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Cluster perturbation theory (CPT) is a technique for computing the spectral function of fermionic models
with local interactions. By combining the solution of the model on a finite cluster with perturbation theory on
intracluster hoppings, CPT provides access to single-particle properties with arbitrary momentum resolution
while incurring low computational cost. Here, we introduce determinantal quantum Monte Carlo (DQMC)
as a solver for CPT. Compared to the standard solver, exact diagonalization (ED), the DQMC solver reduces
finite size effects through utilizing larger clusters, allows study of temperature dependence, and enables large-
scale simulations of a greater set of models. We discuss the implementation of the DQMC solver for CPT
and benchmark the CPT + DQMC method for the attractive and repulsive Hubbard models, showcasing its
advantages over standard DQMC and CPT + ED simulations.
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Introduction. The spectral function A(k, ω) is a funda-
mental quantity in many-body physics. A model’s spectral
function directly reflect the properties of its elementary
charged excitations and is useful for characterizing both or-
dered and unordered phases. Experimentally, the spectral
function can by measured by angle-resolved photoemission
and is directly related to the density of states measured in
tunneling spectroscopy [1]. These experimental probes have
been instrumental in characterizing electronic structure and
phase diagrams. Continual improvements in energy and mo-
mentum resolution have led to significant advances in our
understanding of the properties of quantum materials [2].

As a dynamical quantity, the selection of techniques for
calculating the spectral function in models of interacting
electrons is limited. The most common methods can be clas-
sified roughly into three categories: perturbative methods,
finite-cluster methods, and embedding methods. Perturba-
tive methods (e.g., Refs. [3,4]) have the advantage of being
computationally inexpensive and, therefore, can be applied
to large clusters, leading to fine momentum resolution and
minimal finite-size effects. However, their validity in interme-
diate and strongly interacting models is questionable at best.
Finite cluster methods, such as exact diagonalization (ED)
[5,6], determinantal quantum Monte Carlo (DQMC) [7,8],
and density matrix renormalization group (DMRG) [9,10],
treat interactions exactly but ultimately have limitations that
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manifest as a restriction in the accessible system size. Embed-
ding methods seek to treat the model on an infinite lattice by
solving an “embedded” finite cluster with an exact method and
treating longer-range correlations approximately. This allows
for continuous momentum resolution with finite-size effects
that can be controlled by increasing the size of the embedded
cluster [11,12]. In this Letter we focus on one such embedding
method, cluster perturbation theory (CPT) [13–16] and intro-
duce DQMC as a novel solver for CPT. After introducing the
formalism and implementation of the CPT + DQMC method,
we will explore three examples: the attractive Hubbard model
in a superconducting state, the half-filled repulsive Hubbard
model, and the doped repulsive Hubbard model. In these
examples, we will illustrate the advantages of the DQMC
solver over the standard ED solver for CPT [14,15,17–28]
and demonstrate the advantages of the CPT + DQMC method
over finite-size DQMC simulations. We conclude with a brief
discussion of interesting open problems that are particularly
suitable for study by CPT + DQMC.

CPT formalism. As the CPT formalism has been derived
and discussed in detail in Refs. [12,14,15], we will only
summarize the most important results below. Consider an
infinite lattice that can be separated into clusters of Nc sites.
CPT applies to Hamiltonians involving local interactions such
that only the hopping terms connect different clusters [see
Fig. 1(a)]. Such a Hamiltonian can be decomposed as

H =
∑
C

HC +
∑
i jσ

hbi jc
†
iσ c jσ . (1)

Here, HC contains all the hopping and interaction terms in-
volving only a single cluster C. The intercluster hoppings
are contained in the matrix hb. For simplicity, we consider
a single-orbital problem, although the generalization of the
formalism to multiorbital models is straightforward. With the
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FIG. 1. (a) Schematic of the CPT method: the infinite plane is
divided into clusters. The Green’s function associated with each
cluster Hamiltonian is solved exactly, whereas the intercluster terms
are treated as perturbation. (b) Flowchart of the CPT + DQMC
method.

intra- and intercluster terms of the Hamiltonian separated, the
Green’s function in CPT is given by

G(z) = Gc(z)[I − hbGc(z)]−1, (2)

where Gc(z) is the Green’s function calculated at complex fre-
quency z using the cluster Hamiltonian HC . The bold symbols
denote matrices in the real-space basis. Clearly, Gc(z) is block
diagonal with identical blocks of size Nc × Nc (these blocks
can be different when a supercluster is employed). To calcu-
late Gc(z) requires solving HC , i.e., the model on a cluster of
Nc sites with open boundary conditions. The original and most
commonly used CPT algorithms employ ED as the cluster
solver, which was extended to the time-dependent density
matrix renormalization group method recently [29]. As we
will show, DQMC is also suitable as a solver and exhibits its
advantage in particular problems.

Strictly speaking, we seek to evaluate

G(k, z) = 1

Nc

∑
r,r′

∑
R′

e−ikreik(r′+R′ )Gr,r′+R′ (z), (3)

where r and r′ are in one cluster, and R′ connects equivalent
sites in different clusters. For a given momentum k, the matrix
algebra of Eq. (2) can be simplified in order to involve only
Nc × Nc matrices. The final result is

G(k, z) = 1

Nc

∑
r,r′

e−ik(r−r′ )
[

Gc(z)

I − h̃bGc(z)

]
r,r′

. (4)

Here, all matrices are Nc × Nc and h̃b is defined as

h̃br,r′ =
∑
R′

eikR
′
hbr,r′+R′ . (5)

Finally, the spectral function is defined as A(k, ω) =
−Im G(k, ω + i0+)/π .

CPT + DQMC implementation. DQMC is a numerically
exact algorithm for simulating interacting systems on finite
clusters at finite temperature [7,8]. Utilizing DQMC as the
cluster solver in CPT and obtaining the spectral function in-
volves the sequence of operations sketched in Fig. 1(b). The
details of the operations are as follows:

(1) DQMC is used to simulate a cluster with Nc sites with
open boundary conditions. We work in the grand canonical
ensemble at a finite temperature T . Unlike in simulations
with periodic boundaries, translation symmetry must not be
applied to the measurements. The point-group symmetries
of the cluster and internal symmetries of the model may be
applied to reduce sampling errors. The output of the DQMC
calculation is the imaginary time Green’s function,

Gc
rr′ (τ ) = −〈crσ (τ )c†

r′σ 〉, (6)

where i and j are site indices. We assume spin rotation sym-
metry and, hence, omit the spin index σ .

(2) The data are Fourier transformed to Matsubara fre-
quencies,

Gc
rr′ (iωn) =

∫ β

0
dτ eiωnτGc

rr′ (τ ). (7)

Because imaginary time is discretized in DQMC, the integral
over dτ must be evaluated carefully to avoid inaccuracy at
large Matsubara frequency. Our approach is to interpolate
τ with cubic splines onto a very fine grid before integrat-
ing numerically. Since both the interpolation and the Fourier
transform are linear operations, they may be combined into a
single matrix. A single matrix multiplication is used to per-
form these operations on all r, r′ and all bins. Since Gc

rr′ (iωn)
is complex, the number of Matsubara frequencies kept needs
to be only half the number of imaginary time points for a
1-to-1 transformation.

(3) The bins of Gc(iωn) data are resampled by either jack-
knife or bootstrap resampling. If the model has a fermion sign
problem, the average sign is divided in this step.

(4) The resampled data are combined with the interclus-
ter hopping through Eq. (4) to calculate the CPT Matsubara
Green’s function G(k, iωn). As this is performed for every
resample and may be slightly time consuming, it is advan-
tageous to focus on k along high-symmetry cuts.

(5) The spectral function is extracted from the relation,

G(k, iωn) =
∫

dω
A(k, ω)

iωn − ω
, (8)

by numerical analytic continuation for every k point. In the
examples shown later, we use the maximum entropy method
(MaxEnt) [30] with a flat model function and the prescrip-
tion of Ref. [31] for choosing the entropy weight. Note that
since the resampled data are not independent, the estimated
covariance matrix must be multiplied by a correction factor.
For jackknife resampling, this factor is (M − 1)2 where M is
the number of bins.

The specific order of these steps is due to the follow-
ing constraints. First, most methods of analytic continuation,
including MaxEnt, assume a non-negative spectral function.
Because the sign of Ai j (ω) is frequency dependent for i �= j,
CPT and the transformation to momentum space should be
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applied before analytic continuation. Second, CPT is spec-
ified in frequency space. Together with the first constraint,
this necessitates the use of Matsubara frequencies. Finally,
the Green’s function in CPT is a nonlinear function of Gc,
so the sampling noise should be minimized by jackknife or
bootstrap resampling before applying Eq. (2). Steps 2 and 3
may be reordered because both resampling and the Matsubara
transformation are linear.

Application to the Hubbard model. The Hubbard model
Hamiltonian is

H = −t
∑
〈i j〉

(c†
iσ c jσ + H.c.) +U

∑
i

ni↑ni↓, (9)

where t is the hopping between nearest neighbors i and j and
U is the interaction strength. We will consider both the attrac-
tive Hubbard model with U/t = −4 and the repulsive model
with U/t = 8. In all cases, we consider the two-dimensional
square lattice and use square cluster geometries. Typically,
for each simulation we run ∼1000 Markov chains with ∼106

sweeps each and measure G(τ ) every other sweep. More
measurements are collected for simulations with a severe
sign problem. The standard error in G(τ ) is ∼10−5, which
is low enough that the MaxEnt analytic continuation is highly
repeatable.

We will first consider two simple cases of the Hubbard
model that are well understood and free of the sign problem:
the doped attractive Hubbard model and the half-filled repul-
sive Hubbard model. The absence of a sign problem allows for
DQMC simulations on large clusters and low temperatures.
Therefore, we will use large-cluster DQMC simulations as
a reference to evaluate the performance of CPT + DQMC
simulations, which involve much smaller clusters.

The attractive Hubbard model is an s-wave superconductor
upon doping. At U/t = −4 and an average filling 〈n〉 ≈ 0.6,
the critical temperature has been determined to be Tc/t ≈ 0.15
from finite-size scaling of DQMC simulations [32]. These pa-
rameters are close to optimal in the sense of maximizing Tc. In
Fig. 2, we plot the spectral function of the attractive Hubbard
model with these parameters at a temperature T/t = 1/12
well under the nominal superconducting transition. In the
16 × 16 DQMC simulation of Fig. 2(a), we see a particle-hole
symmetric superconducting gap separating sharp Bogoliubov
quasiparticle peaks. Backbending of the dispersion is visible
but the linewidth increases rapidly when moving away from
the Fermi momenta since the solution involves correlations
beyond the mean field.

In the spectra computed by CPT + DQMC [see Figs. 2(b)–
2(d)], the broad high-energy features are very similar to those
from DQMC in Fig. 2(a). The low-energy features are more
revealing and demonstrate both the advantages and limitations
of CPT. In the 4 × 4 CPT + DQMC spectra of Fig. 2(b),
although the backbending dispersions are very clear, the su-
perconducting gap appears to be indirect and particle-hole
asymmetric. These anomalies are undoubtedly finite-size ar-
tifacts, which are not completely corrected by CPT, and we
find that they diminish when increasing the cluster size to
8 × 8 [see Fig. 2(c)]. This highlights the importance of sys-
tematically checking cluster size dependence and illustrates
the challenges of studying spectral features associated with

FIG. 2. Spectral function A(k, ω) of the (a) attractive Hub-
bard model calculated by DQMC on a 16 × 16 cluster, (b) and
(c) CPT + DQMC on clusters of sizes as labeled, and (d)
CPT + ED on a 4 × 4 cluster. The interaction strength is U/t = −4,
average filling is 〈n〉 ≈ 0.63, and the temperature is T/t = 1/12 in
(a)–(c) and T = 0 in (d).

superconductivity by CPT + ED simulations, which are lim-
ited to ∼20 sites. Detailed discussions about these finite-size
artifacts are presented in the Supplemental Material (SM)
[33].

The repulsive Hubbard model at U/t = 8 and half-filling
is an antiferromagnetic (AFM) Mott insulator. We plot its
spectral function in Fig. 3 for a temperature T/t = 1/16 [34].
Comparing Figs. 3(a) and 3(b) shows that CPT + DQMC on
a 4 × 4 cluster produces highly accurate spectra qualitatively
identical to that from the larger 12 × 12 DQMC calculation.
Due to the strong AFM correlations of the system, dispersions
should be symmetric about the AFM zone boundary, and
the slight asymmetry in the 4 × 4 CPT + DQMC is likely
a consequence of the limited range of AFM correlations in
a small 4 × 4 cluster. This asymmetry is asymptotically re-
solved by increasing the system size, which is inaccessible
in ED + CPT. As shown in Fig. 3 and discussions in the
SM [33], the position of the maximum of the dispersion,
indicating the momentum of the first removal state, rapidly
approaches ( π

2 , π
2 ) as cluster size increases. We have also

benchmarked the method using the one-dimensional repulsive
Hubbard model, whose accurate spectral function has been
obtained by DMRG [35,36] (see the SM [33]).

Having tested CPT + DQMC in two models that are well
understood, we now explore the suitability of CPT + DQMC
for the less understood case of the doped repulsive Hubbard
model. Most progress in understanding the model has come
from ground-state calculations of static observables, and it has
been fruitful to compare calculations across many methods
involving different approximations [37]. However, far fewer
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FIG. 3. Spectral function A(k, ω) of the half-filled Hubbard
model calculated by (a) DQMC on a 12 × 12 cluster, (b) CPT +
DQMC on a 4 × 4 cluster, and (c) CPT + DQMC on a 8 × 8 cluster.
Energy distribution curve peak positions are indicated in (d). The
interaction strength is U/t = 8, and the temperature is T/t = 1/16.

methods are capable of calculating the spectral function, a
momentum-resolved dynamical quantity. In the doped model,
DQMC is limited by the sign problem to temperatures T/t �
0.2 [38,39], and most calculations of A(k, ω) at lower temper-
atures are based on cluster extensions or variants of dynamical
mean field theory [4,12].

In Fig. 4, we show the spectral function at zero frequency
of the Hubbard model at 6% hole doping, calculated by
DQMC, CPT + DQMC, and CPT + ED. In the 8 × 8 T/t =
1/4 simulation of Fig. 4(a), the average fermion sign is 0.049.
The fact that CPT + DQMC is capable of continuous momen-
tum resolution by simulating small open-boundary clusters is
an enormous advantage: The average sign of the 4 × 4 sim-
ulations in Fig. 4(b) is 0.70, and the continuous momentum
dependence reveals clearly that the underlying Fermi surface
is holelike. In fact, 4 × 4 CPT + DQMC simulations can be
pushed to T/t = 1/8 where the average sign is 0.075. As
evident in Fig. 4(c), and consistent with the zero-temperature
CPT + ED calculation in Fig. 4(d), the difference in intensity
between the nodal and antinodal directions (nodal-antinodal

FIG. 4. Low-energy spectral weight A(k, ω = 0) of the hole-
doped Hubbard model calculated by (a) DQMC on a 8 × 8 cluster at
T/t = 1/4, (b) CPT + DQMC at T/t = 1/4, (c) CPT + DQMC at
T/t = 1/8, and (d) CPT + ED at T = 0 with a broadening of 0.15t .
All CPT calculations used 4 × 4 clusters. The interaction strength is
U/t = 8 and the average filling is 〈n〉 ≈ 0.94.

dichotomy) is very strong, and is likely related to the pseudo-
gap. This is also supported by the self-energy simulations in
the SM [33].

Discussion. We have implemented and demonstrated
CPT + DQMC as a powerful method for calculating the spec-
tral function in correlated electron systems. By using DQMC
as a solver, the accessible cluster sizes are significantly larger
than possible by CPT + ED. We have shown in Figs. 2
and 3 some of the benefits of these larger cluster sizes. By
sampling additional fields [40] and employing a different an-
alytic continuation strategy, one can conduct CPT + DQMC
simulations on canonical ensembles as shown in the SM [33].
In general, we find that 4 × 4 CPT simulations are highly
accurate apart from low-energy details related to ordering
or long-range correlations. One unexplored possibility is to
develop novel CPT schemes that account for the presence of
ordering.

Compared to standard DQMC simulations, CPT + DQMC
has the advantage of achieving continuous momentum reso-
lution and relatively high accuracy with a small cluster and
lower computational cost. This advantage has been demon-
strated and employed in CPT + ED simulations, as an efficient
correction for the finite-size effect in pure ED. In models with
a sign problem, such as the doped Hubbard model studied in
Fig. 4, the advantage of CPT + DQMC potentially allows
access to parameter regimes inaccessible by moderate-size
DQMC simulations. Even for sign-free models, the size of
DQMC simulations required to resolve features, such as dis-
persion backbending (Fig. 2) is considerable, and, hence, the

L042015-4



DETERMINANTAL QUANTUM MONTE CARLO SOLVER FOR … PHYSICAL REVIEW RESEARCH 4, L042015 (2022)

continuous momentum resolution of CPT + DQMC is highly
beneficial.

Perhaps the most important opportunity enabled by
CPT + DQMC is the possibility to study models that are not
well suited to ED. For instance, the strongly electron-phonon
coupled system involves huge Hilbert space and cannot be
solved by pure ED [41–45] but can be tackled by DQMC.
Therefore, an exciting prospect would be to use CPT +
DQMC to investigate the spectral signatures of the Hubbard-
Holstein model with only local interactions and couplings as
presented by the example in the SM [33]. Similarly, multi-
orbital models are less problematic for DQMC than for ED,
and there is a considerable phase space of sign-free multi-
orbital models with rich phase diagrams [46,47]. Moreover,

CPT-DQMC benefits from access to larger clusters, which
are more tolerant to the errors of boundary vertices. This
quantitative difference may qualitatively extend its capability
and enable multiparticle spectral simulations, which are prob-
lematic in CPT + ED (see examples and discussion in the SM
[33]). We look forward the the application of CPT + DQMC
to these systems and spectral quantities.
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