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Abstract
Climate and vegetation phenology are closely linked, and climate change is already impacting phenology in many systems. 
These impacts are expected to progress in the future. We sought to forecast future shifts in rangeland growing season timing 
due to climate change, and interpret their importance for land management and ecosystem function. We trained a model on 
remotely sensed land surface phenology and climate data collected from 2001 to 2014 in temperate United States rangelands. 
We used this model to forecast annual growing season start dates, end dates, and season length through 2099 among six gen-
eral circulation models and under RCP 4.5 and 8.5 scenarios. Growing season start was projected to shift earlier throughout 
our study area. In 2090–2099, start of season advanced by an average of 10 (RCP 4.5) to 17 (RCP 8.5) days. End of season 
also advanced by 12 (RCP 4.5) to 24 (RCP 8.5) days, but with greater heterogeneity. Start and end of season change mainly 
offset one another, so growing season length changes were lesser (2 days in RCP 4.5, and 7 in RCP 8.5). Some mountainous 
areas experienced both earlier start of season and later end of season, lengthening their growing season. Earlier phenology 
in rangelands would force adaptation in grazing and impact ecosystem function. Mountainous areas with earlier start and 
later end of season may become more viable for grazing, but most areas may experience slightly shortened growing seasons. 
Autumn phenology warrants greater research, and our finding of earlier autumn senescence contradicts some prior research.
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Introduction

Phenology is the study of periodic events, factors that influ-
ence their timing, and relationships among such events 
(Lieth 1974). Individual species, communities, ecosys-
tem function and services, biogeochemical cycles, veg-
etation–climate feedbacks, and agriculture all respond to 

phenological cycles (Richardson et al. 2013; Piao et al. 
2019). Vegetation phenology is one such periodic cycle of 
plant growth and is driven by three basic factors: sunlight, 
water, and temperature (Zhao et al. 2013).

Field observations of distinct events like vegetation leaf-
out or bloom have historically been the basis of vegetation 
phenology research and still provide important phenologi-
cal data (Leopold and Jones 1947; Menzel 2002). How-
ever, applications to study phenology from remotely sensed 
imagery have grown rapidly since imagery from sensors such 
as Landsat-1 and AVHRR became widely available (Hen-
ebry and de Beurs 2013), because such satellite imagery 
can detect broad spectral changes associated with vegetation 
green-up and senescence (Reed et al. 1994; Stöckli and Vid-
ale 2004). This field became known as “land surface phenol-
ogy” because these remotely sensed phenological changes 
represent the aggregate activity of vegetation in a given area, 
rather than the phenology of individual species (Hanes et al. 
2014). Land surface phenology allows research across much 
broader spatial and temporal scales than traditional in situ 
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observations and is particularly suited to examining pheno-
logical shifts over time and across regions.

Climate and phenology are closely linked, so phenology 
serves as a biological indicator of climate change (Cleland 
et al. 2007). Generally, temperature is the primary factor 
influencing spring vegetation phenology in temperate and 
mid to high latitude regions where growing seasons are 
warm and dormant seasons are cold (Walther et al. 2002; 
Linderholm 2006; Wu and Liu 2013; Fu et al. 2020). Land 
surface phenology studies strongly indicate an advancement 
in the timing of spring vegetation green-up globally in the 
last few decades, widely credited to rising temperatures (Par-
mesan and Yohe 2003; Linderholm 2006; Julien and Sobrino 
2009; Richardson et al. 2013; Piao et al. 2019). This earlier 
spring timing is also supported by climatic indices of spring 
onset (Schwartz et al. 2006).

Climate change effects on autumn phenology have largely 
not received as much attention as effects on spring phenol-
ogy (Gallinat et al. 2015), but impacts to autumn dynamics 
may be as significant and more varied (Walther et al. 2002; 
Richardson et al. 2013; Garonna et al. 2014; Liu at al. 2016). 
Climatic controls on autumn phenology are less clear than 
those to spring phenology, with interactions between tem-
perature, moisture, and photoperiod playing roles (Estrella 
and Menzel 2006; Way and Montgomery 2015; Ren et al. 
2018a; Fu et al. 2020). Broad analyses have generally shown 
that climate change has delayed autumn senescence, which, 
along with earlier spring green-up, has consequently length-
ened growing seasons (Stöckli and Vidale 2004; Linderholm 
2006; Julien and Sobrino 2009; Jeong et al. 2011; Ge et al. 
2015).

Phenology research has largely focused on forested eco-
systems (Richardson et al. 2013), so phenology impacts 
in grasslands may not exhibit the spring advancement and 
autumn delay often found in more global analyses. For 
example, Ying et al. (2020) found autumn senescence delays 
in Inner Mongolia forest and forest steppe, but advancement 
in non-forested ecosystems. Similarly, autumn senescence 
might be occurring later throughout much of the Northern 
Hemisphere, but earlier in the predominantly non-forested 
western USA (Piao et al. 2007). Studies specific to grass-
lands have also supported autumn senescence advancement 
(Li et al. 2016; Ren et al. 2018b), and warmer tempera-
tures have been shown in experiments to advance grassland 
autumn senescence (Zavaleta et al. 2003). These studies and 
others have also found support of spring green-up advance-
ment in grasslands (Piao et al. 2007; Zhang et al. 2013; Li 
et al. 2016; Chang et al. 2017; Ren et al. 2018b), in line with 
more global findings. However, some have found delays in 
grassland spring green-up (Reed 2006; Yu et al. 2010), or 
advances during some time frames and delays in others (Piao 
et al. 2011; Wu and Liu 2013).

Though species-specific phenology models at local scales 
are well advanced, generalized models of phenology at large 
extents can be improved (Piao et al. 2019). Jolly et al. (2005) 
developed a generalized growing season phenology model 
from photoperiod, minimum temperatures, and vapor pres-
sure deficit to address phenological timing at model sites. 
Xin et al. (2015) expanded this work by modeling growing 
season start dates in United States (US) grasslands through 
multiple methods, including variants of the Jolly et  al. 
(2005) growing season index. Their models achieved rea-
sonable accuracy in predicting growing season onset across 
this large study area. However, they did not model growing 
season end, and consequently could not address vegetation 
senescence or growing season length. Hufkens et al. (2016) 
used PhenoCam imagery to model future dynamics in west-
ern USA and Canadian grasslands, and projected earlier 
spring green-up and later autumn senescence, consequently 
lengthening growing seasons.

Changes to spring green-up, autumn senescence, and 
overall growing season length have important implications 
for grasslands, including impacts on global carbon cycling 
(Piao et al. 2007; Richardson et al. 2013), wildlife migra-
tion (Monteith et al. 2011), and land uses such as grazing 
(Ren et al. 2018b). Models of future phenological changes, 
particularly those that address grasslands and autumn senes-
cence, are lacking. Planning of future climate adaptation in 
these ecosystems could be greatly improved by such projec-
tions of future phenological impacts. To address this need, 
we developed a generalized model of climatic impacts on 
phenology in temperate US rangelands. We then projected 
this model through the year 2099 under six general circula-
tion models and RCP 4.5 and 8.5 scenarios to address how 
future climatic conditions will influence rangeland growing 
season timing.

Methods

Study area

We limited our study area to locations defined as rangelands 
by Reeves and Mitchell (2011) within the western USA. We 
further restricted the study area to a subset of rangelands, as 
described in Input data. To summarize the results geographi-
cally, we evaluated our results throughout major ecological 
provinces (McNab et al. 2007) in the study area (Fig. 1). 
This area includes a diversity of shrubland and grassland 
environments, and much of it is managed by federal agencies 
such as Bureau of Land Management and US Forest Service.
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Model overview

We sampled elevation, daily climate, and daily growing sea-
son determinations from 2001 to 2014 from more than 2000 
random pixels throughout the study area. We utilized these 
data to train and validate models of annual growing season 
timing. We modeled start of season (SOS) dates, end of sea-
son (EOS) dates, and growing season length (GSL) through 
a two-step process (Fig. 2). We first employed a binomial 
generalized linear model to predict the probability that each 
day in a year fell within the growing season. This model 
was fit with daily climate and elevation data, and trained on 
USGS eMODIS growing season determinations.

Next, using the set of daily growing season probabilities 
in each year, we needed to determine which dates repre-
sented growing season start and end. To accomplish this, we 
fit a sinusoidal model to the growing season probabilities, 
and determined when the fit line surpassed and fell below 
given growing season probabilities. Lastly, growing season 
length was calculated as the difference between the deter-
mined EOS and SOS dates. Future projections were made 
with the same models, using elevation and future projected 
climate as inputs.

Input data

We used phenology products from USGS eMODIS Col-
lection 5 Terra Western as the measure of growing season 
timing from 2001 to 2014 in the study area (Jenkerson et al. 
2010; Brown 2016; USGS EROS 2018). These phenology 
data are well-established metrics of growing seasons in the 
study area, and have been utilized in many studies of phenol-
ogy (see Howard et al. 2012; Gu et al. 2013; Liebezeit et al. 
2014; Boyte et al. 2015; Meier et al. 2015; Zhou et al. 2019). 
We utilized SOS (start of season time) and EOS (end of 
season time) data from eMODIS. These metrics are derived 
by calculating a time series of smoothed NDVI data, calcu-
lating a 14-day delayed moving average of NDVI from the 
smoothed NDVI values, and determining when these lines 
intersect (Reed et al. 1994; Meier and Brown 2014). These 
intersections indicate either a sharp increase or decrease in 
NDVI, signaling either the onset or end of the year’s grow-
ing season (Meier and Brown 2014). This process reduces 
sensitivity to temporary NDVI trend changes and measure-
ment errors from factors such as cloud contamination (Reed 
et al. 1994). However, snowmelt can confound vegetation 
green up identified by this method, so some have produced 

Fig. 1   Maps of the study area showing all rangelands and the subset included in modeling (a), and the major ecological provinces encompassing 
the included rangelands (b)
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alternative phenology indices without the influence of snow-
melt (Delbart et al. 2006; Gallant et al. 2018; Wang et al. 
2018). These indices may somewhat improve phenology 
determinations, but are still somewhat novel approaches and 
may be most necessary in evergreen forests, not grasslands 
(Beck et al. 2006; Gallant et al. 2018).

From the eMODIS SOS and EOS dates, we produced a 
binary record of whether dates fell within the year’s grow-
ing season. For example, if the SOS was day 90 and EOS 
was day 300 at a given pixel in a given year, days 1–89 were 
not within the growing season at that pixel in that year, days 
90–300 were within the growing season, and days 301–365 
were not within the growing season. Dates not within the 
growing season were coded as 0, and dates within the grow-
ing season were coded as 1.

We associated these binary growing season data with 
gridMET daily climate data at 4 km resolution (Abatzo-
glou 2013), including maximum temperature, minimum 
temperature, and downward shortwave radiation. Growing 
degree days (GDD) were calculated daily from mean daily 
temperature minus a base temperature of 0ºC, and were 
cumulatively summed over the year to calculate accumu-
lated growing degree days (AGDD). The base temperature 
of 0 ºC is commonly used in temperate grasslands (Frank 
and Hofmann 1989; Preister et al. 2019). While individual 
species have varying base temperatures, 0 ºC is suitable 
for temperate grasslands as a whole, and manipulations of 
base temperature have little effect on GDD correlations to 
phenology (Romano et al. 2014). Exploratory data analysis 
showed the AGDD value of 2500 was strongly associated 
with growing season end throughout our study area, so we 
calculated whether this threshold had been surpassed and if 

so by how much, and included this as a variable in modeling. 
Vapor pressure deficit (VPD) was estimated from the differ-
ence between saturated vapor pressure at daily maximum 
and minimum temperatures by the following equation from 
Lobell et al. 2014:

Phenology in annual grasslands and deserts is highly 
variable, with the potential for multiple growing seasons 
annually and start of season occurring as early as autumn 
in some years (Reed et al. 1994). To assess only locations 
with a single annual growing season and avoid such highly 
variable regions, we removed locations with start of season 
dates earlier than January 1 or later than May 30 in any years 
(Fig. 1a). This filtering also eliminated areas which may 
have experienced major vegetation shifts or disturbances 
during the study period. This was desirable because we 
were interested only in the effects of climate, not vegetation 
change, on phenology timing.

Binomial growing season probability model

We used a binomial generalized linear model in R (R Core 
Team 2018) to fit daily climate and elevation data to daily 
growing season determinations. We included seven variables 
in the binomial model (Table 1). This binomial model pre-
dicted the probability that a given day fell within the year’s 
growing season for all included pixels.

(1)
VPD =

(

0.6107 ∗ e
17.269T

max
∕(237.3 + T

max)
)

−
(

0.6107 ∗ e
17.269T

min
∕(237.3 + T

min)
)

.

Fig. 2   Flowchart of modeling process. Models were fit with eleva-
tion, daily gridMET climate from 2001 to 2014, and USGS eMODIS 
phenology from 2001 to 2014. Future projections were made using 

the same models, with elevation and daily CMIP5-projected climate 
data from 2020 to 2099
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The model was fit with a logit link with the following 
equation, where variable notations match those in Table 1, 
β0 represents the equation’s intercept, and β1 through β6 rep-
resent variable coefficients (shown in Table S1). All climatic 
variables correspond to measurements from a single day, d, 
and µ represents the probability that the given day fell within 
the growing season:

Of the 2000 random pixels from which we sampled cli-
mate and growing season data, we randomly selected a small 
subset (14% of pixels) for training the model. Data from 
the remaining pixels were reserved for model validation. 
We further restricted the input data by selecting 9 years of 
climate and phenology records for training the model, and 
reserved 5 years for model validation. The training years 
were manually selected to include years with varying phe-
nological conditions (e.g., years with early, late, and typical 
growing seasons across the study area), training the model 
on a wide set of conditions. The years reserved for model 
validation were: 2003, 2005, 2008, 2012, and 2014.

The model was fit using only the training pixels, with 
climate and phenology data from only the training years. 
Model accuracy was evaluated using validation pixels, with 
climate and phenology data from validation years.

Sinusoidal growing season dates model

The binomial model output daily growing season probabili-
ties for each year. From these daily probabilities, growing 
season start and end dates had to be determined. To accom-
plish this, we fit a sinusoidal model to the set of daily grow-
ing season probabilities. Phenological data are well fit by 
sinusoidal models because of their strong periodicity (see 
Hogg et al. 2000; Girondot et al. 2006). We applied the fol-
lowing second harmonic sinusoidal model (similar to one 
outlined in Sapiano et al. 2012), where GS Prob is growing 
season probability, d is the day of the year, and w is the 

(2)
ln

(

�

1 − �

)

= �
0
+ �

1
SRAD

d
∗ �

2
VPD

d
∗ �

3
TMAX

d
∗ �

4
AGDD

d

+ �
5
Elev + �

6
AGDD − 2500

d

cycle’s frequency (2π/365 days). Β0 represents the model 
intercept, Β1–Β4 represent variable coefficients, and ε rep-
resents error:

The sinusoidal model was fit at each pixel in each year. 
The resulting set of fit probabilities from the model was then 
analyzed to determine the day when the fit probability first 
surpassed 0.5, and the day when it next fell below 0.45. 
These dates were interpreted as the start of season date, and 
the end of season date, respectively, at a given pixel in a 
single year. Model validation showed these thresholds best 
aligned with eMODIS SOS and EOS dates throughout the 
study area.

Though other methods can allow more direct biophysi-
cal interpretations of factors beyond growing season start 
and end (Garroutte et al. 2016; Morisette et al. 2021), these 
interpretations were not possible in our case because our 
model fit modeled growing season probability rather than 
NDVI, EVI, or other direct vegetation indices.

Projecting future growing season dates

We projected future growing season dates by running the 
binomial growing season probability and sinusoidal grow-
ing season dates models with future projected climate. We 
utilized CMIP5 projections (Taylor et al. 2012) downscaled 
using the MACA method (Abatzoglou and Brown 2012). 
The following six global climate models (GCMs) under RCP 
4.5 and 8.5 scenarios were resampled to a common 4-km 
resolution and utilized in modeling: BCC-CSM1.1 (m), 
CNRM-CM5.1, HadGEM2-ES, IPSL-CM5A-MR, MRI-
CGCM3, and NorESM1-M. These models were chosen 
because they capture a range of possible future climatic con-
ditions and are used in the Forest Service 2020 Resources 
Planning Act (RPA) Assessment (Joyce and Coulson 2020), 
which utilizes these projections.

For each GCM/RCP combination, we used the binomial 
model to predict daily growing season probabilities from 
2020 to 2099, then used the sinusoidal model to determine 
SOS and EOS dates from these probabilities for each pixel 
and in each year. Growing season length (GSL) was cal-
culated as the difference between EOS and SOS dates. We 
compared the future projected growing season dates to the 
mean growing season dates predicted by the model at each 
pixel during the baseline period (2001–2014) to quantify 
the projected growing season changes relative to current 
conditions. We evaluated changes in SOS date, EOS date, 
and GSL.

We obtained ensemble projections of change for each year 
by calculating the mean of projected changes from all GCMs 

(3)
GS Prob(d) = �

0
+ �

1
sin (d ∗ w) + �

2
cos (d ∗ w)

+ �
3
sin (d ∗ 2w) + �

4
cos (d ∗ 2w) + �.

Table 1   Variables included in the generalized linear model

Variable Definition

GS Record of whether day fell within the year’s growing 
season

SRAD Downward shortwave radiation (W * m−2)
VPD Vapor pressure deficit (Pa)
TMAX Maximum temperature (C)
AGDD Accumulated growing degree days in the year to date
AGDD-2500 How far AGDD was above the threshold of 2500, if 

this threshold had been surpassed
Elev Elevation (m)



	 Modeling Earth Systems and Environment

1 3

in each year under both RCP scenarios. For example, we 
calculated the mean of projected changes from the six GCMs 
under RCP 4.5 in the year 2030 to obtain the ensemble pro-
jection of change for this year under RCP 4.5. Lastly, we 
calculated the mean of ensemble projections across decades 
(from 2030 to 2039, 2040–2049, etc.) to determine more 
stable projected changes without annual climatic variability.

Since our model was trained on eMODIS land surface 
phenology metrics, our results should be interpreted as pro-
jected changes in these phenology metrics. These products 
broadly capture vegetation life-cycle timing at the landscape 
scale (USGS EROS 2018).

Relative magnitude of growing season start and end 
change

We followed a procedure from Garonna et al. (2014) to 
compare the relative magnitude of SOS and EOS change at 
pixels. The following equation calculates the C-Index, where 
∆SOS represents change in SOS date and ∆EOS represents 
change in EOS date:

The C-Index is bound from − 1 to 1. Negative values indi-
cate EOS change is of greater magnitude than SOS change 
at a location, and positive values indicate SOS change is 
of greater magnitude than EOS change. We calculated the 
C-Index at all pixels, considering the change in SOS and 
EOS timing in the 2090–2099 period relative to the refer-
ence period (2001–2014).

Model validation

We first evaluated the accuracy of the binomial growing sea-
son probability model to predict whether days fell within 
the growing season. Binomial model predictions of at least 
0.50 were interpreted as within the growing season, and pre-
dictions less than 0.50 were interpreted as not within the 
growing season. These predictions were compared to the 
original eMODIS phenology data. We evaluated the model’s 
accuracy among training pixels in training years, validation 
pixels in training years, and validation pixels in validation 
years. These multiple lines of validation assessed whether 
the model was overfit to the input data and performed simi-
larly regardless of the year and location of input data.

Next, we evaluated the accuracy of the sinusoidal grow-
ing season date model to predict growing season dates from 
the binomial model predictions. We compared model predic-
tions to the eMODIS data, and evaluated root mean square 

(4)C − Index = −1 +
2 ∗ abs(ΔSOS)

abs(ΔSOS) + abs(ΔEOS)
.

error (RMSE), mean absolute error (MAE), and absolute 
bias of the model in predicting SOS date, EOS date, and 
GSL. Absolute bias was calculated as the mean of all errors 
(positive and negative).

Results

Binomial growing season probability model

The binomial model predicted daily growing season prob-
ability with high accuracy, and results were very similar 
between training and validation data. Among validation 
pixels in validation years, the model’s accuracy was 87.05%. 
Therefore, in 87.05% of instances, the model correctly pre-
dicted whether a date fell within the growing season or not 
(with probabilities less than 0.50 considered not within the 
growing season, and probabilities of at least 0.50 consid-
ered within the growing season). Prediction accuracy among 
training pixels in training years was 87.27%, and predic-
tion accuracy among validation pixels in training years was 
87.59%. Type III ANOVA showed all variables included 
in the binomial model were highly significant, besides the 
interaction of solar radiation, vapor pressure deficit, and 
accumulated growing degree days (Table S1).

Sinusoidal growing season dates model

The sinusoidal model fit daily growing season probability 
predictions closely. Figure 3 shows the daily growing season 
probabilities predicted by the binomial model, and the sinu-
soidal model fit to daily growing season probabilities in the 
year 2001 for a single pixel located at 40.979 N, 115.939 W 
(near Elko, Nevada). In this instance, the SOS date was pre-
dicted as day 82, while eMODIS showed the SOS date was 
day 74, an error of 8 days. The predicted EOS date was 318, 
while eMODIS showed EOS date was day 321, an error of 
− 3 days. Predicted GSL was 236 days, and GSL from eMO-
DIS was 247 days, an error of − 11 days. Negative errors 
indicate the model predicted earlier SOS/EOS dates than 
eMODIS, or a shorter growing season length.

Growing season dates were modeled with reasonable 
accuracy overall. Considering only validation years withheld 
from modeling, the mean MAE of modeled SOS dates across 
the study area was 19.46 days, mean RMSE was 22.85 days, 
and mean absolute bias was -5.24 days (Fig. S1). EOS dates 
were modeled with similar accuracy. Mean MAE was 21.80, 
mean RMSE was 27.04, and bias was 0.97 (Fig. S2). Errors 
modeling GSL were slightly higher. Mean MAE of GSL was 
23.69, mean RMSE was 27.92, and bias was 6.21 (Fig. S3).
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Future projected growing season dates

Future growing season dates projected by the models 
showed significant changes relative to the historical ref-
erence period (2001–2014). SOS dates were projected to 
advance throughout the region, and advance more dramati-
cally in RCP 8.5 than 4.5 (Fig. 4). In results from the ensem-
ble model, approximately half of the region was projected 
to experience SOS advancement of at least 5 days by the 
2030–2039 period in both RCP 4.5 and 8.5 (Fig. 4a, d). By 
the 2090–2099 period, start of season dates were projected 
to advance at least 5 days in nearly the entire region, with 
more intense advancement under the RCP 8.5 scenario 
(Fig. 4c, f). In this latest time period, mean advancement in 
the RCP 4.5 ensemble was 9.88 days, while mean advance-
ment in the RCP 8.5 scenario was 16.82 days. These corre-
spond to a rate of change through 2090–2099 of 0.12 days 
per year in RCP 4.5, and 0.21 days per year in RCP 8.5. SOS 
advancement was greatest throughout southern Idaho, east-
ern Washington, and eastern Oregon, with SOS projected to 
arrive as much as 30 days earlier by the end of the century 
in these areas.

EOS dates were also mainly projected to advance, and 
more dramatically in RCP 8.5 than 4.5 (Fig. 5). Overall, 
EOS advanced by greater magnitude than SOS, and by 
the 2090–2099 period most areas had EOS advancement 
of at least 10 days. Mean advancement in 2090–2099 was 
12.47 days in RCP 4.5, and 24.17 days in RCP 8.5 (Fig. 5c, 
f). The respective rates of change were 0.16 days per year 
for RCP 4.5, and 0.30 days per year for RCP 8.5. However, 
isolated areas in the Rocky Mountains demonstrated EOS 
delays in all time periods and both RCPs, contrary to results 
elsewhere.

GSL was not projected to change as much as either 
SOS or EOS (Fig. 6). GSL change was modest until the 
2060–2069 period, when mean GSL contraction was 
2.50 days in RCP 4.5 and 5.06 days in RCP 8.5 (Fig. 6b, e). 
Changes through the 2090–2099 period were similar, but 
with more extreme contraction in southern areas in the RCP 
8.5 scenario, and with mean GSL shortening by an addi-
tional 2.29 days. Mean GSL shortening in this period was 
2.59 days under RCP 4.5 (a rate of 0.03 days per year), and 
7.35 days under RCP 8.5 in 2090–2099 (a rate of 0.09 days 
per year). In all time periods and RCP scenarios, both GSL 
contraction and expansion were evident in some areas, with 
expansion in isolated areas in the Rocky Mountains.

Considering projected changes in individual ecological 
provinces allows for finer comparisons between regions 
(Fig. 7). Though isolated areas had EOS delays projected 
(Fig. 5), no ecological province as a whole was projected 
to experience a delay in EOS (Fig. 7b). The Middle Rocky 
Mountain Steppe and Southern Rocky Mountain Steppe had 
broad spreads in EOS dates due to the areas projected to 
experience EOS delays, but mean EOS in these provinces 
as a whole was still projected to advance. By the end of 
the century, mean EOS advancement approached 30 days 
in some provinces under RCP 8.5, but was closer to 10 days 
under RCP 4.5.

SOS changes were fairly consistent between provinces 
(Fig. 7a). Unlike for EOS, no areas were projected to experi-
ence later SOS. By the end of the century, SOS advancement 
was around 10 days for all provinces in RCP 4.5, and nearly 
20 days in RCP 8.5. For both EOS and SOS change, projec-
tions for RCP 4.5 and 8.5 did not strongly differ from one 
another until approximately 2060.

Fig. 3   Daily growing season 
probabilities predicted by the 
binomial model at a pixel near 
Elko, Nevada in 2001 (points). 
Blue line is the sinusoidal 
model fit to daily growing 
season probabilities. Dashed 
vertical lines indicate the SOS 
and EOS dates determined by 
the sinusoidal model, and solid 
vertical lines indicate the SOS 
and EOS dates from eMODIS at 
this pixel in 2001. Green lines 
indicate SOS, and red lines 
indicate EOS
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Large GSL shifts were not projected for any ecologi-
cal provinces as a whole (Fig. 7c). In all provinces, GSL 
was shorter in the RCP 8.5 projections than RCP 4.5. Mean 
GSL decreases in RCP 8.5 ranged from 5 to 10 days in all 
provinces, while nearly no GSL change was projected under 
RCP 4.5. The Middle Rocky Mountain Steppe and Southern 
Rocky Mountain Steppe had broad GSL change spreads, and 
indicated a slightly lengthened growing season by the end of 
the century under RCP 4.5.

Relative magnitude of growing season start and end 
change

In both RCP 4.5 and 8.5, the C-Index, measuring the rela-
tive magnitude of SOS and EOS change, was negative in 
most of the study area (Fig. 8). This indicates EOS change 
was of greater magnitude than SOS change in most loca-
tions. The mean C-Index throughout the study area was 
-0.13 in RCP 4.5 and -0.17 in RCP 8.5. However, in both 
RCP 4.5 and 8.5, isolated areas of the Rocky Mountains 
had positive C-Index values, indicating greater changes 
in SOS than EOS.

Fig. 4   Mean projected start of season date change among the ensemble of all six included GCMs, among RCP 4.5 (a–c) and RCP 8.5 (d–f) sce-
narios
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Discussion

Projected growing season changes

We trained a model on eMODIS phenology products, which 
represent the timing of vegetation growing seasons at a land-
scape scale, to project future changes in growing season tim-
ing and length. Our results indicated both start of season and 
end of season timing will occur earlier in response to future 
climate change in the majority of our study area (Figs. 4, 
5). Overall impacts to growing season length were less pro-
nounced, but tended toward slight contraction in most areas, 

with some mountainous areas experiencing growing season 
extension (Fig. 6).

Studies of grassland growing season shifts in response to 
recent climate change have typically shown advancement in 
spring green-up (Piao et al. 2007; Zhang et al. 2013; Li et al. 
2016; Ren et al. 2018b). Impacts to autumn senescence tim-
ing are more varied, but studies in grasslands have mainly 
found advancement (Li et al. 2016; Ren et al. 2018a, b; Ying 
et al. 2020).

However, comparable studies to ours projecting future 
phenological shifts in grasslands are rare. A study in 

Fig. 5   Mean projected end of season date change among the ensemble of all six included GCMs, among RCP 4.5 (a–c) and RCP 8.5 (d–f) sce-
narios
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Fig. 6   Mean projected growing season length change among the ensemble of all six included GCMs, among RCP 4.5 (a–c) and RCP 8.5 (d–f) 
scenarios

European grasslands found similar results, with a wide-
spread shift toward earlier start of season timing largely 
outweighed by a corresponding advancement in end of 
season timing, resulting in growing season length contrac-
tion (Chang et al. 2017). This study found increasing spring 
temperatures advanced spring green-up, while increased 
summer aridity from high temperatures and low moisture 
advanced autumn senescence. These effects have also been 
demonstrated experimentally (Zavaleta et al. 2003). A recent 
study found experimental warming of cheatgrass had the 
same results, with earlier flowering, earlier senescence, and 
shortened growing season (Howell et al. 2020).

However, another study of future phenology in our study 
area projected earlier start of season, later end of season, 
and longer growing season length (Hufkens et al. 2016). 
This study projected reductions in productivity and vegeta-
tion cover during summer drought, which were then reversed 
with increased activity during autumn. Our sinusoidal model 
did not allow for multiple growing seasons in a year, and 
assumed vegetation could not enter the growing season again 
once growing season probability began to decrease. This 
may account for the discrepancy between our results and 
those of Hufkens et al. (2016).

Some research in forests and grasslands has shown 
that start of season and end of season dates are positively 
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Fig. 7   Mean projected SOS (a), EOS (b), and GSL (c) change in ecological provinces among the ensemble of all six included GCMs, for both 
RCP 4.5 and RCP 8.5 scenarios. Lines represent mean results by year, and shading indicates one standard deviation from the mean

correlated, and thus likely to shift in the same direction, as 
we found (Fu et al. 2014; Keenan and Richardson 2015; Wu 
et al. 2016). Explanations for this relationship are numerous, 
and more research into this phenomenon is needed. Pos-
sibilities include limits of leaf longevity and programmed 
cell death (Keenan and Richardson 2015), or plant circadian 

rhythms (McWatters and Devlin 2011; Zu et al. 2018). Other 
hypotheses suggest that carbon-sink limitations force veg-
etation senescence when maximum carbohydrate reserves 
are reached, promoting earlier senescence following earlier 
green-up (Fu et al. 2014; Zani et al. 2020).

Though our model did not explicitly incorporate this 
effect, the constraint imposed by accumulated growing 
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degree days worked similarly in our model. However, we 
found end of season timing was delayed while growing 
seasons lengthened in higher elevation grasslands in the 
Rocky Mountains, in contrast to other areas. This may be 
because these cooler, moister grasslands are temperature 
limited so warmer temperatures can extend their growing 
season, whereas moisture limitations are more significant in 
the drier, lower elevation grasslands through the rest of our 
study area (White et al. 1997).

Importance of end of season timing

Changes in end of season timing, and autumn phenology 
generally, have not received as much attention as start of 
season or spring phenology (Gallinat et al. 2015; Piao et al. 
2019). Our C-Index calculation suggested end of season tim-
ing will change more than start of season timing throughout 
most of our study area (Fig. 8), supporting the importance 
of considering autumn phenology in any consideration of 
phenology impacts. Though end of season change may not 
always be of greater magnitude than start of season change, 
it is clearly an important aspect of phenology research that 
cannot be ignored. Autumn phenology impacts are gener-
ally more varied than spring phenology impacts (Walther 
et al. 2002; Richardson et al. 2013), and controls on autumn 
phenology are less clear than those on spring phenology 
(Ren et al. 2018a; Fu et al. 2020), so better discernment 
of these controls by ecosystem and region are still needed. 
Our results also support the finding that autumn phenology 
impacts are more varied than spring impacts, with both end 
of season advancement and delay projected in our results.

Impacts to ecosystems and ecosystem management

Livestock grazing is a dominant land use in our study area 
and would be impacted by phenological shifts, requiring 
adaptation for effective management (Rojas-Downing et al. 
2017; Ren et al. 2018b). Earlier growing seasons will likely 
force ranchers to bring livestock to pasture earlier in the 
year, but contracting growing season length could reduce 
the amount of time livestock can graze vegetation within the 
growing season, potentially increasing ranchers’ demands 
for supplemental winter feed.

Changing climate will also have direct impacts on live-
stock grazing which interact with phenology. For example, 
heat stress induced by high temperatures and humidity can 
reduce cattle weight gain and health, and increase water 
demands (Howden et al. 2008; Polsky and von Keyserlingk 
2017). Indirect effects of heat on livestock health, including 
reduced immune response and increased vector-borne illness 
spread are also possible (Nardone et al. 2010). These fac-
tors may challenge grazing management and reduce ranch-
ing profitability (Neibergs et al. 2018). On the other hand, 
higher winter temperatures and reduced snow cover could 
increase access to forage, even where growing season length 
contracts (Chang et al. 2017). Climate change will also 
impact forage quantity (Polley et al. 2013) and forage qual-
ity (Dumont et al. 2015), both crucial for livestock grazing.

Phenological mismatch and disruption of species inter-
dependencies may result if species adjust phenological tim-
ing differently in response to climate change (Rafferty et al. 
2013). Though global shifts in phenological synchrony are 
apparent (Kharouba et al. 2018), evidence of phenological 

Fig. 8   Mean projected C-Index, 
considering mean SOS and 
EOS change from 2090 to 2099 
relative to the reference period 
(2001–2014)
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mismatch in mutualistic relationships is rare (Bartomeus 
et al. 2011). Mismatch is more common in antagonistic or 
competitive relationships where species have not co-evolved 
common phenological strategies (Both et al. 2009; Renner 
and Zohner 2018).

Phenological plasticity affects species fitness, and the 
ability to adapt phenology could contribute to community 
compositions shifts in the future (Reed et al. 2013; Duputié 
et al. 2015). In the western US, for example, annual and 
cool-season grasses are more closely tracking climate change 
than perennial grasses or warm-season grasses (Munson and 
Long 2017). Similarly, invasive plants track climate change 
and adjust phenological timing more closely than native spe-
cies (Wolkovich et al. 2013; Wolkovich and Cleland 2014). 
There could be significant implications if these phenological 
differences lead to plant community shifts, particularly as 
invasive annual cool-season grasses such as cheatgrass (Bro-
mus tectorum) already pose significant management chal-
lenges in our study area (Knapp 1996). However, to what 
degree both phenotypic plasticity and genetic adaptation 
contribute to phenological tracking is unclear (Franks and 
Weis 2008), which may influence how significantly species 
phenology can adapt in the future.

Model error

Fitting start of season dates across the study area, our 
modeling method achieved a mean MAE of 19.46 days 
and mean RMSE of 22.85 days. End of season dates and 
growing season length were modeled with slightly higher 
error (respectively, MAE of 21.80 and RMSE of 27.04, and 
MAE of 23.69 and RMSE of 27.92. Xin et al. (2015) also 
modeled start of season timing in western U.S. grasslands 
using eMODIS phenology data, and their best models out-
performed ours, with RMSE of 16.4 days. This indicates 
the potential to improve our model by incorporating either 
a modified growing degree day or accumulated growing 
season index term, as they used (Xin et al. 2015). However, 
Xin et al. did not address end of season timing, whereas we 
employed a unified model of growing season start and end, 
which may constrain model performance.

Errors in our model were comparable to or better than 
other available examples fit to satellite-derived phenology 
metrics. With a double logistic function fit to NDVI at two 
Inner Mongolia grasslands, Ren et al. (2018a) fit start of 
season timing with MAE from 14.7 to 15.2 days. End of 
season, though was fit with MAE from 32.1 to 48.1, signifi-
cantly higher errors than our model. Incorporating ground-
measured gross primary production measurements at five 
sites, Ren et al. (2018b) greatly reduced errors (RMSE 
of 12.9 days for start of season and 13.0 days for end of 

season). Therefore, incorporating remotely-sensed gross 
primary productivity data could improve our model, though 
such estimates at large spatial scales may be significantly 
less accurate than those from ground-based observation 
sites. Furthermore, future projections of such data may not 
be reliable, limiting the ability to project a model based on 
gross primary productivity into the future.

Limitations

We used a relatively simple model which projected grow-
ing season timing based on readily-available future climatic 
data, and did not consider factors beyond climate which 
could impact phenology. Carbon dioxide (CO2) concentra-
tions were not included in our model, but CO2 concentration 
influences vegetative productivity in numerous ways (Pol-
ley et al. 2013), and increased concentrations may lengthen 
growing seasons through increased species complementarity 
(Reyes-Fox et al. 2014). Disturbances associated with cli-
mate change, such as wildfire, were also not included in our 
model, but could alter plant communities and phenology 
timing as well (Wang and Zhang 2020). Growing season 
length itself may be mediated by plant diversity, with greater 
diversity promoting a longer growing season (Oehri et al. 
2017), but we could not include this effect.

Similarly, we did not consider phenological implications 
of shifts in vegetation type. Greater composition of warm-
season grasses would shift growing season timing later in 
the year, but climate change impacts on the composition of 
warm-season and cool-season grasses are still unclear due to 
the offsetting impacts of increased CO2 concentrations and 
increased temperatures (Ehleringer et al. 1997; Morgan et al. 
2011). Our study area has also experienced shrubland and 
tree encroachment in recent years (Miller and Rose 1999; 
Knapp et al. 2008a, b), and continued shifts from grass to 
these species could impact phenology timing as well.

We could not analyze changes in net primary productivity 
(NPP), gross primary productivity (GPP), or other carbon 
flux measures in our model, which have important climate 
change implications (Cao and Woodward 1998). Many have 
found a positive relationship between NPP and growing sea-
son length (Myneni et al. 1997; Zhou et al. 2001; Bao et al. 
2019), but this is not true in all circumstances, with differ-
ences in climatic regimes and drought occurrence playing a 
role (Wu et al. 2016; Wang et al. 2017). Importantly, net eco-
system productivity (NEP), which is most important from a 
global carbon perspective, may not increase even when GPP 
and NPP do, because increased soil carbon decomposition 
can offset increased GPP and NPP (Piao et al. 2007).
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Our model assumed a single spring green-up and 
autumn senescence in each year. Measures like productiv-
ity vary throughout the growing season (Piao et al. 2007; 
Hufkens et al. 2016), but these variations and pulses in 
growth are not evident in our model since we modeled 
only the timing of growing season start and end. Climate 
change is likely to induce less frequent and more intense 
precipitation events (Trenberth 2011), potentially altering 
soil moisture dynamics and subsequent vegetation growth 
pulses in semi-arid systems (Huxman et al. 2004; Knapp 
et al. 2008a, b). These pulses in growth may be particu-
larly important in autumn, as moisture limitations increase 
and isolated precipitation events may sustain or renew 
growth. eMODIS phenology products may be improved by 
accounting for false green-up determinations from NDVI 
increases following snowmelt (Beck et al. 2006; Wang 
et al. 2018). Though timing of growing season start in our 
model could be too early due to the effects of snowmelt on 
NDVI, we were most concerned with trends through time 
which should be less susceptible to these errors, rather 
than growing season dates themselves.

Conclusion

Phenology exerts significant control on many ecological 
systems, and the timing of phenological events is strongly 
influenced by climate. Vegetation phenology, including the 
timing of spring green-up and autumn senescence, is already 
shifting in response to climate change, and will continue 
to shift in the future. Our findings suggest climate change 
will promote earlier spring green-up and earlier autumn 
senescence timing in temperate U.S. rangelands. We found 
autumn advancement was of greater magnitude than spring 
advancement in most locations, which would consequently 
shorten overall growing season length in most places. While 
many phenology studies in forested ecosystems have shown 
growing seasons have lengthened as spring advances and 
autumn is delayed, findings in grasslands have mainly shown 
that both spring and autumn timing are advancing. The pro-
jected growing season changes we found would have impor-
tant effects on livestock grazing, species fitness, and overall 
ecosystem function.
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