obj(x1), ..., Obj(xNm
)]T and X = [x1, ...,

xNm
]. Moreover, θE , θD are updated so that the reconstruc-

tion loss in (6) is minimized with respect to the new data
in DNm . We run Ne iterations of stochastic gradient decent
to update these parameters according to Algorithm 2, and
then run BO again to collect new data samples with the
new autoencoder and GP parameters. Since the updates in
Algorithm 2 are conducted using trajectory data that contain
human feedback, this procedure is supervised.

Combining the unsupervised and supervised learning pro-
cess described above, we obtain the semi-supervised trajec-
tory optimization framework presented in Algorithm 1.

IV. NUMERICAL EXPERIMENTS

In this section, we corroborate the effectiveness of our
semi-supervised trajectory optimization framework on the
human-in-the-loop robot planning example discussed in Sec-
tion II, specifically, a mobile robot interacting with humans
in a 2D space. Moreover, we demonstrate the merit of ex-
ploration bias in Section III.B and semi-supervised learning
in Section III.C through ablation studies.

Consider a workspace W ∈ R2 of size 20 × 20. Two
square obstacles of length 2 are located at locations (5, 8)

and (11, 13) in the workspace. The goal is to drive a robot
from position (0, 0) to its goal position (20, 20). At time t,
the robot state is denoted by qt = [px,t, py,t, θt]

T , where qx,t
and qy,t are the robot’s coordinates in the workspace and θt
is the orientation of the robot. The control signal of the robot
at time t is denoted by ut = [vt, ωt]

T , where vt represents
the linear velocity and ωt denotes the angular velocity.
The dynamics of the robot are subject to the discrete-time
unicycle model [7], i.e.,

qt+1 = qt + ∆t

cos θt 0
sin θt 0

0 1

ut, (8)

where ∆t is the time interval. Consider also a group of
humans in the set H = Hc ∪ Hf randomly distributed in
the collision-free workspace C. Their locations are fixed but
unknown to the agent. We assume that for every human
i ∈ Hf , the feedback function ffi (x) = 1 if the robot
trajectory passes through a ball of radius rf centered at
that human’s position pi. Otherwise, ffi (x) = 0. Essentially,
humans in the set Hf complain if the robot trajectory comes
too close to them. On the other hand, if i ∈ Hc, then
f ci (x) = min{floor(dist(x, pi)/rc), k}, where dist(x, pi) is
the distance from pi to the trajectory x and we select k = 5.
This feedback function models a (k+1)-level rating on how
satisfied a human is about robot’s trajectory. If the robot is
within distance rc from the human, a rate 0 is given. On the
contrary, if the robot trajectory is far from human, a rate 5
is sent. Essentially, humans in Hc want the robot to come
close. Note that no contextual information on the feedback
functions ffi and f ci , e.g., the human positions pi or ranges
rf and rc, is available to our semi-supervised BO method.
All that is known is the feedback functions’ evaluations.

We used a fully connected neural network with sig-
moid activation functions as our Encoder and Decoder. The
unsupervised training set Dun was generated using RRT
[16, 18]–[20] so that the routes are in the collision-free
and dynamically-feasible space C ∩ D. Since RRT does
not involve the optimization of any utility, it generates
trajectories that span the entire domain when sufficiently
many samples are collected. In what follows, we compare our
semi-supervised BO method in Algorithm 1 to a supervised
learning approach where the trajectory is optimized using
only the online data associated with human feedback, without
training the autoencoder using the unlabeled dataset. We also
compare our method to an unsupervised learning approach
where the autoencoder is trained using the unlabeled dataset
beforehand, and BO is run on the fixed latent space given
by the trained autoencoder. In our simulations, |Hc| = 5
and |Hf | = 20. We parameterize the robot trajectories by
20 waypoints and, therefore, the dimension of the original
planning problem is 40. Moreover, the latent dimensionality
is set to be 5. The number of initial random samples is 5.

In Fig. 2 we study the effect of our proposed biased
exploration method. The result is averaged over 100 runs.
Specifically, we compare the performance of supervised,
unsupervised and semi-supervised learning with and without

Fig. 2: Comparison of the human satisfaction F(m(x)) returned
by supervised learning (green curves), unsupervised learning (blue
curves), and semi-supervised learning (red curves). Solid curves
represent implementation of these algorithms with exploration bias,
while dashed curves are without exploration bias.

the exploration bias ‖x−m(x)‖. We observe that exploration
bias improves the performance of all three learning methods
compared to their counterparts without bias. The benefit of
biased search in BO is more apparent in the case of super-
vised learning. This is because the latent space in the case
of supervised learning is randomly initialized and, therefore,
it is decoded into many trajectories that have collisions and
are dynamically infeasible. In comparison, the latent spaces
in the case of unsupervised and semi-supervised learning
are trained using collision-free and dynamically feasible
trajectories. Furthermore, we observe in Fig. 2 that semi-
supervised learning (red curves) outperforms both supervised
learning (green curves) and unsupervised learning (blue
curves) with or without the exploration bias. Specifically,
unsupervised learning gets trapped at suboptimal trajectories
and is finally outperformed by the supervised approach.
This is because unsupervised learning is initialized with
a latent space trained using randomly generated collision-
free and dynamically feasible trajectories, which accelerates
the trajectory search in the beginning. However, since this
latent space is not trained using all possible trajectories
that satisfy the constraints and is not updated using online
data, the final solution contains bias. On the other hand,
the proposed semi-supervised learning method reduces the
level of discomfort faster than the other two methods. The
reason is that semi-supervised learning uses the same initial
latent space as that used by the unsupervised method to
achieve efficient exploration in the beginning, but it also
updates this latent space using human feedback to remove
the bias that is present in the supervised way. Therefore,
the semi-supervised algorithm leads to faster convergence
after around 10 queries, which is closely after processing
the random samples. Note also that semi-supervised learning
achieves better performance compared to the supervised and
unsupervised methods using less than 30 queries for human
feedback. This number is comparable to our recent zeroth-

Fig. 3: Plots of the reference trajectories x (red line) and the
actual robot trajectories m(x) (blue line) returned by the MPC
controller (4) for two different configurations of the humans in the
workspace. The red circles represent humans in group Hc and the
black circles represent humans in group Hf .

order method [7] which, however, can not handle different
types of human feedback and is prone to local minima, and
much fewer than queries needed by typical RL methods like
those discussed in Section I.

In Fig. 3, we present the reference trajectories x and the
actual trajectories m(x) followed by the robot for four differ-
ent configurations of the humans Hc∪Hf in the workspace.
These trajectories are returned using 50 rounds of human
feedback. These trajectories satisfy the requirements of most
humans except for very few cases due to the use of the
trajectory length term in (5). As discussed in Section III.B,
the objective in problem (5) strikes a balance between human
satisfaction and trajectory length, which causes remaining
complaints or poor ratings.

V. CONCLUSION

In this paper, we proposed a semi-supervised Bayesian
Optimization (BO) method for human-in-the-loop motion
planning that relies only on bandit human feedback, in the
form of complaints or satisfaction ratings, that express how
desirable a trajectory is without revealing the reason. We
demonstrated the efficiency of our proposed trajectory plan-
ning method in a scenario with humans that have diversified
and unknown demands and showed that it can find better
solutions than competitive methods with very few queries
for human feedback.

REFERENCES

[1] S. Vyas, “Unmanned Secured Delivery System in International Jour-
nal on recent Innovation Trends in Computing and Communication,
Volume 4,Issue 9, March 2016.” International Journal on recent
Innovation Trends in Computing and Communication,, vol. Volume
4, Mar. 2016.

[2] D. Bamburry, “Drones: Designed for Product Delivery,” Design
Management Review, vol. 26, no. 1, pp. 40–48, 2015, eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/drev.10313. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/drev.10313

[3] M. Gombolay, X. Jessie Yang, B. Hayes, N. Seo, Z. Liu,
S. Wadhwania, T. Yu, N. Shah, T. Golen, and J. Shah, “Robotic
Assistance in Coordination of Patient Care,” in Robotics: Science
and Systems XII. Robotics: Science and Systems Foundation, 2016.
[Online]. Available: http://www.roboticsproceedings.org/rss12/p26.pdf

[4] I. Mahrouche, “Robotic Nursing & Caring – Study Example :
Robotic Nursing Assistant (RoNA) System,” 2014, library Catalog:
www.semanticscholar.org.

[5] C. Daniel, O. Kroemer, M. Viering, J. Metz, and J. Peters, “Active
reward learning with a novel acquisition function,” Autonomous
Robots, vol. 39, no. 3, pp. 389–405, Oct. 2015. [Online]. Available:
http://link.springer.com/10.1007/s10514-015-9454-z

[6] A. Menon, P. Kacker, and S. Chitta, “Towards a data-driven
approach to human preferences in motion planning,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
Seattle, WA, USA: IEEE, May 2015, pp. 920–927. [Online].
Available: http://ieeexplore.ieee.org/document/7139287/

[7] X. Luo, Y. Zhang, and M. M. Zavlanos, “Socially-Aware
Robot Planning via Bandit Human Feedback,” arXiv:2003.00658
[cs], Mar. 2020, arXiv: 2003.00658. [Online]. Available:
http://arxiv.org/abs/2003.00658

[8] M. G. B. Blum, M. A. Nunes, D. Prangle, and S. A. Sisson, “A
comparative review of dimension reduction methods in approximate
bayesian computation,” Statistical Science, vol. 28, no. 2, pp. 189–208,
May 2013. [Online]. Available: http://dx.doi.org/10.1214/12-STS406

[9] K. Kandasamy, J. Schneider, and B. Poczos, “High Dimensional
Bayesian Optimisation and Bandits via Additive Models,”
arXiv:1503.01673 [cs, stat], May 2016, arXiv: 1503.01673. [Online].
Available: http://arxiv.org/abs/1503.01673

[10] E. Raponi, H. Wang, M. Bujny, S. Boria, and C. Doerr,
“High Dimensional Bayesian Optimization Assisted by Principal
Component Analysis,” arXiv:2007.00925 [cs], Jul. 2020, arXiv:
2007.00925. [Online]. Available: http://arxiv.org/abs/2007.00925

[11] R. Antonova, A. Rai, T. Li, and D. Kragic, “Bayesian Optimization
in Variational Latent Spaces with Dynamic Compression,”
arXiv:1907.04796 [cs], Jul. 2019, arXiv: 1907.04796. [Online].
Available: http://arxiv.org/abs/1907.04796

[12] R. Moriconi, M. P. Deisenroth, and K. S. S. Kumar, “High-dimensional
Bayesian optimization using low-dimensional feature spaces,” pp.
1–13, 2019. [Online]. Available: http://arxiv.org/abs/1902.10675

[13] J. M. Hernndez-Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman,
and Z. Ghahramani, “A General Framework for Constrained Bayesian
Optimization using Information-based Search,” Journal of Machine
Learning Research, vol. 17, no. 160, pp. 1–53, 2016. [Online].
Available: http://jmlr.org/papers/v17/15-616.html

[14] B. Letham, B. Karrer, G. Ottoni, and E. Bakshy, “Constrained
Bayesian Optimization with Noisy Experiments,” Bayesian Analysis,
vol. 14, no. 2, pp. 495–519, Jun. 2019. [Online]. Available:
https://projecteuclid.org/euclid.ba/1533866666

[15] M. Morari and J. H. Lee, “Model predictive control: past,
present and future,” Computers & Chemical Engineering,
vol. 23, no. 4, pp. 667–682, May 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0098135498003019

[16] Jongwoo Kim and J. P. Ostrowski, “Motion planning a aerial robot
using rapidly-exploring random trees with dynamic constraints,” in
2003 IEEE International Conference on Robotics and Automation
(Cat. No.03CH37422), vol. 2, Sep. 2003, pp. 2200–2205 vol.2, iSSN:
1050-4729.

[17] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length and helmholtz free energy,” in Proceedings of the 6th Inter-
national Conference on Neural Information Processing Systems, ser.
NIPS’93. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1993, pp. 3–10.

[18] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-
exploring random trees for optimal motion planning in complex
cluttered environments,” Robotics and Autonomous Systems, vol. 68,
pp. 1–11, Jun. 2015, arXiv: 1703.08944. [Online]. Available:
http://arxiv.org/abs/1703.08944

[19] V. Vonásek, J. Faigl, T. Krajnı́k, and L. Přeučil, “RRT-path – A Guided
Rapidly Exploring Random Tree,” in Robot Motion and Control
2009, ser. Lecture Notes in Control and Information Sciences, K. R.
Kozłowski, Ed. London: Springer, 2009, pp. 307–316.

[20] Y. Abbasi-Yadkori, J. Modayil, and C. Szepesvari, “Extending rapidly-
exploring random trees for asymptotically optimal anytime motion
planning,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct. 2010, pp. 127–132, iSSN: 2153-0866.

